mCerebrum: A Mobile Sensing Software Platform for
Development and Validation of Digital Biomarkers and
Interventions

Syed Monowar Hossain,
Timothy Hnat, Nazir Saleheen,

Nusrat Jahan Nasrin
University of Memphis

{smhssain,twhnat,nsleheen, edu

nnasrin}@memphis.edu

ABSTRACT

The development and validation studies of new multisensory biomark-
ers and sensor-triggered interventions requires collecting raw sen-
sor data with associated labels in the natural field environment.
Unlike platforms for traditional mHealth apps, a software platform
for such studies needs to not only support high-rate data ingestion,
but also share raw high-rate sensor data with researchers, while
supporting high-rate sense-analyze-act functionality in real-time.
We present mCerebrum, a realization of such a platform, which
supports high-rate data collections from multiple sensors with real-
time assessment of data quality. A scalable storage architecture
(with near optimal performance) ensures quick response despite
rapidly growing data volume. Micro-batching and efficient sharing
of data among multiple source and sink apps allows reuse of com-
putations to enable real-time computation of multiple biomarkers
without saturating the CPU or memory. Finally, it has a reconfig-
urable scheduler which manages all prompts to participants that is
burden- and context-aware. With a modular design currently span-
ning 23+ apps, mCerebrum provides a comprehensive ecosystem
of system services and utility apps. The design of mCerebrum has
evolved during its concurrent use in scientific field studies at ten
sites spanning 106,806 person days. Evaluations show that com-
pared with other platforms, mCerebrum’s architecture and design
choices support 1.5 times higher data rates and 4.3 times higher
storage throughput, while causing 8.4 times lower CPU usage.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting; Ubiquitous and mobile computing systems and tools; « Com-
puter systems organization — Embedded and cyber-physical
systems;

KEYWORDS

mHealth, mobile sensor big data, software architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SenSys ’17, November 68, 2017, Delft, Netherlands

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5459-2/17/11...$15.00
https://doi.org/10.1145/3131672.3131694

Joseph Noor, Bo-Jhang Ho,
Tyson Condie, Mani Srivastava
University of California, Los Angeles

{inoor,bojhang,tcondie,mbs}@ucla.

Santosh Kumar
University of Memphis
santosh.kumar@memphis.edu

ACM Reference format:

Syed Monowar Hossain, Timothy Hnat, Nazir Saleheen, Nusrat Jahan Nas-
rin, Joseph Noor, Bo-Jhang Ho, Tyson Condie, Mani Srivastava, and Santosh
Kumar. 2017. mCerebrum: A Mobile Sensing Software Platform for Develop-
ment and Validation of Digital Biomarkers and Interventions. In Proceedings
of SenSys ’17, Delft, Netherlands, November 68, 2017, 14 pages.
https://doi.org/10.1145/3131672.3131694

1 INTRODUCTION

Smartphones with embedded and wirelessly connected sensors have
revolutionized health and wellness management via numerous apps.
These technologies are also fueling the next generation of health
research and are leading to novel interventions to improve health
and wellness [14]. But, their future momentum critically depends
on our ability to discover and validate new biomarkers for assessing
health, wellness, daily behaviors, and contextual factors.

1.1 System Requirements

Development and validation of any new mHealth biomarker re-
quires conducting research studies in lab and field settings to collect
raw sensor data with appropriate labels (e.g., self-reports). Raw sen-
sor data are of increasing interest as it significantly expands the
useful life of the information collected. Similar to biomedical stud-
ies that often archive biospecimens in biobanks so they can be
reprocessed to take advantage of future improvements in assays
and support biomedical discoveries not possible at the time of data
collection, raw sensor data can be used to obtain new biomarkers
that were not available at the time of data collection.

For example, if the activity trackers stored raw sensor data from
accelerometers and gyroscopes (100+ HZ instead of few samples of
activity counts per day), the same sensor data can also be used to
track eating, drinking, brushing, smoking, etc. from hand gesture
signatures, in addition to activity counts. Doing so, however, re-
quires a mobile phone software platform that can be used to collect
both high-rate raw sensor data and associated labels in field.

A general-purpose software platform that can enable such data
collection needs several attributes. First, it must support concurrent
connections to a wide variety of high-rate wearable sensors with
an ability to plug-in new sensors. Second, it must ingest the large
volume of rapidly arriving data for which native support does not
yet exist in the smartphone hardware or operating system without
falling behind and losing data. Third, it needs to support reliable


https://doi.org/10.1145/3131672.3131694
https://doi.org/10.1145/3131672.3131694

SenSys ’17, November 6-8, 2017, Delft, Netherlands

storage of quickly growing volume of sensor data, whose archival
is critical to the development and validation of new biomarkers.

Fourth, it is desirable to quickly analyze incoming data to monitor
signal quality so any errors in sensor attachment or placement can
be fixed quickly to maximize data yield. Fifth, it needs to support the
sense-analyze-act pipeline for high-rate streaming sensor data. This
is necessary to prompt self-reports (for collection of labels) as well
as confirm/refute prompts for validation of new biomarkers in the
field. Sense-analyze-act support is also needed to aid development
and evaluation of sensor-triggered interventions.

Sixth, it needs seamless sharing of streaming data from mul-
tiple sensors to enable computation of multi-sensor biomarkers
(e.g., stress, smoking, eating). Seventh, the platform needs to be
general-purpose and extensible to support a wide variety of sensors,
biomarkers, and study designs. Eighth, it needs to be architecturally
scalable so that it can support concurrent computation of a large
number of biomarkers (each of which requires complex processing)
without saturating the computational capacity or battery life of the
mobile phone. Finally, it needs to carefully control interruptions to
study participants from various sources (e.g., self-report, ecologi-
cal momentary assessment (EMA) and interventions (EMI), fixing
sensor attachments) limiting user burden and cognitive overload
while satisfying the numerous study requirements.

1.2 Our Contributions

In this paper we present mCerebrum, an open-source, generalizable,
and reusable platform that meets the above requirements (see Sec-
tion 1.1), in particular, high-rate data ingestion, real-time biomarker
computation, and burden-aware prompting. The design of mCere-
brum has evolved from its use in ten research studies with unique
study requirements and diverse health targets (see Table 1).

To accomplish efficient ingestion and real-time processing of
high-rate sensor data (70+ million samples/day) for multi-sensor
biomarkers, mCerebrum uses an efficient data exchange architec-
ture (called DataKit). To ease the burden of frequent and complex
computation for biomarkers, the architecture natively supports
computation reuse and microbatching.

To ensure extensibility to new sensors and generalizability to
diverse study goals, mCerebrum uses a common data format that is
flexible for current and future data types, yet efficient for commu-
nication. To reduce latency and overhead associated with storing
rapidly growing sensor data (up to 2GB/day), mCerebrum uses
a new scalable storage architecture called Pebbles. Burden-aware
scheduling of user prompts is achieved through a bipartite graph
design with gradual escalation to ensure meeting study goals, while
using adaptive feedback for managing user burden.

Evaluations show that when inserting 1k samples at a time,
mCerebrum ingests 9.65k samples/s, which is 1.5 times higher
than AWARE [7] (and 7 times higher for 1 sample insertions). For
high-rate storage, mCerebrum achieves 92% of optimal throughput,
which is 4.3 times higher than AWARE [7]. Via microbatching of
data ingestion and enabling efficient reuse of computation, mCere-
brum achieves significantly lower CPU utilization (8.4 times lower
than AWARE [7]), which is necessary to enable real-time computa-
tion of multi-sensor biomarkers from high-rate sensor data.

S. Hossain et al.

2 RELATED WORK

We compare mCerebrum with some existing software platforms
for conducting mHealth research studies with sensor data. Table 1
summarizes the comparison on key desired attributes.

The first set of platforms related to mCerebrum are various
commercial systems, which broadly fall into two categories. Among
these are the data collection systems that have been created by
vendors of wearables such as Fitbit, Withings, Polar, and Garmin.
Typically, they provide mobile apps to let users visualize the data
and back-end cloud services for storage, web-based access, and
RESTful API based distribution to other applications and services.
Besides being limited to supporting only vendor-specific devices,
most of these systems are designed to collect low-rate biomarkers
computed on the device (e.g. step count) instead of high-rate raw
sensor data and limit access by third-party applications to be only
via web service APIs. In rare cases, the raw high-rate sensor data is
exposed via an SDK to third-party smartphone apps, such as with
Microsoft Band, but then nothing else is usually provided.

The second category of commercial systems are software plat-
forms from the major ecosystem players (Apple, Google, and Mi-
crosoft) that are device and application vendor agnostic, and provide
support for a richer suite of services. Of these, the most well-known
are Apple’s HealthKit and ResearchKit services [13, 25] where the
former provides a smartphone based storage engine optimized for
collection and querying of a broad spectrum of health-related sen-
sor data, and the latter provides organizers of research studies,
that make use of such data, support for study management func-
tions such as subject recruitment. However, unlike mCerebrum,
the HealthKit targets low-rate data and has no native support for
other critical functions such as data quality assessment, biomarker
computation, privacy management, and context-triggered user data
collection, notifications, and interventions.

Capabilities similar to HealthKit and ResearchKit are provided in
the Android world respectively by a combination of Google Fit [8]
(a cloud-based data collection and distribution service that is tightly
knit with Android) and various systems that have either ported
ResearchKit to Android or seek to provide similar study manage-
ment functions. These too target low-rate sensor data collection
with no integrated support for data quality assessment, biomarker
computation, privacy management, and context-triggered user data
collection, notifications, and interventions. Microsoft’s HealthVault
is a similar product in this space and shares the same limitations.

Also relevant to mCerebrum are various research systems that
have sought to provide software frameworks for sensor data collec-
tion in social, participatory, and mobile health sensing, such as Con-
textPhone [20], Jigsaw [16], Funf [1], UbiqLog [24], Ohmage [32],
AWARE [7], Lifestreams [12], and many others. While some of
these systems such as Jigsaw, Funf, and AWARE have targeted high-
rate sensors, most of them are optimized for low-rate collection
or for local storage. Almost all lack other key functions of data
quality assessment, biomarker computation, privacy management,
context-triggered user data collection, notifications, and interven-
tions. Moreover, these systems, for the most part, remain limited to
small-scale academic usage. By contrast, mCerebrum is not only
capable of high performance data collection and provides a far more
comprehensive set of functions and sensor support, but has also



mCerebrum: A Mobile Sensing Software Platform

SenSys ’17, November 6-8, 2017, Delft, Netherlands

Framework Sensor-support High Scalable | Data | Computation Data | Sense-Analyze | Burden

Throughput | Storage | Quality Sharing Sharing | -Act Support | Aware
GoogleFit | Internal, Bluetooth Ve Ve v
HealthKit | Internal, Bluetooth v v v

OpenDataKit Bluetooth, USB v
AWARE Internal v v v
Internal, Bluetooth,
mCerebrum Bluetooth-LE, ANT+ v v v v v v v

Table 1: Comparison of different extensible mHealth frameworks that support external sensors

proven its robustness and scalability in mission-critical settings via
its adoption in multiple large studies by independent researchers.

Open DataKit (ODK) [4] is one of the earliest platforms to support
high-rate sensor data collection from Bluetooth and USB-based
wearable sensors. New driver services can be added dynamically
as plugins to acquire data from external devices as binary streams.
ODK encodes the stream as meaningful representations before
finally making it available to one target application through the
framework. ODK does not allow top level applications to exchange
data among themselves through the framework, limiting support
for real-time computation of biomarkers.

AWARE [7] is a framework that supports data collection from
phone sensors (e.g. accelerometer, gyroscope), phone activities (e.g.
calendar, call, message), and self-report (e.g. questionnaires, voice,
data labeling). AWARE supports plug-ins of external sensors; how-
ever, plug-ins are responsible for managing their own data storage
and sharing. This limits the scalability of storage for high-rate
sensor data, overall throughput, and CPU utlization.

In addition to software platforms that support data collection
from sensors, some platforms are optimized for collection of self-
reports. First, Commcare [2] is a commercial software tool that
allows creation, editing, and deployment of mobile applications for
research studies without a software developer. It supports complex
logic that can guide a participant to ask the right questions and
provide appropriate advice. This platform should be capable of
collecting low-rate biomarker data, similar to the other platforms;
however, we are uncertain due to its proprietary nature.

Second, Paco [6] is an open-source platform developed by Google.
It operates at meaningful moments to log data and/or prompt users
to act (e.g., view information or answer research questions). This is
used for daily experience research, to study participant attitudes
and behaviors over time, in the context of their daily lives (e.g., for
user-centered design of products or services); however, it is limited
in many of the other capabilities that mCerebrum provides such
as sensor data collection and customizable biomarker triggered
prompting that is burden- and context-aware.

Specific mechanisms in mCerebrum benefit from prior works
addressing problems such as energy-optimized data collection via
smarter sampling and sensor duty-cycling [3], coping with high
rate sensors [16], energy-optimized context inference via providing
inference computation as a shared service and making use of spe-
cialized processor cores in mobile system-on-chips [15, 31], privacy
management for sensory data on mobile platforms [5], sensor data
quality assessment, data storage management on mobile platforms,
and power, latency, and robustness considerations in partitioning of
computation across wearables, phones, and the cloud [23]. We note

L 70+ million

Smartphone

[ Chestband - -
‘7 Biomarker-triggered

User Engagement

Self Report

Wireless Radios:
Bluetooth, ANT+

| Smart Watches Machine
Learning

Models

(UwB RF Sensor.

Low Data Rate Sensors
Heart Motion
Location
privacy
(" smartphone Controller

Sensors. Encryption-based
GPS, Accel, Gyro Privacy Filter

Toothbrush Data Quality

Smokerlyzer

Omron BP/
Weight

000
( Secure Local Data Storage
T

i n
L]
Secure Cloud Data Storage J

Figure 1: mCerebrum overview illustrating key components
such as ingestion of high-frequency sensor data, real-time
data quality assessment and biomarker computation.

that while many of these problems are solvable in an application-
specific vertical system operating under carefully managed con-
ditions, they become much harder in mCerebrum which seeks to
be extensible and support a range of sensing devices and work
robustly across diverse scenarios and users.

In summary, the higher performance achieved in mCerebrum
as compared to other sensor data collection platforms is a result
of multiple architectural choices such as efficient inter-application
communication, a new scalable storage architecture, and central-
ized storage. The novelty and utility of our framework extends
beyond architectural efficiencies as mCerebrum provides native
support for high-rate data collection, real-time biomarker computa-
tion, sensor-triggered intervention, burden-aware user prompting,
privacy controls, among several others. The development of these
capabilities is not simply a matter of code changes but also iterative
refinements based on extensive user feedback from real-life studies.
These together make our system suitable for data collection in the
natural field environment in health studies involving development
and validation of new biomarkers.

3 OVERVIEW OF MCEREBRUM

We describe the overall architecture in Section 3.1, which includes
component-level and communication design, real-life deployments
in Section 3.2, and key features of mCerebrum in Section 3.3.
mCerebrum is designed to operate both as an independent, stand-
alone platform and as part of a larger system [10]. The work pre-
sented here focuses on the mobile phone components. The cloud
companion of mCerebrum warrants its own independent article.



SenSys ’17, November 6-8, 2017, Delft, Netherlands

Application Description
DataKit | Handles routing, privacy, and storage
DataKitAPI | API library for apps to use DataKit
Plotter
Privacy Controller | Allows the participant to suspend data
collection and EMA prompting
Utilities | Common helper functions
Phone | Integrates the smartphone sensors
Chestband | Data collection from ANT+ sensor suite
Wrist | BLE wrist-worn motion capture device
iCO | Carbon Monoxide sensor support
Smartwatch
UWB RF

Real-time data visualizer

Bluetooth 4 connected watch

BLE chest sensor for measuring heart
function and lung fluid

BLE-connected blood pressure cuff
BLE-connected weight scale
BLE-connected smart toothbrush
Provides real-time computation of
biomarkers (e.g. stress, smoking, etc.)
Mood Surfing | A custom built stress reduction app

Blood Pressure
Weight

Smart Toothbrush
Stream Processor

Thought Shakeup | A custom built stress reduction app
Medication | Medication adherence compliance app
and reminder system
Self Report | Customizable self-report prompts

EMA | Customizable EMA delivery application
Study | Main study interface; provides applica-
tion management for all other apps
Customizable scheduler for delivering
user prompts based on biomarkers
Adherence Reminder | A scheduler for episodic data collection
Notification Manager

EMA/EMI Scheduler

Gatekeeper for all user prompts

Table 2: Overview of mCerebrum apps and libraries

3.1 Architecture

To achieve our goal of high-rate streaming data collection, logging,
real-time processing, and intervention, we built a flexible, layered
architecture as illustrated in Figure 1. The architecture is composed
of five layers: (1) communication interfaces, which include sup-
port for both smartphone sensors and wearable sensors, (2) data
sources that provide an interface between devices and the rest
of the mCerebrum platform, (3) storage and routing interface,
which provides persistent data storage and routing of intermediate
results among the various components and is subject to the rules
of a privacy controller, (4) a signal processing layer provides the
necessary support for long-running applications to receive and
process data from elsewhere in the system, and (5) the participant
interface layer that implements all interactions with the partici-
pants. Together, they represent 23 different applications across our
currently supported studies (see Figure 2 and Table 2).

The mCerebrum platform and all associated applications are
publicly available on GitHub (github.com/MD2Korg/) under the
BSD 2-Clause license.

S. Hossain et al.

Person- | Samples

1D Study Users Days (BilliI())ns)
1 | Smoking & Eating 225 3,150 136
2 Smoking 300 4,200 182
3 Smoking 300 4,200 182
4 Smoking & fMRI 90 1,260 55
5 | Smoking & Stress 24 336 15
6 Heart Failure 225 6,750 224
7 Oral Health 162 29,160 968
8 Cocaine Use 25 350 18
9 | Behavior Change 100 1400 58
10 Job Performance 800 56,000 2,891
Total | 2,251 | 106,806 4,729

Table 3: mCerebrum powered studies span 10 sites — North-
western, Rice, Utah, Vermont, Moffitt, Ohio State, UCLA,
Johns Hopkins, Dartmouth, and Minnesota.

3.2 Real-Life Deployments

The design of mCerebrum has emerged from half a decade of expe-
rience in supporting half a dozen completed field studies at indepen-
dent sites. The current design of mCerebrum is in various stages of
deployment in ten research studies at different sites throughout the
United States by independent research teams; however, they cur-
rently receive technical support from the mCerebrum team. These
studies collectively span a total of 2,251 unique participants and
106,806 person-days (2.5 million hours) of high-frequency sensor
data. We estimate the net data generated, processed, stored, and
transmitted will be over 100TB and about 4.7 trillion data points
based on our current data abstraction. Table 3 provides a break-
down of these studies. We briefly describe each study to show the
diversity in studies adequately served by mCerebrum.

The goal of smoking studies (1-5) are to find sensor-based mark-
ers that predict smoking lapse. Participants who want to quit smok-
ing wear sensors for four days prior to quitting and 10 days after
quitting. The goal of heart failure study (6) is to find sensor-based
markers that predict hospital readmission. The study tracks activity,
eating, medication adherence, lung fluid change, blood pressure,
and weight for 30 days in recently discharged heart failure patients.
The goal of oral health study (7) is to find sensor-based markers
that predict changes in plaque level. Participants wear sensors for
six months to track brushing and flossing behavior. The goal of
cocaine study (8) is to develop and validate a sensor-based detector
of cocaine use to detect timing of cocaine use in nation-wide clinical
trials network. Active cocaine users wear sensors for two weeks
in field. The goal of behavior change study (9) is to study effects
of stress interventions for subsequent refinements in smoking and
obese participants during 14 days of sensor wearing. The goal of
job performance study (10) is to discover sensor-based indicators
of job performance from ten weeks of sensor wearing.

All studies involve continuous data collection from two wrist
sensors and smartphone sensors. The smoking studies, cocaine
study, behavior change study, and the job performance study also
involves continuous data collection from a chest band. All smoking
studies involve computation of stress and smoking events on the
phone which are used to launch stress intervention (study 1) based



mCerebrum: A Mobile Sensing Software Platform

SenSys ’17, November 6-8, 2017, Delft, Netherlands

Biomarker-triggered

. A ' '
Study App t EMA App | | Thought Shakeup | | Self Report App R
.. . N e ___ J‘ e ____ /I N o ____
Participant Interaction S N ~ ST Ny T T T T T T T T Adherence Reminder
|
: } External Apps ! | Privacy Gontrol App
X N _______ - N _____
Stream Processor App (w/API) Visualizations EUREEEE
Signal Processing Data Quality Dashboard
Smoking Notification Manager
Activity recovery System Health Report .
,,,,,,,,,,,,,,,,,,,,,,,,, ‘5
&
Storage Interface [ Data Export API Cloud Interface Service I
&
F’_ ———————— Y I/ ————————— '\‘ AamTmEmETTET, T
} PhoneSensor 1 Chestband App | Smartwatch
|
} App | = ‘ App
Data Sources ‘ 1 H (ec.resp, |l
[ | Accel
} Accel, Gyro, : : ! } AGCSCSILCEI:?
‘ GPS, Battery 1 : Wrist ; Heartrate
} 1 1| (Accel, Gyro) |
|
; ¥ l
I
Communication Interface } [ Local J : : [802.15.4 [ANT+J} } [
[ ] -
| Iy )

Figure 2: mCerebrum’s architecture consists of 5 layers: (1) Communication, (2) Data Sources, (3) Storage, (4) Signal Processing,
and (4) Participant Interaction, all connected through a data router. The colors indicate different categorizations of applications
— red for high-rate and orange for lower-rate sensors, blue indicates core components of mCerebrum, cyan represents system

services, and green represents user-centric applications.

on a micro-randomized trial design. In the pilot phase of study 2,
smoking detection is used to prompt a confirm/refute question.

All smoking studies involve generating Ecological momentary
Assessment (EMA) prompts at random times and in response to
detection of stress and smoking. For even distribution, one EMA of
each type must be delivered within each four hour block between
start and end times of the day, marked by the participants. Since re-
sponding to an EMA results in an incentive payment, EMA prompts
are to be generated only when the data quality from sensors are
acceptable several minutes preceding the EMA prompt and the
participant is not engaged in activities such as exercising or driving
a vehicle. Also, successive EMA or EMI prompts are to be separated
by a (configurable) minimum time gap to limit burden. Finally, par-
ticipants have an option to suspend data collection from specific
sensors and suspend prompt generation for privacy purposes.

In all studies, the majority of mCerebrum’s components are
reused and configuration files are the only thing that needs to be
changed. Sometimes study requirements necessitate the need for
custom programmed logic and whenever possible, this is general-
ized and incorporated in the the main components for the benefit
of other studies, both current and future. We note that all studies
are conducted with IRB approvals from their respective institutions
and their results are being reported in independent articles.

3.3 Key Features of mCerebrum

As the description of the ten studies shows, mCerebrum has been
designed as a general-purpose platform that can support the devel-
opment and validation of a wide variety of mHealth biomarkers
and sensor-triggered interventions. It incorporates the complete
pipeline of sense-analyze-act for high-rate streaming data from

multiple sensors. Coupled with scalable storage, it supports con-
current real-time computation of data quality and multi-sensor
biomarkers, and ensures burden- and context-awareness in collect-
ing self-reports and delivering sensor-triggered interventions.

We now describe the key architectural decisions that made
the entire platform feasible. We present an evaluation of design
choices together with design decisions and follow the paradigm of
sense-analyze-act to describe key innovations for each stage of the
pipeline. Finally, we provide an evaluation of energy usage.

4 SENSE — RESILIENT DATA COLLECTION,
SHARING, AND STORAGE

The sensing layer is responsible for reliable collection, storage, and
sharing of streaming sensor data from multiple sensors. The first
major challenge is to provide high throughput to handle the in-
coming data rate from multiple concurrently connected sensors via
different radios while providing flexible representations to accom-
modate current and future data types and their associated metadata.
The second challenge is to allow efficient sharing of incoming data
among multiple sources and recipients, while maintaining a high
throughput. The third challenge is to provide storage support that
maintains query responsiveness in the face of rapidly growing data.

We first describe DataKit and how it provides computation
and communication efficiencies that allow the handling of high-
frequency data rates. Next, we describe our scalable storage design
that addresses the capabilities necessary to maximize the amount
of data collected and stored within the system.



SenSys ’17, November 6-8, 2017, Delft, Netherlands

4.1 DataKit: Efficient Collection & Sharing of
High-rate Sensor Data

mCerebrum’s DataKit is designed to collect high-rate sensor data
from multiple concurrent sources and allow efficient many-to-many
sharing of data between data source and sink apps. Because data
sources will grow in diversity of data types and likewise recipients
may accept different formats of data from double values to complex
JSON encoded Ecological Momentary Assessments (EMAs), DataKit
provides a flexible structure to handle data representations and
transport within the system. Additionally, by providing a fast and
efficient communication mechanism, computation can be reused
by transmitting intermediate results through DataKit for other
processes to utilize instead of requiring each application to compute
values as needed.

DataKit is implemented as a data router instead of utilizing a
common database for storage due to two key limitations. First,
SQLite, the de facto standard for Android, is unable to efficiently
scale (Section 4.2) to the data rates mCerebrum required. Second,
having a central controller allows for better control over security
and privacy of data streams, restricting specific data items that are
persisted and stored through dedicated APIs.

4.1.1 Data Representation. mCerebrum’s data model is built on
two abstractions: (1) a data point, which is the tuple consisting of a
timestamp and value and (2) a data stream, a uniquely identifiable
collection of data points. A data point value can be composed of
any of the following: boolean, integer, long, double, string, JSON,
and all array variants. By constraining most data to primitive types,
we allow for efficient serialization and communication while allow-
ing for complex data types through JSON encoding. mCerebrum
utilizes a hybrid encoding scheme that supports two kinds of dat.
First, high-frequency sensor data (java primitives) is byte encoded
to reduce encoding and decoding time. The Android IPC is highly
optimized to minimize copying and is based on pointer and permis-
sion manipulation. Hence, compression techniques are unlikely to
yield significant benefits. Second, a flexible type based on string
encoded JSON objects is used to represent all other types of data,
thus providing nearly unlimited flexibility for complex objects.

4.1.2  Flexible and efficient communication. mCerebrum pro-
vides a simple, yet flexible and efficient communication mechanism
through DataKit and DataKitAPL The APl implements functionality
common to many publish-subscribe mechanisms with additional
support for sending query commands through the interface. It al-
lows an application to connect and disconnect from DataKit and
provides a subscribe and unsubscribe mechanism. In order to search
for data streams, it provides a find method that allows for partial
matching of the data stream based on included metadata. Subscribe
utilizes a callback mechanism which allows DataKit to directly route
appropriate data through function callbacks. Applications can query
by the last N samples and by time-range to retrieve information
from DataKit. In order to create a data stream and its associated
metadata, registration and unregistration methods are provided. Fi-
nally, an insert method is provided to send data to DataKit. These
basic building blocks allow for a variety of applications to be con-
structed and their simplicity keeps internal complexity down to
ensure efficient data processing and routing.

S. Hossain et al.

0 @®mCerebrum
+AWARE

* HealthKit
Google Fit

e

=

Frequency (kHz)
-

P

it

aamap ARt AN

1

Buffer Size
Figure 3: Data rates obtained by various platforms as num-

ber of samples (with a common timestamp) are written.

Smartphone resource constraints make communication efficiency
crucial to handling high-frequency data. Android runs applications
as separate processes for security and quality-of-service reasons;
however, this introduces the need for inter-process communica-
tion (IPC) which is provided through three different mechanisms:
Intents, which are implemented as a message forwarding system
but suffers from performance issues with high-frequency data due
to high resource utilization and latency; anonymous shared mem-
ory, is only suitable for sharing small amounts of data due to its
dependence on mutually accessible RAM; and Binder, is a Remote
Procedure Call (RPC) mechanism that allows for callback methods
to be defined and is utilized by mCerebrum. The Binder mechanism
has a shared system transaction buffer of 1MB and it is critical that
serialization, processing, and communications related to the Binder
mechanism be as efficient as possible to ensure the buffer does not
overflow. An initial attempt at utilizing RPC to route data through
the system resulted in an overflow of this buffer due to too many
outstanding transactions when we sent unique requests for each
data point. To resolve this overflow, a data buffer was introduced for
high-frequency data streams inside DataKitAPI to ensure that each
application receives data in the correct order and it automatically
buffers data as appropriate to meet performance requirements.

We evaluated the performance of mCerebrum for high-rate data
handling and compared it with Google Fit [8], AWARE [7], and
HealthKit [9] (see Figure 3). For Google Fit and AWARE, we used a
Samsung S5 running Android 5.1.1 and for HealthKit, we used an
iPhone 5s running i0S 10.2.1. In all cases, a sample application was
written to generate synthetic data.

The number of samples (of size double) to be ingested was in-
creased exponentially. All samples to be ingested together were
placed in a buffer and next buffer was inserted when the ingestion
of last buffer was completed. The data rate ingested in each plat-
form increases with buffer size. At one sample per insertion, data
rates for Google Fit, HealthKit, AWARE, and mCerebrum were 12,
130, 64, and 700 respectively. At 1,000 samples per insertion, these
rates increased to 1,128, 1,200, 6,378, and 9,650 samples per second,
respectively. In summary, mCerebrum provides higher-throughput
by using centralized and scalable storage with microbatching.

4.1.3  Handling Data Representation Diversity. Wearable sensors
are still in early stages of data standardization. Some commercial
devices such as Microsoft Band or Zephyr Bioharness provide APIs
to send and receive data in well-understood formats. However,
in other cases, devices send raw data directly from the sensors
and require further interpretation based on their specifications.



mCerebrum: A Mobile Sensing Software Platform

Sensors Sample Rate Interface
ECG, RIP, Accelerometer, Skin
[ Chest Band ‘ Temperature H 115 Hz H ANT+ D
Heart rate, RR-Interval, Accel,
Gyro, GSR, Barometer, GPS, 200 Hz Bluetooth 4
Ambient and UV light
[ Wrist Band ‘ Accelerometer, Gyroscope H 144 Hz H Bluetooth LE D
[ Chest Sensor ‘ UWB RF Sensor H 100 Hz H Bluetooth LE D
p U\quL Gyro, Magnetometer, GPS, 300 Hz
‘ I Light, Microphone, Barometer ntemal ‘
(’ Audio and 48 KHz and
- . Video 30 fps
High-rate
Low-rate
[ Omron ‘ Blood Pressure and Weight H 2 5"‘[’;;‘;‘&5’ H Blustooth LE D
[ Oral-B ‘ Pressure, Orientation H 1Hz H Bluetooth LE D

Figure 4: mCerebrum supports sensors ranging from 2 sam-
ples/day to 300 Hz per device including: BLE (green), Blue-
tooth 4.0 (red), ANT+ (orange), and internal (yellow). Addi-
tionally, it support short audio and video clips with a high
data rate storage mechanism.

Depending upon the radio technology and API implementation,
data could arrive in blocks associated with a single timestamp or
samples could be timestamped individually.

Data is reformatted by mCerebrum applications to a common
data point abstraction to support the wide variability in current
and future data sources. mCerebrum supports a variety of external
and internal sensors as illustrated in Figure 4: Electrocardiogram
(ECG), Respiration, Accelerometers, Gyroscopes, Magnetometers, Heart
Rate, RR-Interval, Galvanic Skin Response (GSR), Barometer, Location
(GPS), Ambient and UV Light, Ultra-wideband RF, Sound and Video.
Self-report and EMA are represented as JSON documents.

4.1.4  Resilient Communication Management. Sensor devices op-
erate either in batch or streaming mode, with some supporting
both, and the associated challenges differ. Devices sending only
biomarkers (e.g., Fitbit trackers) to a smartphone usually operate
in batch-mode, where the smartphone needs to connect frequently
enough to ensure that the necessary data or biomarkers are synced
before any information is lost due to memory limitations. Devices
collecting raw sensor data that require real-time processing on a
smartphone for triggering notifications or interventions, are usu-
ally streamed continuously without local storage to compensate
for battery depletion and is the scenario of usage considered here.

In such streaming scenarios, even a brief disconnection can result
in lost data; thus, it is critical that streaming sensors be able to
maintain a persistent connection to the phone. For example, a
smoking algorithm utilizes five seconds of wrist movement data to
aid detection of smoking behaviors and if communication with the
band were to fail, a critical event could be missed.

Radio disconnections between a streaming wearable and smart-
phone are another source of communication problem and may
occur due to many reasons including the wearable and phone get-
ting out of radio range due to physical separation, low battery, a

SenSys ’17, November 6-8, 2017, Delft, Netherlands

*
>

=)
=

==Pebbles

f
<+ SQLite

=SQLite Cluster /

=QOptimal /
"-/ A | ‘

1 2 3 4 S 6

10 10 100 10
Write size (B)

9
=

Max Throughput (MBps)
-
>

oy ”‘-.\ll!.\llfl\llfl'.:
Y )
st

Figure 5: Maximum write throughput with increasing write
size. Pebbles achieves 92% of the optimal write throughput
while SQLite and SQLite cluster (used in AWARE [7]) achieve
22% and 18% respectively at their steady states while writing
large blocks of data.

user turning off the device, and radio frequency interference due to
the environment or other devices in radio proximity. mCerebrum
utilizes a two-step approach to address disconnections. First, it at-
tempts to auto reconnect with sensor devices utilizing a back-off
mechanism where initially it retries every three seconds and in-
crementally slows to every 30 seconds after subsequent failures.
Second, the user is notified that a particular device is not connected
and supplied with guidelines such as to check the battery level,
restart device, or reset the system to minimize data loss.

4.1.5 Handling Large Data Objects. Audio and video data are
typically sampled at much higher rates than DataKit’s 9,650 sam-
ples per second. To allow collection and sharing of these two data
types in DataKit, we consider two approaches to overcome An-
droid’s interprocess communication (IPC) limits. First, we split data
into chunks and send individually to Datakit, where chunks are
subsequently recombined, similar to the case of TCP packets. This
approach requires 0.14 seconds to transfer 10 MB of binary data,
sustaining 71 MBps of throughput.

Second, a secure file sharing approach between an application
and DataKit allows sharing though FileProvider which facilitates
secure sharing of data by creating a content://Uri, allowing a
temporary grant of read and write access. DataKit can then directly
access this file using the Uri. This approach requires 0.11 seconds to
transfer 10 MB of binary data at 90 MBps, resulting in slightly higher
throughput and lower IPC load, making it a preferred mechanism
for handling large data objects in DataKit.

4.2 Scalable Storage of High-rate Sensor Data

SQLite is the de facto datastore layer on mobile devices including
Android and i0S, but it is unsuitable for storing high-frequency
raw sensor data streams. Such workloads, including our own, store
data that is seldom deleted or updated (e.g., sensor samples), and
are often small in (record) size e.g., a single message record could
be a few hundred bytes, mCerebrum records 12 bytes, on average.

Writing data streams to SQLite can be prohibitively expensive
due to SQLite database journaling and its update-in-place semantics
i.e., records reside at a particular location in stable storage, and
updates mutate the record directly. Furthermore, flash memory



SenSys ’17, November 6-8, 2017, Delft, Netherlands

(the dominant stable storage medium in mobile devices) is page-
oriented, which means that each record write corresponds to read
and write of an entire page [18]. Common page sizes for NAND
Flash memory chips today are around 8KB, which further increases
write amplification! for small records that our target applications
exhibit. In general, a single record inserted into a table with k
indexes results in 2 X (k + 1) pages written under SQLite [18].

Consequently, when using SQLite to store raw sensor data, as
data size grows, the query performance begins to degrade and fall
behind the rate necessary for real-time computation of biomarkers.
After about 8 hours of data collection, biomarker computations
begin to timeout due to growing query response time.

Log-structured storage systems under development, such as
RocksDB [26], may provide an alternative to SQLite; however,
RocksDB aims to support general RDBMS workloads and lacks
data sync capabilities between the mobile device and the cloud
platform, which is a key requirement in mCerebrum.

To address the specific requirements of mobile sensor data work-
loads, we have developed a custom log-structured storage layer
called Pebbles, which is optimized for high-frequency append-only
writes of data arriving in batch or record streams. Pebbles also pro-
vides transparent data sync, allowing applications to offload data
to the cloud for further processing and data archive. On the mobile
device, data is stored in a circular log to maximize the throughput
of flash memory. To support fast queries, Pebbles maintains a light-
weight index on a logical timestamp and topic, which is used to
identify data streams.

Figure 5 shows the max write throughput by varying data write
sizes of Pebbles versus SQLite and a cluster of multiple SQLite
databases (used in AWARE ([7]). This benchmark was performed
on the internal flash memory of a Samsung Galaxy Tab S2 . Each
system was configured with an 8MB in-memory buffer (split across
database instances for the cluster with round-robin writes) and
performed a total of 4GB writes. The optimal throughput of 72
MBps was determined by performing one large consecutive write
to the internal memory.

At lower data write sizes, such as those exhibited by typical
mCerebrum applications, Pebbles outperforms SQLite by more than
20x. The performance gain of Pebbles is directly related to the
lower write amplification relative to SQLite. In the lower data write
sizes, the CPU becomes the bottleneck, preventing Pebbles from
saturating maximum storage bandwidth. Nevertheless, the achieved
throughput is sufficient for mCerebrum.

At large data writes, such as those to be exhibited by the mCere-
brum batch data workloads, Pebbles is able to saturate storage
bandwidth and outperforms SQLite by more than 4x. SQLite is not
capable of saturating the storage bandwidth at these large write
sizes due to system overhead, including primary key constraints
and index maintenance, which attribute to increased write amplifi-
cation. The SQLite cluster suffers even more performance due to
its reduced ability to perform sequential writes. In Pebbles, write
amplification is minimized through the use of a circular log that is
clustered with the primary index i.e., both are append-only on new

!Write amplification refers to the actual amount of data that is rewritten for a given
record e.g., if records are stored in 8KB pages, then writing a 12 byte record results in
writing at least an 8KB page.

S. Hossain et al.

data writes and garbage collection is performed, on both, sequen-
tially with an optional cloud data sync.

5 ANALYZE — CONCURRENT
COMPUTATION OF MULTI-SENSOR
BIOMARKERS

The second tenet, analyze, is principally responsible for process-
ing the collected high-rate sensor data to compute features and
biomarkers that can be used by other apps. For example, when
validating a new biomarker (a key usage scenario for mCerebrum),
its real-time computation can be used to prompt participants to
confirm or refute the detected event in the free-living environment.
The main challenge is to screen the data for acceptable quality,
clean the data, compute hundreds of features, and then apply the
machine-learning models of all biomarkers, all in real-time, with-
out falling behind the incoming data rate and without saturating
the CPU and memory of resource constrained phones. One key
approach to making this feasible is to facilitate efficient sharing of
intermediate results (e.g., features) so computation can be reused.

We first describe in Section 5.1 how data and computation can be
reused to scale the analytics. Section 5.2 explores and evaluates the
techniques to manage system overload so as to manage Android’s
quality of service system to support continuous high-frequency
sensor data analysis. Finally, Section 5.3 describes Stream Processor
that implements real-time computation and sharing of features and
biomarkers throughout mCerebrum. We also analyze the impact of
such sharing on improving CPU and memory efficiency.

5.1 Data and Computation Reuse

It is not enough to have communication efficiency in each app, the
system needs to reuse as much data and computation as possible.
The modularization of mCerebrum allows sensor data to be col-
lected once by a single application that publishes them through
DataKit for use by other apps. This allows multiple applications
to receive data concurrently by subscribing to data streams. Com-
putation reuse occurs when various processing components of the
platform compute intermediate results or resulting biomarkers that
are placed on the DataKit bus where others can utilize these pro-
cessed streams instead of recomputing from raw data.

5.1.1 Supporting Onboard Sense-Analyze-Act. To enable the en-
tire pipeline of sense-analyze-act locally on the phone, mCere-
brum supports three different styles of data processing: micro-batch,
batch, and on-demand. In each of these instances, the computation
must not fall behind data arrival rate, i.e., meet a real-time con-
straint. Streaming operations, such as data quality or visualization,
need to receive data from the system and process it almost immedi-
ately; they use a micro-batch latency of one second. On-demand
computations or batch processing, such as biomarker computation,
require the data be queried in blocks from DataKit. In our current
implementation, for the purposes of computing stress and smoking,
we use a batch latency of 60 seconds.

Due to high load, computational complexity is a concern for
all data processing operations within mCerebrum. When possible,
computationally efficient algorithms are preferred such as online
algorithms for mean and variance. For computationally expensive



mCerebrum: A Mobile Sensing Software Platform

operations such as computing percentiles, online approximations
are used. In the case of convolution, the amount of data to be
processed is limited to control CPU load.

5.2 Handling System Overload

Android is based on the Linux kernel and applications are run
as self-contained processes. This allows Android to manage the
Quality-of-Service (QoS) it provides to the user; however, this QoS
is designed for regular consumer use and not configurable for long-
running background applications such as the ones we utilize to
provide a continuously running pipeline of sense-analyze-act. An-
droid selectively kills, and subsequently removes from memory,
applications as the system begins to run out of resources.

To determine which processes should be killed when low on
memory, Android places each process into an importance hierar-
chy based on the components running in them and the state of
those components. The process types are (in order of importance):
foreground, visible, service, and cached. Due to the QoS constraints
from the OS, we find that our applications are the typical ones
removed due to their service process state and worse, the OS sends
a SIGNAL_KILL command instead of a signal that can be trapped
by our applications for a graceful shutdown. This forces our appli-
cations to have a second watchdog application that can restart an
application if the OS decided to remove it.

mCerebrum adopts three separate mechanisms to combat the
overload introduced and subsequent semi-random application clos-
ing. First, the core service in critical applications is declared as
a foreground process, which is a way to request that the OS not
remove this application from a running state. This is especially
critical for applications that interact with the participant through a
user interface or a scheduling algorithm. Second, the mCerebrum
kernel acts like a watchdog system for the rest of the application
services. It periodically checks (every 30 seconds) to ensure that
the list of services it expects to be running are operational. In the
event that a service is not functional, it utilizes an exponential
back-off mechanism to quickly restart a service and in the event of
continued failure, it will slow attempts to restart processes. Finally,
every service must maintain a persistent copy of internal state on
the internal phone memory and be able to resume when restarted.
In addition, we adopt several optimizations (described below) to
limit system overload and avoid application removal by the OS.

5.2.1 Micro-batching to Control Communication Load. Sharing
and processing data as they arrive in real-time increases both the
system and communication load due to the maximum bandwidth
and maximum buffer size limits for Inter-Process Communication
(IPC) that are used to share data and intermediate results among
the data sources and requesting applications.

Our initial implementation serialized measurements from sen-
sors into individual messages before sending them through DataKit;
however, once the data rate exceeded 700 hertz (on a Samsung S4),
the system queues overflowed and the system began losing data. We
adopt a micro-batching design where data is shared for computation
in small batches that introduces a small latency, but significantly
reduces system overload.

Figure 6 shows the effects of various choices of micro-batching
latency on the frequency of data the system can process and the

SenSys ’17, November 6-8, 2017, Delft, Netherlands

20 T 100
=Total CPU (%) J
*+Frequency (kHz)
_ 16 = 80
z o £ S
<12 o . 2 160 o
= s £
= g ]
3 3 3
= 8 © 140 o
= < B
5] 3 o
/A 5
4 o 120
S . R
. . : . b d 0

0 0.01 0015 002 0025 005 0.0 02 05 1 2 5
Microbetch Latency (Second)

Figure 6: The effect of micro-batch latency on DataKit’s

communication bandwidth and CPU usage. We observe that

with no latency, communication bandwidth is limited by

bandwidth limits of IPC, while at higher latency, bandwidth

is limited by the buffer size limits of IPC.

Iteration time

30s 60s | 120s 300s
Computation time (s/min) | 2.67 | 248 | 2.33 2.23

Memory load (MB) 64.26 | 73.71 | 80.49 | 100.38
Table 4: CPU time (normalized to 60 seconds) decreases as
the buffer size is increased from 30 to 300 seconds. 0.34
seconds (17%) can be saved through buffering; however, it
comes with an increase in memory load (156%).

CPU cost associated with it. We note that the IPC communication
buffer size is limited to 1 MB. While introducing micro-batching
helps reduce system load, it affects applications that need real-time
data. Among them, the most delay sensitive is the Plotter for visu-
alizing sensor data such as ECG, accelerometers, and gyroscopes.
We choose a latency of one second that provides a bandwidth of
3,100 hertz for a CPU load of 17 percent. There is a noticeable de-
lay in rendering the plots of sensor data in visualization, but it is
acceptable for most purposes.

We compare mCerebrum with AWARE framework [7] by vary-
ing the sampling rate from 1 to 150 hertz. We test both low and high
data rate applications on both frameworks. To minimize discrepan-
cies with sensor comparabilities, we only utilized the smartphone
accelerometer, gyroscope, and magnetometer sensors. A Monsoon
power monitor [17] connected to a Samsung S4 smartphone cap-
tured five 1-minute experiments. For both platforms, we enable
accelerometer, gyroscope and magnetometer each with 6, 16 and
50 hertz, resulting in 18, 48, and 150 hertz respectively. The tem-
perature sensor was utilized for low-data rate sampling at 1 hertz.

Figure 7 shows that mCerebrum’s benefit grows as the data rate
increases resulting in 8.4 times lower CPU load when compared to
AWARE. This effect is principally due to the combination of micro-
batching and block storage capabilities of the mCerebrum platform
when compared with other existing platforms; computation reuse
provides additional performance and energy benefits.

5.2.2  Effects of Buffer Size on System Load. Table 4 illustrates
the trade-off between buffering data and the computational and
memory loads on the system. This experiment runs our biomarker
computation pipeline and varies the amount of data buffered be-
tween 30 and 300 seconds. The memory status of the smartphone



SenSys ’17, November 6-8, 2017, Delft, Netherlands

80,
<~ AWARE
~+mCerebrum
60 .’I
;\; K
g 401 "
=}
= 200 }
S |
e T s l
0 p S } .
=20 . | | |
1Hz 18 Hz 48 Hz 150y

Frequency

Figure 7: mCerebrum is compared with the AWARE frame-
work by adjusting the total sample rate of the accelerometer,
gyroscope, and magnetometers between 18 and 150 hertz per
sensor. mCerebrum’s benefits by up to 8.4 times lower CPU
load when recording at 150 hertz)

is recorded by executing adb shell dumpsys meminfo command
at two hertz. Applications also logged the starting time and com-
putation time of each iteration. We ran each experiment for 20
minutes and the mean computation time and mean memory usage
are computed. Complex biomarkers such as stress, smoking or eat-
ing, benefit from the additional buffer size which allows them to
produce more accurate results; however, this comes at the expense
of memory utilization. A biomarker’s utility can be a function of
it’s temporal locality to the measuring event, such as the case with
stress, where a five minute delay places any potential intervention
outside of the episode, thereby reducing overall effectiveness. Addi-
tionally, buffering too much data increases the computational time
and resources needed thus resulting in Android stopping certain
data collection and processing application rendering this platform
unusable. Computations on large buffer sizes effectively cause a
CPU utilization spike which is interpreted by Android as a resource
demanding application, and the application becomes a candidate
for shutting down.

We currently use an operating point of one minute that provides
acceptable latency while limiting system overload. Improvements
in the computational model and hardware profile of the phone
will change these operating points. Dynamic selection of the best
operating points given a biomarker model and hardware profile is
a subject of future work.

5.3 Stream Processor: Real-time Computation
and Sharing of Features and Biomarkers

The majority of high-frequency signal processing occurs under the
Stream Processor module, which is designed to support real-time
computation and sharing of features and biomarkers. It provides
appropriate buffering and estimators for several window-based
signal processing pipelines.

Stream Processor includes a number of design trade-offs that im-
prove processing performance or constrain resource utilization so
as not to adversely affect mCerebrum’s system performance. First,
data is processed with a batching mechanism where all algorithm
pipelines receive data every 60 seconds as a way to allow the smart-
phone CPU to operate in burst mode for better energy efficiency
and to limit the amount of reprocessing of data that must occur if

S. Hossain et al.

Gyro

Smoking

&>

Figure 8: Features are shared among various biomarker com-
putation algorithms, allowing for computation reuse.

a sliding window or smaller windows were to be utilized. Second,
data is kept in RAM for the current window of computation unless
the developer explicitly configures historic state preservation.

Third, algorithms are usually implemented as pipelines since
they gain significant computation reuse by sharing originating sen-
sor sources. For example, both stress [11, 30], an algorithm designed
to compute physiological arousal from ECG and respiration to es-
timate stressful episodes, and smoking [27], combines respiration
and wrist motion information to determine when a cigarette puff
occurs, share common respiration features and the smoking algo-
rithm takes advantage of existing computation and augments the
processing with its new features.

Stream Processor is also responsible for generating a feature
vector from the various computed data streams and evaluating a
learned model for biomarker generation that is trained from existing
annotated data sets. These models are currently based on a support
vector machine (SVM); however, any model that is efficiently evalu-
ated is capable of being run on mCerebrum. The machine learning
models we implement as part of Stream Processor are a function
of the study requirement and the distributed architecture of the
framework allows modules to implement different machine learn-
ing models for optimal performance. Additionally, a module can
reuse the results from other modules to improve performance, such
as if the CPU utilization is high or data quality is poor, a different
optimal classifier could be chosen at run-time.

Despite efficient design, 14.87 + 4.12 seconds each minute on
average is spent running the signal processing algorithms and re-
sults in a 13 percent reduction in total expected system lifetime
(see Table 5). This will only grow as more biomarkers are included
for real-time local computation. Future work is needed to inves-
tigate methods to limit CPU load, e.g., explore cloud offloads for
biomarker computation from raw sensor data.

5.4 Quantifying the Benefits of Computation
Reuse — A Case Study

To analyze the effect of computation reuse, we created a single app
for detecting smoking, stress, activity, and eating, and additional
apps isolating the individual biomarker computations. The applica-
tions were run simultaneously to measure CPU and memory load
and once again with computation sharing enabled. Figure 8 shows
the features that are shared among these four biomarker compu-
tations. For example, respiration data is used for both smoking



mCerebrum: A Mobile Sensing Software Platform

Iteration CPU Time Memory Usage

4 140 5 All
35 45.86
1.523 6120 Smoking
3
2 2,100 g%////////;
=25 V7 e V88 78// % Stress
% 7777 S 80 7,
% ? é%'ﬁi/// -bgn 60 é%k/// = Eating
7
1 2 Activit
1.038 20 3 vty
0.5

NN 0.216 2 AN\ :
Without With Without With

computation reuse computation reuse computation reuse computation reuse

Figure 9: The effects of computation reuse on CPU and mem-
ory efficiency. The first columns show the CPU and memory
usage when computing four biomarkers without sharing
computation. A reduction of 27% CPU time and 47% memory
is achieved through reuse, as shown in the second columns.

detection and stress detection, allowing preprocessing and many
feature calculations to be shared resulting in lower CPU and mem-
ory utilization. Figure 9 show 27 percent reduction in CPU time and
47 percent reduction in memory achieved by computation reuse.

6 ACT — BURDEN- AND CONTEXT-AWARE
INTERACTIONS WITH PARTICIPANTS

The final tenet of our platform, act, combines both sense and analyze
outputs to engage with a participant during his/her study period.
Together with sensor data, direct inputs from participants are also
collected in research studies. Participant interaction is generally
grouped into three categories: voluntary, prompted, and glance-
able. Voluntary inputs can be provided through self-report buttons.
Prompted interactions allow the system to obtain information from
a participant through an EMA or to provide ecological momentary
intervention (EMI). Prompts are also generated to ask participants
to collect episodic sensor data or to remind them to take medica-
tions. Finally, glanceable interactions are implemented by updating
the graphical user interface. For example, real-time data quality
assessment is displayed on the home screen. Of these, prompted
inputs and interventions represent interruptions to the participant,
and hence must be carefully coordinated to limit user burden.
There are several new challenges in the design of scheduling
EMA and EMI prompts in research studies collecting both stream-
ing sensor data with sense-analyze-act capability and EMAs and
EMIs. First, prompts should be coordinated from all sources, includ-
ing those generated by biomarkers, to limit burden on participants
while satisfying all study requirements. This includes using sensor-
inferred contexts and deliver prompts or interventions only when
the participant is available. The second challenge is to incorpo-
rate sensor data quality in prompt generation so that good quality
sensor data is available preceding self-reports. We describe study re-
quirements in Section 6.1 and our design of participant interaction
manager that is both burden- and context-aware in Section 6.2.

SenSys ’17, November 6-8, 2017, Delft, Netherlands

6.1 EMA/EMI Scheduling Requirements

Ecological Momentary Assessments (EMAs) are a cornerstone for
biomedical studies because of their ability to obtain a participant
response in the moment. They can be prompted randomly (to obtain
unbiased daily estimates), based on time of day (to ensure coverage),
based on self-reported events (to obtain context surrounding a
self-reported event such as smoking lapse), and now also based
on events detected by sensors (e.g., elevated stress). In addition,
participants can also be prompted to engage in an intervention (e.g.,
stress relaxation), to collect episodic data from devices (e.g., blood
pressure), and to remind them to take medications. Each prompt
involves its specific constraints and irrespective of the source, each
prompt represents an interruption and burden on the participant.

Each study has a unique protocol (i.e., usually part of their in-
novation), requiring the EMA scheduler to work in conjunction
with study-specific configuration that implements the rules of the
study protocol. Studies may involve: (1) scheduled assessments,
such as the beginning of the day, the end of the day, or at specific
times, (2) random assessment, where the time of this assessment
is randomly generated within a specified window, (3) in response
to self-reported events, and (4) event-triggered assessment (e.g., in
response to sensor-detected events such as stress or smoking).

Second, the EMA scheduler needs to support conditional oper-
ations based on computed data streams. Some of the conditions
include: (1) driving status, to ensure that an EMA is not delivered
to a person in a moving vehicle, (2) data quality, allows the sys-
tem to verify that the sensors are worn properly before generating
the assessment (to ensure labels and sensor data are both avail-
able together), and (3) battery level, to ensure that assessments are
happening either with sufficient battery or as a way to prompt a
participant to charge a particular device of the system.

Third, the last EMA or EMI triggering time can be used to ensure
that subsequent prompting or interventions do not occur in close
proximity to each other. Fourth, the total number of prompts trig-
gered are limited to a maximum (in each time block) to constrain
the user burden according to study protocol rules. Fifth, the day
may be divided into time blocks with minimum number of EMA’s
in each block to ensure sufficient temporal distribution of EMA’s.
Sixth, no prompts are to be delivered if privacy controls are ex-
ercised to suspend prompts. Finally, start and end of day can be
provided so that no prompts will occur before or after these times.

6.2 Burden- and Context-aware EMA/EMI
Scheduling

Intelligent scheduling mechanisms for delivering prompts has been
proposed in earlier works such as InterruptMe [19] and our prior
work [29]. The key innovation of mCerebrum framework is its flex-
ibility so as to allow implementation of these and other scheduling
mechanisms via changes only to configuration files.

mCerebrum uses a bipartite-graph design (see Figure 10) that
fulfills all of the above requirements and is thus able to satisfy the
requirements of all ten studies listed in Table 3. In addition, our
design supports dynamic adaptation to use the user response (or
lack of) to meet study requirements with gradual relaxation of
constraints (see feedback loop in Figure 10).



SenSys ’17, November 6-8, 2017, Delft, Netherlands

Burden Feedback
Inputs
Burden Constraints Actions/Controllers

Random ‘&\\\\‘\“:2‘

EMA1

Phone

Sensors

Self-report v ‘
N
Biomarkers )\\..‘f"“?{'//v \ \
y H
T EMI ““

SRS
Start/End of Day ’l/"@:‘\?g;;{%
“}.’/‘Q EMI__ ’0\

mess Y75
_Time .!’ll‘?é‘é‘ B, </
Time offset '[/’/A\

’.'—-— =3 Data Collection
User Context —-’7}/‘ !
LT =\ ,
/A5 _7“—=5{ Data Collection
Data Quality = e

7= smen,

Personalization

Battery Level

Gradual Escalation

Figure 10: A bipartite graph design of EMA/EMI scheduler.
Boxes on left side show the inputs to the actions/controllers
on the right, which prompt the participants. Feedback is ac-
complished by examining the conditions surrounding the
participant response and passed back to key input blocks.

The inputs column (left-side) enumerates many current choices
available in mCerebrum and include: burden constraints, random
and event-triggered inputs, restrictions on actions through privacy
constraints, start and end of day, and various time operations, user
context, and data quality and battery assessments. These inputs can
be mapped in arbitrary ways to a set of actions or controllers (right-
side) and are defined as constraints across multiple applications
as part of a study protocol. Ultimately, the output of an action or
controller results in feedback information being incorporated back
into the input side. These feedback loops allow mCerebrum to adapt
to changing burden, personal preferences, or to gradually escalate
the prompting to become more aggressive in requesting an action
from a participant in order to meet study requirements.

For random and time based assessments, the EMA scheduler esti-
mates the time of when it should be triggered. Due to the dynamic
nature of self-reported event and event-triggered assessment, the
EMA scheduler schedules it preemptively based on their appear-
ance. There might be a case when multiple assessments may appear
at the same time. To handle this issue, the EMA scheduler takes
each of these events one by one as in a FIFO queue and checks all
of the constraints for this event and deliver the EMA. After com-
pletion of an EMA, it returns back to process the next event. This
approach also ensures that multiple EMAs are not triggered simul-
taneously. For random assessments, if it fails to deliver due to the
constraints or conflicts with another assessment, it is rescheduled.
Before delivering the EMA, the EMA scheduler checks constraints
and if all constraints are satisfied, EMA is prompted and the delay in
response is used to measure user burden and constraints. In several
studies, the EMA/EMI scheduler attempts an average of 55 prompt
deliveries per day with an average processing time of 0.18 seconds
each, negligible when compared to the CPU execution time of a
complex multi-sensor biomarker (e.g., stress or smoking).

S. Hossain et al.

Module Set Current | Lifetime
Baseline Power | 17.13 mA | 151.78 hrs

+ Wrist Sensor 1 | 96.28 mA | 27.00 hrs

+ Wrist Sensor 2 | 107.16 mA | 24.26 hrs

+ Biomarker Computation | 151.05mA | 17.21 hrs
+ Decision Making | 160.42 mA | 16.21 hrs

+ EMA/EMI (25 minutes) | 187.23 mA | 13.89 hrs
+ Location Service | 273.77 mA 9.50 hrs

+ Phone Accelerometer | 284.33 mA 9.14 hrs
+ Phone Gyroscope | 287.67 mA 9.04 hrs

+ Chest Sensor | 327.46 mA 7.94 hrs

Table 5: Impacts on expected (2600 mAh) bettery life by in-
crementally adding sensing and processing capabilities.

7 ENERGY ESTIMATION & MANAGEMENT

Battery life is a principle concern for smartphone platforms and
the collection of raw sensor data exacerbates this issue. We con-
duct power measurements with various configurations to show the
impact of sense-analyze-act stages on the battery life and compare
with an existing framework, namely AWARE [7].

We use a Monsoon power monitor [17] to measure the average
current draw on a Samsung S4 phone over 10 minutes as various
components of mCerebrum are activated and deactivated.

Table 5 shows the impact of introducing an increasing set of
sensors and processing modules on the overall system lifetime. A
common case scenario of collecting raw sensor data from wrist
sensors on both wrists, computing biomarkers, scheduling notifica-
tions, and collecting self-reports via user inputs is presented. Other
options such as collecting phone sensor data, location data, and
chest band sensors can further reduce the lifetime.

We make several observations. First, introducing a streaming
wearable sensor over Bluetooth low energy (BLE) consumes signif-
icant energy (79 mA), but is lower than enabling location services.
Second, adding a second wearable that uses the same radio incurs
only a minimal energy cost (10.88 mA). Third, real-time biomarker
computation that involves data screening, cleaning, extractions
of tens of features, feature normalization, and the application of
machine learning models consumes half the energy needed to add
the first BLE sensor. Making scheduling decisions from biomark-
ers incurs only minimal energy cost (9.37 mA). Fourth, using the
screen for 25 minutes to complete EMA or EMI (10 times a day for
2.5 minutes each [29]) consumes one-third the energy needed for
adding the first BLE sensor. In a base configuration consisting of
two wrist sensors, of the total energy, baseline operation consumes
9%, sensing consumes 48%, computation consumes 28%, and user
interaction with the screen consumes the remaining 15%.

To compare the energy efficiency of mCerebrum with existing
platforms, we compare with the AWARE framework [7] with a
similar set up as described in Section 5.2.1. Figure 11 shows that at
data rates less than 20 hertz, both mCerebrum and AWARE have
comparable energy footprints, However, once the data rate exceeds
this threshold, mCerebrum exhibits lower energy consumption as
the data rate increases. At 150 hertz, AWARE consumes nearly twice
the energy due to increased CPU usage and frequent storage use.



mCerebrum: A Mobile Sensing Software Platform

2007
~AWARE A
-+mCerebrum

Current Draw (mA)
o -
S N
= S

wn
<

| | |
1Hz 18 Hz 48 Hz 150 Hz
Frequency

Figure 11: mCerebrum is compared with the AWARE frame-
work by adjusting the total sample rate of the accelerome-
ter, gyroscope, and magnetometers between 18 and 150 hertz
per sensor. mCerebrum’s benefit on power consumption is
improved as the sampling rate increases, thus pushing the
CPU into higher-power states.

8 LESSONS LEARNED

System design processes are necessarily iterative due to the un-
certainties involved in developing and running real-world studies.
For mCerebrum, we setup a bug and feature tracking site which
logged about 1,000 requests that have been successfully resolved
in the past year. An accompanying forum for discussing software
changes resulted in a participatory design process that continues
throughout the ongoing deployments. We briefly summarize two
key architectural decisions that resulted from real-life deployments.

The storage of raw sensor data proved to be a serious prob-
lem, leading to data corruptions and abrupt slowdowns that only
appeared after many hours of data collection. This led to the de-
velopment of Pebbles. The second major hurdle to be resolved was
that of system overload, which was again only intermittently repro-
ducible with multiple hours of data collection. Various apps were
killed by Android to preserve its quality of service. Resolving the
system overload issue led to the idea of microbatching.

A principal goal of mCerebrum is to maximize the data yield in
real-life deployments. In addition to refining architectural choices
to minimize data losses, we also developed mDebugger [21, 22] to
discover deficiencies in study protocol or participant compliance.
Fixing them have led to substantial improvements in data yield.

9 LIMITATIONS AND FUTURE WORK

This work focused on presenting the design of mCerebrum as im-
plemented on mobile phones. Its coordination with software on
the external wearable sensors, and its coordination with the cloud
platform was omitted due to lack of space and will be presented
elsewhere. Also, Graphical User Interfaces (GUIs) as well as other
aspects of human experience are not presented here due to a fo-
cus on the systems aspects of mCerebrum. We now discuss some
limitations of mCerebrum that can be addressed in future works.
First, mCerebrum is currently implemented only on Android.
i0S requires that “apps moving to the background are expected to
put themselves into a quiescent state as quickly as possible so that
they can be suspended by the system.” which effectively removes
the ability for a software package to run continuous processing.

SenSys ’17, November 6-8, 2017, Delft, Netherlands

Porting it to iOS will, therefore, involve significant redesign to en-
sure its persistent data collection, computation, and communication
mechanisms function properly.

Second, adaptive power management techniques are needed in
mCerebrum to enable selective sampling, power-aware sensing, or
cloud offloading of computations to meet system lifetime expecta-
tions. Third, sharing of raw sensor data, especially physiological
data, raise different privacy challenges [28]. mCerebrum provides
a privacy controller (Figure 2) that allows participants to suspend
data collection from specific sensors while allowing the system
to automatically turn data collection on after the privacy period
expires; however, we recognize this is just a first step in a much
larger set of security and privacy issues.

Fourth, an implementation strategy for classifiers and more gen-
erally, processing of sensor data is a concern that is largely or-
thogonal to the mCerebrum architecture and left for application
developers to handle. For example, applications could make use
of optimized and accelerated machine learning frameworks that
have begun to appear on smartphone platforms, as well as context
inferences directly provided by the platform such as motion state
related ones that some platforms now provide. mCerebrum allows
applications creating derivative sensory data streams to publish
them back for other applications to use, thus eliminating duplica-
tive processing. Nevertheless, mCerebrum can potentially play a
role in certain aspects of the problem, such as providing support for
cascaded activation/deactivation of sensors and classifiers based on
contextual triggers that could be developed in future research.

Fifth, the Pebbles frameworks does not currently support tem-
poral and location-based querying of data. However, temporal and
spatial indexes (e.g., R-Trees) are slated for a future version. mCere-
brum provides real-time subscription capabilities designed to sup-
port the processing of sensor data without the need for extensive
query support and in our experience, we have not needed to query
for temporal or spatial information from the high-frequency data.

In summary, the mCerebrum platform provides a comprehensive
ecosystem that others can improve on many aspects such as power
management, inference making, or user engagement.

10 CONCLUSION

Future success and utility of mobile and wearable sensors for health
and wellness depends on our ability to discover new biomarkers.
mCerebrum is designed to support high-rate data collection to
develop and validate new biomarkers for whom native support
does not yet exist in the resident OS (e.g. Android and iOS). As
new biomarkers are developed and validated using mCerebrum, we
should begin to see native support for them in resident OS, similar
to how physical activity, driving, etc. are now part of Android
library, and in wearables for the consumer market.

We note that platforms like mCerebrum provide support for
collecting high-rate sensor data, but collecting such data from real-
life participants still requires significant time, effort, and resources.
Sharing such data can accelerate scientific progress and facilitate
comparative evaluation. But, sharing high-rate mHealth sensor
data for third party research requires significant work not only
in preserving behavioral privacy of contributing participants, but



SenSys ’17, November 6-8, 2017, Delft, Netherlands

also requires extensive works in efficient and meaningful annota-
tions of the data, together with provenance of each stage of the
processing pipeline that converts sensor data into biomarkers. De-
veloping a complementary provenance cyberinfrastructure system
for automatic generation and processing of metadata for high-rate
mHealth sensor data can amplify the scientific utility of platforms
like mCerebrum.

ACKNOWLEDGMENTS

The authors thank our shepherd and the anonymous reviewers for
their insightful feedback and suggestions. We would also like to
thank the many individuals that have helped to develop, test, and
deploy this platform at sites around the world.

The authors acknowledge support by the National Science Foun-
dation under award numbers ACI-1640813, CNS-1212901, IIS-1231754
and IIS-1636916, and by the National Institutes of Health under
grants R0O1CA190329, R0OIMD010362, R01DE025244, UG1DA040309,
and U54EB020404 (by NIBIB) through funds provided by the trans-
NIH Big Data-to-Knowledge (BD2K) initiative.

REFERENCES

[1] Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, and Alex Pentland. 2011. Social
fMRI: Investigating and shaping social mechanisms in the real world. Pervasive
and Mobile Computing 7, 6 (2011), 643-659.

[2] Commcare App. 2017. Online at https://www.commcarehq.org/. visited April
(2017).

[3] AriY Benbasat and Joseph A Paradiso. 2007. A framework for the automated

generation of power-efficient classifiers for embedded sensor nodes. In Proceed-

ings of the 5th international conference on Embedded networked sensor systems.

ACM, 219-232.

Waylon Brunette, Rita Sodt, Rohit Chaudhri, Mayank Goel, Michael Falcone,

Jaylen Van Orden, and Gaetano Borriello. 2012. Open data kit sensors: a sensor

integration framework for android at the application-level. In Proceedings of the

10th international conference on Mobile systems, applications, and services. ACM,

351-364.

Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan, Yasser

Shoukry, Matt Millar, and Mani Srivastava. 2014. ipShield: a framework for

enforcing context-aware privacy. In 11th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 14). 143-156.

[6] Paco The Personal Analytics Companion. 2017. Online at
https://www.pacoapp.com/. visited April (2017).

[7] Denzil Ferreira, Vassilis Kostakos, and Anind K Dey. 2015. AWARE: mobile
context instrumentation framework. Frontiers in ICT 2 (2015), 6.

] Google’s FIT. 2017. Online at https://www.google.com/fit/. visited April (2017).
[9] Apple’s HealthKit. 2017. Online at https://developer.apple.com/healthkit/. visited
April (2017).

[10] Timothy Hnat, Syed Hossain, Nasir Ali, Simona Carini, Tyson Condie, Ida Sim,
Mani Srivastava, and Santosh Kumar. 2017. mCerebrum and Cerebral Cortex: A
Real-time Collection, Analytic, and Intervention Platform for High-frequency
Mobile Sensor Data. In Proceedings of the 2017 American Medical Informatics
Association (AMIA) Annual Symposium.

[11] Karen Hovsepian, Mustafa al’Absi, Emre Ertin, Thomas Kamarck, Motohiro Naka-

jima, and Santosh Kumar. 2015. cStress: towards a gold standard for continuous

stress assessment in the mobile environment. In Proceedings of the 2015 ACM

International Joint Conference on Pervasive and Ubiquitous Computing. ACM,

493-504.

Cheng-Kang Hsieh, Hongsuda Tangmunarunkit, Faisal Alquaddoomi, John Jenk-

ins, Jinha Kang, Cameron Ketcham, Brent Longstaff, Joshua Selsky, Betta Dawson,

Dallas Swendeman, et al. 2013. Lifestreams: A modular sense-making toolset

for identifying important patterns from everyday life. In Proceedings of the 11th

ACM Conference on Embedded Networked Sensor Systems. ACM, 5.

Jennifer Jardine, Jonathan Fisher, and Benjamin Carrick. 2015. Apple’s Re-

searchKit: smart data collection for the smartphone era? Journal of the Royal

Society of Medicine 108, 8 (2015), 294-296.

[14] Santosh Kumar, Wendy Nilsen, Misha Pavel, and Mani Srivastava. 2013. Mobile

health: Revolutionizing healthcare through transdisciplinary research. Computer

46,1 (2013), 28-35.

Felix Xiaozhu Lin, Zhen Wang, Robert LiKamWa, and Lin Zhong. 2012. Reflex:

using low-power processors in smartphones without knowing them. ACM

[4

o

(5

=

[12

[13

=
)

[16

[17

[18

[19

[21

[22

[24]

[25

[26

&
=

[28

[29

[30

[31

S. Hossain et al.

SIGARCH Computer Architecture News 40, 1 (2012), 13-24.
Hong Lu, Jun Yang, Zhigang Liu, Nicholas D Lane, Tanzeem Choudhury, and An-

drew T Campbell. 2010. The Jigsaw continuous sensing engine for mobile phone
applications. In Proceedings of the 8th ACM conference on embedded networked
sensor systems. ACM, 71-84.

monitor 2017. Monsoon Power Monitor. (2017). Retrieved August 14, 2017 from
http://www.msoon.com/LabEquipment

Gihwan Oh, Sangchul Kim, Sang-Won Lee, and Bongki Moon. 2015. SQLite
Optimization with Phase Change Memory for Mobile Applications. Proc. VLDB
Endow. 8, 12 (Aug. 2015), 1454-1465. https://doi.org/10.14778/2824032.2824044
Veljko Pejovic and Mirco Musolesi. 2014. InterruptMe: Designing Intelligent
Prompting Mechanisms for Pervasive Applications. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubi-
Comp ’14). ACM, New York, NY, USA, 897-908. https://doi.org/10.1145/2632048.
2632062

Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen. 2005. Con-
textPhone: A prototyping platform for context-aware mobile applications. IEEE
pervasive computing 4, 2 (2005), 51-59.

Md. Mahbubur Rahman, Nasir Ali, Rummana Bari, Nazir Saleheen, Mustafa
al’Absi, Emre Ertin, Ashley Kennedy, Kenzie L. Preston, and Santosh Kumar. 2017.
mDebugger: Assessing and Diagnosing the Fidelity and Yield of Mobile Sensor
Data. In Mobile Health - Sensors, Analytic Methods, and Applications. Springer,
Cham, Switzerland, 121-143. https://doi.org/10.1007/978-3-319-51394-2_7

Md. Mahbubur Rahman, Rummana Bari, Amin Ahsan Ali, Moushumi Sharmin,
Andrew Raij, Karen Hovsepian, Syed Monowar Hossain, Emre Ertin, Ashley
Kennedy, David H. Epstein, Kenzie L. Preston, Michelle Jobes, J. Gayle Beck,
Satish Kedia, Kenneth D. Ward, Mustafa al’Absi, and Santosh Kumar. 2014. Are
We There Yet?: Feasibility of Continuous Stress Assessment via Wireless Phys-
iological Sensors. In Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (BCB ’14). ACM, New York, NY,
USA, 479-488. https://doi.org/10.1145/2649387.2649433

Reza Rawassizadeh, Martin Tomitsch, Manouchehr Nourizadeh, Elaheh Momeni,
Aaron Peery, Liudmila Ulanova, and Michael Pazzani. 2015. Energy-Efficient
Integration of Continuous Context Sensing and Prediction into Smartwatches.
Sensors 15, 9 (2015), 22616-22645.

Reza Rawassizadeh, Martin Tomitsch, Katarzyna Wac, and A Min Tjoa. 2013.
UbiqLog: a generic mobile phone-based life-log framework. Personal and ubiqui-
tous computing 17, 4 (2013), 621-637.

rocksdb 2017. Apple’s ResearchKit. (2017). Retrieved August 14, 2017 from
http://www.researchkit.org/

rocksdb 2017. RocksDB. (2017). Retrieved August 14, 2017 from http://rocksdb.
org/

Nazir Saleheen, Amin Ahsan Ali, Syed Monowar Hossain, Hillol Sarker, Soujanya
Chatterjee, Benjamin Marlin, Emre Ertin, Mustafa al’Absi, and Santosh Kumar.
2015. puffMarker: A Multi-sensor Approach for Pinpointing the Timing of First
Lapse in Smoking Cessation. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). ACM, New
York, NY, USA, 999-1010. https://doi.org/10.1145/2750858.2806897

Nazir Saleheen, Supriyo Chakraborty, Nasir Ali, Md Mahbubur Rahman,
Syed Monowar Hossain, Rummana Bari, Eugene Buder, Mani Srivastava, and
Santosh Kumar. 2016. mSieve: Differential Behavioral Privacy in Time Series of
Mobile Sensor Data. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing (UbiComp ’16). ACM, New York, NY, USA,
706-717. https://doi.org/10.1145/2971648.2971753

Hillol Sarker, Moushumi Sharmin, Amin Ahsan Ali, Md. Mahbubur Rahman,
Rummana Bari, Syed Monowar Hossain, and Santosh Kumar. 2014. Assessing
the Availability of Users to Engage in Just-in-time Intervention in the Natural
Environment. In Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp ’14). ACM, New York, NY, USA,
909-920. https://doi.org/10.1145/2632048.2636082

Hillol Sarker, Matthew Tyburski, Md Mahbubur Rahman, Karen Hovsepian,
Moushumi Sharmin, David H. Epstein, Kenzie L. Preston, C. Debra Furr-Holden,
Adam Milam, Inbal Nahum-Shani, Mustafa al’Absi, and Santosh Kumar. 2016.
Finding Significant Stress Episodes in a Discontinuous Time Series of Rapidly
Varying Mobile Sensor Data. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 4489-4501.
https://doi.org/10.1145/2858036.2858218

Chenguang Shen, Supriyo Chakraborty, Kasturi Rangan Raghavan, Haksoo Choi,
and Mani B. Srivastava. 2013. Exploiting Processor Heterogeneity for Energy
Efficient Context Inference on Mobile Phones. In Proceedings of the Workshop on
Power-Aware Computing and Systems (HotPower ’13). ACM, New York, NY, USA,
Article 9, 5 pages. https://doi.org/10.1145/2525526.2525856

H Tangmunarunkit, CK Hsieh, B Longstaff, S Nolen, J Jenkins, C Ketcham, J
Selsky, F Alquaddoomi, D George, ] Kang, et al. 2015. Ohmage: A general and
extensible end-to-end participatory sensing platform. ACM Transactions on
Intelligent Systems and Technology (TIST) 6, 3 (2015), 38.


http://www.msoon.com/LabEquipment
https://doi.org/10.14778/2824032.2824044
https://doi.org/10.1145/2632048.2632062
https://doi.org/10.1145/2632048.2632062
https://doi.org/10.1007/978-3-319-51394-2_7
https://doi.org/10.1145/2649387.2649433
http://www.researchkit.org/
http://rocksdb.org/
http://rocksdb.org/
https://doi.org/10.1145/2750858.2806897
https://doi.org/10.1145/2971648.2971753
https://doi.org/10.1145/2632048.2636082
https://doi.org/10.1145/2858036.2858218
https://doi.org/10.1145/2525526.2525856

	Abstract
	1 Introduction
	1.1 System Requirements
	1.2 Our Contributions

	2 Related Work
	3 Overview of mCerebrum
	3.1 Architecture
	3.2 Real-Life Deployments
	3.3 Key Features of mCerebrum

	4 Sense — Resilient Data Collection, Sharing, and Storage
	4.1 DataKit: Efficient Collection & Sharing of High-rate Sensor Data
	4.2 Scalable Storage of High-rate Sensor Data

	5 Analyze — Concurrent Computation of Multi-sensor Biomarkers
	5.1 Data and Computation Reuse
	5.2 Handling System Overload
	5.3 Stream Processor: Real-time Computation and Sharing of Features and Biomarkers
	5.4 Quantifying the Benefits of Computation Reuse — A Case Study

	6 Act — Burden- and Context-Aware Interactions with Participants
	6.1 EMA/EMI Scheduling Requirements
	6.2 Burden- and Context-aware EMA/EMI Scheduling

	7 Energy Estimation & Management
	8 Lessons Learned
	9 Limitations and Future Work
	10 Conclusion
	Acknowledgments
	References

