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Abstract. Modern customer analytics offers retailers a variety of
unprecedented opportunities to enhance customer intelligence solu-
tions by tracking individual clients and their peers and studying clien-
tele behavioral patterns. While telecommunication providers have been
actively utilizing peer network data to improve their customer analytics
for a number of years, there yet exists a very limited knowledge on the
peer effects in retail banking. We introduce modern deep learning con-
cepts to quantify the impact of social network variables on bank customer
attrition. Furthermore, we propose a novel deep ensemble classifier that
systematically integrates predictive capabilities of individual classifiers
in a meta-level model, by efficiently stacking multiple predictions using
convolutional neural networks. We evaluate our methodology in applica-
tion to customer retention in a retail financial institution in Canada.

1 Introduction

Customer retention is crucial for company profitability and growth. Satisfied
customers provide ongoing cross-sell and up-sell opportunities, and tend to refer
a pool of new clients. Acquiring a new customer can be 5-25 times (depending on
the industry) more expensive than retaining a current one [11]. In the saturated
markets of retail banking, the intense competition pushes these costs toward
the upper boundary. At the same time, there is a strong association between
customer retention and profitability: long-term customers buy more and are less
costly to serve, while new ones are likely to continue their churning behavior [16].

Loss of clients, also known as churn or customer attrition, is widely recognized
as one of the most critical business challenges for a variety of companies, from
telecommunication providers to financial institutions. While companies pursue
new customers through acquisition marketing efforts, customer churn under-
mines the business growth. Voluntary turnover rates for banking and finance
are the third largest (after hospitality and healthcare) among all industries
[7]. Hence, analysis of customer characteristics, such as socio-demographics and
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activity patterns, is crucial for predictive identification of customers who are
likely to churn, as well as for more efficient targeted application of marketing
strategies for customer retention.

Through the theoretical and economic framework of customer retention strat-
egy, [18] show that such reasons as purchase intention, proportion of category
purchases and purchase regularity are strongly associated with loyalty decisions.
Moreover, decisions of many customers tend to be strongly affected by customer’s
social neighbors. In the banking industry, 71% of customers turn to friends, fam-
ily, and colleagues for information on bank products [10]. Still, most marketing
tools primarily employ direct approaches, neglecting network effects and treat-
ing customers independently of their social network environment. As a result,
banks lose invaluable information on the driving forces of customer’s purchasing
behavior and churn.

Despite the well-documented impacts of peer networks on customer behavior,
still very few studies incorporate the network information of bank clientele in
the retention models, and one of the reasons is the lack of the explicit network
ties in the customer databases. For example, [3] use kinship information delib-
erately collected from bank customers for the study — this is a costly approach
with a number of data quality and data privacy issues. As an alternative, [19]
use information on bank transfers and joint loans to build customer networks.
This approach, however, is applicable only for large banks, because a single bank
with a moderate market share has a high portion of transfers being inter-bank
transactions, where detailed information on the second customer is not available,
thus, resulting in highly sparse data. In an attempt to enhance customer service
and, possibly, the network database, HSBC has recently launched a social net-
work for its business customers [14], which can be considered at this point as an
experiment, rather than a standard practice. In this study, we adopt a different
method of building the customer network, by taking advantage of information
that is readily available at any bank — family name and address of each customer.

Furthermore, our customer dataset is highly unbalanced. That is, the number
of non-churners is much larger than that of churners. In turn, most statistical
and machine learning classifiers suffer from the inability to detect weak signals
in such unbalanced datasets. In binary classification problems, such as customer
retention, this phenomenon implies a low specificity or low sensitivity of a clas-
sifier. To address this issue, we propose a new deep ensemble classifier which
harnesses powers of individual classifiers in a meta-level classifier, using con-
volutional neural networks. The rationale behind this novel framework is that
convolutional neural networks can extract useful features by efficient stacking of
multiple predictions. We demonstrate the performance of the new technique in
binary classification tasks.

The main contributions of our study are as follows:

— We develop a novel predictive tool for customer churn in retail banking that
accounts for the invaluable information on clientele social network effects.

— We introduce deep learning concepts to customer retention analysis in retail
banking and propose a cost-effective way of building customer networks.
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— We develop a novel deep ensemble classifier, which integrates predictive capa-
bilities of single models in a meta-level classifier, using convolutional neural
networks. Our studies indicate that the new deep ensemble classifier delivers a
competitive performance, especially in largely unbalanced datasets, and hence
has a potential for high utility in a wide variety of classification problems,
well beyond customer retention.

The paper is organized as follows. Section2 provides a background on
the related work in social network analysis and customer retention modeling.
Section 3 describes the data, and Sect.4 presents the proposed methodology.
Section 5 discusses the main results of the study. Section 6 summarizes the results
and outlines directions for future research.

2 Related Work

Nowadays, there exists a plethora of machine learning approaches to customer
data mining and retention modeling, ranging from classical regression to neural
networks to random forests (e.g., see [12,17,20,23] for a general topic overview).
The experiments in [21] showed that neural networks typically outperform logis-
tic regression and decision trees in churn prediction. Nevertheless, the perfor-
mance of neural networks noticeably deteriorates under a lower monthly churn
rate (unbalanced data), that is, the problem that we address in this paper using
a new deep ensemble classifier.

Peer networks are known to influence a variety of customer decisions. Appli-
cations of social network analysis to customer retention, however, are often lim-
ited due to poor availability of data on customer peer networks. Most progress
in this direction has been achieved in telecommunication industry, where social
networks are naturally observed from the call and message records (e.g., see
[1,2,13,24,28]). Constructing networks of bank customers requires additional
steps, such as targeted surveys [3], mining the databases of customers and their
transactions [19], and, potentially, employing big data approaches for harness-
ing customer information from disparate sources, including online social media
[22]. Overall, the analysis of the impact of peer networks on customer behavior
in retail banking remains largely at its infancy, comparing with other indus-
tries. We address this challenge by introducing a cost-effective way to collect
peer information in retail banking and integrate these data with high predictive
utility into customer analytics solutions.

Deep learning (DL) methods continue to attract increasing interest in cus-
tomer churn prediction, while being a relatively new tool in customer analytics.
DL architectures, like the multi-layer feedforward architecture, can effectively
capture features of the underlying customer data and learn hierarchical clientele
data structures [4,25]. To our knowledge, this paper is the first one to introduce
DL concepts into customer retention models in retail banking.
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3 Data

The data used in this study comprise a database of all transactions, accounts, and
(monthly) snapshots of a customer database of a retail financial institution in
North America over a period of 3.5 years (2011.1-2014.6). The customer database
contains information collected from the customers themselves (name, address,
age, gender, etc.; some of these records are missing or outdated) and from the
bank’s records about each customer (tenure, number of accounts of each type,
total amount owned, etc.; complete and up-to-date records). The customer data
were redacted — first names completely removed, family names and addresses
replaced by encrypted numeric IDs — so that customers’ privacy was protected,
but some information about their closeness (derived by matching family name
and address IDs) was preserved.

From approximately 30 thousand customers in the sample dataset, we select
customers who can make their own financial decisions (above 18 years old) and
are likely alive (below 100 years old), then split the data into consecutive baseline
and prediction periods. Information from a baseline period is used to predict
whether a customer will churn in the nearest future, where churn is defined as
inactivity (number of transactions is zero) during the prediction period. Hence,
churn can be represented as a binary variable taking on the value 0 for customers
who stay active in the prediction period and value 1 for those who churn. We
use one-year baseline periods (2011, 2012, and 2013) with respective prediction
periods of one year (2012 and 2013) and six months (2014.1-6).

3.1 Feature Engineering

Building a set of features for customers is an important step for capturing and
quantifying nuances of customer behavior and achieving a superb predictive per-
formance of the customer retention models. We use domain knowledge to create
individual features (variables) that are potentially associated with customer’s
retention or churn: age, average time between transactions, time since last trans-
action, number of loans, number of past transactions, tenure, total savings and
total credit balances. For example, middle-aged customers or those having large
credit balances often are mortgage owners and will likely stay with the bank
for some time. Conversely, older customers may become activity churners when
they retire and direct their pension payouts to another bank.

Age=42y Age =43y Age =47y
Savings e $10 Savings = $10 Savings = $80
Savﬁgﬁ:gfo" Fage=41y F.age=36y F.age=36y
g F. savings = $60 F. savings = $90 F. savings = $90
F.age=55y Age = =
A _ ge =40y Age =18y
F. savings = $40 Savings = $50 Savings = $0
Fage=41y Fags- 36y

F. savings = $60 F. savings = $90

Fig. 1. An example network of six bank customers (nodes), where edges connect people
from the same family. Each node has individual and family network features identified
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The matching address and family name IDs allow us to create family net-
works (Fig. 1) that join customers who have the same address and family name
(the IDs do not reveal any other details, such as neighbor or co-worker rela-
tionships). These family networks are cliques, because we consider each family
member as connected to everyone else in that family. To capture the depen-
dence of customers on their family members, we apply the egocentric network
approach and define family network features for each customer. The network
features include the individual features aggregated within a family (average age,
tenure, total savings, etc.), family size, and two variables indicating whether a
family has had churners in the baseline period (“Presence of churners”) and how
many (“Number of churners in the family”).

4 Methods

4.1 Deep Convolutional Neural Networks

Convolutional neural networks (CNN) is a class of artificial neural networks that
are based on translational invariance and are weight-shared. These two charac-
teristics increase learning efficiency and make CNN less prone to overfitting than
simple artificial neural networks. Hence, for multi-label (binary) datasets, CNN
can be trained as a feature extractor and perform better than other classification
techniques. An attractive property of CNN is that CNN trained on large datasets
have demonstrated an ability to capture high-quality features describing data.

CNN are widely used for image and natural language processing because
they can handle static content, like an image or a sentence, well. We make the
first attempt to apply CNN for churn prediction in retail banking. In contrast to
2D inputs in image classification, churn input data are 1D. We create a super-
vised feedforward neural network for binary predictive classification of customer
retention. Using the features listed in Sect. 3.1, we found that CNN are able to
efficiently mine interesting classification rules.

Architecture. Convolutional Filter Layer. Let X = (X1,Xs,...,X,) be a
high-dimensional input matrix and Y be the output vector. Deep learning can
be treated as learning a function, F', mapping input to output:

Y = F(X), where X; € R, Y; € {0,1}. (1)

In the convolution process, set a filter w of size k. Then, to obtain a feature
m; of the feature map m = [mq, mo, ..., Mp_g+1|, where m; = f(w-X;.i45-1+D)
and b is its corresponding bias offset, apply activation function f to X ;15_1.

Activation Layer. The role of activation function is to transform the input space
of each layer in neural network in such a way that output units become linearly
separable. Commonly used activation functions are ReLU f(x) = max(0,z),
logistic o(z) = 1/(1 + exp(—=x)), and hyperbolic tangent tanh(z) = 20(2x) — 1.
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Pooling Layer. Pooling (downsampling) layer decreases the computational com-
plexity and prevents overfitting by reducing number or dimensions in a previ-
ous layer. It is done by applying sum-pooling, average-pooling, or max-pooling
[24,27]. In our study, we apply max-pooling: m = max{m}.

Loss Function and Regularization. The goal of our study is to train the
learner (1) using a loss function £(y, o), where o is the output from learner and
y is the true output label. Typically £; = |y — ol and £y = ||y — o|? are
applied to the regression problem and training process of neural networks. In
our case, we use cross-entropy L = — Zle vilog(o;), because it delivers stable
good performance with softmax layer, which is the last layer of our CNN:

J
f(z)i = €xi/zj_1em-7, fori=1,...,J.

When fitting a model on a relatively small training dataset, overfitting is
always a problem for out-of-sample prediction. Neural networks have particularly
many parameters that contribute together to building an excessively complex
model, which may overfit the data. Dropout [26] is a regularization technique
that helps to get an efficient final neural network architecture and to avoid
overfitting. The dropout deletes some of the features in X and, in the training
phase, sets the output of each hidden neuron to 0 with probability p. The feed-
forward operation for layers { =1,..., L — 1 [26]:

dy) ~ Bernoulli(p); 5 =d" oy®; y0) = fw D50 40+ (2)

where d is a vector of Bernoulli random variables, W and y(®) are the vectors
of biases and outputs from layer [, and o denotes the element-wise product.

4.2 Deep Ensemble Classifier

A single model cannot guarantee a uniformly optimal, or at least stable, per-
formance in all cases for which we need to make predictions [29]. Some models
are better than others in responding to specific patterns in the data, e.g., those
mentioned in Sect. 3.1. A possible solution to this problem is training an ensem-
ble of models and combining their results in some way to obtain more stable
and accurate predictions. The stability of out-of-sample (generalization) errors
is achieved in ensembles by aggregating information from many models that can
potentially overfit the training data, but each model in its own way. Higher accu-
racy is often achieved even by simple averaging of the single model predictions,
but more informed methods, which take into consideration specific strengths and
weaknesses of each model, may lead to even better results.

The widely used ensemble methods include bagging, boosting, Bayesian
model averaging (BMA), and stacking. Compared with stacking, BMA uses dif-
ferent posterior probabilities to weight each base-level model. The empirical



Deep Ensemble Classifers and Peer Effects Analysis for Churn Forecasting 379

Model Fold Combined output

2
K «
- Meta-level
" Meta- | D cIaSS|fer w
: features
IIIIE I / ]

Fig. 2. Stacking with K-fold cross-validation

results in [6] showed that stacking consistently delivers more competitive per-
formance than BMA. BMA works better only when the correct data generating
model belongs to the set of model candidates and the noise is low, i.e., under
the conditions that are very difficult to satisfy in applications. In turn, stack-
ing outperforms other ensemble methods due to its ability to learn and flexibly
account for the behaviors of other classifiers in a combining model [9].

The standard stacking technique is based on applying a logistic regression on
the outputs of base-level models, which limits us to the case of monotonic rela-
tionships (also, with the same speed of approaching both asymptotes) between
predictions from each base-level model and the response. We relax this condition
and develop a new deep ensemble classifier for building the second layer of classi-
fiers, based on more flexible machine learning methods. In particular, we propose
and evaluate the performance of the following stacking approaches: stacking with
CNN (StCNN); stacking with RF (StRF); stacking with XGB (StXGB); stack-
ing with Extra-Trees (StET); stacking with NN (StNN), and stacking with KNN
(StKNN). We also use K-fold cross-validation, which provides a good trade-off
between variance and bias (see Algorithm 1 and Fig. 2).

5 Results

To compare the performance of single and stacked models and see the effect of
adding network features, we design the following four scenarios: (i) single base-
level model with individual features alone; (ii) single base-level model with both
individual and network features; (iii) stacked models with individual features
alone, and (iv) stacked models with both individual and network features.

We split the data into training (D, 70%) and testing (7, 30%) subsets and
report results for predicting for the testing subset. On the dataset D, we train
five different single base-level models with the following methods: random for-
est (RF), extreme gradient boosting (XGB [5]), K-nearest neighbor algorithm
(KNN), neural networks (NN), and CNN. Each of the considered five methods
can provide several well-performing models with different tuning parameters,
and we can use all of them when creating an ensemble (thus, each ensemble we
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Algorithm 1. Stacking with K-fold cross-validation
INPUT: Training set D = {x;,yi}iz; and testing set 7 = {xi,yi}tiz1
(xi € R?,y; € {0,1}), number of folds K, and V different base-level classifiers

OUTPUT: A meta-level classifier ¥

: Randomly split D into K equal-size subsets: D < {D1,Da,..., Dk}

: for vin1toV do

for £ in 1 to K do
Train a classifier h](f) on D\ Dy

1
2
3
4:
5: Let h,(:)(Dk) be the out-of-fold predictions for the set Dy
6
7
8

Let h,(c”)(’]') be predictions for the testing set
end for
Construct a new variable from out-of-fold predictions in the training set:

D' {1S(D1), 15 (D), .. hig (D)}
9: The new variable in the testing set is an average of K predictions:
T — AVG{R" (T), h§(T), -+ hig (T)}

10: end for
11: Train a meta-level classifier 1) on {(D’“),D’@), ... 7D'<V>> 7yi}

12: Return ¥(T) « ¢ (7'<1>,7/<2>, . ,T’W))

m

=1

created had more than five members). In the stacking Algorithm 1, we use 4-
fold cross-validation for the first two time periods and 7-fold cross-validation for
the third period. The optimal parameters for each base-level model were chosen
through a grid search.

The CNN architectures used in this study are shown in Table 1. In the CNN
training, we use tanh as an activation function, and ReLU in the second layer.
The advantages of ReLLU include faster model training and smaller chance of the
gradient to vanish. We apply dropout with the probability p = 0.6 at the second
layer before pooling and insert a batch normalization layer [15] (eps = 0.00001,
momentum = 0.99) before applying the activation function in the second layer.
Stochastic gradient descent was chosen as the CNN optimizer, with the learning
rate of 0.001 and momentum value of 0.9 as optimal parameters.

For each of the scenarios (i)—(iv), Table2 layouts a confusion matrix
[g% 52) for the subset 7, where T'N is the number of non-churners classi-
fied as non-churners, F'P is the number of non-churners classified as churners,
F'N is the number of churners classified as non-churners, and TP is the number
of churners classified as churners. Table 2 shows that improved churn predictions
can be achieved by leveraging the CNN architecture, novel stacking approach
(StCNN), and customer network features.

Figure 3 reports the misclassification rates R = (FN + FP)/N (where N =

|7| is the size of the testing set) delivered by various base-level models on the
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Table 1. Architectures of CNN

Layer | Layer type

Size of base level

Size of meta level

Convolution + tanh

1 x 2 20 filters

1 x 2 30 filters

Max pooling

1 x 3, stride 1

1 x 2, stride 1

Convolution + ReLLU

1 x 3 50 filters

1 x 2 50 filters

Max pooling

1 x 5, stride 1

1 x 2, stride 1

Fully connected + tanh

500 hidden units

500 hidden units

Fully connected + tanh

2 hidden units

2 hidden units

gl w NN R e

Softmax

2 ways

2 ways

381

test datasets. The base-level models XGB, RF, and CNN outperform NN and
KNN in each period.

Remarkably, CNN that include both individual and network features perform
noticeably better than other baseline models for the 1st and 2nd periods. We also
observe that RF performs better in the 3rd period when using both individual
and network features. The results in Fig. 3 prove that most of our single models

Table 2. Confusion matrices® of predictive classifying of bank customers

Baseline |Prediction|Model|Individual features Individual & network features
period period
Single model|Stacked models|Single model|Stacked models
9011.1-12 12012.1-12 | CNN 6634 13 6628 19 6629 18 6630 17
108 240 101 247 101 247 99 249
XGB 6618 29 6621 26 6617 30 6616 31
101 247 102 246 104 244 97 251
RF 6627 20 6626 21 6623 24 6630 17
103 245 105 243 102 246 105 243
9012.1-12 12013.1-12 | CNN 8305 20 8304 21 8305 20 |8305 20
29 280 26 283 26 283 26 283
XGB 8304 21 8303 22 8304 21 8305 20
41 268 34 275 37 272 30 279
RF 8304 21 8304 21 8303 22 8304 21
27 282 31278 29 280 30 279
92013.1-12 |2014.1-6 |CNN 8227 14 8219 22 8219 22 8221 20
78 749 54 773 66 761 61 766
XGB 8207 34 8212 29 8214 27 8214 27
57 770 54 773 61 766 59 768
RF 8220 21 8216 25 8217 24 8214 27
62 765 59 768 58 769 56 771

2Each cell is a 2 X 2 confusion matrix. For each period, matrices with minimal sum FP+FN
are highlighted.
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(a) Individual & Network Features (b) Individual Features
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Fig. 3. Performance of base-level algorithms with different sets of features
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Fig. 4. Performance of meta-level algorithms with different sets of features

(especially CNN and RF) trained on both individual and network features are
more accurate (lower R) than models trained exclusively on individual features.

Aggregation of results by stacking further improves the predictive perfor-
mance. Among the six considered stacking algorithms, the best three are based
on CNN, RF, and XGB — the algorithms that also show the best performance in
the base-level scenarios (Fig.3). Accuracy of these three methods is noticeably
higher than of the other three (StET, StNN, and StKNN), while running time of
XGB is considerably shorter. Figure 4 shows that StCNN always outperforms the
other stacking schemes. Compared with Fig. 3, accuracy of the best-performing
combinations changed as follows:

— improved from 98.30% (CNN with both individual and network features) to
98.34% (StCNN with both individual and network features), i.e., by 0.04
percentage points, for the period 2011-2012;

— stayed at about 99.47% (CNN and StCNN, each with both individual and
network features) for 2012-2013;

— improved from 99.10% (RF with both individual and network features) to
99.16% (StCNN with individual features), i.e., by 0.06 points, for the period
2013-2014.6.

The results imply that the architecture of CNN can improve the performance
of churn predictive classification with automatically capturing and extracting
relevant features, especially after adding network features into the model. Fur-
thermore, StCNN can simultaneously reduce false negative rates and yield the
optimal true negative rate. Nevertheless, in the absence, to the best of our knowl-
edge, of a formal statistical test applicable to a stacking scheme, more extensive
experiments based on a cross-validation argument are needed to prove the sta-
tistical significance of the improvement of using StCNN.

In the StCNN, we use Adagrad [8] as the optimizer, and set learning rate,
epsilon, and Lo regularization coefficient (wd) to 1072, 10719 and 1072 by tuning
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with a grid search. The accuracy of the above results is high (i.e., errors R are
low) in part due to a very low proportion of churned customers (below 6%). The
dataset is unbalanced, as well as the costs of losing a customer. Various studies
suggest that such costs can be 5-25 times higher than the costs of retaining an
existing one [11], but the results above assume equal costs of FP and FN.

2011 - 2012 2012 - 2013 2013 - 2014.6
Features: Individual Individual & network Individual Individual & network Individual Individual & network
Model: Single Stacked Single  Stacked Single  Stacked Single  Stacked Single  Stacked Single  Stacked

XGB- 02192  0.2212 - 0.0857 | 0.0724  0.0782

RF 0.2229 02259 0.2198 0.2273

CNN 02338 | 0.2198 0.2202 -

Fig. 5. Misclassification rates R’ (dark color shade means smaller) when churners weigh
20 times more than non-churners (r = 20)

Method

In Fig. 5, we use cost ratio (r = 20) of F'N to F'P to upweight the errors in
misclassifying churners (FN + T P):

r-FFN+ FP

R =y r—n@E~ 1P ®)

Figure5 shows that the egocentric network approach and model stacking, in
particular, the SSCNN, improve the churn predictions.

6 Conclusion

We have proposed a novel predictive tool for customer retention in retail bank-
ing by introducing deep learning concepts into churn analysis. Our approach
allows to systematically and consistently integrate invaluable information on
customer peer effects into the customer analytics process. We have developed
a new deep ensemble classifier that fuses predictive powers of individual clas-
sifiers in a meta-level model, by efficiently stacking multiple predictions using
convolutional neural networks. The proposed deep ensemble classifier delivers
competitive performance in largely unbalanced customer data and, hence, has a
potential for a wide applicability in classification problems well beyond customer
analytics.
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