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Abstract. A control system for simulated two-dimensional bipedal
walking was developed. The biped model was built based on anthro-
pometric data. At the core of the control is a Deep Deterministic Pol-
icy Gradients (DDPG) neural network that is trained in GAZEBO, a
physics simulator, to predict the ideal foot location to maintain sta-
ble walking under external impulse load. Additional controllers for hip
joint movement during stance phase, and ankle joint torque during toe-
off, help to stabilize the robot during walking. The simulated robot can
walk at a steady pace of approximately 1 m/s, and during locomotion it
can maintain stability with a 30 N-s impulse applied at the torso. This
work implement DDPG algorithm to solve biped walking control prob-
lem. The complexity of DDPG network is decreased through carefully
selected state variables and distributed control system.
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1 Introduction

A robust control algorithm for biped locomotion is presented as a means to assist
individuals with spinal cord injury (SCI). Using Functional Neuro-muscular
Stimulation (FNS) and a powered lower limb exoskeleton, locomotion can be
restored to such individuals [1,2]. The methods presented are designed to apply
control to the powered lower limb exoskeleton. To make the system robust for any
user, the control approach must be able to adapt to various sizes of humans [7].
It should thus function with limited information about the human. To accom-
plish this, exploratory reinforcement based optimization algorithms such as Deep
Q-Networks (DQN) can be applied. As biped control is continuous, a variation
of DQN called deep deterministic policy gradients (DDPG) [8] will be utilized.
In total, three separate controllers are designed to operate together to produce
stable walking control. The use of three separate controllers actually reduces the
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complexity of the control system, making the DDPG network easier to train.
As degrees of freedom increase, neural networks can have certain issues such
as covariate shift [5] and increased training time. Since the application at hand
is time sensitive, the speed of learning is crucial [3]. Furthermore, using three
separate controllers allows for easy parallelization of the processes and dedicated
threading.

For this work, one of the three controllers is a trained DDPG network and the
other two are conventional PID feedback controller and an open loop controller.

2 Methods

A DDPG network is trained to work in conjunction with two other PID feed-
back controllers. DDPG is a model free policy learning algorithm. It consists
of an actor network that updates the policy parameters, and a critic network
that estimates the action-value function. DDPG uses the expected gradient of
the action-value function as a policy gradient instead of a stochastic policy gra-
dient so as to estimate the correct gradient much more efficiently. [8] Below we
introduce the model, the simulation environment, the target locomotion, and
the controllers.

2.1 Biped Model

A biped model, based partially on anthropometric data, is used in simulation
to both train and verify the effectiveness of the DDPG network. The model
contains 7 rigid bodies: the torso as well as the left and right thigh, shank, and
foot. Additionally, the model has the following 6 joints: left and right hip, knees,
and ankles. The hip and ankle joints can rotate along both the x and y axises.
Two frictionless walls are added in the simulation environment to constrain
biped in two-dimension, so x axis rotation of the ankle is the major. There is a
small gap between the biped and the wall which can cause the biped to slight
tilt sideways. This gap is left intentionally, because this will reduce the impact
generate by the imperfection collision model in ODE(open dynamic engine). So
y axis rotation of the ankle is kept because so the foot can have a solid contact
with ground when biped is tilting sideways. The knees are constrained to just the
x axis, giving the system a total of 10 degrees of freedom. The proportion of mass
and length of the biped’s bodies are found from anthropometric data, while the
shape and the rotary inertia of the bodies are simplified to a regular box shape
to speed simulations. All the components are proportional to the height, thus
making resizing of the simulated biped easier. In this work, the height is set at
1.8 m. A simulated IMU sensor is attached to the center of the torso to measure
its velocity and acceleration. This replicates what might be implemented on a
powered exoskeleton. Touch sensors are added on both the left and right feet to
detect ground contact and contact force. All joint angles and joint velocities can
be directly read from the simulation environment.
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2.2 Simulation Environment

The biped is simulated using GAZEBO and controlled by ROS (Robot Operat-
ing System). GAZEBO is an open source simulator, while ROS is a set of soft-
ware libraries and convenient tools used for robotic systems. ROS has become a
popular platform for robotics research [4]. Joint movement is controlled in the
simulation in two ways. Firstly, we can call an “ApplyJointEffort” ROS service
directly to set a torque value for some duration. Secondly, we use GAZEBO’s
controller plug-in. The controller plug-in provides three different PID control
methods: torque feedback, velocity feedback and position feedback. In this work,
the plug-in’s velocity feedback control is utilized. The PID parameters are tuned
to react in a fast and stable manner. For the work here we focus on constrained
locomotion. The 10 DOF biped is restricted by two frictionless walls to prevent
any lateral movement, constraining the model to only move in sagittal plane.

2.3 Target Locomotion

Human gait is a complex process. [6,11] The target gait is simplified into 4
sections for each leg: early swing, terminal swing, stance, and toe-off as depicted
in Fig. 1.

Fig. 1. Simplified gait cycle for right leg

Early Swing. Through this phase, the thigh will swing forward. The knee is
bent to prevent the swing foot from hitting the ground. The swing angle of
the hip joint and the duration of the swing is determined by the output of the
reinforcement learning process.

Terminal Swing. Following early swing, the hip joint is locked for a short
duration allowing the knee to straighten. This move is in preparation for making
ground contact.



Dynamic Bipedal Walking with DDPG 279

Stance. Once the foot touches the ground, the biped will rotate around the
ankle joint like an inverted pendulum. The hip joint is then unlocked. A PID
controller is tuned to control the torso pitch via control of hip joint velocity.

Toe-Off. The stance of the current leg will end when the opposite foot makes
contact with the ground and enters its stance phase. The current leg will enter
the toe-off phase. To do so, a torque is applied to the ankle joint to drive the
foot to push off. This pushing action will propel the biped forward. The amount
of the torque is determined by the current walking speed. Following the pushing
action, a torque is applied on the ankle joint to quickly retract the foot from the
ground.

2.4 Control

DDPG. In this work the DDPG network is used to control the step length and
step duration in the forward swing phase.It was previously believed that the
deterministic policy gradient of a model free network did not exist, but later it
is proved that it does indeed exist [8] and is easier to compute than stochastic
policy gradient for it only need to integrate in the state space. The deterministic
policy gradient is:

∇θJ(πθ) =
∫

S

ρπ(s)∇θπθ(s)∇aQπ(s, a)|a=πθ(s)ds (1)

the deterministic policy gradient can be treated as two parts. One is the gra-
dient of the action value to actions, and another is the gradient of the policy
to the policy parameters. DDPG uses actor critic framework. The action value
is approximate by critic using a DNN. The parameter of the network is update
using temporal-difference method in the similar way as traditional actor-critic.
The actor also uses a DNN as policy. The policy parameters are update by
deterministic policy gradient ∇θJ(πθ). DDPG also uses replay buffer to store
transitions to break correlation in the sample trajectory. When training the actor
network, the policy will change constantly. So the temporal difference is calcu-
lated by a copy of the actor, critic network. It is called target network. These
network only update after a period of time, or update at a very small changes.
This off policy method allow the behavior to be more stochastic to explore the
environment and keep the prediction deterministic. The target network is update
by soft replacement method.

θ′ ← τθ + (1 − τ)θ′ (2)

The full biped system state, includes position, velocity, and acceleration terms
for all 10 degrees of freedom. This many inputs can lead to network convergence
issues and require the use of a very large network to sufficiently understand the
interaction of the different state variables together. We simplify the input. As the
biped will never leave the ground during normal operation, walking is limited to
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the sagittal plane by frictionless rails in the simulation, and lastly there exists a
controller to stabilize torso pitch angle, we reduce the model to include only the
following: φ: torso pitch angle, v: torso forward speed, l: the actual step length
and dzmp: the distance between the ZMP and the foot. The input of the network,
state s, is,

s = [v, φ, dzmp, l]. (3)

Note that the “existing controller for torso pitch” is a PID that controls the
torso pitch through the hip joint velocity. This controller will be explained in
the next subsection (Fig. 2).

Fig. 2. The critic and actor network (evaluate/target) both have two hidden layers,
the first layer has 400 neurons and the second layer has 300 neurons. The activation
function is Relu. And the output of the actor network goes through a tanh activation
function. The network has a memory of 70000 step. The learning rate of the actor and
critic are set to be 1e-8 and 2e-8. The reward discount is set to 0.99. The training batch
is 32 samples.

ZMP has been often used in biped control to evaluate the stability of the
system and to drive control algorithms. If the ZMP is outside the support area,
the biped can tip over and fall [9]. The state variables phi and v are measured by
the IMU sensor attached to the torso. The step length l can be calculated from
the forward kinematics in real robot, in simulation, it can be read directly from
GAZEBO. ZMP is calculated after measuring the acceleration. From Cart-Table
Model:

yzmp = ycom − ÿcom

g
zcom. (4)

Although the biped is in a simulated environment, the acceleration measured
by the IMU has noise due to the surface contact model from physics engine itself.
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This noise must be filtered before the value can be used in any calculation. In this
work, a mean value and Kalman filter is used on the acceleration data [10]. This
is important because, in a physical system, the measurements of the acceleration
are often extremely noisy as well. The state is updated at the moment when the
front foot contacts the ground, then passed to the network which returns an
action. Decaying noise is added to the action chosen to promote initial explo-
ration but then allows refinement over time,

a′ ∼ (N,σ2). (5)

Once training is completed the system will run forward without additional
noise added to the action selection (Fig. 3).

Fig. 3. Before and after the filter. Blue line is the acceleration. Red line is the velocity
(Color figure online)

The trained network decides how far and how fast to put the next step
based on the velocity, torso pitch angle, step length and ZMP position of the
previous step. This way, the network requires less state input. It is noted the
states are only sampled with every foot step. Consequently, if there is any major
disturbance in between two foot steps, the network will not respond in time
to compare with other more quickly updated systems. The network must wait
until the foot touches the ground to update the state. But since the output of
the network is the length and duration of the next step, as long as the biped
won’t fall between two steps, it can counter the disturbance by adjusting the
output of the next step. To speed up the training, the output is initialized based
on Height-to-Stride-Length Ratio. A better starting point makes the network
converge more quickly.

In order to train the control network using a reinforcement learning approach,
a reward function is created to indicate if the actions taken by the controller
are either good or bad. The reward function used here takes into consideration
the same variables as the state vector, where every element is normalized and
weighted. The weights of every factor can change and the network will try to
maximize the most weighted factor at first.
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Stance Controller. When the foot touches the ground, the biped will start
to rotate around the ankle joint. In this phase, the hip joint needs to move
according to the ankle joint to keep the torso up straight and provide power to
drive the torso forward. The output of the controller here deemed the “stance
controller” is the angular velocity of the hip joint. The goal is to keep the torso
upright without overshoot which would cause the torso to pitch back and forth
jeopardizing stability. Ideally the torso is pitched slightly forward to maintain
momentum and a smooth natural walking gait. To achieve this, a proportional
controller is designed, and the residual error from the controller will allow the
torso to slightly pitch away from the z axis (Fig. 4).

Fig. 4. Biped in stance phase

With the torso pitch remaining constant with respect to the z axis, the hori-
zontal velocity of the hip will be the same as the horizontal velocity of the torso
center. Given the following,

vt = vp, (6)

and,
ω = −α̇, (7)

the angular velocity of the ankle can be read directly. The moment when the
foot impacts the ground, noise will be introduced. So the angular velocity of the
ankle is calculated by,

α̇ =
vp

cos α ∗ L
. (8)

We thus design a controller given that,

ω = K ∗ φ = −α̇, (9)

where if the pitch angle is larger than the target pitch,

φ > φ0, (10)
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then,
|ω| > |α̇|. (11)

Thus the pitch angle will decrease and vice versa. The control gain K will be,

K =
−α̇

φ0
=

−vp

cos α ∗ L ∗ φ0
, (12)

where target pitch is chosen to be close to zero,

φ0 = 0.02. (13)

it cannot be too close to zero, otherwise it will produce a very large gain, causing
the system to be sensitive to noise.

Ankle Torque Control. The ankle joint is passive except in the toe-off
phase. The advantages of setting the ankle to be a passive joint are as follows:
(1) smoother ground contact for the foot; (2) dynamic property of the inverted
pendulum is maintained; (3) minimal force is needed to drive the biped around
the ankle when the foot is in contact with the ground; and (4) total noise of
the system is reduced. The damping coefficient of the ankle is set to 1. This
amount of damping helps to absorb the impact from the ground contact without
hindering the swing motion (Fig. 5).

Fig. 5. Biped in toe-off phase

In the toe-off phase, a torque is applied on the ankle to propel the biped
forward. The torque is determined by the current walking speed. The goal is
to maintain the momentum of the biped within a certain range. If the desired
walking speed is given then,

Δv = v0 − vdesire, (14)



284 C. Liu et al.

and if the torso pitch remains constant, then the angular velocity of the torso is
zero,

ωtorso = 0. (15)

Subsequently the velocity of the hip is equivalent to the velocity of the center of
the torso,

Δvcenter = Δvhip. (16)

assuming the toe-off phase is very short, the hip joint angle of the rear leg keeps
the same during toe-off, and the momentum of the rear foot can be overlooked.
To keep the torso angular velocity ωtorso = 0, a torqueτhip must act on the hip
joint of the front leg.

τhip ∗ Δt = Jtorso ∗ Δα̇, (17)

Jtorso ≈ 1
3
mh2 (18)

About the front foot ankle joint we have the following,

(τ − τc − τhip) ∗ Δt = Jleg ∗ Δα̇ (19)

Δα̇ =
Δvhip/ cos α

l
(20)

Jleg ≈ 1
12

mll
2 + ml[l2sin2β + (l cos β − l

2
)2] +

1
3
mll

2, (21)

τc = c ∗ α̇, (22)

Jleg is the Moment of inertia of front and rear leg about front ankle joint. c
is the damping coefficient of the ankle joint.

This controller in the future could also be changed to a network trained using
the reinforcement learning paradigm.

3 Results and Conclusion

The average walking speed of the biped was approximately 1 m/s. The maximum
recorded speed occurs just before the front foot contacts the ground, when the
stance leg is perpendicular to the ground. To test the stability of the biped while
walking an impulse was applied to different locations on the robot. It was found
that the biped was able to remain stable and continue walking after a maximum
impulse of 30 N-s was applied to the back of the robot as well as after a maximum
impulse of 40 N-s was applied to the front of the robot. During testing all impulses
were applied for a duration of 0.1 s. It can be seen in Fig. 6, that after applying
the impulse, the robot’s velocity drastically increases or decreases, depending on
the direction of the impulse, but then returns to a consistent oscillation in less
than 5 s. Keeping the pitch of the torso below −0.15 rad during walking, keeps
the oscillation less than 0.1 rad. It was found experimentally that the biped was
able to resist larger disturbances when the robot was in the toe-off phase of the
gait compared to the forward-swing. Increasing the target walking speed vdesire



Dynamic Bipedal Walking with DDPG 285

Fig. 6. Biped velocity response under impulse load

and lowering the damping coefficient of the ankle joint were shown to increase
the overall speed of the robot but reduced the robustness of the system causing
instability at lower impulses (Fig. 7).

In Fig. 8 it can be seen that a positive impulse disturbance applied to the
biped will cause an increase in torso speed. To recover from this disturbance the
DDPG network increases step length and decreases step duration accordingly
to regain stability. When a negative impulse is applied to the biped, the DDPG
network reduces step length and increases step duration to adapt to a lower
speed. All the adjustments made by the DDPG network to retain stability were

Fig. 7. Torso pitch angle during normal walking
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Fig. 8. DDPG network output at different torso speed

learned purely by experience without prior knowledge. When training the DDPG
network, a large memory storage is necessary. The simplified input state proved
to be sufficient to train a successful network.

An even further simplified state input s = [dzmp, φ] was additionally used to
train a network with the same parameters, but only but even after extended
training period, it did not converge. The over-simplified state input cannot
describe the environment adequately thus the DDPG network cannot make right
decision.
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