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A topological data analysis approach is taken to the challenging problem of finding and validating the statistical
significance of local modes in a data set. As with the SIgnificance of the ZERo (SiZer) approach to this problem,
statistical inference is performed in a multi-scale way, that is, across bandwidths. The key contribution is a two-
parameter approach to the persistent homology representation. For each kernel bandwidth, a sub-level set filtration
of the resulting kernel density estimate is computed. Inference based on the resulting persistence diagram indicates
statistical significance of modes. It is seen through a simulated example, and by analysis of the famous Hidalgo
stamps data, that the new method has more statistical power for finding bumps than SiZer. Copyright © 2017 John
Wiley & Sons, Ltd.
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1 Introduction
A long-standing and intuitively appealing challenge in the field of exploratory data analysis was aptly termed bump
hunting by Good & Gaskins (1980). That is the task of identifying statistically significant peaks in an estimated
probability density function. This task is important because finding unexpected peaks can lead to the discovery of new
scientific phenomena. Statistical significance of discovered bumps is an important component, to avoid wasted effort
on investigating spurious peaks that eventually turn out to be mere artefacts of sampling variation.

While the simple histogram remains the most commonly used density estimator, it is seen for example in Section 2.2
of Silverman (1986) and Section 3.2.7 of Scott (2015) to be very slippery for bump hunting applications. As noted in
those monographs, and also the monographs Devroye & Gyorfi (1985), Wand & Jones (1994) and Simonoff (2012),
an intuitively more appealing approach to density estimation is the kernel density estimate (KDE). Given a kernel
function K, which integrates to 1, and a bandwidth h > 0, the KDE for a set of data X1, : : : , Xn is

Ofh.x/ D n�1
nX

iD1

Kh .x � Xi/ ,

where Kh.�/ D
1
h K
�
�

h

�
. As discussed in the aforementioned monographs, the main behaviour of the estimate is driven

by the bandwidth h, sometimes called the window width, as it determines the critical amount of local averaging, that
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Figure 1. Three kernel density estimates of the Hidalgo stamp thickness data, using quite different bandwidths. Raw data
are shown as black dots. Kernel density estimates reveal different types of structure at different scales.

is, level of smoothing. The kernel function K is relatively important, although it should integrate to 1 to make Ofh.x/
a reasonable probability density estimate (e.g. to integrate to 1). In this paper, we take K to be standard Gaussian,
because of its variation diminishing property. As carefully discussed by Chaudhuri & Marron (2000), this means that
the number of modes of the estimate is a decreasing function of the bandwidth h.

Figure 1 shows some KDEs of the intriguing and widely studied Hidalgo stamp data, brought to the statistical literature
by Izenman & Sommer (1988). The data X1, : : : , Xn are thicknesses (in mm) of n D 485 postage stamps produced
in Mexico during the nineteenth century. The paper thicknesses of the stamps vary widely, motivating philatelists
to question the number of paper sources. Each stamp thickness is shown as a black dot in Figure 1, with stamp
thickness on the horizontal axis, and a random value (called jitter) to visually separate the dots on the vertical axis.
The jitter plot already suggests clumps of high density, that is, clusters in the data, thought to correspond to separate
factories producing the paper. This impression is sharpened by the three KDEs, using the bandwidths indicated in
the legend. The red KDE with h D 0.005 shows just two modes, that is, suggests that there are two factories. A
bootstrap conclusion of two modes in this data set can be found in Section 16.5 of Efron & Tibshirani (1994). The
green KDE with h D 0.0016 represents substantially less smoothing (i.e. local averaging) and suggests that there may
be seven modes, although the two on the right are very small and may include too few data points to conclude they
are actual clusters. Analyses indicating seven modes include Izenman & Sommer (1988), Basford et al. (1997) and
Fisher & Marron (2001). An even less smooth KDE is the blue curve using h D 0.006, which shows quite a few more
modes, many of which seem likely to be spurious artefacts of sampling variation. However, some researchers have
been interested in at least some of these, such as the mode that appears between the two largest modes. In particular,
Minnotte & Scott (1993) suggested that there may be up to 10 modes. Other approaches have led to other answers
for this data; for example, three modes indicated by Walther (2002), three to five by Chaudhuri & Marron (1999) and
five by Minnotte (2010).

A time-honoured approach to the challenge of the divergent answers to the question of which modes represent
important underlying structure is data based bandwidth selection. As noted by Jones et al. (1996b, 1996a), there is
a large literature on this topic. For the Stamps data, the Sheather–Jones Plug-In Bandwidth recommended by Jones
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et al. (1996a) is h D 0.0012, somewhere between the green and blue curves. As the green h D 0.0016 bandwidth is
already turning up questionable modes, classical data-based bandwidth solution is not very effective in the context of
bump hunting. This is perhaps not surprising, as this approach attempts to optimize an L2 norm, which is a rather
different goal from finding modes.

This type of consideration motivated the SiZer approach to bump hunting proposed by Chaudhuri & Marron (1999).
The first major contribution of the SiZer idea is to skirt the bandwidth selection problem by taking a scale space
approach. Scale space is a concept from computer vision based on extracting information from a digital image using
a family of Gaussian kernel smooths. The idea is that features from more smoothed versions represent coarse-scale
macroscopic aspects of the image, while smaller windows correspond to taking a more-fine-scale detailed view. Note
that from this perspective, it does not make sense to choose a single bandwidth, but instead, all scales contain
different types of useful information, which should not be discarded. This motivated SiZer, which is a multi-scale view
of data combined with relevant statistical inference. A SiZer analysis of the Hidalgo stamp data is shown in Figure 2.
The top panel includes the jitter plot black dots from Figure 1, together with a scale space family of KDEs shown
as blue curves. Note that the range of smooths starts with even less smoothing than the blue curve in Figure 1 and
ranges through more smoothing than the red curve, in particular including a uni-modal member. The bandwidths of
this family are logarithmically equally spaced, which gives a good visual impression, because bandwidths work in
a multiplicative way. The second major contribution of SiZer is to focus the statistical inference on bump hunting,
through the observation that a bump is determined by a region of increase, followed by a region of decrease. Hence,
the inference is based on statistical SIgnificance of the ZERo crossings of the derivative of the density estimate.
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Figure 2. Sizer analysis of the Hidalgo stamp data. Relatively few of the modes are found to be statistically significant.
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In particular, at each location, a hypothesis test is performed, and where the slope is significantly positive (negative),
the colour blue (red, respectively) is shown. That original colour choice was based on what is natural for economic data
(where the terminology “in the red” is associated with decrease). In other applications, for example, in climatology
(e.g. Holmström & Erästö (2002) and Erästö & Holmström (2007, 2012)), it is natural to reverse the colours (as
red is thought of as “hotter,” with blue corresponding to “cooler”). At locations where the test is inconclusive, the
intermediate colour of purple is used, and grey appears where the data are too sparse for reliable inference. This is
performed across a scale, with the results summarized in the SiZer map shown in the bottom panel of Figure 2. The
horizontal axis is the same as that for the top panel, for direct comparison. The vertical axis indexes the log10scale,
that is, bandwidth. This shows that the two largest peaks of the green smooth in Figure 1 are strongly statistically
significant (flanked by both blue and red patches). Of the next three largest peaks, only the first and second receive
some SiZer support in the form of blue patches to the left, but these are not called as significant modes, because there
are no corresponding red regions to the right. Specific insights into how much smoothing is represented at each scale
comes from the white dots, which show ˙2 standard deviations of the Gaussian kernel window. The top rows of the
SiZer map show that at the coarsest scale, the kernel smooth is uni-modal, while the colours around log10 h D �2.6
show that the stamp data set is bimodal at that level of resolution.

The third major contribution of the SiZer idea is to skirt the traditional bias problems of kernel smoothing by ignoring
them. This makes sense from the scale space viewpoint by changing the target of the statistical inference from the
underlying density to the density at the given scale, that is, to the convolution of the density with the kernel. See
Hannig & Marron (2006) for an improved version of SiZer (currently implemented in the examples shown here),
where some early distributional approximations have been made precise. A two-dimensional version is available by
Godtliebsen et al. (2002).

2 Methods
2.1 Persistent homology
For a sufficiently regular function f : Rd ! R, persistent homology (Edelsbrunner & Harer, 2008) tracks the change
of topological features such as connected components, holes and voids of sub-level sets L� :D

®
x 2 Rd : f.x/ � �

¯
as

the level parameter � 2 R changes. We give a brief review of the main ideas here and refer to the growing literature for
details (Bubenik & Kim, 2007; Ghrist, 2008; Carlsson & Zomorodian, 2009; Carlsson, 2009; Chazal et al., 2011).

As sub-level sets are nested, that is, L�1
� L�2

for �1 � �2, there is a natural correspondence between the topological
features of L�1

and those of L�2
. As the level parameter � grows, new features can appear and existing features

disappear as, for example, connected components merge or holes are filled in. Each feature can be assigned a smallest
� for which it appears and a largest � after which it is no longer present—these levels are called the birth and death
times of the feature, respectively. Naturally, the difference between death and birth time of a feature is called its
lifetime. This is typically depicted in a persistence diagram where each feature is represented by a point with its birth
and death times as its horizontal and vertical coordinates, respectively.

Bump hunting with persistent homology Persistent homology can be used for hunting bumps of a univariate continu-
ous probability density function f : R! R�0. To this end, we track the connected components of the sub-level sets of
f. New connected components will be born when the level � reaches the height of a local minimum of f; likewise, the
death times of features (as above meaning the open intervals that comprise the complement of L�) will correspond to
the height of local maxima. As f is a density function, it approaches zero for x! ˙1. Therefore, every sub-level set
for positive � will have usually two unbounded connected components. These two components will always have birth
time � D 0, and one of them dies when � is the global maximum of f. All other connected components are born and
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Movie 1. Topological data analysis-based mode hunting for the Hidalgo stamp data.

die between those extremes. We may ignore one of these unbounded components because it will always be born at
� D 0, lives for all positive �, and hence carries no information about f. With this modification, each feature in the
persistence diagram corresponds to a bump in the density f—namely, the local maximum at which it dies. Other work
on using persistence in bump hunting can be found in Xia et al. (2015a, 2015b).

2.2 Significance
Stability theorem The stability theorem (Cohen-Steiner et al., 2007) provides the foundation for statistical inference
with persistent homology. It asserts that if a function f has k features with lifetime greater or equal to C > 0, then any
function g with supx jf.x/ � g.x/j < C has at least k features (actually, the stability theorem says more than that, but
this simplified version suffices for our purpose).

Significance of bumps Assume now we are hunting for bumps of a density f of a univariate random variable X based on
a sample X1, : : : , Xn

i.i.d.
� X. We propose to consider the persistence diagrams of the KDE Ofh.x/ D n�1

Pn
iD1 Kh .x � Xi/

as an estimator for the persistence diagram of the smoothed true density fh D Kh � f.

The stability theorem allows us to decide whether a feature found in the persistence diagram of Ofh is significant or not.
Indeed, let qh.˛/ be the 1 � ˛ quantile of the random variable

sup
x2R
jOfh.x/ � fh.x/j.

In practice, we determine qh.˛/ from the data by bootstrapping. It follows from the stability theorem that, with
probability 1� ˛, the number of features of fh.x/ is at least the number of features of Ofh whose lifetime exceeds qh.˛/.

This approach to assessing the significance of features in persistence diagrams has been first proposed by Fasy et al.
(2014) but has not been used for mode hunting yet.

Scale-lifetime diagrams An important contribution of this paper is the dynamic scale-lifetime diagram shown in
Movie 1. Time in this movie represents scale, indexed by the bandwidth h. It is useful to both watch the full movie
and to stop it at particularly interesting values of h, with manual advancement through frames.

Stat 2017 5 Copyright © 2017 John Wiley & Sons, Ltd



M. Sommerfeld et al. Stat
(wileyonlinelibrary.com) DOI: 10.1002/sta4.167 The ISI’s Journal for the Rapid

Dissemination of Statistics Research

For each scale h, the left panel shows the corresponding KDE as a blue curve. Also shown are horizontal green lines
that correspond to peaks, that are statistically significant in the sense that the corresponding feature (recall this is the
gap between connected components in L�) has a lifetime that is > qh.˛/. Behaviour across scales is displayed in the
centre and left panels.

The centre panel shows an aggregation of conventional persistence diagrams across scales. The distinct patterns are
a result of the strong connections between diagrams across scales. At each scale h, each peak generates a dot. The
vertical coordinate of each dot is the height of the feature corresponding to the peak, because that is when the peak
dies in the � filtration. The horizontal coordinate of each point is the birth time of the feature (gap) beneath each
peak. Points are coloured red at peaks that are statistically significant in the aforementioned sense. At the smallest
bandwidth of h D 0.0003, there are three peaks that touch horizontal green lines in the left panel. Each of these
persist through a wide range of the " filtration. These appear as the three red dots circled in green in the centre panel,
and note that the heights are the same as that in the left panel, because the height of the dot is its death time. All
other peaks appear as black dots whose vertical coordinate is the height of the peak. As can be understood by slowly
changing the scale using the right arrow key (>), the nearly linear patterns show the motion of each dot (corresponding
to peaks) over bandwidth. The upper right set of points stops being significant already at the third value of h because
it corresponds to the very thin second peak, which completely disappears at the bandwidth h D 0.0045. The tallest
peak, at stamp thickness around 0.08, generates the set of points on the far left, because this component is born at
� D 0. All of these features are statistically significant over all shown scales h. The second bandwidth h D 0.0031 is
also interesting, because that is the finest scale where the peak near stamp thickness 0.10 is statistically significant.
Following the pattern downwards through scale shows that this peak is intermittently significant.

The right panel provides additional insights, especially in regard to the issue of statistical significance. This shows
roughly the same set of dots, but now displayed with log bandwidth (scale) on the vertical axis, and lifetime (which
is the difference of vertical and horizontal coordinates in the centre panel) on the horizontal axis. To help make the
needed visual connection, the points with green circles in the centre panel also have green circles in the right. Because
scale is on the vertical axis, these green circle all have the same height, which increases with bandwidth h. Looking
along each row, one sees the number of both significant (red) and insignificant (black) peaks at that scale, except that
very small peaks with a lifetime of less than about 5 (i.e. within five units of the diagonal in the centre panel) are not
shown. Good insight into how the statistical significance works across scale is given by the purple curve, which traces
out qh.˛/ as a function of h. This gives a good impression as to why the significance of the peak near thickness 0.01
is rather intermittent while the two major peaks appear over a wide range of scales.

Our final contribution to the oft considered issue of how many modes are in the stamp data is that at the level of
resolution h D 0.0031 there are four statistically significant modes, which are substantially different from those found
in previous analyses.

3 Power comparison with SiZer
To demonstrate improved statistical power, the Hidalgo stamp data from Figures 1 and 2 are analysed here using
persistent homology. Movie 1 shows the results of this analysis. Using the same range of bandwidths as the SiZer,
the topological data analysis (TDA) method finds up to four significant modes for small bandwidths, and three bumps
are marked as significant over nearly the entire bandwidth range. The TDA method thus finds more significant modes
than does SiZer and finds them to be significant over a larger range of bandwidths.

Another approach demonstrating the improved statistical power is to compare performance on interesting simulated
data sets. Figure 3 shows a SiZer analysis of n D 450 data points simulated from the Marron & Wand (1992)
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Figure 3. SiZer analysis of 450 points simulated from the discrete comb density. Only the three strongest of the six modes,
and one of the thin peaks, are significant.

Movie 2. Topological data analysis-based mode hunting of 450 points simulated from the discrete comb density.
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Density 15, called the discrete comb density. As one might guess from a careful inspection of the jitter (black dots)
and scale space family (blue curves) plots, this density is a mixture of three relatively broad Gaussian components
and three much narrower Gaussian peaks.

The SiZer analysis in the bottom panel of Figure 3 shows that the three big peaks on the left are flagged as significant
at scales around log 10h D �0.05, but the three thin peaks on the right are all combined into a single significant peak.
The middle of the three narrow peaks is significant at the scale log10 h D �1.2, but the other two are not flagged.
This behaviour is an artefact of the deliberately chosen sample size of n D 450, aimed at highlighting the comparison
between SiZer and persistent homology. For larger sample sizes, such as n D 1000, all six modes are typically found
by SiZer.

Movie 2 shows a TDA analysis of the same data set. The three big peaks and one of the thin peaks are marked as
significant for a large range of bandwidths. Additionally, a fifth peak is found to be significant for bandwidths from
0.02 to approximately 0.04 with a brief interruption around bandwidth 0.022. The lifetime of the sixth mode can be
seen to be just barely below the threshold for significance for bandwidths up to around 0.035.

4 Conclusion
We have demonstrated how persistent homology offers a novel approach to the classical problem of bump hunting for
probability densities. At the heart of this approach is the combination of persistence diagrams of KDEs over a range
of bandwidths—as well as a further reduction of this information into a lifetime-scale diagram. These representations
allow us to track the size and statistical significance of modes of the density over different levels of smoothing.

In a direct comparison with SiZer on one real data set and one simulated data set, the presented method shows
greater power; that is, it finds more modes significant over larger ranges of bandwidths. This shows that persistent
homology is a competitive method for bump hunting in density estimation.
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