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Abstract—As cyber attacks are growing with an unprece-
dented rate in the recent years, organizations are seeking an
efficient and scalable solution towards a holistic protection
system. As the adversaries are becoming more skilled and
organized, traditional rule based detection systems have been
proved to be quite ineffective against the continuously evolving
cyber attacks. Consequently, security researchers are focusing
on applying machine learning techniques and big data analytics
to defend against cyber attacks. Over the recent years, several
anomaly detection systems have been claimed to be quite
successful against the sophisticated cyber attacks including the
previously unseen zero-day attacks. But often, these systems
do not consider the adversary’s adaptive attacking behavior
for bypassing the detection procedure. As a result, deploying
these systems in active real-world scenarios fails to provide
significant benefits in the presence of intelligent adversaries that
are carefully manipulating the attack vectors. In this work, we
analyze the adversarial impact on anomaly detection models
that are built upon centroid-based clustering from game-
theoretic aspect and propose adversarial anomaly detection
technique for these models. The experimental results show that
our game-theoretic anomaly detection models can withstand
attacks more effectively compared to the traditional models.

Keywords-Anomaly Detection; Adversarial Machine Learn-
ing; Clustering; Mimicry Attack;

I. INTRODUCTION

As more and more developing nations are getting dig-

italized without adopting enough security precautions and

penetration testing drills during building and maintaining

their cyber-infrastructures, the attack surface of cyber attacks

is expanding at a tremendous speed [1]. A recent incidence

can be exemplified by the heist of foreign reserve from the

central bank of Bangladesh, in which unidentified hackers

tried to steal $951 million by compromising the SWIFT

Alliance Access software that the bank was using for its

foreign transactions [2]. On the other hand, the dark web is

being swarmed by an increasing number of cyber criminals

for purchasing stolen cyber espionage tools and zero-day

vulnerabilities of state-sponsored agencies through the use

of cryptocurrencies. In 2016, an infamous hacking group

named The Shadow Brokers auctioned several exploit tools

used by the Equation group which was believed by many

as a secret cohort working under the direct influence of the

National Security Agency (NSA) [3]. Subsequently, one of

the released exploits called the EternalBlue was used by

the WannaCry ransomware in 2017 to propagate reportedly

into 2,00,000 computers in at least 150 countries causing

an estimated loss of $4 billion [4]. While attacks against

traditional networks are dominating the threat landscape,

emerging technologies such as Internet of Things (IoT)

are creating new frontiers of cyber attacks. An alarming

occurrence can be attributed to the Mirai botnet which

infected 4,93,000 IoT devices to perform DDoS attacks in

2016 [4].

Due to the growing attack surface and the adoption of dif-

ferent obfuscation techniques to avoid detection, signature-

based detection systems are no longer considered a sufficient

defense maneuver against the evolving cyber attacks. While

supervised machine learning techniques provide consider-

able supplementary defense, their effectiveness is impacted

when the training data set has skewed distribution of benign

and malicious samples or a novel class of attacks appear

in the testing data. As a result, anomaly detection models

have garnered widespread acceptance to be a part of holistic

protection system. However, previous works have shown that

clustering-based anomaly detection models are not robust

against adversarial attempts [5], [6]. Therefore, making these

models robust against different kinds of adversarial attacks

seeks special research endeavor for ensuring the security

of machine learning. Hence in this work, we particularly

addressed the influence of mimicry attack on centroid-based

clustering models and proposed a game-theoretic way of

choosing parameters to make these models resilient against

the attack.

A. Our Contributions

In this work, we choose traditional centroid-based cluster-

ing models as the basis of the anomaly detection model. We

then analyze how an intelligent adversary can try to evade

detection by means of modifying the features while incurring

minimum cost. Based on this threat model, we propose the

adversarial robust anomaly detection models as replacement

to the traditional ones. To the best of our knowledge, this is

the first work addressing mimicry attacks against centroid-

based clustering models using game theoretical framework.

Our major contributions can be summarized as follows.

• We develop the theory of an adversary’s optimal strat-

egy to perform mimicry attack against a clustering-

based anomaly detection model.
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• We formulate the defender’s strategy in figuring out the

optimal parameters to defend the attack from a game-

theoretic viewpoint.

• We empirically analyze the adversarial impact on our

proposed adversarial models as well as the traditional

ones and find that our models can withstand mimicry

attacks more effectively.

The remainder of this paper is organized as follows.

In Section II, we introduce the reader to the concept of

adversarial anomaly detection. In Section III, we briefly

describe some noteworthy works related to our research. In

Section IV, we describe the traditional anomaly detection

model for which we propose the adversarial model. Then, we

formally discuss the attacker’s optimal adaptive strategy and

the defender’s optimal response. The data set, experimental

setup and empirical results are presented in Section V.

Section VI draws the conclusion and highlights some future

directions.

II. BACKGROUND

In this Section, we describe the necessary background of

adversarial anomaly detection.

A. Anomaly Detection

Anomaly detection refers to the problem of finding the

samples that deviate from some well-defined region of

normalcy, possibly through the use of some thresholding

mechanism. The samples are called anomalies or outliers and

show significant divergence in their properties or behaviors.

Anomaly detection differs from supervised-learning methods

in the sense that they do not necessarily need supervised

training through labeled dataset [7]. Consequently, anomaly

detection models provide real benefits when there is a

significant imbalance in the distribution of two classes in

the training data set or there appears novel bad classes in

the testing data set. Anomaly detection models are used in

a broad spectrum of application domains such as network

intrusion detection, fraud detection, medical diagnosis, mil-

itary surveillance, monitoring of critical infrastructures and

so on [8].

B. Adversarial Anomaly Detection

Adversarial Machine Learning is relatively a new research

area at the intersection of machine learning and security

informatics. A wide range of machine learning based se-

curity applications are designed by considering a stationary

environment where the training and testing data are assumed

to be generated from the same distribution [9]. But in the

presence of adaptive adversaries having consummate skills

to modify the features or control the training data, this

hypothesis may not hold true. As a result, the real-world

effectiveness of a machine learning model can slump down

significantly from a higher level that was found from a

static, defender controlled set of experiments having no

external influence. Hence, evaluating the robustness of these

models against adversarial manipulations requires substan-

tial research effort.

1) Taxonomy of Adversarial Influence: Huang et al. intro-

duced a taxonomy of adversarial effects on machine learning

models [10]. Later, Corona et al. proposed a high-level cat-

egorization of adversarial tactics against intrusion detection

systems [11]. Based on these works, we can classify the

adversarial impacts into the following major types.

• Poisoning Attack: In some scenarios, the attacker has a

significant level of control over the training data and thus

has the ability to inject craftily designed samples to poison

the training process and compromise the detection model.

Many detection models that are designed to periodically

re-train themselves in an online or streaming fashion to

comply with the changing trends in the underlying data

distribution may be vulnerable to this kind of attack [12],

[13].

• Mimicry/Evasion Attack: Mimicry attack [14], [9], [15] is

the most prevailing type of attack that is launched against

a machine learning model during its course of operation.

This attack can be materialized by modifying the features

of an attack sample so that it looks like a legitimate

one. Common examples include injecting good words in a

spam email or obfuscating malware binaries to hide their

malware-centric features.

• Availability/Overstimulation Attack: In the availability at-

tack [16], [17], the attacker generates a large number

of spurious samples which do not have real malicious

properties but overwhelm the detection system with lots of

false positive alerts, consequently compelling the security

administrator to repeal the system.

• Denial-of-Service Attack: In this attack, the attacker tries

to disable the detection system or create stagnation in the

detection procedure by generating algorithmic complexity

through crafted samples, eventually creating a way for the

actual malicious sample to bypass the screening process

[18], [19], [20].

• Exploratory Attack/Reverse Engineering: In the reverse

engineering attack [21], the attacker tries to determine

the inner working mechanism of the detection model

by repeatedly probing it with carefully constructed sam-

ples. This is one of the reasons behind why security-by-

obscurity is not endorsed.

2) Arms Race Between Attacker and Defender: In the

field of computer security, the conflict between the attacker

and the defender can be modeled as a game between two

intelligent rational agents where each one tries to maximize

its score by taking the best move against the other one’s

optimal strategy at each level of the game. This can be

thought of as a reactive arms race between the two as

explained by Biggio et al. [14]. At each level, the attacker

tries to explore different aspects of the detection model
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and figure out the vulnerabilities. The attacker then devises

strategies to exploit those vulnerabilities for bypassing the

detector. The defender reacts by analyzing the new attack

samples and amending or adjusting the model to prevent

those attacks. This kind of arms race has reached extensive

sophistication in the field of spam filtering and malware

detection. In this work, we apply basic leader follower

structure to predict the end state (i.e., equilibrium) of such

an arms race.

In summary, the goal of adversarial anomaly detection

is to set up the defender’s strategy in making the anomaly

detection model robust against adversarial attack.

III. RELATED LITERATURE

Several research endeavors have been made for under-

standing the adversarial impact on machine learning models.

But to the best of our knowledge, no work has been done

on understanding the effect of mimicry attack on clustering

models. Below we summarize the works that closely match

with our work.

Xu et al. developed a system to automatically evade

two PDF malware classifiers with 100% success rate [9].

The team utilized Genetic Programming to perform object

mutations in the malicious PDF samples until those were

able to circumvent the classifiers while retaining their ma-

licious properties. The research found that the weakness in

those classifiers could be attributed to the use of superficial

features that are not inherently associated with benign (or

malicious) behavior but stochastically prevalent in benign

(or malicious) samples.

Zhou et al. developed optimal Support Vector Machine

learning strategies against active adversaries having free-

range and restrained data-corruption capabilities [22]. Later

they addressed the problem of having multiple types of

adversaries against learning models and devised a nested

Stackelberg game framework that offered more reliable

defense [23].

Wang et al. performed an empirical study of adversar-

ial attacks against popular classification algorithms in the

context of detecting crowd-sourcing systems in which paid

human workers actively perform certain tasks to circumvent

security mechanisms (e.g., CAPTCHAs) and found that the

algorithms could be highly vulnerable to simple evasion

attacks and powerful poisoning attacks [24].

Kloft et al. analyzed how an online centroid anomaly

detector with finite sliding window of training data performs

under poisoning attack [25]. They showed that if the attacker

cannot control a certain percentage of the training data,

this attack fails even with an arbitrarily lengthy effort. By

experimenting on a real HTTP traffic dataset, they found

that an attacker needs to control 5-10% of the traffic to

successfully launch a poisoning attack, which may not be

possible on sites with high volume traffic.

Dutrisac et al. showed how the adversary could inject a

few carefully chosen not too unusual samples to the training

procedure of multiple clustering models so that two different

clusters of good and bad class respectively merge into a

single cluster of good class [5].

Biggio et al. demonstrated poisoning attack against single-

linkage clustering algorithm to subvert Malheur, an open-

source tool for behavioral malware clustering and found that

the attacker needs to inject very small percentage of attacks

into the input data [6].

IV. THE ADVERSARIAL ANOMALY DETECTION MODEL

Our adversarial anomaly detection model is robustly de-

signed for centroid-based clustering systems which option-

ally use preprocessing steps such as data normalization and

dimensionality reduction. However, the adversarial model is

applicable invariably of whether these preprocessing steps

are used or not, as we will see at the end of this section.

Since the models are unsupervised, they only use benign

data to train themselves.

A. Data Preprocessing

Our adversarial model is built in a robust way by consid-

ering possible data preprocessing steps as described below.

1) Data Normalization: Typically different features in a

data set are represented using different scales of reference

and thus may not be comparable to one another. For exam-

ple, in the context of network traffic, the features duration

of network flow and number of packets sent have different

scales. If the scales are not normalized then the detection

model would be biased towards the feature of larger mag-

nitude. Moreover, there can be categorical features whose

values are not comparable on numeric scale. So at first,

the categorical features are replaced by multiple boolean

features, each one corresponding to a particular value of the

original categorical feature. Only the feature corresponding

to the value present in the current instance is considered

True while others are deemed False. Finally, the boolean

features are represented with 1 and 0 to indicate True and

False respectively. Then the standard data scaling technique

is adopted. If minj and maxj represent the minimum and

maximum values of the j-th feature respectively and yj
corresponds to a particular value of that feature, then yj
is scaled as-

xj =
yj −minj

maxj −minj

(1)

2) Dimensionality Reduction: In real data sets, more than

one feature may come from the same underlying property

and thus intrinsically represent the same thing. These corre-

lated features are often overlooked by the analyst during the

initial phase of data set creation. As a result, the learning

algorithm trained on the data set suffers from implicit

redundancies and gets biased. Moreover, as identified by
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Zimek et al., the concentration of distances, interpretability

of scores and exponential search space for high-dimensional

data affects the performance of anomaly detection models

[26]. These phenomenons are jointly known as the curse

of dimensionality. To get rid of these problems, the model

reduces the dimensions using principal component analysis

(PCA) [27]. PCA is a statistical procedure to transform a set

of values of possibly correlated features into a set of values

of linearly uncorrelated features referred to as principal

components. The first principal component is defined to

have a direction for which the data set has the highest

possible variance. Each subsequent principal component,

in turn, has a direction that is orthogonal to that of the

preceding components but also has the next highest variance

possible. The number of principal components can be at

most the number of original features, though in practice it

is chosen to be much lower depending on the necessity. PCA

generates an n-by-m coefficient matrix (m ≤ n) which when

multiplied to an n-dimensional feature vector, transforms

it to an m-dimensional vector in the principal component

space.

B. Clustering

After applying the preprocessing steps on the benign

training samples, clusters of benign samples are formed

using some centroid-based clustering algorithm (e.g., k-

Means, bisecting k-Means, k-Medians, k-Medoids) that uses

numerical distance metric to measure similarity between

the samples. The model assumes that there can be several

categories of benign samples in the data set and the samples

of the same category form their own cluster. For example,

in the context of network traffic, different types of benign

traffic (e.g., http, ssh etc.) might form their own clusters.

Hence, if a testing sample appears as anomalous to all of

the generated clusters, then it is considered as malicious.

Let us assume that X = 〈x1, x2, · · · , xn〉 is the nor-

malized testing point in the n-dimensional feature space

that is passed to the clustering model. The model has k

clusters in the m-dimensional (m ≤ n) principal component

space and the center of the i-th cluster is represented as

C(i) = 〈c
(i)
1 , c

(i)
2 , · · · , c

(i)
m 〉. The testing point is projected

to the principal component space on which the clustering

model is built and represented as X = XM , where M is the

PCA coefficient matrix. If the Euclidean distances of X from

all the k cluster centers are greater than some predefined

threshold t, then it is considered an anomalous (malicious)

point. Now suppose, F (X) be the output of the anomaly

detection model for the point X and D be the function

returning the Euclidean distance between two points. Also

assume that if X is an anomalous point, then F (X) = +1
and F (X) = −1 otherwise.

F (X) =

{

+1 if ∀i ∈ {1, · · · , k} : D(X,C(i)) > t

−1 otherwise
(2)

The defender’s goal in any detection model is to minimize

the weighted sum of the number of false positives and the

number of false negatives, where weights are set according

to the type of the problem and the requirement in context.

For example, in the case of SPAM filtering restricting a

legitimate email is less desirable than allowing a junk email,

i.e., false positive weight needs to be higher than the false

negative weight. On the contrary, for network intrusion

detection, restricting any suspicious traffic is of high priority

i.e., false negative weight needs to be higher than false

positive weight. Now let, XA be the set of malicious testing

samples, XB be the set of benign testing samples, I{e}
be the indicator random variable for some event e and

additionally, w1 ∈ [0, 1] and (1−w1) be the weights for false

positives and false negatives respectively. Then assuming no

adversarial attack, the objective of the traditional model is

to choose the parameters 〈k, t〉 to minimize the following

expression-

argmin
〈k,t〉

w1

∑

X∈XB

I{F (X)=+1}+

(1− w1)
∑

X∈XA

I{F (X)=−1}

(3)

The near-optimal value of the parameters 〈k, t〉 can be

found by performing a grid-search using a small cross-

validation data set that we can reasonably assume as being

available to the defender.

C. Optimizing Parameters Against Mimicry Attacks

In the threat model of mimicry attack, the attacker is

assumed to have the ability to modify the features of the

malicious sample to make it look legitimate. But, intuitively

the attacker would be unwilling to let the malicious point

move far away from its original position in the feature space

since greater displacement often entails loss of malicious

utility [22]. As a result, we make the assumption that each

feature’s value can be modified by up to some certain amount

with the restriction that the new value must lie within

the original domain, Dj of the j-th feature. This certain

amount which we call the feature modification threshold

can be estimated by the defender’s domain knowledge and

represented by δj for the j-th feature. If modifying the

j-th feature by the slightest amount nullify the malicious

properties of the sample, then δj = 0.

Considering the described anomaly detection model, the

attacker’s optimal strategy for mimicry attack is realized

by modifying the features of the malicious sample within

the respective feature modification thresholds while min-

imizing the overall modification cost. Now let, X ′ =
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〈x′
1, x

′
2, · · · , x

′
n〉 be the new position of the original ma-

licious point X = 〈x1, x2, · · · , xn〉 after modifying its

features according to the strategy and X ′M be the projec-

tion on the principal component space. For simplicity, we

consider that each feature has the same modification cost of

1. So, the attacker’s objective turns out to be minimizing

the overall cost,
∑n

j=1 |x
′
j − xj |. X

′ is treated as benign by

the detection model only if the projected point X ′M has a

distance of less than t from at least one of the cluster centers

C(i); i ∈ {1, ..., k} as described in section IV-B. Therefore,

using matrix notation, the attacker’s optimal strategy can be

represented by the following optimization problem-

argmin
X′

(X ′ −X)(X ′ −X)T

s.t. ∃i ∈ {1, ..., k} : (X ′M − C(i))(X ′M − C(i))T ≤ t2

and ∀j ∈ {1, ..., n} : (x′
j − xj)

2 ≤ δ2j , x
′
j ∈ Dj

(4)

Notice that the objective in Expression 4 has been changed

to
∑n

j=1 (x
′
j − xj)

2
for the purpose of avoiding the abso-

lute value operator during optimization. The first constraint

indicates the condition for the new attack point X ′ to be

treated as benign. The second constraint indicates that each

feature’s value must be modified by an amount not higher

than the respective feature modification threshold and also

the new value must be chosen from the valid domain of

the feature. This kind of optimization problems are known

as Quadratically Constrained Quadratic Program (QCQP)

and can be solved by powerful optimization tools.

From game-theoretic aspect, a prudent defender responds

by undertaking an adversarial model that is expected to

withstand the above-mentioned strategy of the attacker. This

can be achieved by replacing the objective denoted by

Expression 3 with the following-

argmin
〈k,t〉

w1

∑

X∈XB

I{F (X)=+1}+

(1− w1)
∑

X∈XA

I{F (X)=−1 or ∃X′:F (X′)=−1}

(5)

where X ′ corresponds to a valid solution for the optimiza-

tion problem in Expression 4. Thus Expression 5 searches

for the optimum values of the parameters 〈k, t〉 after incor-

porating the attacker’s optimal strategy for mimicry attack

into consideration.

Notice that, even if the the data preprocessing steps are not

used, the model would work seamlessly by considering C(i)

to be the i-th cluster center in the original feature space and

replacing the PCA coefficient matrix, M with n-dimensional

identity matrix.

V. EXPERIMENTS

We implement the machine learning algorithms using

Scala functional programming language and Spark MLlib

Table I: Number of samples in the data sets

Benign Malicious Total

Training 349445 0 349445

Validation 10000 10000 20000

Testing 153106 152452 305558

machine learning library on an Intel Core i7 3.40GHz ma-

chine with 16GB of RAM. To solve the QCQP in Expression

4, we use IBM ILOG CPLEX [28] optimizer which provides

Java interface to be integrated to our Scala programs.

A. Data Set

A labeled dataset is necessary to evaluate the performance

of an anomaly detection model. KDD Cup 1999 data set

[29], available from the UCI Machine Learning Repository,

is one of the very few processed and labeled intrusion

detection data sets which is widely used to compare anomaly

detection methods. This data set was produced by Stolfo et

al. [30] by extracting 41 features of network traffic captured

from DARPA 1998 IDS evaluation program simulating a

typical U.S. Airforce LAN for 7 weeks. The feature set

includes protocol type, number of source bytes, number of

shell obtained, % of connections to the same service and

so on. The data set contains a total number of 38 types

of attacks. These include syn flood, guessing password,

buffer overflows, port scanning and others. We divide the

whole data set into training, validation and testing sets after

removing the duplicates. The training set is comprised of

benign samples only. The validation set is used for com-

puting the values of the parameters 〈k, t〉 of the traditional

and adversarial models. Both the validation and testing

sets have almost equal number of benign and malicious

samples for preventing data skewness to create bias during

the experiments. Naturally, a few samples are discarded for

that purpose. Also, the number of samples in the validation

data set is kept small to comply with our assumption that

the defender has a limited number of malicious samples.

Table I provides the summary statistics of the data sets.

After normalization, the number of features in the data sets

expands to 123.

B. Experimental Setup

At first, we set the number of principal components to

30, preserving 99.5% of the variance in the normalized data

set. We build k-Means (KM) and bisecting k-Means (BKM)

models as representative to the traditional centroid-based

clustering models. Before constructing the corresponding

adversarial models (AD-KM and AD-BKM respectively),

we consider that the attacker has the capability of modifying

the numeric features by some reference percentages notably

5%, 15% and 25%. Since the features are normalized and

have the domain of [0, 1], the feature modification thresholds

(δj) for the above cases are set to 0.05, 0.15 and 0.25
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Figure 1: Sum of squared distances of the training points

from their respective nearest cluster centers for different

values of k

Figure 2: Distribution of distances between training points

and their respective nearest cluster centers for different

values of k

respectively. However, we consider the features derived from

the categorical ones as unchangeable (i.e., δj = 0). This

assumption is substantiated by the fact that while numeric

features such as number of source bytes can be changed

easily, changing categorical features such as protocol type

(UDP/TCP) may result in the nullification of malicious

properties. For comparing the models using accuracy metric,

we set equal weights to false positives and false negatives

(i.e., w1 = 0.5). Based on this setting, we find the optimal

〈k, t〉 values that minimize expression 3 and expression 5

for traditional and adversarial models respectively through

grid-search using the validation data set. For doing the grid-

search, a set of possible k values is selected by using the

elbow method [31], intuitively choosing several k values

near the elbows. Figure 1 shows the elbows by plotting

the sum of squared distances (SSD) of the training points

from their respective nearest cluster centers for different

values of k. Similarly, a set of possible t values is selected

by looking at the distribution of the distances between the

benign training points and their respective nearest cluster

centers as depicted in Figure 2. Based on these figures, the

grid-search for optimum 〈k, t〉 values is performed on the

set {1, 2, ..., 10} × {0.5, 0.6, ..., 3.0} for all the models.

C. Computational Overhead

The clustering models need little amount of time to be

constructed. The main time consumption happens in the

grid-search for finding the optimal 〈k, t〉 values of the

adversarial models due to the reason we describe now.

Finding if a solution exists for Expression 4 takes about

70 milliseconds on average. There can be at most 10,000

true positive samples in the validation data set for which

the solutions are sought. So for different values of the

parameters 〈k, t〉, it can take up to 116 minutes to know how

many samples can be modified successfully to bypass the

detection model and thus to find the value of Expression 5.

We can reduce this time requirement drastically by resorting

to the following technique. For each cluster, a binary search

is performed to find the possibly farthest true positive sample

to have a successful mimicry attack targeting that cluster

and the distance to that sample is remembered. Then during

finding the solution of Expression 4 for a sample, all those

clusters are discarded from consideration whose distance to

that sample exceeds the corresponding remembered distance.

Using this technique, we are able to finish the grid-search

within 48 hours.

D. Results

We investigate the robustness of our adversarial anomaly

detection models as we increase the severity of the

mimicry attacks. We assume that the attacker knows of

a few samples that are considered benign by the model.

When performing mimicry attack for the malicious sam-

ple X = 〈x1, x2, · · · , xn〉, the attacker targets a point

X∗ = 〈x∗
1, x

∗
2, · · · , x

∗
n〉 from the pool of known benign

points that has the lowest distance from X . Then the attacker

nudges the modifiable feature values of X towards the

corresponding feature values of X∗ by some factor fattack,

which represents the aggressiveness of the attack. Based on

this, the j-th feature of the new malicious point gets the

value of-

x′
j =

{

xj if δj = 0

xj + fattack(x
∗
j − xj) otherwise

(6)

Notice that, this setting results in a free-range attack [22]

in which the attacker’s feature modification capability is

curbed indirectly because of moving the attack point towards

the nearest benign target point instead of the cluster centers.

Table II and III shows the accuracies of the models for

different attack intensities when the attacker has 100 and

50 benign points respectively as targets for the mimicry

attacks. We observe that, under no attack (fattack = 0.0),
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Table II: Accuracies of the models for different attack intensities considering the attacker has 100 target points

fattack = 0.0 fattack = 0.2 fattack = 0.4 fattack = 0.6 fattack = 0.8 fattack = 1.0
KM 0.98 0.98 0.96 0.82 0.81 0.80

AD-KM

δj = 0.05 0.98 0.98 0.98 0.95 0.88 0.81

δj = 0.15 0.98 0.98 0.98 0.96 0.96 0.83

δj = 0.25 0.98 0.98 0.98 0.96 0.96 0.83

BKM 0.98 0.98 0.96 0.90 0.89 0.82

AD-BKM

δj = 0.05 0.98 0.98 0.96 0.90 0.89 0.82

δj = 0.15 0.98 0.98 0.97 0.96 0.89 0.82

δj = 0.25 0.98 0.97 0.97 0.96 0.89 0.82

Table III: Accuracies of the models for different attack intensities considering the attacker has 50 target points

fattack = 0.0 fattack = 0.2 fattack = 0.4 fattack = 0.6 fattack = 0.8 fattack = 1.0
KM 0.98 0.98 0.96 0.83 0.52 0.52

AD-KM

δj = 0.05 0.98 0.98 0.98 0.97 0.88 0.88

δj = 0.15 0.98 0.98 0.98 0.96 0.96 0.82

δj = 0.25 0.98 0.98 0.98 0.96 0.96 0.82

BKM 0.98 0.98 0.95 0.89 0.82 0.52

AD-BKM

δj = 0.05 0.98 0.98 0.95 0.89 0.82 0.52

δj = 0.15 0.98 0.98 0.96 0.96 0.89 0.89

δj = 0.25 0.98 0.97 0.97 0.96 0.89 0.82

the adversarial models (AD-KM and AD-BKM) developed

for different values of δj achieve the same accuracies as

of their traditional counterparts (KM and BKM). As the

intensity of attack (fattack) increases, the adversarial models

tend to achieve higher accuracies than those achieved by the

traditional ones as evident from the highlighted entries in the

two tables. We see that, for aggressive attacks the adversarial

models achieve up to 46% better accuracies than the tradi-

tional models. Moreover, we observe that, the adversarial

models developed using higher values of δj (specifically

0.15 and 0.25), provide better resistance against the attacks.

This happens because of using the free-range attack of

Equation 6 which does not limit the feature modification

capability rigorously. However, in real scenarios the defender

should set the value of δj reasonably based on domain

knowledge before constructing the adversarial models, to

achieve the best protection possible against the attack.

VI. CONCLUSION

Machine learning models show phenomenal success in de-

tecting and preventing cyber attacks. Yet, their benefits may

come to a grinding halt in the presence of shrewd adversaries

carefully exploiting the inherent weaknesses in the models.

In this work, we proposed strategies to make centroid-

based clustering models robust against mimicry attacks. We

showed that choosing parameters by modeling adversarial

capabilities allow the centroid-based clustering models to be

more resilient especially under powerful mimicry attacks.

As a future work, we intend to apply the adversarial

modeling-based parameter selection techniques to other type

of anomaly detection methods. In addition, we plan to ex-

pand our game theoretical modeling to multi-interaction and

multi-step attacks that could be launched by sophisticated

adversaries.
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