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Abstract—As cyber attacks are growing with an unprece-
dented rate in the recent years, organizations are seeking an
efficient and scalable solution towards a holistic protection
system. As the adversaries are becoming more skilled and
organized, traditional rule based detection systems have been
proved to be quite ineffective against the continuously evolving
cyber attacks. Consequently, security researchers are focusing
on applying machine learning techniques and big data analytics
to defend against cyber attacks. Over the recent years, several
anomaly detection systems have been claimed to be quite
successful against the sophisticated cyber attacks including the
previously unseen zero-day attacks. But often, these systems
do not consider the adversary’s adaptive attacking behavior
for bypassing the detection procedure. As a result, deploying
these systems in active real-world scenarios fails to provide
significant benefits in the presence of intelligent adversaries that
are carefully manipulating the attack vectors. In this work, we
analyze the adversarial impact on anomaly detection models
that are built upon centroid-based clustering from game-
theoretic aspect and propose adversarial anomaly detection
technique for these models. The experimental results show that
our game-theoretic anomaly detection models can withstand
attacks more effectively compared to the traditional models.

Keywords-Anomaly Detection; Adversarial Machine Learn-
ing; Clustering; Mimicry Attack;

I. INTRODUCTION

As more and more developing nations are getting dig-
italized without adopting enough security precautions and
penetration testing drills during building and maintaining
their cyber-infrastructures, the attack surface of cyber attacks
is expanding at a tremendous speed [1]. A recent incidence
can be exemplified by the heist of foreign reserve from the
central bank of Bangladesh, in which unidentified hackers
tried to steal $951 million by compromising the SWIFT
Alliance Access software that the bank was using for its
foreign transactions [2]. On the other hand, the dark web is
being swarmed by an increasing number of cyber criminals
for purchasing stolen cyber espionage tools and zero-day
vulnerabilities of state-sponsored agencies through the use
of cryptocurrencies. In 2016, an infamous hacking group
named The Shadow Brokers auctioned several exploit tools
used by the Equation group which was believed by many
as a secret cohort working under the direct influence of the
National Security Agency (NSA) [3]. Subsequently, one of
the released exploits called the EternalBlue was used by
the WannaCry ransomware in 2017 to propagate reportedly
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into 2,00,000 computers in at least 150 countries causing
an estimated loss of $4 billion [4]. While attacks against
traditional networks are dominating the threat landscape,
emerging technologies such as Internet of Things (IoT)
are creating new frontiers of cyber attacks. An alarming
occurrence can be attributed to the Mirai botnet which
infected 4,93,000 IoT devices to perform DDoS attacks in
2016 [4].

Due to the growing attack surface and the adoption of dif-
ferent obfuscation techniques to avoid detection, signature-
based detection systems are no longer considered a sufficient
defense maneuver against the evolving cyber attacks. While
supervised machine learning techniques provide consider-
able supplementary defense, their effectiveness is impacted
when the training data set has skewed distribution of benign
and malicious samples or a novel class of attacks appear
in the testing data. As a result, anomaly detection models
have garnered widespread acceptance to be a part of holistic
protection system. However, previous works have shown that
clustering-based anomaly detection models are not robust
against adversarial attempts [5], [6]. Therefore, making these
models robust against different kinds of adversarial attacks
seeks special research endeavor for ensuring the security
of machine learning. Hence in this work, we particularly
addressed the influence of mimicry attack on centroid-based
clustering models and proposed a game-theoretic way of
choosing parameters to make these models resilient against
the attack.

A. Our Contributions

In this work, we choose traditional centroid-based cluster-
ing models as the basis of the anomaly detection model. We
then analyze how an intelligent adversary can try to evade
detection by means of modifying the features while incurring
minimum cost. Based on this threat model, we propose the
adversarial robust anomaly detection models as replacement
to the traditional ones. To the best of our knowledge, this is
the first work addressing mimicry attacks against centroid-
based clustering models using game theoretical framework.
Our major contributions can be summarized as follows.

o We develop the theory of an adversary’s optimal strat-
egy to perform mimicry attack against a clustering-
based anomaly detection model.
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« We formulate the defender’s strategy in figuring out the
optimal parameters to defend the attack from a game-
theoretic viewpoint.

« We empirically analyze the adversarial impact on our
proposed adversarial models as well as the traditional
ones and find that our models can withstand mimicry
attacks more effectively.

The remainder of this paper is organized as follows.
In Section II, we introduce the reader to the concept of
adversarial anomaly detection. In Section III, we briefly
describe some noteworthy works related to our research. In
Section IV, we describe the traditional anomaly detection
model for which we propose the adversarial model. Then, we
formally discuss the attacker’s optimal adaptive strategy and
the defender’s optimal response. The data set, experimental
setup and empirical results are presented in Section V.
Section VI draws the conclusion and highlights some future
directions.

II. BACKGROUND

In this Section, we describe the necessary background of
adversarial anomaly detection.

A. Anomaly Detection

Anomaly detection refers to the problem of finding the
samples that deviate from some well-defined region of
normalcy, possibly through the use of some thresholding
mechanism. The samples are called anomalies or outliers and
show significant divergence in their properties or behaviors.
Anomaly detection differs from supervised-learning methods
in the sense that they do not necessarily need supervised
training through labeled dataset [7]. Consequently, anomaly
detection models provide real benefits when there is a
significant imbalance in the distribution of two classes in
the training data set or there appears novel bad classes in
the testing data set. Anomaly detection models are used in
a broad spectrum of application domains such as network
intrusion detection, fraud detection, medical diagnosis, mil-
itary surveillance, monitoring of critical infrastructures and
so on [8].

B. Adversarial Anomaly Detection

Adversarial Machine Learning is relatively a new research
area at the intersection of machine learning and security
informatics. A wide range of machine learning based se-
curity applications are designed by considering a stationary
environment where the training and testing data are assumed
to be generated from the same distribution [9]. But in the
presence of adaptive adversaries having consummate skills
to modify the features or control the training data, this
hypothesis may not hold true. As a result, the real-world
effectiveness of a machine learning model can slump down
significantly from a higher level that was found from a
static, defender controlled set of experiments having no

external influence. Hence, evaluating the robustness of these
models against adversarial manipulations requires substan-
tial research effort.

1) Taxonomy of Adversarial Influence: Huang et al. intro-
duced a taxonomy of adversarial effects on machine learning
models [10]. Later, Corona et al. proposed a high-level cat-
egorization of adversarial tactics against intrusion detection
systems [11]. Based on these works, we can classify the
adversarial impacts into the following major types.

o Poisoning Attack: In some scenarios, the attacker has a
significant level of control over the training data and thus
has the ability to inject craftily designed samples to poison
the training process and compromise the detection model.
Many detection models that are designed to periodically
re-train themselves in an online or streaming fashion to
comply with the changing trends in the underlying data
distribution may be vulnerable to this kind of attack [12],
[13].

o Mimicry/Evasion Attack: Mimicry attack [14], [9], [15] is
the most prevailing type of attack that is launched against
a machine learning model during its course of operation.
This attack can be materialized by modifying the features
of an attack sample so that it looks like a legitimate
one. Common examples include injecting good words in a
spam email or obfuscating malware binaries to hide their
malware-centric features.

o Availability/Overstimulation Attack: In the availability at-
tack [16], [17], the attacker generates a large number
of spurious samples which do not have real malicious
properties but overwhelm the detection system with lots of
false positive alerts, consequently compelling the security
administrator to repeal the system.

o Denial-of-Service Attack: In this attack, the attacker tries
to disable the detection system or create stagnation in the
detection procedure by generating algorithmic complexity
through crafted samples, eventually creating a way for the
actual malicious sample to bypass the screening process
[18], [19], [20].

o Exploratory Attack/Reverse Engineering: In the reverse
engineering attack [21], the attacker tries to determine
the inner working mechanism of the detection model
by repeatedly probing it with carefully constructed sam-
ples. This is one of the reasons behind why security-by-
obscurity is not endorsed.

2) Arms Race Between Attacker and Defender: In the
field of computer security, the conflict between the attacker
and the defender can be modeled as a game between two
intelligent rational agents where each one tries to maximize
its score by taking the best move against the other one’s
optimal strategy at each level of the game. This can be
thought of as a reactive arms race between the two as
explained by Biggio et al. [14]. At each level, the attacker
tries to explore different aspects of the detection model



and figure out the vulnerabilities. The attacker then devises
strategies to exploit those vulnerabilities for bypassing the
detector. The defender reacts by analyzing the new attack
samples and amending or adjusting the model to prevent
those attacks. This kind of arms race has reached extensive
sophistication in the field of spam filtering and malware
detection. In this work, we apply basic leader follower
structure to predict the end state (i.e., equilibrium) of such
an arms race.

In summary, the goal of adversarial anomaly detection
is to set up the defender’s strategy in making the anomaly
detection model robust against adversarial attack.

III. RELATED LITERATURE

Several research endeavors have been made for under-
standing the adversarial impact on machine learning models.
But to the best of our knowledge, no work has been done
on understanding the effect of mimicry attack on clustering
models. Below we summarize the works that closely match
with our work.

Xu et al. developed a system to automatically evade
two PDF malware classifiers with 100% success rate [9].
The team utilized Genetic Programming to perform object
mutations in the malicious PDF samples until those were
able to circumvent the classifiers while retaining their ma-
licious properties. The research found that the weakness in
those classifiers could be attributed to the use of superficial
features that are not inherently associated with benign (or
malicious) behavior but stochastically prevalent in benign
(or malicious) samples.

Zhou et al. developed optimal Support Vector Machine
learning strategies against active adversaries having free-
range and restrained data-corruption capabilities [22]. Later
they addressed the problem of having multiple types of
adversaries against learning models and devised a nested
Stackelberg game framework that offered more reliable
defense [23].

Wang et al. performed an empirical study of adversar-
ial attacks against popular classification algorithms in the
context of detecting crowd-sourcing systems in which paid
human workers actively perform certain tasks to circumvent
security mechanisms (e.g., CAPTCHASs) and found that the
algorithms could be highly vulnerable to simple evasion
attacks and powerful poisoning attacks [24].

Kloft et al. analyzed how an online centroid anomaly
detector with finite sliding window of training data performs
under poisoning attack [25]. They showed that if the attacker
cannot control a certain percentage of the training data,
this attack fails even with an arbitrarily lengthy effort. By
experimenting on a real HTTP traffic dataset, they found
that an attacker needs to control 5-10% of the traffic to
successfully launch a poisoning attack, which may not be
possible on sites with high volume traffic.

Dutrisac et al. showed how the adversary could inject a
few carefully chosen not too unusual samples to the training
procedure of multiple clustering models so that two different
clusters of good and bad class respectively merge into a
single cluster of good class [5].

Biggio et al. demonstrated poisoning attack against single-
linkage clustering algorithm to subvert Malheur, an open-
source tool for behavioral malware clustering and found that
the attacker needs to inject very small percentage of attacks
into the input data [6].

IV. THE ADVERSARIAL ANOMALY DETECTION MODEL

Our adversarial anomaly detection model is robustly de-
signed for centroid-based clustering systems which option-
ally use preprocessing steps such as data normalization and
dimensionality reduction. However, the adversarial model is
applicable invariably of whether these preprocessing steps
are used or not, as we will see at the end of this section.
Since the models are unsupervised, they only use benign
data to train themselves.

A. Data Preprocessing

Our adversarial model is built in a robust way by consid-
ering possible data preprocessing steps as described below.
1) Data Normalization: Typically different features in a
data set are represented using different scales of reference
and thus may not be comparable to one another. For exam-
ple, in the context of network traffic, the features duration
of network flow and number of packets sent have different
scales. If the scales are not normalized then the detection
model would be biased towards the feature of larger mag-
nitude. Moreover, there can be categorical features whose
values are not comparable on numeric scale. So at first,
the categorical features are replaced by multiple boolean
features, each one corresponding to a particular value of the
original categorical feature. Only the feature corresponding
to the value present in the current instance is considered
True while others are deemed False. Finally, the boolean
features are represented with 1 and O to indicate True and
False respectively. Then the standard data scaling technique
is adopted. If min; and max; represent the minimum and
maximum values of the j-th feature respectively and y;
corresponds to a particular value of that feature, then y;

is scaled as-
Yj — min;

M

xj =
max; — min;

2) Dimensionality Reduction: In real data sets, more than
one feature may come from the same underlying property
and thus intrinsically represent the same thing. These corre-
lated features are often overlooked by the analyst during the
initial phase of data set creation. As a result, the learning
algorithm trained on the data set suffers from implicit
redundancies and gets biased. Moreover, as identified by



Zimek et al., the concentration of distances, interpretability
of scores and exponential search space for high-dimensional
data affects the performance of anomaly detection models
[26]. These phenomenons are jointly known as the curse
of dimensionality. To get rid of these problems, the model
reduces the dimensions using principal component analysis
(PCA) [27]. PCA is a statistical procedure to transform a set
of values of possibly correlated features into a set of values
of linearly uncorrelated features referred to as principal
components. The first principal component is defined to
have a direction for which the data set has the highest
possible variance. Each subsequent principal component,
in turn, has a direction that is orthogonal to that of the
preceding components but also has the next highest variance
possible. The number of principal components can be at
most the number of original features, though in practice it
is chosen to be much lower depending on the necessity. PCA
generates an n-by-m coefficient matrix (m < n) which when
multiplied to an n-dimensional feature vector, transforms
it to an m-dimensional vector in the principal component
space.

B. Clustering

After applying the preprocessing steps on the benign
training samples, clusters of benign samples are formed
using some centroid-based clustering algorithm (e.g., k-
Means, bisecting k-Means, k-Medians, k-Medoids) that uses
numerical distance metric to measure similarity between
the samples. The model assumes that there can be several
categories of benign samples in the data set and the samples
of the same category form their own cluster. For example,
in the context of network traffic, different types of benign
traffic (e.g., http, ssh etc.) might form their own clusters.
Hence, if a testing sample appears as anomalous to all of
the generated clusters, then it is considered as malicious.

Let us assume that X = (x1,%2, -+ ,%,) is the nor-
malized testing point in the n-dimensional feature space
that is passed to the clustering model. The model has k
clusters in the m-dimensional (m < n) principal component
space and the center of the i-th cluster is represented as
cH = (cgl),cg), -, ey, The testing point is projected
to the principal component space on which the clustering
model is built and represented as X = XM, where M is the
PCA coefficient matrix. If the Euclidean distances of X from
all the k cluster centers are greater than some predefined
threshold ¢, then it is considered an anomalous (malicious)
point. Now suppose, F'(X) be the output of the anomaly
detection model for the point X and D be the function
returning the Euclidean distance between two points. Also
assume that if X is an anomalous point, then F'(X) = +1
and F'(X) = —1 otherwise.

+1 ifVie{l,--- k}: D(Y,c(i)) >t
—1 otherwise

F(X) = { @

The defender’s goal in any detection model is to minimize
the weighted sum of the number of false positives and the
number of false negatives, where weights are set according
to the type of the problem and the requirement in context.
For example, in the case of SPAM filtering restricting a
legitimate email is less desirable than allowing a junk email,
i.e., false positive weight needs to be higher than the false
negative weight. On the contrary, for network intrusion
detection, restricting any suspicious traffic is of high priority
i.e., false negative weight needs to be higher than false
positive weight. Now let, X o be the set of malicious testing
samples, Xp be the set of benign testing samples, Iy,
be the indicator random variable for some event e and
additionally, w; € [0,1] and (1—w;) be the weights for false
positives and false negatives respectively. Then assuming no
adversarial attack, the objective of the traditional model is
to choose the parameters (k,t) to minimize the following
expression-

argmin  wy Z Iipxy=+13+

(ks t) XeXp (3)
(1 —w) Z Iipxy=——1y
XeXa

The near-optimal value of the parameters (k,t) can be
found by performing a grid-search using a small cross-
validation data set that we can reasonably assume as being
available to the defender.

C. Optimizing Parameters Against Mimicry Attacks

In the threat model of mimicry attack, the attacker is
assumed to have the ability to modify the features of the
malicious sample to make it look legitimate. But, intuitively
the attacker would be unwilling to let the malicious point
move far away from its original position in the feature space
since greater displacement often entails loss of malicious
utility [22]. As a result, we make the assumption that each
feature’s value can be modified by up to some certain amount
with the restriction that the new value must lie within
the original domain, D; of the j-th feature. This certain
amount which we call the feature modification threshold
can be estimated by the defender’s domain knowledge and
represented by ¢; for the j-th feature. If modifying the
j-th feature by the slightest amount nullify the malicious
properties of the sample, then J; = 0.

Considering the described anomaly detection model, the
attacker’s optimal strategy for mimicry attack is realized
by modifying the features of the malicious sample within
the respective feature modification thresholds while min-
imizing the overall modification cost. Now let, X' =



(!, xh,--- ,x.) be the new position of the original ma-

) n

licious point X = (x1,%2, - ,%,) after modifying its
features according to the strategy and X'M be the projec-
tion on the principal component space. For simplicity, we
consider that each feature has the same modification cost of
1. So, the attacker’s objective turns out to be minimizing
the overall cost, 37, [ — x;|. X" is treated as benign by
the detection model only if the projected point X’ M has a
distance of less than ¢ from at least one of the cluster centers
C@:i € {1,...,k} as described in section IV-B. Therefore,
using matrix notation, the attacker’s optimal strategy can be
represented by the following optimization problem-

argmin (X' — X)(X' - X)T
X/
st Fie{l,.k}: (X'M—-COYX'M—-CHT <2
and Vje{l,..,n}: (2} —x;)> <6;, 2} €D;
“)

Notice that the objective in Expression 4 has been changed
to Z?’Zl (z) — acj)2 for the purpose of avoiding the abso-
lute value operator during optimization. The first constraint
indicates the condition for the new attack point X’ to be
treated as benign. The second constraint indicates that each
feature’s value must be modified by an amount not higher
than the respective feature modification threshold and also
the new value must be chosen from the valid domain of
the feature. This kind of optimization problems are known
as Quadratically Constrained Quadratic Program (QCQP)
and can be solved by powerful optimization tools.

From game-theoretic aspect, a prudent defender responds
by undertaking an adversarial model that is expected to
withstand the above-mentioned strategy of the attacker. This
can be achieved by replacing the objective denoted by
Expression 3 with the following-

argmin  w, Z Iipxy=413+

(k,t)
XeXp (5)
(1 —wy) Z Itp(x)=—10r3X":F(x")=—1}
XEXa

where X' corresponds to a valid solution for the optimiza-
tion problem in Expression 4. Thus Expression 5 searches
for the optimum values of the parameters (k,t) after incor-
porating the attacker’s optimal strategy for mimicry attack
into consideration.

Notice that, even if the the data preprocessing steps are not
used, the model would work seamlessly by considering C'(*)
to be the i-th cluster center in the original feature space and
replacing the PCA coefficient matrix, M with n-dimensional
identity matrix.

V. EXPERIMENTS

We implement the machine learning algorithms using
Scala functional programming language and Spark MLIib

Table I: Number of samples in the data sets

| Benign | Malicious | Total

Training | 349445 0 349445
Validation | 10000 10000 20000
Testing 153106 152452 305558

machine learning library on an Intel Core i7 3.40GHz ma-
chine with 16GB of RAM. To solve the QCQP in Expression
4, we use IBM ILOG CPLEX [28] optimizer which provides
Java interface to be integrated to our Scala programs.

A. Data Set

A labeled dataset is necessary to evaluate the performance
of an anomaly detection model. KDD Cup 1999 data set
[29], available from the UCI Machine Learning Repository,
is one of the very few processed and labeled intrusion
detection data sets which is widely used to compare anomaly
detection methods. This data set was produced by Stolfo et
al. [30] by extracting 41 features of network traffic captured
from DARPA 1998 IDS evaluation program simulating a
typical U.S. Airforce LAN for 7 weeks. The feature set
includes protocol type, number of source bytes, number of
shell obtained, % of connections to the same service and
so on. The data set contains a total number of 38 types
of attacks. These include syn flood, guessing password,
buffer overflows, port scanning and others. We divide the
whole data set into training, validation and testing sets after
removing the duplicates. The training set is comprised of
benign samples only. The validation set is used for com-
puting the values of the parameters (k,t) of the traditional
and adversarial models. Both the validation and testing
sets have almost equal number of benign and malicious
samples for preventing data skewness to create bias during
the experiments. Naturally, a few samples are discarded for
that purpose. Also, the number of samples in the validation
data set is kept small to comply with our assumption that
the defender has a limited number of malicious samples.
Table I provides the summary statistics of the data sets.
After normalization, the number of features in the data sets
expands to 123.

B. Experimental Setup

At first, we set the number of principal components to
30, preserving 99.5% of the variance in the normalized data
set. We build k-Means (KM) and bisecting k-Means (BKM)
models as representative to the traditional centroid-based
clustering models. Before constructing the corresponding
adversarial models (AD-KM and AD-BKM respectively),
we consider that the attacker has the capability of modifying
the numeric features by some reference percentages notably
5%, 15% and 25%. Since the features are normalized and
have the domain of [0, 1], the feature modification thresholds
(6;) for the above cases are set to 0.05, 0.15 and 0.25
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respectively. However, we consider the features derived from
the categorical ones as unchangeable (i.e., ; = 0). This
assumption is substantiated by the fact that while numeric
features such as number of source bytes can be changed
easily, changing categorical features such as protocol type
(UDP/TCP) may result in the nullification of malicious
properties. For comparing the models using accuracy metric,
we set equal weights to false positives and false negatives
(i.e., w1 = 0.5). Based on this setting, we find the optimal
(k,t) values that minimize expression 3 and expression 5
for traditional and adversarial models respectively through
grid-search using the validation data set. For doing the grid-
search, a set of possible k values is selected by using the
elbow method [31], intuitively choosing several k values
near the elbows. Figure 1 shows the elbows by plotting
the sum of squared distances (SSD) of the training points
from their respective nearest cluster centers for different
values of k. Similarly, a set of possible ¢ values is selected
by looking at the distribution of the distances between the

benign training points and their respective nearest cluster
centers as depicted in Figure 2. Based on these figures, the
grid-search for optimum (k,t) values is performed on the
set {1,2,...,10} x {0.5,0.6, ..., 3.0} for all the models.

C. Computational Overhead

The clustering models need little amount of time to be
constructed. The main time consumption happens in the
grid-search for finding the optimal (k,t) values of the
adversarial models due to the reason we describe now.
Finding if a solution exists for Expression 4 takes about
70 milliseconds on average. There can be at most 10,000
true positive samples in the validation data set for which
the solutions are sought. So for different values of the
parameters (k, t), it can take up to 116 minutes to know how
many samples can be modified successfully to bypass the
detection model and thus to find the value of Expression 5.
We can reduce this time requirement drastically by resorting
to the following technique. For each cluster, a binary search
is performed to find the possibly farthest true positive sample
to have a successful mimicry attack targeting that cluster
and the distance to that sample is remembered. Then during
finding the solution of Expression 4 for a sample, all those
clusters are discarded from consideration whose distance to
that sample exceeds the corresponding remembered distance.
Using this technique, we are able to finish the grid-search
within 48 hours.

D. Results

We investigate the robustness of our adversarial anomaly
detection models as we increase the severity of the
mimicry attacks. We assume that the attacker knows of
a few samples that are considered benign by the model.
When performing mimicry attack for the malicious sam-
ple X = (1,22, - ,x,), the attacker targets a point
X* = (x},x3,--- ,xk) from the pool of known benign
points that has the lowest distance from X. Then the attacker
nudges the modifiable feature values of X towards the
corresponding feature values of X* by some factor f,itack,
which represents the aggressiveness of the attack. Based on
this, the j-th feature of the new malicious point gets the
value of-

x; if 6, =0
€Tr. =
’ Tj + fattack(T] — ;) otherwise

Notice that, this setting results in a free-range attack [22]
in which the attacker’s feature modification capability is
curbed indirectly because of moving the attack point towards
the nearest benign target point instead of the cluster centers.

Table II and III shows the accuracies of the models for
different attack intensities when the attacker has 100 and
50 benign points respectively as targets for the mimicry
attacks. We observe that, under no attack (futack = 0.0),

(6)



Table II: Accuracies of the models for different attack intensities considering the attacker has 100 target points

fattack = 0.0 fattack‘ =0.2 fattack =04 fattack =0.6 fattack‘ =0.8 fattack =1.0

KM 0.98 0.98 0.96 0.82 0.81 0.80

0; =0.05 0.98 0.98 0.98 0.95 0.88 0.81

0; =0.15 0.98 0.98 0.98 0.96 0.96 0.83

AD-KM | §; =0.25 0.98 0.98 0.98 0.96 0.96 0.83
BKM 0.98 0.98 0.96 0.90 0.89 0.82
0; =0.05 0.98 0.98 0.96 0.90 0.89 0.82

0; =0.15 0.98 0.98 0.97 0.96 0.89 0.82

AD-BKM | §; = 0.25 0.98 0.97 0.97 0.96 0.89 0.82

Table III: Accuracies of the models for different attack intensities considering the attacker has 50 target points

fattack =0.0 fa,ttack =0.2 fattack =04 fattaclc =0.6 fa,ttack =0.8 fatta,ck, =10

KM 0.98 0.98 0.96 0.83 0.52 0.52

0; =0.05 0.98 0.98 0.98 0.97 0.88 0.88

0; =0.15 0.98 0.98 0.98 0.96 0.96 0.82

AD-KM | §; =0.25 0.98 0.98 0.98 0.96 0.96 0.82
BKM 0.98 0.98 0.95 0.89 0.82 0.52
0; =0.05 0.98 0.98 0.95 0.89 0.82 0.52

0; =0.15 0.98 0.98 0.96 0.96 0.89 0.89

AD-BKM | §; = 0.25 0.98 0.97 0.97 0.96 0.89 0.82

the adversarial models (AD-KM and AD-BKM) developed
for different values of §; achieve the same accuracies as
of their traditional counterparts (KM and BKM). As the
intensity of attack ( f,tqck) increases, the adversarial models
tend to achieve higher accuracies than those achieved by the
traditional ones as evident from the highlighted entries in the
two tables. We see that, for aggressive attacks the adversarial
models achieve up to 46% better accuracies than the tradi-
tional models. Moreover, we observe that, the adversarial
models developed using higher values of J; (specifically
0.15 and 0.25), provide better resistance against the attacks.
This happens because of using the free-range attack of
Equation 6 which does not limit the feature modification
capability rigorously. However, in real scenarios the defender
should set the value of J; reasonably based on domain
knowledge before constructing the adversarial models, to
achieve the best protection possible against the attack.

VI. CONCLUSION

Machine learning models show phenomenal success in de-
tecting and preventing cyber attacks. Yet, their benefits may
come to a grinding halt in the presence of shrewd adversaries
carefully exploiting the inherent weaknesses in the models.
In this work, we proposed strategies to make centroid-
based clustering models robust against mimicry attacks. We
showed that choosing parameters by modeling adversarial
capabilities allow the centroid-based clustering models to be
more resilient especially under powerful mimicry attacks.

As a future work, we intend to apply the adversarial
modeling-based parameter selection techniques to other type
of anomaly detection methods. In addition, we plan to ex-
pand our game theoretical modeling to multi-interaction and
multi-step attacks that could be launched by sophisticated
adversaries.

ACKNOWLEDGEMENTS

The research reported herein was supported in part by NIH
award 1ROIHG006844, NSF awards CNS-1111529, CICI-
1547324, and 1IS-1633331 and ARO award W911NF-17-1-
0356.

REFERENCES

[1] The New York Times, “Hackers Find ‘Ideal Testing Ground’
for Attacks: Developing Countries,” https://goo.gl/tZzA89,
(Accessed on 04/11/2018).

[2] Forbes Magazine, “What The Bangladesh SWIFT Hack
Teaches About The Future Of Cybersecurity and Cyberwar,”
https://goo.gl/N7uWeR, (Accessed on 04/11/2018).

[3] CyberScoop, “Leaked NSA tools, now infecting over 200,000
machines, will be weaponized for years,” https://goo.gl/
BFFbqg4, (Accessed on 04/11/2018).

[4] Symantec, “Internet Security Threat Report 2017,”
https://www.symantec.com/content/dam/symantec/docs/
reports/istr-22-2017-en.pdf, (Accessed on 04/11/2018).



(5]

[6]

[7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

J. G. Dutrisac and D. B. Skillicorn, “Hiding Clusters in
Adversarial Settings,” in Proceedings of IEEE International
Conference on Intelligence and Security Informatics, 1SI,
Taipei, Taiwan, 2008.

B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona,
G. Giacinto, and F. Roli, “Poisoning Behavioral Malware
Clustering,” in Proceedings of the Workshop on Artificial
Intelligent and Security, AlSec, Scottsdale, USA, 2014.

L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion Detection with
Unlabeled Data Using Clustering,” in Proceedings of ACM
CSS Workshop on Data Mining Applied to Security (DMSA),
2001.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detec-
tion: A Survey,” ACM Computing Surveys, 2009.

W. Xu, Y. Qi, and D. Evans, “Automatically Evading Classi-
fiers: A Case Study on PDF Malware Classifiers,” in Proceed-
ings of 23rd Annual Network and Distributed System Security
Symposium (NDSS), San Diego, USA, 2016.

J. D. Tygar, “Adversarial Machine Learning,” IEEE Internet
Computing, 2011.

I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks
against intrusion detection systems: Taxonomy, solutions and
open issues,” Information Sciences, 2013.

J. Newsome, B. Karp, and D. X. Song, “Paragraph: Thwarting
Signature Learning by Training Maliciously,” in Proceedings
of Recent Advances in Intrusion Detection RAID, Hamburg,
Germany, 2006.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning Attacks
against Support Vector Machines,” in Proceedings of the
29th International Conference on Machine Learning (ICML),
Edinburgh, Scotland, 2012.

B. Biggio, G. Fumera, and F. Roli, “Security Evaluation of
Pattern Classifiers under Attack,” CoRR, vol. abs/1709.00609,
2017.

C. Smutz and A. Stavrou, “Malicious PDF Detection using
Metadata and Structural Features,” in Proceedings of 28th
Annual Computer Security Applications Conference (ACSAC),
Orlando, USA, 2012.

S. Patton, W. Yurcik, and D. Doss, “An Achilles’ Heel in
Signature-Based IDS: Squealing False Positives in SNORT,”
in Proceedings of Recent Advances in Intrusion Detection
RAID, 2001.

W. Yurcik, “Controlling Intrusion Detection Systems by Gen-
erating False Positives: Squealing proof-of-concept,” in Pro-
ceedings of 27th Annual IEEE Conference on Local Computer
Networks (LCN), Tampa, USA, 2002.

S. A. Crosby and D. S. Wallach, “Denial of Service via
Algorithmic Complexity Attacks.” in USENIX Security Sym-
posium, 2003.

E. Tsyrklevich, “Attacking Host Intrusion Prevention Sys-
tems,” Black Hat USA, 2004.

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

B. Hernacki, J. Bennett, and J. A. Hoagland, “An overview
of network evasion methods,” Information Security Technical
Report, 2005.

D. Mutz, C. Kruegel, W. Robertson, G. Vigna, and R. A.
Kemmerer, “Reverse Engineering of Network Signatures,”
in Proceedings of the AusCERT Asia Pacific Information
Technology Security Conference, Gold Coast, Australia, 2005.

Y. Zhou, M. Kantarcioglu, B. M. Thuraisingham, and B. Xi,
“Adversarial Support Vector Machine Learning,” in Proceed-
ings of The 18th ACM International Conference on Knowl-
edge Discovery and Data Mining (KDD), Beijing, China,
2012.

Y. Zhou and M. Kantarcioglu, “Modeling Adversarial Learn-
ing as Nested Stackelberg Games,” in Proceedings of Pacific-
Asia Conference on Advances in Knowledge Discovery and
Data Mining (PAKDD), Auckland, New Zealand, 2016.

G. Wang, T. Wang, H. Zheng, and B. Y. Zhao, “Man
vs. machine: Practical adversarial detection of malicious
crowdsourcing workers,” in Proceedings of the 23rd USENIX
Security Symposium, San Diego, USA, 2014.

M. Kloft and P. Laskov, “Online Anomaly Detection under
Adversarial Impact,” in Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (AISTATS),
Sardinia, Italy, 2010.

A. Zimek, E. Schubert, and H. Kriegel, “A survey on unsuper-
vised outlier detection in high-dimensional numerical data,”
Statistical Analysis and Data Mining, 2012.

S. Wold, K. Esbensen, and P. Geladi, “Principal Component
Analysis,” Chemometrics and intelligent laboratory systems,
1987.

IBM Analytics, “Cplex Optimizer,” https://www.ibm.com/
analytics/data-science/prescriptive-analytics/cplex-optimizer,
(Accessed on 04/11/2018).

The UCI KDD Archive, “KDD Cup 1999 Data,” http://kdd.
ics.uci.edu/databases/kddcup99/kddcup99.html, (Accessed on
04/11/2018).

W. Lee and S. J. Stolfo, “A Framework for Constructing
Features and Models for Intrusion Detection Systems,” ACM
Transactions on Information and System Security, 2000.

D. J. K. Jr and C. L. Shook, “The Application of Cluster
Analysis in Strategic Management Research: an Analysis and
Critique,” Strategic management journal, pp. 441-458, 1996.



