
Data Mining with Algorithmic
Transparency

Yan Zhou(B), Yasmeen Alufaisan, and Murat Kantarcioglu

Erik Jonnson School of Engineering and Computer Science,
University of Texas at Dallas, Richardson, TX 75080, USA

{yan.zhou2,yxa130630,muratk}@utdallas.edu

Abstract. In this paper, we investigate whether decision trees can be
used to interpret a black-box classifier without knowing the learning algo-
rithm and the training data. Decision trees are known for their trans-
parency and high expressivity. However, they are also notorious for their
instability and tendency to grow excessively large. We present a classi-
fier reverse engineering model that outputs a decision tree to interpret
the black-box classifier. There are two major challenges. One is to build
such a decision tree with controlled stability and size, and the other is
that probing the black-box classifier is limited for security and economic
reasons. Our model addresses the two issues by simultaneously minimiz-
ing sampling cost and classifier complexity. We present our empirical
results on four real datasets, and demonstrate that our reverse engineer-
ing learning model can effectively approximate and simplify the black
box classifier.

1 Introduction

The past decade has witnessed a rapid growth in the use of data mining tech-
niques for better decision making. Statistical implications derived from data can
help us understand and critically assess risks and uncertainties. However, the
ubiquity of data and data mining techniques has also sparked new concerns on
transparency, as has been emphasized in the recent report by PCAST (Presi-
dent’s Council of Advisors on Science and Technology) [16]. Many proprietary
intelligent software applications provide users with interfaces to the “smart algo-
rithms” in their data analytics systems. The inner workings of these smart algo-
rithms are often incomprehensible and opaque to ordinary users. Therefore, the
information released to the end user is usually overly simplified, abstract, and
untestable, which in return raises the problem of transparency and trustability.
There are practical benefits of withholding the inner structure of knowledge the
algorithms have learned, for example, protecting companies’ information assets.
However, data mining models can be discriminatory, making biased decisions on
the basis of race, class, gender, etc. Recent work [22] has shown that some online
ads are selected by intelligent advertising systems based on the racial background
of the names used in search queries. This type of bias may be deeply and uncon-
sciously hidden within data mining models. Increasing the transparency of these
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models can help users spot these caveats that would otherwise be hidden, and
is important for ensuring trust and reducing potential abuses and biases.

Clearly, many issues need to be addressed to acquire truly transparent data
mining models, for example, understanding the impact of the structure of data on
a black-box classifier [11], and identifying subspaces where a black-box classifier
does (not) work [6]. In this paper, we focus on learning a simple decision-tree
equivalent of a given black box classifier with a small number of query samples.
An immediate challenge is that decision trees are well known for their poor
stabilities especially when the number of training samples is small [7]. We can
build a decision tree or extract a set of decision rules from the kernel-based
classifier with existing rule extraction algorithms [20]. However, rule extraction
algorithms add additional complexity to existing kernel-based methods [5,9], and
the output of rule extraction algorithms may still be incomprehensible [5].

In this paper, we present a black-box classifier reverse engineering approach
as illustrated in Fig. 1. Our technique builds a kernel-based classifier and a deci-
sion tree classifier simultaneously. The kernel-based classifier is responsible for

Black Box ClassifierBlack Box Classifier

Kernel-based ClassifierKernel-based Classifier Decision TreeDecision Tree

Fig. 1. Our reverse engineering
method.

sampling under the maximum uncertainty con-
straint, and the decision tree classifier assists to
curtail unnecessary growth in its own complex-
ity. Our method provides: (a) a reverse engineer-
ing procedure with good stability and close simi-
larity; (b) a cost and complexity-aware sampling
technique; and (c) a human-comprehensible out-

put. We choose to use a kernel-based classifier for good stability and develop a
new sampling technique to efficiently build a human-comprehensible decision tree
counterpart of the black box classifier. Unlike existing kernel-based rule extrac-
tion algorithms, we do not operate on the kernel methods per se but instead
focus on searching for data samples that naturally result in a simple decision
tree equivalent of the black box classifier.

2 Related Work

Klivans et al. [13] study the learnability of convex bodies under the Gaussian
distribution. They present a sub-exponential time algorithm for learning general
convex bodies in the noise-free PAC-learning setting. Similarly, Rademacher and
Goyal [17] consider learning a convex body in R

d given uniformly random sam-
ples from the convex body. The objective is to approximately learn the body with
the fewest number of samples. They also show that it requires an exponential
number of queries to learn the convex body. Also, Dyer et al. [8] present a ran-
dom polynomial time algorithm for approximating the volume of a convex body
in Euclidean space. Their algorithm requires a membership oracle and samples
are selected nearly uniformly from within the convex body using a random walk.

Craven and Shavlik present an algorithm TREPAN to extract decision trees
from artificial neural networks [3]. They modify the way a decision tree is built
to limit the number of internal nodes. Henelius et al. [11] present a randomiza-
tion approach to measuring the impact of groups of variables on a classification
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model. Duivesteijn and Thaele [6] present the SCaPE model class that highlights
subspaces where the classifier performs particularly well or poorly. Both [6,11]
require a sufficient number of queries to the black-box classifier for their mod-
els to work properly. Most recently, Ribeiro et al. [18] present a sparse lin-
ear model (LIME) for local exploration—providing interpretable representation
locally faithful to the classifier. However, the global effectiveness of their model
is questionable when the black-box classifier is highly non-linear. Datta et al. [4]
present Quantitative Input Influence (QII) to measure the most influential inputs
on the output of a classification model. QII also provides local transparency for a
single instance or groups of instances. Unlike existing research discussed above,
our technique reveals the global knowledge of the entire data domain by lever-
aging the inherent transparency and interpretability of decision trees. Three
important aspects set our technique apart from the existing ones: (1) we assume
querying the black-box classifier is limited; (2) our model can use any fast imple-
mentation of existing and future kernel methods and decision trees; and (3) our
decision tree interpreter is global.

3 Problem Definition

We define the classifier reverse engineering learning problem as follows: given a
black box classifier C and one random sample xc ∈ R

d from each class c = {c1, c2,

. . . cK}, we would like to reverse engineer C with a finite set of samples S from a
distribution D and transform C to a user understandable classification model C ′:

arg min
C′,S

�(C ′, S)

s.t. | S |< δS

Pr
x∼D

[C(x) �= C ′(x, S)] < δ (1)

where � is a function that measures classifier complexity, and δ and δS are prede-
fined constants. The problem has to be solved heuristically because of its expo-
nential complexity [8,13,17]. At first glance, we can solve the problem using tra-
ditional active learning techniques [2,14,19,23]. However, existing active learning
techniques cannot accomplish the task when it has to overcome both cost and
complexity in the desired solution. This merits further research investigations on
transparency inspired issues in terms of cost and complexity. We refer to cost as
the total number of queries sent to the black box classifier and complexity as the
size, that is, the number of leaf nodes in the decision tree.

4 The Reverse Engineering Approximate Learning
(REAL) Model

For increasing human-understandability, we choose to use a decision tree to
represent the approximation of the black box classifier. As mentioned earlier,
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decision trees are well known for their poor stabilities. Since the reverse engi-
neering learning process begins with a small training set, the poor stability of the
decision tree classifier may significantly impact the end result. Existing results
show that when the underlying classifier is a decision tree, query-by-bagging [1]
is more stable and more accurate compared to its competitors [7]. In our study,
we implement a benchmark strategy referred to as direct hypothesis formation

in which we adopt the query-by-bagging method in the query-by-committee
strategy for data sampling.

To circumvent the instability problem of decision trees, we introduce an inter-
mediate kernel-based learner that is more stable than a decision tree learner. The
kernel-based learner is used in data sampling where query points are selected.
After selecting data samples, we build a decision tree approximation of the black
box classifier. We refer to this strategy as indirect hypothesis formation.

4.1 Minimum Cost and Complexity Sampling

Table 1. List of notations

H classifier built on existing training data

φα(x) probability x is assigned to a leaf node α

φ∗
α(x) maximum φα(x) over all leaf nodes

μα prototype of labeled samples in leaf node α

μ set of prototypes of samples in all leaf nodes α

β Lagrange multiplier in Gibbs distribution

ψu function that measures uncertainty

ci the ith class label where i = 1, . . . , K

To reverse engineer
a black box classifier
and transform it into
a tree-structured clas-
sifier, we seek a set
of training samples
that is sufficient to
construct a decision-
tree counterpart of
the black box clas-
sifier under the cost
and complexity con-
straints. To minimize the sampling cost, we follow the principle of maximum
uncertainty and select samples that maximally prune the version space. In the
mean time, to limit the growth of the complexity of the decision tree classifier,
we select samples that have a higher probability to be assigned to a leaf node
with a large population of samples given the topology of the current decision
tree. We provide a list of notations used throughout this section in Table 1.

Our sampling objective function is:

arg max
x∼D

φ∗
α(x)

s.t. max
x,i∈[1,K]

Pr[H(x) = ci] < Pr(ci) + δ (2)

where H is the intermediate classifier built on existing labeled examples L, φ∗
α

is the maximum probability that x falls in a leaf node of the decision tree built
on L, and δ > 0 is a small constant. The objective function selects a sample x

for which its classification by H into any class ci∈[1,K] is no better than random
guessing according to the prior when δ is very small, while in the mean time, the
probability φ∗

α(x) that x is assigned to a leaf node in the decision-tree counterpart
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of H is the greatest compared to other unlabeled samples. The selected sample
achieves maximum homogeneity at leaf nodes, and therefore is unlikely to cause
an internal node to split into new leaves. Our handling of classifier complexity
during the sampling process draws a distinct line between our problem and the
traditional active learning problem.

To estimate the probability that a sample x is assigned to a leaf node given
the topology of a decision tree, we resort to the principle of maximum entropy.
Let X = {xi ∈ R

d | i = 1, . . . , N} be a set of N unlabeled examples, and
μ = {μα ∈ R

d | α = 1, . . . , J} be a set of J � N prototypes of labeled examples
assigned to J leaf nodes in the current decision tree. Given no prior knowledge,
the best way to relate an unlabeled data point in X and the representatives μα

of the labeled data points is the maximum entropy distribution. Let φα(x) =
Pr(x → α) be the probability that data point x is assigned to leaf α, and we
seek to optimize:

max

J∑

α=1

−Pr[x → α] log Pr[x → α]

s.t. E(dx) =

J∑

α=1

Pr(x → α)d(x, μα)

where E(dx) is the expected distance between x and the prototypes of all the
leaf nodes, and d(·, ·) is a distance measure, for example, Euclidean distance.
The solution is the Gibbs distribution:

Pr(x → α) =
exp(−βd(x, μα))∑
j exp(−βd(x, μj))

(3)

where β is the Lagrange multiplier that controls the degree of fuzziness of the
probability distribution [10]. When β = 0, x is equally probable to be assigned
to any leaf node. When β is large, the assignment of x conforms to the nearest
neighbor philosophy. In a sequential sampling process, β can be incremented
gradually in each iteration as more samples are used to estimate the leaf proto-
types. φ∗

α(x), the maximum probability of x over α = {1, . . . , J}, is:

φ∗
α(x) = max

α

exp(−βd(x, μα))∑
j exp(−βd(x, μj))

(4)

The optimization objectives with respect to decision tree complexity, specified
in Eqs. (1) and (2), can be rewritten as: arg maxx∈X φ∗

α(x), given the set of
unlabeled examples X.

Putting everything together, we have a sampling technique uniquely designed
for reverse engineering a black box classifier with minimum query cost and clas-
sification complexity. Without loss of generality, let St be the training set after
the tth sample st has been added to the training set, where t ≥ 0. When t = 0,
St represents the initial training data we have at our disposal. Let the next
query point be st+1. We estimate μt = {μt

α ∈ R
d | α = 1, . . . , J}, the set of J

prototypes of St
α ⊂ St assigned to the J leaf nodes in the decision tree built on

St. We choose a query point st+1 as follows:
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st+1 = arg max
s∈St

u

φ∗
α(s)

s.t. ψu(s) > ψu(s′ ∈ St
u|s′ �= s)

where ψu is a function that measures uncertainty, φ∗
α is defined in Eq. (4), and

St
u is the set of unlabeled points.

4.2 Direct Hypothesis Formation

As mentioned earlier, we can build a decision tree directly from the training set
with the query points. Query-by-bagging [1] is more stable and more accurate in
decision tree active learning. In query-by-bagging, a committee of decision tree
classifiers is built on subsets of training data, and query points are selected if the
committee has the largest variance on the predictions. We modify the sampling
technique by incorporating the minimum classifier complexity objective. Let M

be the number of component classifiers in the committee, and hi|i=1···M be the ith

component classifier. Let c be the total number of classes, at the tth step the total
number of component classifiers that predict s ∈ St

u as ck|k∈{1,··· ,K}, denoted as
Tk, is: Tk(s) = |{m ≤ M |hm(s) = ck)}| and T (s) = [T1(s), · · · , TK(s)] records
the total number of component classifiers that classify s as ck,∀k=1,··· ,K . We
select st+1 ∈ St

u by solving the following optimization problem:

st+1 = arg max
s∈St

u

φ∗
α(s)

s.t.|max(T (s)) − min(T (s))| < |max(T (s′)) − min(T (s′))| ∀s′ ∈ St
u|s′ �= s.

where the largest variance constraint is equivalent to the maximum uncertainty
constraint specified in Eq. (2).

4.3 Indirect Hypothesis Formation

In indirect hypothesis formation, we introduce an intermediate kernel-based clas-
sifier for selectively sampling query points. Let St be the training set after the
tth round of sampling, we update the intermediate classifier and the decision tree
classifier on St. Let St

u be the set of unlabeled data from which query points are
selected. In this study, we choose SVM as the intermediate learning algorithm.
We estimate the uncertainty of a sample point using margin distance.

We now include the minimum complexity constraint in the sampling process.
We relax the minimax margin constraint by including a small group of candidate
points that are δ-close to the one that satisfies the minimax margin constraint:

max φD(s) < min
∀s′∈St

u

max φD(s′) + δ (5)

where φD measures the margin distances of s to the positive and negative borders,
and δ > 0 is a small constant. We select a query point st+1 from St

u such that

st+1 = arg max
s∈St

u

φ∗
α(s)

s.t. max φD(s) < min
∀s′∈St

u

max φD(s′) + δ.
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where φ∗
α(s) is the maximum probability s is consistent with a leaf node and the

minimax margin constraint is equivalent to the maximum uncertainty constraint
in Eq. (2). In general, given a dataset of m features and n instances, the time
complexity of our algorithm is O(mn2) with a nonlinear kernel and the standard
implementation of decision trees. It can be reduced to O(mn) with a linear
kernel [12] and a fast decision tree learning algorithm [21].

5 Experimental Results

We design a set of experiments to verify the applicability of our reverse engineer-
ing techniques for increasing transparency, with DT REAL referring to the direct
hypothesis formation and SVM-DT REAL referring to the indirect hypothesis for-
mation. The success is measured by examining the tree size and the fidelity—
percentage of matching predictions by the reverse engineered classifier and the
black-box classifier on independent unseen data sets. We run our experiments
on four real data sets from the UCI repository [15]. δ in Eq. (5) is set to twice of
the difference between the smallest and the second smallest margin. We clarify
a few issues regarding our experimental setup in Table 2.

Table 2. Empirical study related issues

Issue Clarification

(1) Should we use random
sampling or active learning
as the baseline?

In all our experiments, we choose to compare
against the active learning baselines since they are
significantly better than random sampling

(2) What learning algorithms
should be used to train the
black-box classifier?

Our reverse engineering learning model is classifier
agnostic. It is not designed to gear towards any
particular learning models

(3) Which design of decision
tree should we use to train
our classifier in the reverse
engineering process?

We do not favor one type of decision tree over
another in either our algorithmic design or our
empirical study, because our algorithm is applicable
to any decision tree design

(4) When should we
terminate the reverse
engineering process?

In many real applications, querying black-box for
labels is not free (for example, getting credit score
report). In addition, frequently querying actions
may be considered as a suspicious abnormal
behavior and would not be granted by companies’
security standard. In practice, one can stop when
either the budget or a desired fidelity measure has
been reached. In our experiment, we allow the
number of query points to be at most 10% of the
size of the training data used to train the black-box
classifier
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5.1 Experiments on UCI Datasets

We test our techniques on four UCI Datasets: Banknote Authentication, Car-

diotocography, Phishing Websites and Human Activity Recognition with Smart-

phones (referred to as Smartphone hereafter). The black-box classifiers are
trained with support vector machine (SVM), logistic regression (LOGIT), decision
tree (DT), näıve Bayes (NB), and neural network (NN). For SVM, we use Gaussian
kernels with C = 10000; for NN, we set the number of nodes on the hidden layer
to be 10. All the algorithms in our experiments are implemented in Matlab. All
experiments are repeated 10 times and the average results are reported. The

accuracy of the black box classifier is shown as a dashed line in all figures as

auxiliary information. Detailed results are shown in Appendix A.

Banknote Authentication. The dataset has 1372 instances and two classes
genuine or forged. We divide the data set equally into two parts: one for training
the black box classifiers and the other is for active learning. The latter is further
dived into two parts: one fifth is used for selecting query points to reverse engineer
the black box classifier, and the rest is used for independent testing. The number
of examples used at the beginning of reverse engineering is 1% of the size of the
training data used to train the black box classifiers.
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Fig. 2. Reverse engineering SVM and DT on the Banknote Authentication data set, using
DT Active, DT REAL, and SVM-DT REAL decision tree learners.

Figure 2 shows the results of the two reverse engineering (RE) learners—
DT REAL and SVM-DT REAL, and the baseline decision tree active learner—DT

Active [1] with support vector machine (SVM) and decision tree (DT) as the
black-box classifiers. Figures 2(a) and (b) show the growth of the complexity
of the decision trees in terms of the number of leaf nodes as the number of
queried samples increases. The solid line (—) is the baseline decision tree active
learner (DT Active), the dashed line (- - -) is the decision tree active learner
using our minimum cost and complexity sampling technique (DT REAL). The
solid line with circular markers (–◦–) is the SVM-DT RE classifier (SVM-DT
REAL) also using the minimum cost and complexity sampling technique. It is
clear that the complexity of the SVM-DT RE learner is consistently lower than
that of the DT active learner. Although applying the same minimum cost and
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complexity sampling technique, the DT RE learner cannot effectively produce
decision trees with lower complexity. Figures 2(c) and (d) show the fidelity of
the three classifiers. Note that fidelity is the percentage of agreement between
the predictions made by each classifier and the black box classifier. All three
classifiers have comparable performance in terms of fidelity. The flat dashed
lines show the accuracy of the black box classifiers. All three classifiers manage
to predict similarly as the black box classifier more than 90% of the time, with a
sample size less than 10% of the size of the training data used to train the black
box classifiers. The results for the rest of the black-box classifiers are similar.
Due to page limitations, we do not show the plots.

Cardiotocogram. The dataset consists of 2126 instances of fetal car-
diotocograms. We select 21 features and classify a cardiotocogram to one of
the three fetal states: {N, S, P} where N is normal, S is suspect, and P is
pathologic. We again divide the data set equally into two subsets, one for
training the black-box classifiers, and the other for query point sampling and
testing (among which 20% is used as query data, and the rest is used as the
independent test set).
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Fig. 3. Reverse engineering the näıve Bayes classifier on the Cardiotocogram data set,
using DT Active, DT REAL, and SVM-DT REAL decision tree learners.

Figure 3 shows the results of DT REAL, SVM-DT REAL, and the baseline DT

Active with näıve Bayes as the black-box classifier. Figure 3(a) shows the growth
of the complexity of the decision trees in terms of the number of leaf nodes.
Again, the complexity of the SVM-DT RE learner is consistently lower than
that of the DT active learner and the DT RE learner. Figures 3(b) shows the
fidelity of the three classifiers. The results for the rest of the black-box classifiers
are similar. Due to page limitations, we do not show the plots.

Phishing Websites Dataset. The dataset has 30 attributes that characterize
phishing websites. The learning task is a binary classification problem. There
are 2456 instances in the data set. We again use 50% of the data for training the
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Fig. 4. Reverse engineering the neural network classifier on the Phishing Website data
set, using DT Active, DT REAL, and SVM-DT REAL decision tree learners.

black box classifiers, and the other 50% for query point sampling and testing (1
5

as query data and the rest 4
5 is used as independent test data).

Figure 4 shows the results of the three algorithms reverse engineering the
artificial neural network black box classifier. Figure 4(a) shows the growth of
the complexity of the decision trees in terms of the number of leaf nodes as the
number of queried data points increases. Again, the complexity of the SVM-
DT RE learner is consistently lower than that of the other two DT learners.
Figure 4(b) shows the fidelity of the three classifiers. Except for the case where
the black box classifier is trained with SVM, all three learners manage to exceed
90% fidelity with a sample size less than 10% of the training data used to train
the black box classifiers. In the case of SVM as the black box classifier, the
fidelity of the three learners is slightly less than 90% (above 88%). The results
for the rest of the black-box classifiers are similar. Due to page limitations, we
do not show the plots of the rest of the black box classifiers.

Smartphone. The dataset contains 10299 instances. Each instance has 562
attributes, and there are six class labels. This is the most complicated data set
we used in our experiment. We randomly select 25% of the data for training
the black box classifiers, 5% of the data for reverse engineering the black box
classifiers, and then 25% random samples for independent testing.

Figure 5 shows the results of the three reverse engineering classifiers for the
black box classifier: logistic regression. Figure 5(a) shows the growth of the com-
plexity of the decision trees in terms of the number of leaf nodes. In this case,
the complexity of the DT RE learner is in general lower than that of the other
two learners. The SVM-DT RE learner is mostly comparable to the DT active
learner in terms of complexity. Figure 5(b) shows the fidelity of the three clas-
sifiers. All three learners manage to achieve approximately 80% fidelity with a
sample size less than 10% of the size of the training data for the black box clas-
sifier. The results for the rest of the black-box classifiers are similar. Due to page
limitations, we do not show the plots of the other four black box classifiers.



140 Y. Zhou et al.

0 50 100 150 200 250
2

3

4

5

6

7

8

9

10

Number of queried points

N
u

m
b

e
r 

o
f 

le
a
f 

n
o

d
e
s

Reverse Engineering LOGIT: Tree Size

DT Active

DT REAL

SVM−DT REAL

(a)

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of queried points

F
id

e
li
ty

Reverse Engineering LOGIT: Fidelity

Black Box

DT Active

DT REAL

SVM−DT REAL

(b)

Fig. 5. Reverse engineering the logistic regression classifier on the Smartphone data
set, using DT Active, DT REAL, and SVM-DT REAL decision tree learners.

6 Conclusions and Future Work

We investigate the feasibility of improving model transparency of data mining
algorithms by reverse engineering a black-box classifier and transforming it to a
decision tree. Our objective is to increase the transparency of the original black-
box classifier with a small number of query points. We develop a reverse engineer-
ing learning technique that samples unlabeled data according to the principle
of maximum uncertainty and minimum classifier complexity. Our experimental
results demonstrate that our idea of reverse engineering classifiers is both feasi-
ble and practical. We also show that our reverse engineering model with indirect
hypothesis formation is superior to traditional active learning with decision trees
and SVMs. In the future, we would like to consider the problem in a game theo-
retic setting in which the black-box classifier employs a defense strategy against
this type of reverse engineering, and the user counters the defense strategy with
more sophisticated reverse engineering techniques.

Acknowledgement. The research reported herein was supported in part by NIH
award 1R01HG006844, NSF awards CNS-1111529, CICI-1547324, and IIS-1633331 and
ARO award W911NF-17-1-0356.

Appendix A Tree Size and Fidelity

Table 3 lists the results of all the test cases. Each row shows the tree size and
the fidelity results of the last round right before the reverse engineering or active
learning process terminates. As can be observed from the table, the SVM-DT REAL

learner almost always produces smaller trees than the DT Active learner while
producing comparable fidelity values. The accuracy results are very similar to the
fidelity and therefore are eliminated from the paper because of page limitations.
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Table 3. Reverse engineering results on all the datasets.

Banknote Authentication

BC DT-A DT-R SVM-DT-R

Tree Size Fidelity Tree Size Fidelity Tree Size Fidelity

SVM 5.0000 ± 0.8433 0.9009 ± 0.0162 5.5000 ± 1.0328 0.9024 ± 0.0304 4.7000 ± 1.1547 0.9005 ± 0.0308

Logit 5.3000 ± 0.9487 0.9035 ± 0.0348 5.4000 ± 0.8433 0.9089 ± 0.0274 4.0000 ± 1.2472 0.8949 ± 0.0256

DT 5.2000 ± 1.1972 0.9171 ± 0.0333 5.2000 ± 0.9944 0.9072 ± 0.0383 4.2000 ± 1.0801 0.9023 ± 0.0417

NB 4.2000 ± 1.3166 0.9322 ± 0.0143 3.9000 ± 0.8165 0.9335 ± 0.0189 3.7000 ± 0.8233 0.9379 ± 0.0139

ANN 5.8000 ± 1.1005 0.9172 ± 0.0298 5.6000 ± 0.9087 0.9029 ± 0.0364 4.1000 ± 0.9033 0.9076 ± 0.0141

Cardiotocogram

BC DT-A DT-R SVM-DT-R

Tree Size Fidelity Tree Size Fidelity Tree Size Fidelity

SVM 3.0000 ± 1.4907 0.9779 ± 0.0158 3.2000 ± 1.6193 0.9740 ± 0.0189 3.1000 ± 1.1972 0.9329 ± 0.0411

Logit 6.2000 ± 1.3984 0.9116 ± 0.0232 5.6000 ± 1.7764 0.9102 ± 0.0306 4.7000 ± 1.3375 0.9141 ± 0.0165

DT 5.5000 ± 0.9718 0.9629 ± 0.0222 5.5000 ± 1.0801 0.9574 ± 0.0222 4.6000 ± 1.0750 0.9267 ± 0.0312

NB 7.5000 ± 1.5811 0.8747 ± 0.0256 7.8000 ± 1.3984 0.8829 ± 0.0297 5.6000 ± 0.9661 0.8558 ± 0.0223

ANN 5.4000 ± 2.0656 0.9249 ± 0.0300 4.9000 ± 1.6633 0.9293 ± 0.0322 4.6000 ± 1.4298 0.9108 ± 0.0112

Phishing Websites

BC DT-A DT-R SVM-DT-R

Tree Size Fidelity Tree Size Fidelity Tree Size Fidelity

SVM 9.1000 ± 1.7288 0.8894 ± 0.0167 9.7000 ± 2.2632 0.8965 ± 0.0168 7.6000 ± 1.3499 0.8879 ± 0.0109

Logit 9.4000 ± 1.7764 0.9214 ± 0.0139 8.9000 ± 1.7920 0.9199 ± 0.0113 7.8000 ± 1.6193 0.9181 ± 0.0131

DT 8.9000 ± 1.3703 0.9189 ± 0.0192 9.3000 ± 1.3375 0.9198 ± 0.0260 7.6000 ± 0.5164 0.9187 ± 0.0119

NB 8.8000 ± 2.2010 0.9054 ± 0.0190 8.4000 ± 1.0750 0.9018 ± 0.0193 7.6000 ± 1.3499 0.9066 ± 0.0152

ANN 7.7000 ± 1.5670 0.9225 ± 0.0233 8.1000 ± 1.7288 0.9223 ± 0.0148 7.5000 ± 1.2693 0.9328 ± 0.0098

Smartphone

BC DT-A DT-R SVM-DT-R

Tree Size Fidelity Tree Size Fidelity Tree Size Fidelity

SVM 8.5000 ± 2.0790 0.7348 ± 0.0110 10.5000 ± 1.6364 0.7377 ± 0.0175 9.8000 ± 2.3118 0.7488 ± 0.0152

Logit 9.1000 ± 1.1785 0.7783 ± 0.0175 8.0000 ± 1.7029 0.7767 ± 0.0112 9.5000 ± 1.9120 0.7927 ± 0.0159

DT 10.9000 ± 1.3038 0.7693 ± 0.0087 10.5000 ± 2.1679 0.7689 ± 0.0152 11.0000 ± 1.0954 0.7634 ± 0.0086

NB 8.0000 ± 2.1145 0.8292 ± 0.0445 8.0000 ± 1.3012 0.8252 ± 0.0422 8.5000 ± 1.8166 0.8280 ± 0.0357

ANN 10.2000 ± 1.1145 0.7878 ± 0.0218 8.9000 ± 1.5166 0.7842 ± 0.0309 10.0000 ± 2.5100 0.7655 ± 0.0125
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