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Negative extensibility metamaterials: Phase diagram calculation
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Abstract Negative extensibility metamaterials are able to
contract against the line of increasing external tension. A
bistable unit cell exhibits several nonlinear mechanical be-
haviors including the negative extensibility response. Here,
an exact form of the total mechanical potential is used based
on engineering strain measure. The mechanical response is
a function of the system parameters that specify unit cell
dimensions and member stiffnesses. A phase diagram is cal-
culated, which maps the response to regions in the diagram
using the system parameters as the coordinate axes. Boundary
lines pinpoint the onset of a particular mechanical response.
Contour lines allow various material properties to be fine-
tuned. Analogous to thermodynamic phase diagrams, there
exist singular “triple points” which simultaneously satisfy
conditions for three response types. The discussion ends with
a brief statement about how thermodynamic phase diagrams
differ from the phase diagram in this paper.

Keywords mechanical metamaterials - phase diagram -
bistability - geometric nonlinearity - numerical methods

1 Introduction

Mechanical metamaterials exhibit mechanical properties not
observed in most natural and artificial materials. Properties
are the result of an engineered internal structure rather than
the chemical composition of the bulk material. They feature
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non-natural elastic constants including negativity in the elas-
tic modulus, shear modulus, bulk modulus or Poisson’s ratio
[1-4]. Due to advances in rapid prototyping it is possible to
fabricate 2D and 3D lattice structures composed of simple
microstructural spring and bar elements [5—8]. The field of
mechanical metamaterials is concerned with understanding
how an unconventional macroscopic response is influenced
by the deliberate structuring of elastic elements.

The mechanical property under investigation is negative
extensibility. Negative extensibility occurs when a material
contracts in length so as to oppose the line of increasing
external tension. The concept is illustrated using a one di-
mensional elastic bar in Figure 1 (a). In the initial state the bar
expands smoothly in tension. At a critical destabilizing load
the bar undergoes a marked contraction corresponding to the
forward phase transformation A — B. If the change in force
divided by the change in length were measured during this
contraction then the bar would possess a negative uniaxial
stiffness. More accurately, it would possess a negative “in-
cremental” stiffness since the slope of the stress-strain curve
shifts from positive to negative after an initial strain. Negative
incremental stiffness has been observed experimentally in
pre-strained materials [9] and cellular structures under dis-
placement control [10, 11] and realized theoretically through
a nonlinear force potential between particle constituents [12].
Elasticity theory does allow for negative incremental stiff-
ness, in particular when the object is constrained [13—15].

A reoccurring motif in metamaterials research is that
properties are tunable [16—18]. Certain classes of mechanical
metamaterials display multiple stable states of equilibrium
[19-21]. Tuning capabilities are achieved during the process
of state switching, which often occurs by reconfiguration of
the lattice or unit cell geometry [22,23]. In the previous paper
in the series, Karpov et al. [24] developed a geometrically
nonlinear unit cell structure that exhibits negative extensibil-
ity for the external degree of freedom. The unit cell is shown
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Fig. 1 Left: Definition of negative extensibility for an elastic bar. During the transformation from state A to state B the bar contracts against the line
of increasing external tension. Right: Two degree-of-freedom bistable unit cell. Negative extensibility is observed for the external degree of freedom

u during the A-to-B transition.

in Figure 1 (b). Contraction in tension is made possible be-
cause the unit cell is bistable. Moreover, several different
types of mechanical responses are observed depending on
the choice of member stiffnesses and unit cell dimensions.
Each mechanical response is associated with a distinct pattern
of state switching over a load-unload cycle.

Of particular interest is the negative extensibility response,
which is characterized by a “pinched” hysteresis loop. During
the contraction, the direction of the displacement opposes
the applied tensile force. The unit cell does negative work.
Energy is released from the system to the surroundings. Ther-
modynamically, this is a solid-to-solid condensation reaction.
When integrating ¢ F - du over a load-unload cycle there is an
interval where the displacement during unloading lies above
the displacement during loading. The area enclosed by this
region represents negative work. Overall, the net work of the
cycle remains positive, which is consistent with other dissipa-
tive materials such as shape memory alloys [25,26]. However,
since the hysteresis loop is pinched there is a small, but sig-
nificant region where the area under the force-displacement
curve is negative.

A systematic analysis of the strain energy function is pre-
sented. The analysis is quasistatic. The previous work [24]
invoked a simplifying assumption regarding the strain energy
stored in the elastic bars. In this paper, no approximations for

the strain energy function are used. A phase diagram is cal-
culated which maps the mechanical response of the unit cell
to regions in the diagram. The axes of the phase diagram are
system parameters that define member stiffnesses. Boundary
lines mark the onset of a particular mechanical response. The
critical boundaries that divide monostability from bistability
are determined using a set of constraints, which is informed
by the principles of catastrophe theory [27-29]. Analogous to
thermodynamic phase diagrams, there exist singular “triple
points” where the system simultaneously satisfies conditions
for three different mechanical responses. Contour lines in the
diagram specify the width of the hysteresis loop and the in-
tensity of the strain change over the forward transformation.

The response can be fine-tuned to control various material
properties such as the change in length during the contraction
or the critical load at the onset of the contraction. A step-
by-step example is carried out to demonstrate how to use
the phase diagram in order to design a unit cell with specific
material properties.

2 Strain energy function
The unit cell in Figure 1 (b) is composed of five linear elastic

elements: a middle bar of stiffness kj, top and bottom bars
of stiffness k, and springs on either side of stiffness k3. The
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initial dimensions are uniquely determined by a horizontal
length L, vertical height H and skewness 4. The skewness is
the degree of offset from the horizontal. At & = 0 the struc-
ture is rectangular. The structure is pinned at the midpoint
of the center bar. Due to symmetry there exists only two
independent degrees of freedom, the displacements u and v.
Rollers constrain their movement along the vertical direction.
The displacement u is the external degree of freedom since
the force F is applied at this node. Mechanical work is being
done over this node. The displacement v is the internal degree
of freedom. No work is being done at this node.

2.1 Balance of energy
The stored strain energies in the middle bar 7, top and bot-

tom bars m, and the spring 73 are linear elastic relations
written as

2
m = %kl <\/L2+ (H—h—2v)2— \/L2+ (H—h)2> (1)

2
nQ:%kz (\/L2+(h+u+v)2—\/L2+h2> (2)
1
3 = 5/(3 (u —V)2 (3)

The potential or strain energy function is defined as the strain
energies of the elastic elements minus the energy of the
external load

II=mn+2(m+ w3 — Fu) 4

Upon substitution of the strain energies for each element, the
fully dimensional potential for the unit cell is

m= %kl <\/L2+(H—h—2v)2—\/L2+(H—h)2>2

2
+ky (\/L2+(h+u+v)2—\/L2+h2> ©)
+ks(u—v)?—2Fu

The potential is placed into dimensionless form so as to
reduce the number of independent system parameters. This
is accomplished by dividing the entire equation by an energy
term associated with the side springs, k3H?. The dimension-
less potential U is defined

I1

Quantities are redefined in terms of dimensionless param-
eters. There are four system or design parameters that specify

unit cell dimensions and member stiffnesses

ko H?

= G DEiH (7a)
2k H?

p=" = 7b
ky L2+ (H —h)?’ (70)
h

S= (7¢)
H

r=7 (7d)

Parameters a and b represent dimensionless stiffnesses scaled
by geometry terms. In the previous work [24], the definitions
of a and b were the same. Parameter s is the dimensionless
skewness. Parameter r is the aspect ratio. In this paper, the
aspect ratio is defined as the height H divided by the length
L, which is the inverse of the standard definition of the aspect
ratio. The reason for adopting this definition is because the
flat structure with infinitesimally small height represents the
limiting case when the aspect ratio approaches zero, r — 0.
Two independent state parameters are defined, x and y, which
are the dimensionless displacements for the two degree-of-
freedom unit cell

= — 8
X= (8a)
%
y=4g (8b)
The control parameter f is the dimensionless load
F
- 9
f ksH ©)

The final form of the dimensionless potential is

2
1 1 1
U=4a (52+r2> <\/r2+(s+x+y)2—\/r2+s2>
b(, i
+4<S —2S+r2+])

2
X (\/rlz—i-(l—s—Zy)z—\/rlz—f—(l—s)Z)

+(x—y)* —2fx

(10)

Although the material laws are all linear elastic, the potential
is highly nonlinear as a consequence of geometry. Because
of this nonlinearity, for certain combinations of element stiff-
nesses and dimensions it is possible for the solution to bifur-
cate or split such that two stable states of equilibrium exist for
a single loading condition. The result is hysteretic bistability.
In the subsequent analysis it will be possible to pinpoint what
combinations of system parameters lead to bistability.
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Fig. 2 Force-response curves for the external degree of freedom during a load-unload cycle. The five basic response types are monostability (MS),
superelasticity (SE), superplasticity (SP), negative extensibility of the superplastic type (NESP) and negative extensibility of the superelastic type
(NESE). The different mechanical responses are mapped to regions of the phase diagram in Figure 4.

2.2 Force-response curves

The unit cell structure undergoes several qualitatively distinct
types of force-response curves depending on the values of
the system parameters a, b, r and s. The external degree of
freedom x is of primary interest and is the point where the
load is applied. The strain of the structure is defined

£=2x

1)

There are five mechanical responses possible: monostable
(MS), superelastic (SE), superplastic (SP), negative extensi-
bility of the superelastic type (NESE) and negative extensi-
bility of the superplastic type (NESP). The force-response
curves corresponding to each type are shown in Figure 2.
Prior to generating a force-response curve, the four system
parameters must be specified. Under quasistatic loading con-
ditions, equilibrium is satisfied when the total potential en-
ergy of the system is a minimum [30]. Equilibrium conditions
require U] = U}’, = 0. These two equations are sufficient to
solve for the two unknown displacements, x and y, at discrete
values of the load f. To simulate the load-unload cycle, the
load is incremented gradually and decremented gradually
using a small enough step size A f. The Newton-Raphson
method solves for the equilibrium displacements at each step.
The converged displacements of the previous step are used
as the trial solutions for the next step.

The first characteristic response of the unit cell is monos-
tability (MS), which is drawn as the purple curve in Figure 2.
The response is a smooth, continuous expansion and contrac-
tion of the elastic members during load-unload cycles.

The second characteristic response is superelasticity (SE),
which is shown as the green curve in Figure 2. In general,
superelasticity is the ability of a material to accommodate
large applied strains and recover to its original configuration
when the load is removed. Superelasticity is characterized by
the cyclic dissipation of energy, a process called hysteresis
[31]. Initially, the unit cell deforms smoothly with increasing
tension until it reaches a critical destabilizing load. At this
point the structure experiences a discontinuous expansion or
snap-through action in both degrees of freedom until it re-
equilibrates reaching a new stable configuration. The forward
superelastic transformation A — B is comparable to a solid-
to-solid vaporization reaction since energy is absorbed by
the system. Work is positive since the displacement is in
the direction of the applied load. During load removal, the
reverse transformation B — A occurs as an abrupt contraction
but at a lower critical force than the forward transformation.
The reverse superelastic reaction is analogous to solid-to-
solid condensation since energy is released from the system
to the surroundings. Work is negative for the reaction. During
cycles of load-unload, the net work of the cycle is positive.
Although a net amount of energy is absorbed by the system,
the absorbed energy would be dissipated as heat. The total
energy dissipated in the process is proportional to the area
enclosed by the hysteresis loop [32]. Shape memory alloys
show qualitatively a similar superelastic hysteresis effect in
their stress-strain curve due to the stress-induced martensitic
transformation [33].
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Fig. 3 Dynamic negative extensibility response shown in black (strain
as a function of load). A single cycle of the time-dependent load, F (¢) =
1.5sin(0.002¢), is applied. The input load is plotted in blue (time is the
secondary y-axis). Each degree of freedom is given a viscous damping
coefficient of y = 0.2.

The third characteristic response is superplasticity (SP),
which is shown as the gray curve in Figure 2. Superplasticity
occurs when a material accommodates large applied strains
and remains in a highly deformed state after load removal.
Superplastic materials are hysteretic. Like the SE response,
the SP response exhibits a critical point of destabilization
associated with the forward phase transformation. However,
the fundamental difference between SE and SP is the location
of the critical force for the reverse transformation. For the
superplastic response when the load is removed, the unit cell
remains deformed in state B. In order to restore the structure
to its original configuration, the load must be applied in the
opposite (negative) direction. Only then will the structure
overcome an energy barrier, which allows it to snap back
to its original state. The superplastic response of the unit
cell parallels that of a shape memory alloy. For instance, if a
shape memory alloy is stressed beyond a certain threshold or
the temperature is too low then the larger volume martensitic
phase persists and the metal remains in a superplastic state
after load removal [34]. Compressive stresses or heat is used
to restore the superplastic alloy back to its original position.

The last two characteristic mechanical responses of the
unit cell are the negative extensibility responses. They feature
pinched hysteresis loops. They are defined by the negative ex-
tensibility transition, which is the marked contraction in the
external degree of freedom during the forward phase transfor-
mation. Like the other bistable responses, during the forward
transformation the structure snaps-through as the middle bar
rotates past the horizontal configuration. However, due to the
relative stiffnesses of members in the unit cell, a large expan-
sion of the internal degree of freedom actually facilitates the

contraction of the external degree of freedom when equilib-
rium is restored in state B. In other words, the contraction
is made thermodynamically possible through an expansion
of the internal degree of freedom. During unloading, if the
structure fully recovers to its original configuration then the
response is termed negative extensibility of the superelastic
(NESE) type, which is shown as the red curve in Figure 2.
If the structure remains in a deformed state requiring com-
pressive forces to restore it to the original configuration then
the response is defined as negative extensibility of the su-
perplastic (NESP) type, which is shown as the blue curve in
Figure 2. The two negative extensibility responses reveal a
secondary hysteresis loop when the load is increased beyond
the point of contraction. The secondary loop is associated
with the four-fold switching pattern,A -+ B — A — B — A,
during a cycle of load-unload.

In Figure 3, a dynamic simulation is performed in order
to determine whether or not the NESE response is maintained
when the system is excited with a time-dependent load. The
simulation uses the second-order Verlet numerical integration
scheme [35]. During the transient process of state switching,
the snap-through action causes the system to oscillate and
then decay as vibrational energy is released into the surround-
ings. Compared to the quasistatic case, the dynamic case
displays a similar effect magnitude of the contraction. In
general, if the load grows slowly enough with time and the
damping is large enough then the intensity of the contraction
in the dynamic case should be about the same as for the qua-
sistatic case. In order to preserve the NESE effect at higher
load rates, a practical material may consist of two phases
including a bistable core lattice and a viscoelastic matrix to
dissipate kinetic energy.

2.3 Mapping response to phase diagram

The phase diagram maps the mechanical response of the
unit cell to values of the dimensionless system parameters.
Each point on the diagram corresponds to a specific unit cell
design—i.e., a unit cell with specific dimensions and member
stiffnesses. The aspect ratio r and skewness s are fixed for a
given diagram. Figure 4 is the phase diagram for r — 0 and
s = 0. The axes a and b can be thought of as dimensionless
stiffnesses. Parameter a gives the stiffness of the top and
bottom bars k; relative to the stiffness of the side springs k3.
Parameter b gives the stiffness of the middle bar k; relative to
the side springs. The phase diagram has five boundary lines:
Ig, Iy, Iy, Ip and I5. The onset of a particular mechanical
response occurs at the boundary lines. There are six major
regions each corresponding to one of the five basic types of
responses. The calculation of each of the five boundary lines
and their meanings are discussed in the following section.
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Fig. 4 Phase diagram for infinitesimally small aspect ratio, r — 0, and zero skewness, s = 0. Parameter a specifies the stiffness of the top and
bottom bars relative to the side spring. Parameter b specifies the middle bar stiffness relative to the side spring. The mechanical response of each
region is labeled. The five boundary lines (I, Iy, Iy, I'p and Ig) are drawn as thick solid lines. The dotted cusp curve I'y marks the onset of a

secondary hysteresis loop in the tensile region.

3 Phase diagram calculation

A complete phase diagram consists of five boundary lines
and two sets of contour lines.

3.1 Boundary lines

The boundary line I'r divides superelasticity (SE or NESP)
from superplasticity (SP or NESP). Conditions for I'; define
a point of destabilization associated with the reverse transfor-
mation B — A with the added constraint that the critical force
occurs at zero load, f. = 0. The structure is neither defini-
tively superplastic nor superelastic. Conditions are written
as

It gi(a,b,x,y,fe=0)=U =0 (12a)
g2(a,b,x,y, fe=0) =Uy=0 (12b)
g3(a,b,x,y, fe=0)=detH =0 (12¢)

The functions g; = Uy, g2 = Uy and g3 = detH are set to
zero. They take the five arguments in the parentheses. Aspect
ratio and skewness are not shown explicitly in the system of
equations since they are fixed for a given phase diagram. The

determinant of the Hessian is defined
14 1/
Uxx ny

detH = (13)
Uy, Uy

oy "yt
= UpUp —UpUL =0

When the determinant of the Hessian is zero and equilibrium
conditions are satisfied in the vicinity of the critical point,
these are the criteria for a point which is simultaneously an
inflection point and a stationary point—i.e., a saddle point.
Physically, this is a point of structural destabilization. Points
of destabilization mark the onset of a vertical jump discon-
tinuity in the hysteresis loop. Ig is the special case when
the point of destabilization occurs at f, = 0, which fixes the
reverse transformation to occur at zero load. This added con-
straint on the critical force reduces the number of unknowns
to four: a, b, x and y. Using one of the unknowns as a run-
ning variable reduces the number of unknowns to three. The
three equations are now sufficient to generate Iz provided
the initial guess to start the Newton-Raphson scheme leads
to physical solutions for the design parameters a and b.

The boundary line I's divides monostability from bista-
bility. The conditions converge to the exact point of hystere-
sis loop formation. I'y marks the onset of solution splitting.
Points along Iy are considered cusp points. The conditions
are based on two sets of destabilization criteria (6 total equa-
tions). Each set has different variables for the displacements
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Fig. 5 Force-response curves at the boundary lines I, I3y and I'p. Left: The cusp curve I'y marks the onset of a hysteresis loop. Shown is a cusp
point that divides monostability from bistable superelasticity. Middle: The onset of pinched hysteresis occurs at Iy;. The I}y boundary divides the
usual superelastic or superplastic response from the more interesting NESE or NESP response. Right: The coalescence curve Iy divides apparent
monostability from the negative extensibility NESE or NESP response. The two hysteresis loops merge when approaching I'p from the NESE or
NESP region. The response transitions abruptly to monostability after crossing over I'p.

x1, y1 and x2, y». However, the critical force is the same for
both sets, fi = f>. When a hysteresis loop initially forms,
critical points of destabilization corresponding to the forward
and the reverse transformations are nearly touching (the sides
of the loop are nearly touching). Only at a cusp singularity
will the two points of destabilization meet exactly at a single
critical force. The hysteresis loop is reduced to a point. The
conditions are written as

Is: gi(a,b,x1,y1,/1) =0 (14a)
g2(a,b,x1,y1,f1) =0 (14b)
g3(a,b,x1,y1,f1) =0 (14¢)
gi(a,b,x2,y2, fo=f1)=0 (14d)
g2(a,b,x2,y2, /o= f1) =0 (14e)
g3(a,b,x2,y2,f2=f1) =0 (14f)

For the I conditions to work a single running variable is
taken, usually a or b, reducing the number of unknowns to
SiX: X1, X2, Y1, Y2, f1 and either a or b. The system is fully
specified. Figure 5 (left) shows a force-response curve gener-
ated at a converged Iy point. A hysteresis loop is observed
once inside the region bounded by I.

The boundary lines I, Iy and I all use the same set
of conditions. The trial solution in the Newton-Raphson al-
gorithm determines what curve will be accessed. Although

the conditions are the same, the nature of the bifurcation
associated with each boundary line is different. For I, the
conditions specify the onset of a pinched hysteresis loop.
This happens when a point of destabilization defined by g1,
g2 and g3 occurs at the same critical load and critical dis-
placement as a stable solution of equilibrium defined by g;
and g;. Therefore, f; = f> and x; = xo where x1, y; and fj
are associated with a point of destabilization while the vari-
ables x», y» and f> are associated with a stable solution of
equilibrium. The conditions are as follows

Ly, Iv, Ip: gi(a,b,x1,y1,/1) =0 (15a)
g2 (a,b,x1,y1,/1) =0 (15b)
g3(a,b,x1,y1,f1) =0 (15¢)
gi(a,b,xo=x1,y2,2=f1)=0 (15d)
g2(a,b,xa =x1,y2,f2=f1) =0 (15¢)

The force-response curve generated at I, is depicted in Fig-
ure 5 (middle, top). At a constant critical force during the
forward transformation A — B, the system destabilizes and
then re-equilibrates with no net change in the displacement,
Xx» = x1. Although not shown, there is still a large expansion
in the internal degree of freedom y, y, # y;. Figure 5 (middle,
bottom) shows that when crossing over I, the response be-
comes NESE. In general, the boundary I, divides the usual
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SE or SP hysteretic response from the more interesting NESE
or NESP pinched hysteretic response.

The boundary line Iy, referred to as the coalescence
curve, divides the regions of NESE and NESP from a region
of “apparent monostability.” Apparent monostability refers
to the fact that in the region above Iy a second mathemati-
cal solution of equilibrium exists but it is not realized under
normal loading conditions. The bistable response is inacces-
sible. Figure 5 (right) shows that when crossing over I'p the
two hysteresis loops merge. The response shifts abruptly to
monostability. The reason the above conditions work for I'p
is related to the merging of the two hysteresis loops. The
initial point of destabilization at the onset of the negative ex-
tensibility transition A — B is stabilized when the two loops
merge, x1 (unstable) = x (stable) at I 5. Coalescence points
along I are singularities where a solution of equilibrium,
which satisfies g; and g», becomes a point of destabiliza-
tion such that it now satisfies g3 in addition to g and g».
This higher-order bifurcation causes two hysteresis loops to
emerge in the force-response curve.

The boundary line Iy, referred to as the nucleation curve,
divides monostability from apparent monostability. The logic
in explaining why I'y;y uses the above set of conditions is iden-
tical to the logic in explaining why Iy uses it. A monostable
point, which has one solution of equilibrium satisfying only
g1 and g, shifts to a destabilization point such that now sat-
isfies g3 in addition to g; and g,. Mathematically, a second
stable solution bifurcates from the destabilization point al-
though it cannot be accessed under physical loading. Hence,

the system is apparently monostable. To put another way, an
inaccessible hysteresis loop develops when crossing over Iy .

The effect of Iy is more readily observed on the stability
diagram shown in Figure 6 (right). The stability diagram
pertains to the vertical slice of the phase diagram at b = 5.21.
It plots the system parameter a as a function of the critical
destabilizing forces associated with a phase transformation.
The peak of the top black curve corresponds exactly to a
point of I'y. As a is decreased, meaning the stiffness of the
top and bottom bars is decreased relative to the side springs,
physical bistability becomes accessible at I . Below I'p there
are two hysteresis loops with a total of four points of destabi-
lization. This particular stability diagram does not reveal a
point of I;. This is because I, is different from the I'p and
I'y bifurcations that separate monostability from bistability.
Instead, I, alters the nature of the already existing bistable
response causing it to become pinched.

Finally, the stability diagram reveals a strong cusp asso-
ciated with I at @ = 0.04. This cusp point corresponds to
the formation of the secondary hysteresis loop, which occurs
along the dotted line I in the phase diagram. Just above (I5)
there are two hysteresis loops and four-fold switching. Just
below it there is only one loop and two-fold switching. At
approximately a = 0.007 for a large critical force, f. =21,
there is another point of hysteresis loop formation associated
with the secondary dotted I's. The four-fold switching pattern
is again realized when a is decreased below this point.
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3.2 Contour lines

Two sets of contour lines are plotted on a complete phase
diagram: the force ratio ¢ and strain intensity Isg contours.
The force ratio ¢ gives the relative width of the hysteresis
loop. It is defined as the critical force for the reverse trans-
formation, fp_.4 = f>, divided by the critical force for the
forward transformation, fy_p = fi
o b2

fi

Figure 7 (left) shows the definition of ¢ in relation to a
force-response curve. The critical force at the forward trans-
formation fj is the denominator because it will always occur
at loads greater than zero. In contrast, the critical force at the
reverse transformation f, shifts to zero at I'y and then nega-
tive for the superplastic (SP or NESP) responses. Therefore,
positive ¢ implies an SE or NESE response while negative ¢
implies an SP or NESP response. As the force ratio increases
in the positive direction, the difference between the critical
force at the forward transformation and reverse transforma-
tion grows less and less and the hysteresis loop shrinks in
width. On the other hand, decreasing the force ratio widens
the gap between the two transformations. The most negative
¢ corresponding to the most superplastic responses have the
widest relative hysteresis loops.

The conditions used to generate the force ratio contours
are related to I'y except that the value of f; is specified relative
to f1 based on a pre-defined value of ¢. The conditions fix the
width of the hysteresis loop based on the ratio of forces at the
forward and reverse transformations. This is accomplished
by first rearranging Equation (16) to solve for f;

L=0f

The result is substituted into the set of destabilization criteria
associated with the reverse transformation, Equations (18d)
to (18f). Like I, the force ratio conditions are composed of
two sets of destabilization criteria

(16)

A7)

o: gi(a,b,x1,y1,f1) =0 (18a)
g2(a,b,x1,y1,f1) =0 (18b)
g3(a,b,x1,y1,/1) =0 (18¢)
g1(a,b,x2,y2, =9 f1) =0 (18d)
g(a,b,x2,y2,=0f1)=0 (18e)
g3(a,b,x2,y2, =9 f1) =0 (18f)

The system parameters a and b are the phase diagram axes.
They are frequently used as running variables in the Newton-
Raphson method. The value of ¢ is specified at the beginning
of the program in order to fix the value of f, relative to
/1. The six equations are now sufficient to solve for the six
unknowns: xi, x2, ¥1, 2, f1 and either a or b. The force
ratio conditions are related to the boundary lines I's and I'g.

25 - f 25 F
—_) — &—E
d) Ji ISE T g
w W
s 125 g23
<£2
/i S
0 L 2.1 L
0.8 1.6 1.1 1.225 1.35
load, f load, f

Fig. 7 Definitions of the force ratio ¢ and the strain intensity Isg. Left:
The force ratio is the critical force at the reverse transformation f>
divided by the critical force at the forward transformation fj. Right: The
strain intensity is the change in strain over the forward transformation
A€, = & — ¢ divided by the critical strain €;.

When ¢ = 1 this implies f> = f reducing the conditions to
Is. When ¢ = 0 this implies the critical force for the reverse
transformation f> = 0 reducing the force ratio conditions to
the three independent equations associated with I'z.

The strain intensity Isg is a measure of the strain change
over the forward transformation A — B. It is defined as the
strain reached after the transformation & minus the critical
strain at the onset of the transformation & normalized by the
critical strain €;

&—§&

Isg = (19)

€

Figure 7 (right) shows the definition of Isg on a force-response
curve. Since the response is NESE, the forward transforma-
tion is a contraction. In the figure, the change in strain over
the transformation Ag, = & — €] is negative, which gives a
negative Isg. In general, a larger magnitude Isg in either the
positive or negative direction means the expansion or con-
traction is relatively more intense—i.e., it is associated with
a sooner onset (lower critical strain €1) and a larger change
in strain. The most intense contractions are realized for low
a and high b in the NESE or NESP regions. At the intersec-
tion of I'r and I is where most negative Isg occurs while
still being NESE. This intersection point is referred to as the
triple point, Pgo. Figure 5 (right, top) shows qualitatively the
force-response curve at the triple point. The hysteresis loops
are nearly touching and the reverse transformation occurs at
fe = 0. To further increase the intensity of the contraction
beyond the triple point, a NESP response is required.

The calculation of the strain intensity contours is related
to the boundary line I;. For I}, the condition x, = x; defines
zero net change in strain over the transformation and the onset
of pinched hysteresis. I3, is the special case when Isg = 0.
However, if Equation (19) is solved for &, then the change in
strain can be pre-defined based on the value of Isg

& 281(1—|—ISE) (20)
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which is equivalent to
x2 =x1(14+Isg) (21)

The equilibrium displacement after the transformation x; is
substituted into the equilibrium criteria, Equations (22d) and
(22e). The strain intensity conditions are written as

Isg . gi(a,b,x1,y1,/f1) =0 (22a)
g2(a,b,x1,y1,/1) =0 (22b)
g3(a,b,x1,y1,f1) =0 (22¢)
gi(a,b,xo =x1(1+1Isg),y2, /2= f1) =0 (22d)
g2(a,b,xo = x1(1+1Isg),y2, /= f1) =0 (22e)

The value of Isg is fixed at the beginning of the program. As
an added constraint it reduces the number of unknowns by
fixing the value of x; relative to x;. In the Newton-Raphson
method, usually « or b is used as a running variable. The five
equations are now sufficient to solve for the five unknowns:
X1, Y1, ¥2, f1 and either a or b. As a caveat, the subscripts
1 and 2 in the Isg conditions and I, conditions pertain to
points at the beginning and end of the forward transformation.
In contrast, the subscripts 1 and 2 in the ¢ conditions and I’y
conditions pertain to the locations of the forward and reverse
transformation.

3.3 Complete phase diagrams

Four complete phase diagrams are generated in Figure 8 (a)
through (d). The unit cell for each phase diagram is defined
by its aspect ratio and skewness. The force ratio ¢ contours
are drawn as dashed lines varying from black (wide hys-
teresis loop) to green (narrow hysteresis loop). The strain
intensity /g contours are drawn as solid lines that vary from
cyan (contraction) to blue (small expansion) to red (large
expansion). Increasing aspect ratio vertically shifts the NESE
region to higher a while increasing skewness horizontally
distorts the NESE region so it expands over a greater range of
b. The unit cell for Figure 8 (d) was chosen for its symmetry.
At s = 0.5 the middle bar is the same length as the top and
bottom bars.

3.4 Design example

To illustrate how to use the phase diagram for the design
of a unit cell with specific material properties the follow-
ing problem statement is given: Design a unit-cell with as-
pect ratio r = 0.25 and skewness s = 0.25 that exhibits a
NESE response with a contraction of 1 mm, strain intensity
Isg = —0.01, force ratio ¢ = 0.2 and critical load at the for-
ward transformation F; = 1000 N. After specifying r, s, Isg
and ¢ the designer is allowed to specify two additional di-
mensional quantities. These quantities may give information

about hysteresis loop, unit cell dimensions or member stiff-
nesses. This is because the dimensional potential, Equation
(5), has 10 variables whereas the dimensionless potential,
Equation (10), has 8 dimensionless parameters. This leaves
two free dimensional quantities to be specified. In this case,
the length of the contraction and the value of the critical load
at the onset of the contraction are chosen.

Specifying r and s determines the phase diagram to be
used. Next, specifying Isg and ¢ fixes the dimensionless
system parameters a and b. On the phase diagram for r =
0.25, s = 0.25, Figure 8 (c), the intersection of Isz = —0.01
and ¢ = 0.2 occurs at b = 8.7842, a = 0.07851. Since the
four system parameters are known the force-response curve
can be generated. The following dimensionless quantities
are obtained from the force-response curve: fi = 1.2371,
€1 =2.0219 and & = 2.0017. These quantities are not free
variables. They are properties of the hysteresis loop which are
determined based on the dimensionless system parameters.

For this particular problem, there are 9 dimensional quan-
tities to be defined

ky,ka, k3, H,h,L,Fy,ui,us (9 total) (23)

Of these 9 quantities, the stiffnesses ki, k» and k3 and di-
mensions H, h and L are the 6 quantities needed to actu-
ally construct the unit cell. The phase diagram is essen-
tial because it relates properties of the mechanical response
such as the critical force F; and the displacements before
and after the contraction, u; and u, to the design of the
unit cell. Based on the statements in the problem, the fol-
lowing 9 variables are known: r = 0.25, s = 0.25, a =
0.07851, b =8.7842, f; = 1.2371, F; = 1000 N, Au =
I mm, & = 2.0219, & = 2.0017. The definitions of the
above variables are the 9 independent equations used to solve
for the 9 unknown dimensional system parameters

r= 005 (24a)
L
h
s=—=0.25 (24b)
H
k, H?
-2 T _0.07851 24
T MG P+ H? (24¢)
2k; H?
S T 87842 24d
k3 L*+ (H —h)? (24d)
F
=L 12371 24
N I (24e)
Fi =1000N (241)
Au=u; —ur, =0.001 m (24g)
2u
€ = 71 =2.0219 (24h)
2
& = % —2.0017 (24i)

The system is fully determined. After performing algebraic
substitution to solve for the unknowns, the requirements
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Fig. 8 Complete phase diagrams for four different unit cells. Aspect ratio r and skewness s are fixed for a phase diagram. Unit cell dimensions are
drawn to scale in the insets. The force ratio ¢ and strain intensity Isg contour lines are plotted. Phase diagrams (a) through (c) each have 86 width
and 0.1a height. The scale of x-axis differs in (d) expanding 285 across. The large positive skewness horizontally stretches the regions of the phase
diagram.
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Table 1 Iygsg at Pgo for s =0

aspect ratio, ¥ (INESE ) max
—0 —0.02975
0.0035 —0.02974
0.01 —0.02973
0.025 —0.02970
0.05 —0.02955
0.1 —0.02897
0.25 —0.02462
0.5 —0.01032
0.7 —0.00134

are satisfied with the following design: H = 0.0987 m, L =
0.3950 m, A = 0.0247 m, k; = 595,516 N/m, k; = 43,703
N/m and k3 = 8186 N/m. The stiffness of the middle bar k;
is an order of magnitude greater than the stiffness of the top
and bottom bars k, and two orders of magnitude greater than
the side springs k3. The stiff middle bar relative to the other
elastic members provides the driving force for the contrac-
tion.

4 Effect of changing aspect ratio and skewness

The four phase diagrams in Figure 8 show roughly how the
regions and contours change with varying aspect ratio and
skewness. In this section, the maximum intensity of the con-
traction in the NESE region, which occurs at the triple point
Pro, will be used as a metric to compare unit cells of differ-
ent aspect ratio and skewness. Furthermore, diagrams will be
developed to understand the distortion of the NESE region
with increasing aspect ratio and skewness.

4.1 Intensity of the contraction at the triple point

The triple point Pgo is the intersection of Ir and Ip. At
this point the structure simultaneously satisfies criteria for
monostability, NESE and NESP. To arrive mathematically
at the triple point, a system of equations is set up using the
three I'r conditions and the five I'» conditions. The point Pgo
has an a and b that satisfies the following

Pro

Ip: gi(a,b,x1,y1,£1) =0 (25a)
g2(a,b,x1,y1, /1) =0 (25b)
g3(a,b,x1,y1, /1) =0 (25¢)
g1(a,b,x2 = x1,y2, /2= f1) =0 (25d)
g2(a,b,xa =x1,y2,f2=f1) =0 (25e)

I : gi(a,b,xg,ye,fe=0)=0 (251)
g(a,b,xg,yg, fg=0)=0 (252)
g3(a,b,xg,ye, fg=0)=0 (25h)

0.000

—0.015

Iyese at Feo

N
S

—@—>

|
0.5 1
aspect ratio, r

-0.33
-0.5

—-0.030

Fig. 9 Plane curves of constant skewness showing the intensity of the
contraction at the triple point, Iygsg at Pro, as a function of the aspect
ratio. The plane curves are cross-sections of the s-r-Iygsg surface plot
in Figure 10.

Inese at Bgo

"t . 0038

orewness: ®

Fig. 10 Three dimensional surface plotting the intensity of the contrac-
tion at the triple point, Iygse at Pgo, as a function of the aspect ratio
and skewness. The most intense contractions are possible for low aspect
ratio, r — 0, and zero skewness, s = 0.

The force-response curve at the triple point appears as I'p
like in Figure 5 (right, top) where the two hysteresis loops
merge. The I'r conditions fix the location of the reverse trans-
formation at zero load, which is shown qualitatively in the
same figure as the black dashed line.

For an individual phase diagram with specified » and
s, the a and b at the triple point Pgp correspond to a unit
cell design with the most intense contraction while still be-
ing a NESE response. Therefore, the following definition is
introduced

at Pro:  INEsE = (INESE) max (26)

The definition of Iygsg is the same as Isg, Equation (19). The
subscript implies that only the NESE response is considered.
More intense contractions are possible in the NESP region,
especially when approaching I» with decreasing a. The max-
imum intensity of the contraction for the NESE region is used
as a metric for comparing unit cells of different aspect ratio
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and skewness. Table 1 shows the effect of varying aspect ratio
at constant s = 0. Decreasing the aspect ratio increases the
maximum intensity of the contraction at the triple point. An
infinitesimally small aspect ratio, r — 0, leads to a structure
with small height compared to its length. This flat structure
represents the theoretical limit by which to compare other
unit cell arrangements.

Figures 9 and 10 visualize the effect of changing both the
aspect ratio and skewness on the intensity of the contraction
at the triple point. The plane curves in Figure 9 are cross-
sections of the three dimensional r-s-Iygsg surface in Figure
10. The global minimum corresponds to rectangular unit cells,
s = 0, with infinitesimally small aspect ratio, r — 0.

4.2 Evolution of the NESE region

The NESE region is defined by the three boundary lines Iz,
I3y and Ip. The region takes the shape of a distorted triangle.
The intersection points Pgo, Pgy and Pyyo are the corners of
triangle. Like the triple point, Pgo, the other two intersection
points are computed precisely using combined conditions
for the corresponding boundary lines. This process requires
careful choice of the trial solutions for each of the unknowns.
However, once a solution is found for an intersection point
there is less trial and error if the same type of intersection
point is desired for different aspect ratio and skewness. An
iterative program was constructed to gradually increment
and s and compute each of the intersection points at each
step. Using this technique, it is possible to track the evolution
of the NESE region with changing r and s. Figure 11 shows
the drift of the NESE region with increasing aspect ratio at
constant skewness. A larger aspect ratio shifts the NESE re-
gion vertically. Figure 12 shows the drift of the NESE region
as a function of increasing skewness at constant aspect ratio.
Skewed structures see a horizontal distortion of the NESE
region. The NESE region doubles in area when skewness is
increased from s = 0 to s = 0.25 at constant r = 0.25.

5 Conclusion

The unit cell response is governed by a non-convex, non-
harmonic and consequently highly nonlinear potential, Equa-
tion (5). Having determined the sets of equations needed for
each Gamma line calculation gives insight into systematic
numerical analysis of concave nonlinear potentials. Gamma
lines that mark the onset of bistability as well as Gamma lines
that reveal the nature of the mechanical response are com-
puted precisely using combined conditions of equilibrium
and destabilization. Plotting the Gamma lines and contour
lines on a phase diagram makes it possible to design the unit
cell to achieve a specific response. In essence, the phase dia-
gram is a visual representation of the mechanical response

0.11 ¢

aspect ratio, r
0.5
045
0.4
0.35
03
025
0.2
0.15
0.1
0.05
=0

0.1

0.09 -

0.08 |-

increasing
aspect ratio,

0.07

Fig. 11 Vertical drift of the NESE region with increasing aspect ratio
at constant skewness. Points Pgys, Peo and Pyo are the intersections of
the boundary lines I'y and I} and I that define the NESE region. The
points are plotted as aspect ratio is varied from r — 0 to r = 0.5 with
a step size Ar = 0.05. Four complete NESE regions are drawn. For a
linear increase in aspect ratio there is an exponential vertical shift in the
location of the NESE region. A thinning and elongation of the NESE
region is also associated with increasing aspect ratio.

skewness, s
0.1F

0 005 01 015 02 025

0.08 |-

0.07
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Fig. 12 Horizontal drift of the NESE region with increasing skewness
at constant aspect ratio. The intersection points Pgy, Pgo and Pyo
are plotted as skewness is varied from s = 0 to s = 0.25 with a step
size As = 0.0125. Three complete NESE regions are drawn. For a
linear increase in skewness, there is an exponential horizontal drift in
the NESE region. The area of the NESE region also increases with
increasing s.

as a function of design parameters that specify unit cell di-
mensions and elastic member stiffnesses. However, in order
to calculate the Gamma lines, contour lines and intersection
points requires solving systems of nonlinear equations. In
this paper, the Newton-Raphson method is used. The major
downside to this method is that convergence to physically
significant values depends on the initial guess for the un-
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knowns. A poor choice of trial solutions for the unknowns
may lead to divergence or non-physical roots. The upside
to the Newton-Raphson method is that if the functions are
smooth and continuous and the initial guess is close enough
to the roots then the method will converge.

A phase diagram differs from a normal graph in which
one variable is plotted as a function of another. In a phase dia-
gram, the coordinate axes all represent independent variables
and the coordinate space shows the state of the system at
equilibrium [36]. While it is interesting to draw comparisons
between the phase diagram in this paper and microstructural
phase diagrams used in materials science, the two diagrams
are fundamentally different. For instance, the Gibbs phase
rule does not apply to the diagram presented here. Regions
do not correspond to microstructural phases in thermal equi-
librium. Instead, a “phase” is a distinct mechanical response,
one of either MS, SE, SP, NESE or NESP. Furthermore, the
design parameters a, b, r and s are not chemical components
that constitute a thermodynamic phase. Nevertheless, it may
be instructive to think of them as independent constituents
that when specified lead to a particular mechanical response.
In the future, the phase diagram methodology will be ex-
tended to other systems whose response is governed by a
nonlinear potential in hopes of discovering new metamaterial
phenomena.
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