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I. INTRODUCTION

Due in part to the success of multicarrier wave-
forms, such as orthogonal frequency division multiplexing
(OFDM) in radio communication technologies, the use of
spread spectrum waveforms has gained strong interested
within the radar community. From a radar-centric point of
view, multicarrier waveforms can be used to improve detec-
tion and measurement performance [1]–[3]. Furthermore,
the use of such waveforms improves resistance to multipath
fading [4], [5], the ability to overcome the limitations of a
congested frequency spectrum [6], the ability to exploit fre-
quency diversity gains stemming from the fact that target
scattering centers inherently resonate differently at differ-
ent frequencies [7], and the potential to perform radar and
communication functions simultaneously within the same
hardware using the same waveform [8]–[10]. In compari-
son to traditional single carrier systems, a multicarrier radar
provides more degrees of freedom in waveform synthesis.

The range (or delay) resolution of a radar system is in-
versely proportional to the transmitted signal bandwidth.
Realizing that improving range resolution usually entails
employing a shorter bit duration in a digital phase mod-
ulated system or a wider frequency spread in an ana-
log frequency modulated system, Levanon [11]–[13], and
Levanon and Mozeson [14], [15] borrowed ideas from wire-
less digital communications to improve radar measurement
performance. In digital communications, there is a similar
problem where it is desired to increase the transmission ef-
ficiency. This can be accomplished by employing a shorter
bit duration and increasing the frequency spread of the com-
munication transmission. Noting that the modulation tech-
nique OFDM is one such way of increasing transmission
efficiency, Levanon and Mozeson employ OFDM to modu-
late Multifrequency complementary phase-coded (MCPC)
sequences to improve radar detection performance. Our re-
search expands on the works of Levanon and Mozeson
by employing their use of OFDM to modulate MCPC
sequences to allow for both radar and communication
operations.

This paper considers the optimization of radar perfor-
mance within the structure imposed by a coded OFDM
format required to achieve an acceptable communication
link. The dual goal of achieving both satisfactory radar and
communication performance raises challenges that can be
substantively addressed by combining phase coding and
modulation techniques to provide the temporal and spectral
structure necessary to implement simultaneous radar and
communication operations.

II. MCPC SIGNALS

The seminal work of Levanon[11]–[13], and Levanon
and Mozeson [14], [15] examined the use of multicarrier
communication technologies and MCPC sequences to in-
crease the range resolution of radar systems. MCPC sig-
nals are sequences of signals, each different from one an-
other, that form a complementary set. A complementary set
is defined as cyclically shifted versions of a phase-coded
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TABLE I
Phases in Degrees of the Elements of a

P3-Based 5× 5 MCPC Signal

0 −144 −216 −216 −144
−144 −216 −216 −144 0
−216 −216 −144 0 −144
−216 −144 0 −144 −216
−144 0 −144 −216 −216

sequence having an ideal periodic autocorrelation function
(ACF) [16]. Two such codes (which form the basis of MCPC
signals) are the polyphase P3 and P4 code sequences. The
phase terms of an M length P3 code are constructed as

φm = π

M
(m − 1)2 − π (m − 1) (1)

for m = 1, 2, . . . , M , and the phase terms for an M length
P4 code are constructed as

φm =

⎧⎪⎨
⎪⎩

π

M
(m − 1)2 m is even

π

M
(m − 1) m m is odd

(2)

for m = 1, 2, . . . , M . The MCPC signal is an M × M ma-
trix of cyclically shifted versions of either M length P3 or
M length P4 codes. It is possible to stack MCPC sequences
resulting in an N × M sequence where N is an integer
multiple of M . Such a stacked sequence also forms a com-
plementary set. Table I provides an example of a P3-based
5 × 5 MCPC signal.

Using a traditional OFDM signaling scheme, the M

sequences are transmitted on N subcarriers separated in
frequency by

�f = BW/N = 1/tb (3)

where BW is the bandwidth of the system, and tb is the time
duration of each bit in the sequence. The total duration of
the transmitted pulse is then Mtb. The transmitted pulse is
mathematically defined as

X (t) =
N∑

n=1

exp

(
j2πt�f

(
N + 1

2
− n

))

·
M∑

m=1

un,m (t − (m − 1) tb) (4)

where

un,m =
{

exp(jφn,m) 0 ≤ t ≤ tb

0 otherwise
(5)

and φn,m is the mth phase element of the nth sequence (i.e.,
the mth column and nth row of Table I). It is observed
that this OFDM modulation scheme can be efficiently ac-
complished with the inverse fast Fourier transform (FFT)
operation and that, upon reception, the transmitted sequence
can be demodulated through the application of the FFT.

A measure of performance of a radar signal is its auto-
correlation sidelobe response. A typical approach to reduce
sidelobe levels is to apply a weighting (i.e., a Hamming

Fig. 1. Normalized ACF of a 5 × 5 P3-based MCPC signal (labeled P3)
is compared with an LFM signal (labeled LFM) and a LFM signal with a
Hamming weight applied (labeled H-LFM). The P3 signal exhibits ideal

periodic sidelobes at integer multiples of t/tb .

window) to the transmitted pulse. This weighting results in
reduced sidelobes with the consequence of a wider center
response, which causes a reduction in range measurement
accuracy. Fig. 1 compares the autocorrelation response of
an MCPC P3 signal, an linear frequency modulated (LFM)
signal that has a total bandwidth to provide the same range
measurement resolution as the P3 signal, and the same LFM
signal with a Hamming window applied. It is clear that the
windowed signal produces much lower sidelobes at the cost
of a wider center response and that the sidelobe levels of
the P3 signal are much larger than the others.

III. POLAR SIGNAL DETECTION (PSD)

It is clear that maximizing the probability of detection
(PD) is equivalent to maximizing the SNR at the output of
the receive filter. As described in [17], the output y of the
optimal matched filter (MF) receiver, when the phase of the
received signal xr is unknown, is

y =
∣∣XHxr

∣∣
XHX

(6)

where X is the transmitted waveform. Similar to the pre-
vious discussions in Section II, the output of this detector
when used with MCPC signals will exhibit relatively large
sidelobe levels. These large sidelobes have the potential
of causing false detections or even masking the presence
of real targets. One method of overcoming the large side-
lobe levels while maintaining a desired probability of false
alarm (PFA) is to use a cell-averaging constant false alarm
rate (CA-CFAR) detector. The goal of CA-CFAR is to set a
variable detection threshold level by estimating the interfer-
ence power at the range resolution cell of interest (known
henceforth as the cell under test (CUT)). It is clear that if
the estimate of the interference power is larger than the ac-
tual power, the threshold will be set too high, which causes
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a PFA that less is than desired, leading to a reduction in
detection performance. Conversely too low of an estimate
results in an increase in PFA.

While the intent of this paper is not to rigorously design
optimal CFAR detectors, four varieties of CFAR schemes
will be considered to further the conversation. In addition
to the previously described CA-CFAR detector, the least-
of CA-CFAR (LO-CA-CFAR) is considered, which works
by comparing the power estimates in the leading and lag-
ging reference cells and using the smaller of the two in
the derivation of the threshold. The purpose of the LO-CA-
CFAR is to prevent target masking, which occurs when the
targets are present within the reference cells, causing the
interference estimate to be too large. The LO-CA-CFAR
attempts to circumvent this by only using the least-of the
interference estimates. However, this methodology will fail
when the targets are present within both the leading and
lagging reference cells.

Another CA-CFAR scheme is called the greatest-
of CA-CFAR (GO-CA-CFAR). The GO-CA-CFAR com-
pares the interference estimates from the leading and
lagging reference cells and chooses the greatest of the two.
The purpose of this type of detector is to prevent false
alarms caused by “spikes” in the interference power caused
by clutter ridges or any other strong source of interfer-
ence. However, this scheme will exacerbate target masking
issues.

Yet another structure is called ordered-statistic CA-
CFAR (OS-CA-CFAR). This structure works by order-
ing the power measurements in the reference cells from
smallest to largest and taking assigning the Kth values
as the estimate for the interference. Unlike the previously
described CFAR methods, in OS-CA-CFAR the interfer-
ence is estimated from only one sample instead of an av-
erage of samples. However, the threshold is still depen-
dent on all of the samples as the Kth largest value in the
ordered statistic is dependent on all of the samples. The
purpose of this type of detector is to help prevent target
masking.

After the interference at the CUT has been estimated, the
next step is to assign an appropriate threshold to maintain
a desired PFA. This is accomplished through

T =
√

αÎ (7)

where α is a threshold multiplier, and Î is the interfer-
ence estimate. The value of α in (7) is dependent on the
number of training cells, the desired PFA, and the CFAR
type. For the basic CA-CFAR detector, α is calculated
as [17]

αCA = N
(
P

−1/N

FA − 1
)

(8)

where N is the number of training cells. Similar closed-
form solutions for the threshold multiplier for the other
CFAR detectors do not exist and must be solved for itera-
tively. For the LO-CA-CFAR detector, the equation to solve

Fig. 2. MF response and various detection thresholds.

is [18]

PFA

2
=
(

2 + αLO

N/2

)−N/2

×
⎡
⎣ N

2 −1∑
k=0

(
N
2 − 1 + k

k

)(
2 + αLO

N/2

)−k

⎤
⎦ (9)

for the GO-CA-CFAR detector, the equation to solve is [18]

PFA

2
=
(

1 + αGO

N/2

)−N/2

−
(

2 + αGO

N/2

)−N/2

×
⎡
⎣ N

2 −1∑
k=0

(
N
2 − 1 + k

k

)(
2 + αGO

N/2

)−k

⎤
⎦ (10)

and for the OS-CA-CFAR detector, the equation to solve
is [17]

PFA = N! (αOS + N − k)!

(N − k)! (αOS + N)!
(11)

where αOS is an integer. Readers are referred to [17] for a
more detailed analysis on CFAR techniques.

An example will now be given to further the dis-
cussion. Assume that a radar is employing 6 × 6 P3-
based MCPC waveforms. Also, assume that there are
seven targets located within the pulse response at t/tb =
−4.0644, t/tb = −2.4797, t/tb = −1.2581, t/tb = 0.0,
t/tb = 0.2806, t/tb = 1.3834, and t/tb = 5.5905. Further-
more, assume that the signal to noise ratio at the receiver
is 10 dB for the target at t/tb = 0 and 0 dB for the re-
maining targets. Also, assume that a PFA of 10−5 is desired.
For all CFAR techniques, leading and lagging training sam-
ples each spanning t/tb = 1, and leading and lagging guard
samples each spanning t/tb = 0.333 are used. As is typi-
cal [19], the value of K is set to three quarters of the total
number of training samples for the OS-CA-CFAR detector.

Fig. 2 shows the MF response, the Neyman–Pearson
detection threshold (labeled TMF) as derived in [17] as well
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TABLE II
Target Detection Results for the

CFAR Detectors

t/tb CA LO GO OS

−4.0644 � � � �
−2.4797 � � �
−1.2581
0.0 � � � �
0.2806
1.3834
5.5905 � � �

as the various CFAR detection thresholds. The Neyman–
Pearson threshold produces an excessive number of false
alarms due to the large range sidelobe response, whereas
the CFAR thresholds reduces the number of false alarms.
Table II tabulates which targets are successfully detected
with each CFAR detector. In this particular example, no
detector was successful in detecting all seven targets. The
remainder of this section will introduce the PSD algorithm
as a means of improving the detection performance.

First, a new detection scheme, called the beta detector
(BD), is introduced. The derivation of the BD relies on
the fact that P3- and P4-based MCPC codes are unitary.
That is, an M × M MCPC code multiplied by its conjugate
transpose results in the M × M identity matrix I . This
property will be exploited to overcome the inherent problem
of large MCPC ACF sidelobes.

As a radar receives a signal, it performs an estimation
of the underlying bits by performing an FFT operation on
the signal (readers are referred to [20] for more information
on OFDM detection and technologies). It is important to
note that this estimation process does not use a hard decod-
ing scheme. In other words, the estimate of the underlying
bits is simply the output of the FFT operation. Assuming
a sampling period of ts , a total of Mtb/ts estimates will
be produced. These estimated bits are reconstructed into
M × M MCPC matrices that are subsequently multiplied
by the conjugate transpose of the transmitted MCPC se-
quence resulting in

ξ̂n = ÛnU∗ᵀ, n = 1, 2, . . . , Mtb/ts . (12)

Remembering that MCPC sequences are unitary, ξ̂n in (12)
will equal an M × M identity matrix when the estimated
MCPC matrix Ûn equals the transmitted MCPC matrix U .
A vector of measurements R (n) are taken on all n ξ̂ values
such that

R (n) =

∣∣∣tra ( ξ̂n

)∣∣∣2
M · sum

(∣∣∣ ξ̂n

∣∣∣2)+
∣∣∣tra ( ξ̂n

)∣∣∣2
n = 1, 2, . . . , Mtb/ts (13)

where tra(·) is the trace operation, and sum(·) is the sum
of all elements in the matrix. When the estimated MCPC
matrix equals the transmitted MCPC matrix, R in (13) will
equal 0.5.

It is necessary to derive the statistical distribution of (13)
to establish an appropriate detection threshold. The follow-
ing derivations will be concerned with the null hypothesis
where it is assumed that the only signal present is additive
white Gaussian noise. For the null hypothesis, each element
of ξ̂n is normally distributed as N(0, σ 2

e ) + jN(0, σ 2
e ),

where the notation N
(
0, σ 2

)
corresponds to a zero-mean

normally distributed random variable with variance σ 2.
Considering the numerator of (13), it is obvious that the
trace operation of the elements of ξ̂n will also be nor-
mally distributed as N(0, Mσ 2

e ) + jN(0, Mσ 2
e ). The abso-

lute square of the trace then becomes gamma distributed as
�
(
1, 2Mσ 2

e

)
.

Now considering the first term in the denominator of
(13), the sum of the absolute squares of the elements of
ξ̂n is gamma distributed as �

(
M2, 2σ 2

e

)
. Multiplying this

gamma distribution by M results in the gamma distribution
�
(
M2, 2Mσ 2

e

)
. The second term in the denominator of

(13) is identical to the numerator. The resulting distribution
takes the following form:

f = A

A + B
(14)

where A = �
(
1, 2Mσ 2

e

)
and B = �

(
M2, 2Mσ 2

e

)
. If A and

B were independent, then (14) equates to β
(
1, M2

)
, where

β is the beta distribution. Strictly speaking, A and B are
not independent; however, under the null hypothesis, re-
membering that A is the result of the summation of the M

independent diagonal elements of ξ̂n and B is the result of
the summation of all M2 independent elements of ξ̂n, as
the value of M increases, A and B become more indepen-
dent. If fact, it is easy to show that M ≥ 4 results in (14)
closely approximating the beta distribution. Now, assuming
the desired probability of false alarm is equal to PFA, the
detection threshold T can be determined by solving

1 − PFA = 1

β
(
1, M2

) ∫ Tβ

0
(1 − x)M

2−1 dx (15)

for Tβ .
The PSD algorithm begins by considering the MF re-

sponse and BD response jointly. Now, returning to the ex-
ample as defined in Table II, Fig. 3 depicts the beta re-
sponse versus the MF response. The various shapes within
the figure represent the individual target’s effect on the
overall joint response. Qualitatively, each target is easily
discernible. The next step is to derive a new threshold pa-
rameter that will quantitatively detect the targets.

A polar representation of the data presented in Fig. 3
with an origin at (0, 0) is constructed and shown in Fig. 4.
In this figure, as θ approaches 0, the ρ values are more
heavily influenced by beta response and as θ approaches
π/2, ρ is more heavily influenced by the MF response. The
tangent of θ equals the ratio of the MF response to the
beta response. A sample that has a maximum MF response
(equal to 1) and a maximum beta response (equal to 0.5)
will be located at θ ≈ 1.1071 with ρ ≈ 1.118.
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Fig. 3. Joint MF and beta response.

Fig. 4. Joint MF and beta response converted to polar coordinates. All
samples within the borders of the threshold are declared detections.

Similar to the CA-CFAR approach, an interference esti-
mate must be calculated from the available polar data. The
approach taken is to use all samples less than θI,min and
greater than θI,max for interference estimation. Through ex-
perimentation, based upon the observed polar responses
of many trials, it has been found that θI,min = 0.4 and
θI,max = 1.4 are acceptable values to use. Samples that are
less than or equal to θI,min = 0.4 have beta responses that
are greater than or equal to 2.3652 times larger than their
MF responses, whereas samples greater than or equal to
θI,max = 1.4 have MF responses that are greater than or
equal to 14.1014 time larger than their corresponding beta
responses.

Under the null hypothesis, the statistical distribution of
samples below θI,min = 0.4 will closely resemble the same
beta distribution as described in (14) where pρ (ρ|H0) =
β
(
ρ; 1, M2

)
. As previously mentioned, the samples greater

than θI,max = 1.4 are more heavily influenced by the MF

response. Through examination of (6), under the null hy-
pothesis, where only complex AWGN is present, the ρ sam-
ples will more closely follow a gamma distribution. This
gamma distribution takes the following form:

p (ρ|a, b) = Gamma (ρ; a, b) = ρa−1

� (a) ba
exp

(−ρ

b

)
.

(16)
The parameters a and b can be found using the maximum
likelihood approach, as described in [21].

Because the ρ values at opposite sides of θ follow dif-
ferent statistics, two distinct threshold values for a given
PFA are found. For the beta distribution on the left-hand
side of the polar response, this threshold is found by solv-
ing (15) for Tβ . An exact solution for the threshold does
not exist, but can be solved for numerically. Similarly, the
threshold on the right-hand side is found through the inverse
cumulative gamma distribution. That is, by solving

1 − PFA = 1

ba� (a)

∫ T�

0
xa−1e−x/bdx (17)

for T� . Like the beta distribution, an exact solution for the
threshold does not exist, but can also be solved numerically.

The question now is how to transition from the threshold
as found through the beta distribution to the threshold as
found through the gamma distribution. The approach taken
here is to use quadratic Bèzier curves, which is defined as

B (t) = P0 (1 − t)2 + 2P1t (1 − t) + P2t
2, 0 ≤ t ≤ 1.

(18)
The path of a Bèzier curve begins at point B (0) = P0,
travels toward P1 (without ever reaching P1), and then turns
and ends at B (1) = P2.

The Bèzier points used to generate a threshold for
the PSD algorithm are P0

(
0, Tβ

)
, P1

(
θρ,max, Tβ

)
, and

P2
(
θI,max, T�

)
. Through experimentation, a good choice

for θρ,max is the θ location of the sample with the largest
value of ρ. Furthermore, all samples greater than θI,max are
not considered for detection as any sample crossing the
Bèzier detection threshold are almost assuredly the result
of the large range sidelobes through the MF detector. There
is no need to have a hard cutoff for samples at θ close to 0
as large sidelobes are not present in the output of the BD.

For the example case, the three Bèzier points are
P0 (0, 0.2501), P1 (1.1931, 0.2501), P2 (1.4, 0.4013) each
of which are marked in Fig. 4. In examining Fig. 4, it is
seen that the Bèzier threshold follows the same basic curve
as the underlying interference samples.

Now, the PSD detection routine will be evaluated in term
of its performance as compared to the previously described
CFAR detectors. For the following example, the parameters
used for the CFAR detectors are the same as those used in
Fig. 2. For this test, a 6 × 6 P3-based MCPC sequence
will be used to detect seven targets with a desired PFA of
10−5. One target is always placed at t/tb = 0.0, whereas
the others are randomly placed between t/tb = −6.0 and
t/tb = 6.0 inclusive. The return from the target at t/tb =
0.0 always has an SNR of 10.0 dB. The independent test
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Fig. 5. Comparison of CFAR detection and PSD detection. (a) A PD

comparison between various CFAR thresholds and the PSD threshold,
(b) A PFA comparison between various CFAR thresholds and the PSD

threshold

variable is the echo power from the targets not at t/tb = 0.0.
For each test, the return power from these targets will be
equal and varied from −10.0 to 6.0 dB.

Fig. 5 shows the results of this test. Fig. 5(a) shows
the probability of detections, where, in this case, it is equal
to the total number of target detections divided by the total
number of targets. It is clear from Fig. 5(b) that the detection
performance of the PSD detector is superior to the CA-
CFAR-based detectors.

Fig. 5(b) provides the PFA in terms of the tested SNR.
It is noted that none of the detectors achieves the desired
PFA of 10−5. Nevertheless, the PFA for the various detectors
are relatively constant across all tested SNRs. It is observed
that, out of all the CFAR detectors, the LO-CA-CFAR de-
tector has the best detection performance. However, the
LO-CA-CFAR detector also has the worst performance in
terms of PFA.

It is important to note that, as previously mentioned,
the intent of this paper is not to rigorously design opti-
mal CFAR detectors. It is therefore possible that the num-
ber of guard and training samples used in the various
CFAR schemes could be altered to provide better per-
formance. Fig. 5 should be considered in the con-
text of showing that the PSD detector is compara-
ble, and in some cases superior, to traditional CFAR
detectors.

IV. DOPPLER MEASUREMENT

A major obstacle in achieving maximum system per-
formance in multicarrier communication technologies such
as OFDM is inter-carrier interference (ICI). ICI is caused
by carrier frequency offsets (CFO) due, in part, to mis-
matches in the transmitter and receiver local oscillators
(LO) as well as Doppler shifts within the communication
channel. This ICI leads to the destruction of orthogonal-
ity within the communication link that inhibits the accu-
rate transmission of data. However, unlike a traditional
wireless communication scheme, the transmitter and re-
ceiver are collocated, which are assumed to share the
same LO thus mitigating its effect on CFO. It can there-
fore be assumed that ICI is caused predominately due
to Doppler shifts within the environment. The goal then
is to measure the ICI in order to determine the equiv-
alent Doppler shift caused by moving targets within the
environment.

In an OFDM communication system, the received signal
on subcarrier k in an AWGN channel with ICI has been well
established as [22]

Y (k) = X (k) S (0) +
N−1∑

l=0,l �=k

X (l) S (l − k) + nk (19)

k = 0, 1, . . . , N − 1

where X (k) is the transmitted modulated symbol on the
kth subcarrier, and nk is the additive Gaussian noise sam-
ple. S (l − k) is the ICI coefficient between the lth and kth
subcarrier, which is equated as

S (l − k) = sin (π (ε + l − k))

N sin
(

π
N

(ε + l − k)
)

· exp

(
jπ

(
1 − 1

N

)
(ε + l − k)

)
(20)

where ε is the normalized frequency offset given by ε =
�F/�f (�F is the CFO, and �f is the subcarrier spacing
of the system).

In matrix notation (19) can be written as

Ȳ = (
X̄ᵀS

)ᵀ + n̄ (21)

where X̄ = [X(0), . . . , X(N − 1)]ᵀ is the transmitted mod-
ulated symbol vector through one bit interval (i.e., a
single column of Section I) produced by (4), Ȳ =
[Y (0), . . . , Y (N − 1)]ᵀ is the corresponding received sig-
nal vector, n̄ = [n0, . . . , nN−1]ᵀ is the noise vector, and S
is the ICI coefficient matrix. The pth-row and qth-column
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Fig. 6. Doppler measurement block diagram.

element of the N × N S matrix is

Sp,q = Sp−q = S (p − q) (22)

resulting in the ICI coefficient matrix

S =

⎡
⎢⎢⎢⎢⎣

S0 S−1 · · · S1−N

S1 S0 · · · S2−N

...
...

. . .
...

SN−1 SN−2 · · · S0

⎤
⎥⎥⎥⎥⎦ . (23)

Assuming that the transmission bandwidth is suffi-
ciently narrow, it can be shown that the Doppler shift from
a target on a multicarrier signal is equivalent to the applica-
tion of ICI. Suppose, for instance, that a multicarrier signal
experiences a Doppler shift proportional to the subcarrier
spacing. That is

εDoppler = fd

�f
(24)

which is equivalent to the normalized frequency offset value
ε as used in the calculation of the ICI matrix in (20).

The Doppler estimation technique proposed in this pa-
per will be borrowed from [23], where a method was pre-
sented to perform blind ICI cancelation. However, unlike
the channel equalization approach, this Doppler estima-
tion technique is greatly simplified as the radar has per-
fect knowledge of the transmitted waveform. Although the
normalized frequency offset due to the Doppler shift ε is
unknown to the radar, we can quantize ε into P equally
spaced values

ε′
p = εmin + (p − 1) · �ε, p = 1, 2, ..., P (25)

where εmin is the smallest test value and �ε is the uniform
spacing between the normalized frequency offset estimates.
�ε can be calculated in terms of the maximum desired test

value εmax by

�ε = εmax − εmin

P
. (26)

It is obvious that one of these P estimates will be the closest
to the true normalized frequency offset ε.

Following along with the Doppler measurement re-
ceiver in Fig. 6, P parallel channels are built in the receiver
where each branch uses one of the P quantized ε s to create
the corresponding ICI coefficient matrix Ŝ. Hence, there
are P ICI coefficient matrices Ŝ1, Ŝ2, ..., ŜP where the pth
matrix corresponds to

Ŝp =

⎡
⎢⎢⎢⎢⎣

Sp(0) Sp(−1) · · · Sp(1 − N)

Sp(1) Sp(0) · · · Sp(2 − N)
...

...
. . .

...

Sp(N − 1) Sp(N − 2) · · · Sp(0)

⎤
⎥⎥⎥⎥⎦
(27)

and

Sp (l − k) = sin
(
π
(
ε̂p + l − k

))
N sin

(
π
N

(
ε̂p + l − k

))
· exp

(
jπ

(
1 − 1

N

) (
ε̂p + l − k

))
(28)

In every branch, using the ICI coefficient matrix esti-
mates, an estimate of the received OFDM signal is calcu-
lated as

Ŷp =
(

Xᵀ ˆ̃Sp

)ᵀ
(29)

where X is the N × M matrix of transmitted MCPC bits,
and ˆ̃Sp is an N × NM matrix where

ˆ̃Sp = [
Ŝp Ŝp · · · Ŝp

]
. (30)
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The one ε′
p that is the closest to the true value of ε will

result in an estimate of the received signal matrix Ŷp that
is closest to the received signal matrix Y . Hence, the com-
parison of the distances between the P reproduced received
signal matrices and the true received signal matrix are used
to determine a coarse estimate of the frequency offset where
the values of ε′

p that produce the smallest distances are de-
termined to be the better estimates.

Let γp denote the distance between P th estimated signal
matrix and the received signal matrix such that

γp = ‖Ŷp − Y‖F (31)

where ‖ · ‖F is the Frobenius norm. The value of the cost
function γ with perfect normalized frequency offset esti-
mation occurs when the ICI coefficient matrix estimate S̃
exactly matches the true ICI coefficient matrix S. The value
of the cost function at this point is equal to

γnoise = ‖N‖F (32)

where N is N × M the complex noise matrix whose
elements ni,j are distributed as ni,j ∼ [N

(
0, σ 2

)+
jN

(
0, σ 2

)
]. Equation (32) can be equivalently written as

γnoise =
√√√√ N∑

i=1

M∑
j=1

|ni,j |2. (33)

It can be shown that the absolute value of ni,j is Rayleigh
distributed such that |ni,j | ∼ R (σ ). It can also be shown
that the sum of the squares of N · M Rayleigh random
variables is gamma distributed as

NM−1∑
i=0

|vec (N) |2 ∼ �
(
NM, 2σ 2

)
. (34)

Thus, the expected value of γnoise is

E[γnoise] =
√

E[�
(
NM, 2σ 2

)
]

=
√

2NMσ 2. (35)

It is important to note that γnoise is not necessarily the mini-
mum value of the cost function, and, in fact, the probability
that the minimum value of the cost function equals γnoise is
exactly equal to 0.

The square of the cost function (γ 2) can be approxi-
mated as a quadratic function as γ approaches its minimum
such that

γ 2 = P (ε − x)2 + c (36)

where x equals the ε value that minimizes γ 2 and c is the
minimum value of γ 2. It is noted that (36) has three un-
knowns (P , x, and c), which can be fully solved for if three
samples of the cost function γ 2 are available. Therefore,
the smallest value of the cost function as well as its two
smallest neighbors, labeled (ε̂1, γ1), (ε̂2, γ2), and (ε̂3, γ3) at
the output of the ‖ · ‖F block in Fig. 6, are now used to solve
for these unknowns. The following system of equations can

now be solved simultaneously

γ 2
1 = P (ε1 − x)2 + c

γ 2
2 = P (ε2 − x)2 + c

and

γ 2
3 = P (ε3 − x)2 + c

yielding

P = γ 2
1 − γ 2

2

(ε1 − ε2)(ε2 − ε3)
− γ 2

1 − γ 2
3

(ε1 − ε3)(ε2 − ε3)
(37)

x = ε2
1γ

2
2 − ε2

2γ
2
1 − ε2

1γ
2
3 + ε1

3γ
2
1 + ε2

2γ
2
3 − ε2

3γ
2
2

2(ε1γ
2
2 − ε2γ

2
1 − ε1γ

2
3 + ε3γ

2
1 + ε2γ

2
3 − ε3γ

2
2 )

(38)

and

c = γ 2
1 − P (ε1 − x)2 . (39)

It is known that the square of the cost function γ 2 at the true
value of the normalized frequency offset, εtrue, will equal

γ 2
noise = 2NMσ 2 (40)

which is the square of the value derived in (35). Solving
γ 2(ε) = γ 2

noise yields two candidates for the estimate of the
true normalized frequency offset

ε̂L = x +
√

−4P
(
c − γ 2

noise

)
2P

ε̂R = x −
√

−4P
(
c − γ 2

noise

)
2P

. (41)

These two normalized frequency offset estimates are used
to generate estimated ICI coefficient matrices (SεL

and SεR
),

which are subsequently used to generate two estimates of
the received signal matrices (ŶL and ŶR).

A second measurement must be used to determine
whether εL or εR is the best estimate of ε. This measurement
takes the following form:

� = ‖vec(Ŷ ) − vec(Y )‖1 (42)

where ‖ · ‖1 is the L1-Norm operator and vec (·) is the vec-
torization operator. The vectorization operator simply con-
verts the N × M matrix into a vector of length NM . The
value of this cost function � with perfect ICI estimation
equals

�noise = ‖vec (N) ‖1. (43)

As previously shown, |ni,j | is Rayleigh distributed with a
mean equal to σ

√
π
2 . Therefore, the expected value of �noise

is expressed as

E [�noise] = E

[
NM−1∑

i=0

|vec (N) |
]

= NMσ

√
π

2
. (44)

Finally, an L1 norm measurement is taken on the two recon-
structed received signal matrix estimates and the actually
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TABLE III
Radar Parameters for the Doppler

Estimation Example

Parameter Value

Carrier frequency 3 GHz
Wavelength (λ) 0.1 m
Channels 16
Modulation 4 × 4 P3 MCPC codes
Pulse width (τ ) 100 μs
fd,max 10 kHz
Bandwidth 640 kHz
P 20
εmin −0.5
εmax 0.5
�ε 0.05

received signal matrix, which are both compared to �noise.
The best estimate ε̂ is then determined as

ε̂ = argmin
a∈{ε̂L,ε̂R}

(|�(a) − E [�noise] |) (45)

where � (a) is � evaluated at ε̂L and ε̂R . With this esti-
mated normalized frequency offset, the velocity estimate is
calculated as

v = ε̂�f C0

2fc

(46)

where C0 is the speed of light.

A. Velocity Estimation Example

To help explain this velocity estimation routine, an
example will be provided. Consider a radar operating at
fc = 3 GHz using N = 16 channels of 4 × 4 P3 MCPC-
coded waveforms. If the maximum absolute relative veloc-
ity to the radar is expected to be vmax = 500 m/s then the
maximum absolute Doppler shift expected is equal to

fd,max = 2fcvmax

C0
. (47)

Also, suppose the desired maximum allowable absolute nor-
malized frequency offset is εmax = 0.25. This requirement
can be satisfied by setting the operating bandwidth of the
radar to

B = Nfd,max

εmax
. (48)

This notional radar employs P = 20 εp estimates evenly
distributed between −0.5 and 0.5 resulting in a �ε spacing
of 0.05. All radar parameters for this example are shown in
Table III.

Upon signal detection, the twenty normalized frequency
offset estimates are used to calculate twenty cost function
values γ 2. As shown in Fig. 7, the smallest three consecutive
γ 2 values along with their respective εp values are used
to evaluate the quadratic fit of γ 2. Values for εL and εR

(indicated by the left and right pointing triangles in the
figure) are found by solving the quadratic fit for γ 2

noise. �

values are obtained at εL and εR , which are then compared
with �noise. In this particular example, εL is chosen as the

Fig. 7. Solid line is the quadratic fit of γ 2. εL and εR (indicated by the
left and right pointing triangles) are found by solving the quadratic fit for
γ 2

noise. � values are obtained at εL and εR , which are then compared with
�noise. εL is chosen as the best estimate of ε because it minimizes the

function defined in (45).

Fig. 8. Doppler RMS error at an SNR of 70 dB for various maximum
normalized frequency offset values.

best estimate of ε because it minimizes the function defined
in (45).

B. Velocity Estimation Design and Evaluation

As was hinted at in the previous example, there are de-
sign choices to be made. The design of the system must
enforce a particular maximum expected absolute normal-
ized frequency offset. A decision also must be made as to
how many ε′

p samples need to be used. For the following
discussion and figures, a carrier frequency of fc = 3.0 GHz
will be considered.

Fig. 8 shows the measured Doppler RMS error for dif-
ferent 4 × 4 P3-based MCPC sequences with a SNR of
70 dB using 15 ε′

p samples for different maximum absolute
normalized frequency offset values. It is observed that the
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best performance is achieved when the maximum normal-
ized frequency offset is equal to approximately 0.85.

These results can be explained by first considering that
enforcing a maximum normalized frequency offset is anal-
ogous to enforcing a specific subcarrier spacing. That is,
decreasing the maximum normalized frequency offset is the
same as increasing the subcarrier spacing, and, conversely,
increasing the maximum normalized frequency offset is the
same as decreasing the subcarrier spacing. It is also noted
that the subcarrier spacing �f is found in the numerator
of the velocity calculation in (46). Thus, given a constant
normalized frequency offset estimate error, a larger velocity
estimation error is produced when the subcarrier spacing is
larger (smaller maximum normalized frequency offset) and
a smaller velocity estimation error is produced when the
subcarrier spacing is smaller (larger maximum normalized
frequency offset).

It is also noted that as the maximum normalized fre-
quency offset gets greater than approximately 0.95, the
Doppler estimation error increases rapidly. This is because
the measurement of the normalized frequency offset be-
comes ambiguous as the frequency offset has shifted the
received signal vector into adjacent subcarriers. For exam-
ple, a normalized frequency offset of 1.1 will be incorrectly
measured as an offset of 0.1.

The goal then is to design a system to maximize Doppler
measurement performance. In light of the previous discus-
sions, it is advantageous to enforce a maximum normalized
frequency offset of approximately 0.85 by selecting a sys-
tem bandwidth, given an expected maximum target radial
velocity and number of subcarriers. Suppose the maximum
expected radial velocity of a target is equal to vmax. The total
bandwidth of the system to achieve a maximum normalized
frequency offset of 0.85 is found as

Bopt = 2Nfcvmax

0.85 · C0
. (49)

Obviously, the design of this total bandwidth is limited by
the physical capabilities of the notional radar system.

With this optimal bandwidth found, the next step is to
determine the number of ε′

p necessary for adequate veloc-
ity estimation. Fig. 9 shows the RMS Doppler measurement
error as a function of SNR for 4 × 4 P3-based MCPC se-
quences. The number ε′

p estimation samples tested are 5,
10, 15, and 20. For comparisons sake, the expected RMS
Doppler measurement error of a traditional radar system
with the same radar parameters (excluding the MCPC mod-
ulation) is also included. This expected error as given in [24]
is

σv = λ

2τ
√

2 · S/N
(m/s) . (50)

It is clear in Fig. 9 that the number of estimation samples
sets a minimum bound for the best achievable Doppler RMS
measurement error. For instance, examining Fig. 9, it is
clear that by using P = 10 ε′

p samples with a 4 × 4 P3-
based MCPC sequence will result in a minimum Doppler
RMS error of approximately 2.817 Hz.

Fig. 9. Comparison of the RMS error resulting from the quadratic
estimation of ε compared to the RMS error achieved in a traditional radar

system as a function of SNR.

TABLE IV
Comparison of the Number of

Valid Combinations and
Corresponding Number of Bits

per MCPC Sequence

Size Combinations Bits

3 × 3 4 2
4 × 4 16 4
5 × 5 64 6
6 × 6 512 9
7 × 7 4096 12
8 × 8 32 768 15
9 × 9 262 144 18
10 × 10 2 097 152 21

V. COMMUNICATIONS

This section will demonstrate the use of MCPC signals
in a wireless communication context. For a system em-
ploying an M × M MCPC sequence, a total of M! unique
sequences can be generated (where ! is the factorial oper-
ator). Each of these unique sequences can be assigned a
unique bit combination (i.e., a series of binary 1s and 0s).
Suppose n such sequences have been identified. In order to
ensure a complete code set (a complete code set contains
all possible combinations of 1s and 0s) a maximum of

V = 2
log2(n)� (51)

can be used. Table IV provides the number of combina-
tions of sequences and corresponding number of bits per
sequence for various sizes of MCPC sequences.

A figure of merit in wireless communications is the bit
error rate (BER), which is defined as the number of bit er-
rors per unit time. As previously mentioned in Section IV, a
major obstacle in achieving maximum system performance
is ICI, which is caused by CFOs due, in part, to Doppler
shifts within the communications channel. This ICI leads to
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the destruction of orthogonality within the communication
link that inhibits the accurate transmission of data.

Another property of a wireless communication channel
that negatively impacts BER performance is multipath fad-
ing. Typically, fading channels in spread spectrum wireless
systems such as OFDM demonstrate a Q-fold frequency
diversity over the transmission bandwidth, where Q is, for
example, 2, 3, or 4. Mathematically, this corresponds to

N�f = Q�fc (52)

where N�f is the bandwidth of the OFDM transmis-
sion, and �fc is the coherence bandwidth of the channel,
which indicates that it is frequency selective over the entire
transmission bandwidth but not over each subcarrier [25].
Specifically, with N carriers spaced across the entire band-
width each carrier undergoes a flat fade with the correla-
tion between the ith and j th subcarrier fades characterized
by [25]

ρi,j = 1

1 + ((
fi − fj

)
/�fc

)2 (53)

where
(
fi − fj

)
represents the frequency separation be-

tween the ith and j th subcarriers. The method used to gen-
erate these correlated fades is fully described in [26]. Now,
the received signal vector in a fading channel with ICI is
written as

Ȳ = BX̄S + n̄ (54)

where B is an N × N diagonal matrix equal to

B =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α1 0 · · · 0

0 α2
. . .

...
...

. . .
. . . 0

0 · · · 0 αN

(55)

where αn is the correlated fading coefficient with Rayleigh
statistics on channel n.

A. Channel Equalization and ICI Removal

The accuracy of the reception and interpretation of the
transmitted data is dependent upon the mitigation of both
the effects of the fading channel and the ICI. For clarity’s
sake, and without loss of generality, the following deriva-
tions will ignore the contributions from noise. The proposed
fading channel equalization process begins by multiply-
ing the received signal matrix by its conjugate transpose
resulting

ζ = YY ∗ᵀ

= BSᵀ Xᵀ X∗ᵀS∗ B∗ᵀ. (56)

Now, assuming there exists an estimate of the modulated
transmitted symbol matrix (denoted X̂) and an estimate of
the ICI matrix (denoted Ŝ), define

ρ =
(

X̂ᵀ Ŝ
)ᵀ

Y ∗ᵀ

= Ŝ
ᵀ

X̂ X∗ᵀ B∗ᵀS∗. (57)

The channel equalization is completed by

Ŷ = diag (ρ)

diag (ζ )
Y

=
diag

(
Ŝ

ᵀ
X̂ X∗ᵀ B∗ᵀS∗

)
diag

(
BSᵀ Xᵀ X∗ᵀS∗ B∗ᵀ) BSᵀ X (58)

where diag (·) is the diagonal operator and

diag (A) =

⎡
⎢⎢⎢⎢⎢⎣

A1,1 0 · · · 0

0 A2,2
. . .

...
...

. . .
. . .

...

0 0 · · · An,n

⎤
⎥⎥⎥⎥⎥⎦ . (59)

If the estimates of the ICI matrix and the modulated trans-
mitted signal matrix are perfect, it is easy to see that (58)
reduces to Ŷ = (XᵀS)ᵀ, which is equal to the received sig-
nal with the effects of the fading channel removed. It is
therefore concluded that the fading matrix B can be esti-
mated as

B̂ = diag (ζ )

diag (ρ)
. (60)

The next step in the recovery of the transmitted symbols
is to remove the effects of the ICI. With knowledge that the
ICI coefficient matrix S is unitary, the ICI can be completely
removed from the previously equalized signal, if we apply
the following matrix multiplication:

X̂ =
(

Ŷ
ᵀ

S∗ᵀ
)ᵀ

= X . (61)

Through application of (61), the signal distortion caused
by the fading channel and ICI can be effectively removed.
However, before these techniques can be implemented, a
method of obtaining estimates of the ICI and modulated
transmitted symbol matrices must be established.

Similar to the Doppler estimation scheme proposed in
Section IV, estimates of the normalized frequency offsets
can be quantized into P equally spaced values between εmin

and εmax where

ε̂p = εmin + 1

2
�ε + (p − 1) �ε, p = 1, 2, . . . , P (62)

and �ε is the spacing between the estimates defined by

�ε = εmax − εmin

P − 1
. (63)

P parallel channels are built in the receiver where each
branch uses one of the P quantized ε s to create the corre-
sponding ICI coefficient matrix Ŝ. Hence, there are P ICI
coefficient matrices Ŝ1, Ŝ2, ..., ŜP where the pth matrix
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corresponds to

Ŝp =

⎡
⎢⎢⎢⎢⎣

Sp(0) Sp(−1) · · · Sp(1 − N)

Sp(1) Sp(0) · · · Sp(2 − N)
...

...
. . .

...

Sp(N − 1) Sp(N − 2) · · · Sp(0)

⎤
⎥⎥⎥⎥⎦
(64)

and

Sp (l − k) = sin
(
π
(
ε̂p + l − k

))
N sin

(
π
N

(
ε̂p + l − k

))
· exp

(
jπ

(
1 − 1

N

) (
ε̂p + l − k

))
. (65)

For every branch, using the quantized ICI coefficient
matrix estimates, additional parallel branches are created,
one for each valid MCPC combination. For each of these
branches, a metric must be established to determine the best
MCPC sequence estimate. We start by introducing

ξ =
(

diag (ρ)

diag (ζ )
Y
)∗ᵀ (

X̂
ᵀ

Ŝp

)ᵀ
. (66)

It is noted that (66) includes both the fading channel equal-
ization as performed in (58) and the ICI cancelation as
performed in (61). Assuming perfect estimations of the ICI
matrix and the MCPC matrix, (66) reduces to

ξ = (
(XᵀS)ᵀ

)∗ᵀ
(XᵀS)ᵀ

= κ I (67)

where κ is a constant and I is an M × M identity ma-
trix. Therefore, it is concluded that for a given normalized
frequency offset estimate, the best estimate of the MCPC
sequence will be the one that most resembles an identity
matrix. A decision device is implemented where the best
estimate of the MCPC sequence will be the one that maxi-
mizes

β =

∣∣∣tra ( ξ̂
)∣∣∣2

M · sum

(∣∣∣ ξ̂ ∣∣∣2)+
∣∣∣tra ( ξ̂

)∣∣∣2 . (68)

Now that the best MCPC sequence estimates have been
found for each of the normalized frequency offset estimates,
a decision has to be made on which of the ε̂p branches pro-
duces the most likely result. This is accomplished by first
producing an estimate of the received signal that includes
the effects of the estimated fading channel as well as the
estimated ICI. The estimate of the fading channel was pre-
viously provided in (60) where ζ is as given in (56) and ρ is
as given in (57) with the ICI matrix estimation Ŝ replaced
by Ŝp and the transmitted sequence estimation X̂ replaced
by the best MCPC sequence estimate for the current ICI
branch under investigation (X̂p). The estimated received
signal on branch p is then calculated as

Ŷp = B̂
(

X̂
ᵀ
p Ŝp

)ᵀ
. (69)

Fig. 10. BER performance in a fading channel with ICI.

A decision device is constructed where branch p, which
minimizes

� = ‖Y − Ŷ‖F (70)

where ‖ · ‖F is the Frobenius norm, is deemed to be the
best estimate of the transmitted MCPC sequence.

B. Simulation

This section will compare the effectiveness of MCPC-
encoded signals and traditional phase-coded signals for dig-
ital communications in a fourfold frequency diverse corre-
lated Rayleigh fading channel with ICI. The normalized
frequency offset is randomly changed for each transmis-
sion with a uniform random number between −0.5 and 0.5
inclusive. The MCPC receiver uses three parallel branches
with ε̂p the values of −0.25, 0, and 0.25 for ICI cancelation.
In total, 4 × 4 P3 code sequences will be compared with
differentially encoded binary phase shift keying (D-BPSK)
and quadrature phase shift keying (D-QPSK) sequences.
The adjacent symbol repetition (ASR) ICI self-cancelation
scheme [27] will be applied to both the differentially en-
coded signals to mitigate the effects of ICI. ASR works by
repeating the same symbol with opposite polarity on ad-
jacent subcarriers, thus reducing the transmission rate by
one-half. For all sequences, a 16-channel system will be
employed, which results in the transmission of 4 MCPC
codes per pulse.

Fig. 10 shows the results of this simulation. As com-
pared to the performance of the ASR-coded signals (la-
beled D-BPSK and D-QPSK), the MCPC-encoded signal
has similar performance at lower signal to noise ratios but
performs dramatically better at higher power levels.

VI. CONCLUSION

This paper considered the optimization of radar perfor-
mance within the structure imposed by a coded OFDM for-
mat required to achieve an acceptable communication link.
In particular, the specific techniques, as introduced within
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this paper, of using the MCPC sequences, as prescribed by
Levanon and Mozeson, for simultaneous radar and wireless
communication operations offer a significant improvement
in the study, implementation, and performance of dual-use
radar and communication waveforms and signal processing
techniques.

In terms of radar detection performance, it was shown
that the MF response of MCPC sequences produces side-
lobe levels that are higher than those of other traditional
pulse-compression radar waveforms. These high sidelobes
produce false detections and mask the presence of real
targets when using CA-CFAR detectors. A new detec-
tion scheme, termed PSD, was introduced as a means of
overcoming these large autocorrelation sidelobes. Through
simulation, it was shown that this new detector provides
acceptable detection performance in multitarget environ-
ments. Also, a method of using MCPC waveforms to mea-
sure Doppler frequencies was introduced. It was shown that
the RMS Doppler measurement error, when using the tech-
nique proposed in this paper, is superior to the performance
of traditional radar systems.

In terms of communication performance, a novel
method of exploiting the orthogonality of MCPC sequences
to overcome the effects of multipath fading and intercarrier
interference was introduced. Through simulation, it was
demonstrated that the channel equalization approaches, as
introduced within this paper, provide acceptable BER per-
formance, as compared to traditionally modulated signals,
in a fading channel with ICI.
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