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model and the importance of a proper spatio-temporal resolu-

tion. Furthermore, the proposed model is evaluating on esti-

mated pose data with self-paced learning techniques. Finally,

more experiment results are included.

II. RELATED WORK

Historically, RGB video action recognition [21] consisted

of a feature extraction stage, a feature encoding stage and

a classification stage. Hand-crafted features including HOG

[22], MBH [23] and etc were designed to represent activity

features. Various feature encoding methods [24], [25] were

also studied. With the developments of deep neural networks

[26], [27], more deep models were designed to solve the action

recognition problem. Adopting ConvNets to encode frame-

level feature and using LSTM to learn the temporal evolution

had been proved to be an effective approach [1], [28], [29].

Optical flow [4], [5], [6] was another way of representing

temporal information. Furthermore, C3D [2] was proposed to

learn the spatial and temporal information simultaneously with

3D convolutional kernels.

Compared to other frequently used modalities including

RGB videos [1], [2], [3] and optical flow [4], [5], [6], skeleton

sequences required much less computation and were more

robust across views and datasets. With the advanced methods

to acquire reliable skeletons from RGBD sensors [7] or even

a single RGB camera [8], [30], [31], [32], skeleton-based ac-

tion recognition became increasingly popular. Many previous

skeleton-based action recognition methods [33] modeled the

temporal pattern of skeleton sequences with Recurrent Neural

Networks (RNN). Hierarchical structures [12], [13] better rep-

resented the spatial relations between body parts. Other works

[34], [35] adopted attention mechanisms to locate spatial key

joints and temporal key stages in skeleton sequences. Liu et

al. [14] proposed a 2D LSTM network to learn spatial and

temporal relations simultaneously. Wang et al. [15] modeled

spatio-temporal relations with a two-stream RNN structure.

Other effective approaches included lie groups [11], [36]

and nearest neighbor search [37]. Recently, graphical neural

networks [38], [39] achieved the state-of-the-art performance

on the skeleton based recognition. A performance summary

on two frequently used datasets NTU RGB+D [13] and SBU

Kinect Interaction [40] was shown in Table I.

As shown in Table I, the recently proposed CNN based

approaches showed a better performance in learning skeleton

representations compared to RNN based methods. Ke et al.

[16] proposed to convert human skeleton sequences into gray

scale images, where the joint coordinates were represented by

the intensity of pixels. Liu et al. [41] proposed to generate

skeleton images with ‘Skepxels’ to better represent the joint

correlations. In this paper, we further improved the design of

skeleton images with a depth-first traversal on skeleton trees.

Attention mechanisms were important for skeleton based

action recognition. Previous LSTM based methods [34], [35]

learned attention weights between the stacked LSTM layers.

For CNN based methods, we proposed that general visual

attention can be directly adopted to generate 2D attention

masks, where each row represented the spatial importance

TABLE I
THE PERFORMANCE SUMMARY OF THE STATE-OF-THE-ART ON SKELETON

BASED ACTION RECOGNITION.

Methods Approach
NTU RGB+D
Cross Subject

SBU Kinect
Interaction

Two-stream RNN [15] RNN 71.3% 94.8%
Ensemble TS-LSTM [33] RNN 76.0% -
Clips+CNN+MTLN [16] CNN 79.6% 93.6%

Skepxels [41] CNN 81.3% -
GLAN [20] CNN 80.1% 95.6%
A2GNN [38] Graphic NN 72.7% -
ST-GCN [39] Graphic NN 81.5% -

and each column represented the temporal importance. Visual

attention had achieved successes in many areas, including

image captioning [18], [42], RGB based action recognition

[19], [43], image classification [44], [45], sentiment analysis

[46] and etc. Many visual attention methods took an image

sequence as input [19], or used extra information from another

modality like text [18], [42], [43]. Because a single skeleton

image already represented a spatio-temporal sequence and

there was no need for an extra modality, we proposed a single

frame based visual attention structure.

III. METHODOLOGY

In this section, we first introduced the previous design

of skeleton images and the base CNN structure, before an

improved Tree Structure Skeleton Image (TSSI) was proposed.

Later, we proposed the idea of two-branch visual attention

and introduced a Global Long-sequence Attention Network

(GLAN) based on the idea. Finally, we introduced the Sub-

Sequence Attention Network (SSAN) to learn long-term de-

pendencies.

A. Base Model

In CNN based skeleton action recognition, joint sequences

were arranged as 2D arrays that were processed as gray scale

images. We named such a generated image the ‘Skeleton

Image’. For a channel in skeleton images, each row contained

the chaining of joint coordinates at a certain time-stamp.

Each column represented the coordinates of a certain joint

throughout the entire video clip. The chain order of joints was

pre-defined and fixed. A typical arrangement of the 2D array

was shown in Figure 1 (c). The generated 2D arrays were

then scaled into 0 to 255, and resized into a fixed size of

224 ∗ 224. The processed 2D arrays were processed as gray

scale images, where each channel represented an axis of joint

coordinates. The skeleton images were then fed into CNNs for

action recognition. ResNet-50 [47] was adopted as the base

ConvNet model. Compared to RNN based or graph neural

network based method, CNN based methods could better learn

the spatio-temporal relations among joints.

B. Tree Structure Skeleton Image

A shortcoming in the previous skeleton images was that

each row was arranged by an improper fixed order. Each

row contained the concatenation of all joints with a pre-

defined chain order. CNN had a feature that the receptive field
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tabla, soccer juggling, tai chi, boxing-speed bag, salsa spins,

jump rope, boxing-punching bag, hammer throw, rafting, push

ups, juggling balls, golf swing, baby crawling.

B. Ablation Studies

To prove the effectiveness of the TSSI and the proposed

attention networks, we separately evaluate each proposed

module with results shown in Table III. Each component of the

framework is evaluated on NTU RGB+D with the cross subject

setting. NTU RGB+D is selected for component evaluations

because it is the largest and the most challenging dataset so

far. Similar results are observed on other datasets.

Traditional Skeleton Image + ConvNet. As a baseline, we

adopt the previous skeleton image representation from [16] and

use ResNet-50 as a base CNN model to train spatio-temporal

skeleton representations. We test the three spatial joint orders

proposed by Sub-JHMDB [53], PennAction [54] and NTU

RGB+D [13]. Experiments show that the NTU RGB+D’s order

generates a better accuracy of 1.3% than the rest two orders.

Therefore, we adopt the joint order proposed by NTU RGB+D

for baseline comparison. The order is shown in Figure 1 (a).

TSSI + ConvNet. The effectiveness of the proposed Tree

Structure Skeleton Image (TSSI) is compared to the baseline

design of skeleton images. TSSI is the skeleton image gener-

ated with a depth-first tree traversal order. The skeleton tree

structure, TSSI arrangement and a TSSI example is shown in

Figure 1 (b), (d), (e). A large boost in accuracy is observed

from 68.0% to 73.1%, which proves the effectiveness of TSSI.

TSSI + Base Attention. The base attention model provides

a baseline for two-branch attention networks. The base at-

tention blocks with and without residual links are inserted at

three different locations in ResNet-50, that is at the front after

the first convolutional layer, in the middle after the second

residual block and in the end after the final residual block.

The input feature blocks to the three attention blocks have

the shapes of 112 ∗ 112 ∗ 64, 28 ∗ 28 ∗ 512 and 7 ∗ 7 ∗ 2048.

The recognition accuracy boosts from 73.1% to 74.9%. This

experiment shows that even the simplest two-branch attention

network can improve the recognition accuracy.

TSSI + GLAN. We evaluate the proposed Global Long-

sequence Attention Network (GLAN). The number of link

connections and the depth of the hourglass mask branch can

be manually adjusted. In experiments, we first down-sample

the feature blocks to a lowest resolution of 7 ∗ 7 and then

up-sample them back to the input size. Each max pooling

layer goes with one residual unit, one link connection and one

up-sampling unit. With a GLAN structure shown in Figure

4, the recognition accuracy increases from 73.1% to 80.1%
compared to TSSI without attention mechanisms.

TSSI + SSAN. The SSAN is one of the two attention

networks we proposed. The number of sub-sequences and

the overlapping rate for the sub-sequences are two hyper-

parameters that are tuned with validation set. With a sub-

sequence number of 5 and an overlapping rate of 0.5, the

attention network achieves an accuracy of 80.9% from 73.1%
compared to the base TSSI structure.

TSSI + GLAN + SSAN. Individually, the GLAN and SSAN

san achieve a similar improvement in recognition accuracy.

TABLE II
GLAN + SSAN PERFORMANCE WITH DIFFERENT HYPER PARAMETERS

ON THE NTU RGB+D DATASET.

Sub-image
Lengths

Sub-image
Numbers

Overlapping
Rate

Accuracy (%)

T/3 3 0% 80.80
T/3 5 50% 82.42
T/3 9 75% 81.38

T/5 5 0% 78.56
T/4 5 25% 80.30
T/3 5 50% 82.42
T/2 5 75% 81.57

Moreover, we show that the GLAN and SSAN can be well

combined to further improve the performance. By replac-

ing the Resnet-50 with the proposed GLAN, the framework

achieved an accuracy of 82.4%. This experiment also shows

that the proposed two branch attention structure can be adopted

as atomic CNN structure in various frameworks to achieve a

better performance.

Furthermore, we analyze the hyper-parameters in the SSAN,

i.e. the overlapping rate, the number and length of sub-images.

The relation of these parameters is:

T = tsub ∗ [1 + (1− α) ∗ (n− 1)] (7)

where tsub is the number of frames in each sub-image or the

sub-image length, T is the number of frames in the whole

sequence, α is the overlapping rate and n is the number of

sub-images. We design two sets of experiments with fixed

sub-image lengths or fixed sub-image numbers to interpret

the effectiveness of the SSAN and find the best set of hyper

parameters. Experiments are conducted on NTU RGB+D with

the TSSI + GLAN + SSAN framework.

Starting from the optimal hyper-parameters of a 50% over-

lapping rate and 5 sub-images, we report the performances

under different hyper parameters with either sub-image num-

bers or sub-image lengths unchanged. For the fixed length

experiment as shown in Table II, the length of sub-images are

fixed and the number of sub-images changes from 3 to 9 by

adjusting the overlapping rate. We observe the accuracy drops

1.6% from 82.4% to 80.8%. In the fixed sub-image number

experiment, the number of sub-images is fixed as five where

the best performance is achieved. The length of sub-images

varies from T/5 to T/2 with different overlapping rates. A

larger drop of accuracy of 3.8% is observed in the fixed sub-

image number experiment.

According to the experiment results, the length of sub-

images influence the performance of the SSAN most. This

implies that the SSAN produces a large boost in accuracy

mainly with its ability to flexibly adjusting the spatial-temporal

resolutions. The optimal hyper parameters of a 50% overlap-

ping rate, 5 sub-images and the T/3 temporal length works

best with the 25 joints on NTU RGB-D. The optimal hyper

parameters vary on different datasets with different averaged

sequence lengths and joint numbers. Furthermore, the SSAN

also better learns the long term dependencies. Most results

with the SSAN as shown in Table II outperform the methods

with single skeleton frames such as TSSI + GLAN.
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TABLE III
THE ACTION RECOGNITION ACCURACY COMPARED TO THE

STATE-OF-THE-ART METHODS ON THE NTU RGB+D DATASET.

State-of-the-art
Cross

Subject
Cross
View

Lie Group [11] 51.0 52.8
HBRNN [12] 59.1 64.0

Part-aware LSTM [13] 62.9 70.3
Trust Gate LSTM [14] 69.2 77.7
Two-stream RNN [15] 71.3 79.5

TCN [17] 74.3 83.1
Global Attention LSTM [34] 74.4 82.8

A2GNN [38] 72.7 82.8
Clips+CNN+MTLN [16] 79.6 84.8
Ensemble TS-LSTM [33] 76.0 82.6

Skepxels [41] 81.3 89.2

ST-GCN [39] 81.5 88.3

Proposed Model
Cross

Subject
Cross
View

Base Model 68.0 75.5
With TSSI 73.1 76.5

TSSI + Base Attention 74.9 79.1
TSSI + GLAN [20] 80.1 85.2

TSSI + SSAN 80.9 86.1
TSSI + GLAN + SSAN 82.4 89.1

C. Evaluations on Clean Datasets

NTU RGB+D. The middle column of Table III shows

the results of the NTU RGB+D cross subject setting. The

base model with naive skeleton images already outperforms

a number of previous LSTM based method, without adopting

the attention mechanism. This shows that CNN based methods

are promising for skeleton based action recognition. With the

improved TSSI, the cross subject accuracy achieves 73.1%,

which is comparable to the state-of-the-art LSTM methods.

The proposed two-branch attention architecture further im-

proves the performance and the GLAN outperforms the state-

of-the-art. Experiments prove the effectiveness of the proposed

CNN based action recognition method.

Furthermore, we show that generating sub-sequences and

adopting the long-term dependency model (SSAN) can achieve

a better results. The SSAN with ResNet-50 achieves a cross

subject accuracy of 80.9%. By replacing the ResNet with

the proposed GLAN to provide the spatial attention, the

framework improves the state-of-the-art to 82.4%. Similar

results are observed in the NTU RGB+D cross view setting,

as shown in the right column of Table III.

SBU Kinect Interaction. Similar to the performance on

the NTU RGB+D dataset, the proposed TSSI and attention

framework generates a large boost in the recognition accuracy

on the SBU Kinect Interaction dataset that outperforms the

state-of-the-art. The performances are shown in Table IV. The

proposed TSSI+SSAN+GLAN achieves an accuracy of 95.7±
1.7% on the five splits provided by SBU Kinect Interaction.

D. Error Case Analysis

To better understand the successful and failure cases, exper-

iments are conducted to analyze the performance of each class

in NTU RGB+D. As shown in Table VII, two parts of analysis

are conducted. First, eight classes that constantly perform the

best or worst are selected on the left side of Table VII. Results

TABLE IV
THE RECOGNITION ACCURACY COMPARED TO THE STATE-OF-THE-ART

METHODS ON THE SBU KINETIC INTERACTION DATASET.

State-of-the-art Accuracy (%)

Raw Skeleton [40] 49.7
HBRNN [12] 80.4

Trust Gate LSTM [14] 93.3
Two-stream RNN [15] 94.8

Global Attention LSTM [34] 94.1
Clips+CNN+MTLN [16] 93.6

Proposed Model Accuracy (%)

Base Model 82.0
With TSSI 89.2

TSSI + Base Attention 93.6
TSSI + GLAN [20] 95.6

TSSI + SSAN 94.0
TSSI + SSAN + GLAN 95.7

show that the actions with dynamic body movements, such

as standing, sitting and walking, can be well classified with

skeletons, while the classes with less motion like reading,

writing and clapping usually have a poor result. The first,

middle and last frames from these classes are visualized in

the first row of Figure 6. This follows human intuition that

skeletons are more useful for distinguishing dynamic actions,

while additional background context information is necessary

for recognizing the actions with less motion.

The results also show that the proposed TSSI, GLAN and

SSAN all generate a large boost in performance in all the

listed classes. On the righthand side of the table, statistics of

the best and worst classes are listed. Results show that TSSI +

GLAN + SSAN greatly improve the accuracy in challenging

classes. The top 1 worst class in TSSI + GLAN + SSAN has

an accuracy of 42.8%, which is even better than the averaged

accuracy of the worst 10 in base model. For the best classes,

the top 1 accuracy between the baseline and TSSI + GLAN

+ SSAN are similar. The improvements are mainly obtained

through the improvements in the challenging classes.

E. Self-Paced Learning on Noisy Datasets

The model is then evaluated on large scale RGB datasets

with estimated and thus noisy poses. For a fair comparison,

we do not use any pre-processing methods like interpolation

to reduce the noise. To better learn a noise robust system,

we adopt self-paced learning [55], [56], [57], [58] during

the training process. The model is first trained with a small

portion of reliable pose estimates and then gradually take more

noisy data as inputs. The average pose estimation confidence

values provided by Openpose is used as the indication of

reliability and the level of noises. The model starts with a high

confidence threshold of 0.5, i.e. all estimated pose sequences

with an average confidence lower than 0.5 are eliminated in

the training process. We then fine-tune the model step by step

by feeding more unreliable noisy data. Experiments show that

self-paced learning can both accelerate the convergence speed

and improve the final accuracy.

Kinetics-Motion. As shown in Table V, the proposed long

term dependency model with attention is comparable to the

state-of-the-art performances. The recognition accuracy also

similar to the methods using other modalities including RGB



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2864148, IEEE

Transactions on Circuits and Systems for Video Technology

9

TABLE V
THE RECOGNITION ACCURACY COMPARED TO THE STATE-OF-THE-ART

METHODS ON THE KINETICS-MOTION DATASET.

State-of-the-art Accuracy (%)

RGB CNN [51] 70.4
Flow CNN [51] 72.8
ST-GCN [39] 72.4

Proposed Model Accuracy (%)

With TSSI 58.8
TSSI + GLAN [20] 67.2

TSSI + SSAN + GLAN 68.7

TABLE VI
THE RECOGNITION ACCURACY COMPARED TO THE STATE-OF-THE-ART

METHODS ON THE UCF-MOTION DATASET.

State-of-the-art Accu. (%) RGB Flow Keypoints

HLPF [53] 71.4 - - X

LRCN [1] 81.6 X - -
3D-ConvNet [2] 75.2 X - -
Flow CNN [51] 85.1 - X -
Two-Stream [51] 91.3 X X -

Proposed Model Accu. (%)

With TSSI 87.9 - - X

TSSI + GLAN [20] 91.0 - - X

TSSI + SSAN + GLAN 91.7 - - X

and optical flow. This experiment proves that the proposed

GLAN + SSAN framework is noise robust. The first, middle

and last frames from example videos are shown for success and

failure cases in the third row of Figure 6. Observations show

that failure cases are mostly caused by missing or incorrect

pose estimates.

UCF101-Motion. As shown in Table VI, we evaluate the

framework on the proposed UCF-Motion dataset. The pro-

posed framework outperforms previous methods that use a

single modality [1], [2] or both appearance feature and optical

flow [4]. The experiment proves that joint is an effective

modality for recognizing motion related actions, although

joints alone are insufficient for distinguishing all defined action

classes since recognizing certain classes requires object and

scene appearances. Furthermore, the recognition accuracy is

still limited by the imperfect pose estimations. Example frames

are shown in the second row of Figure 6. The compared perfor-

mances are based on released codes or our reimplementation.

V. CONCLUSIONS

Using CNN for skeleton based action recognition is a

promising approach. In this work, we address the two major

problems with previous CNN based methods, i.e., the im-

proper design of skeleton images and the lack of attention

mechanisms. The design of skeleton images is improved by

introducing the Tree Structure Skeleton Image (TSSI). The

two-branch attention structure is then introduced for visual

attention on the skeleton image. A Global Long-sequence

Attention Network (GLAN) is proposed based on the two-

branch attention structure. We further propose the long-term

dependency model with a Sub-Sequence Attention Network

(SSAN). The effectiveness of combining the GLAN and the

SSAN is also validated. Experiments show that the pro-

posed enhancement modules greatly improve the recognition

accuracy, especially on the challenging classes. Extended

ablation studies prove that the improvements are achieved

by better retaining the skeletal information and focusing on

informative joints or time stamps. Moreover, the model shows

the robustness against noisy estimated poses. Next on our

agenda is to further improve the robustness against incomplete

and inaccurate estimated poses. Another direction for further

exploration is extending TSSI to automatically learn refined

joint relations.
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