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Abstract—Action recognition with 3D skeleton sequences be-
came popular due to its speed and robustness. The recently
proposed Convolutional Neural Networks (CNN) based methods
shown good performance in learning spatio-temporal represen-
tations for skeleton sequences. Despite the good recognition
accuracy achieved by previous CNN based methods, there existed
two problems that potentially limit the performance. First,
previous skeleton representations were generated by chaining
joints with a fixed order. The corresponding semantic meaning
was unclear and the structural information among the joints was
lost. Second, previous models did not have an ability to focus
on informative joints. The attention mechanism was important
for skeleton based action recognition because different joints
contributed unequally towards the correct recognition. To solve
these two problems, we proposed a novel CNN based method
for skeleton based action recognition. We first redesigned the
skeleton representations with a depth-first tree traversal order,
which enhanced the semantic meaning of skeleton images and
better preserved the associated structural information. We then
proposed the general two-branch attention architecture that
automatically focused on spatio-temporal key stages and filtered
out unreliable joint predictions. Based on the proposed general
architecture, we designed a Global Long-sequence Attention
Network (GLAN) with refined branch structures. Furthermore,
in order to adjust the kernel’s spatio-temporal aspect ratios
and better capture long term dependencies, we proposed a
Sub-Sequence Attention Network (SSAN) that took sub-image
sequences as inputs. We showed that the two-branch attention
architecture could be combined with the SSAN to further improve
the performance. Our experiment results on the NTU RGB+D
dataset and the SBU Kinetic Interaction dataset outperformed
the state-of-the-art. The model was further validated on noisy
estimated poses from the subsets of the UCF101 dataset and the
Kinetics dataset.

Index Terms—Action and Activity Recognition, Video Under-
standing, Human Analysis, Visual Attention.

I. INTRODUCTION

HE major modalities used for action recognition include
RGB videos [1], [2], [3], optic flow [4], [5], [6] and
skeleton sequences. Compared to RGB videos and optic flow,
skeleton sequences are computationally efficient. Furthermore,
skeleton sequences have a better ability to represent dataset-
invariant action information since no background context is
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Fig. 1. Tree Structure Skeleton Image (TSSI): (a) The example skeleton
structure and order in NTU RGB+D, (b) One possible skeleton tree for
TSSI generating, (c) Joint arrangements of naive skeleton images, (d) Joint
arrangements of TSSI based on the shown skeleton tree, and (e) An example
frame of TSSI. Different colors represent different body parts.

included. One limitation is that manually labeling skele-
ton sequences is too expensive, while automatic annotation
methods may yield inaccurate predictions. Given the above
advantages and the fact that skeletons can now be more
reliably predicted [7], [8], [9], skeleton based human action
recognition is becoming increasingly popular. The major goal
for skeleton based recognition is to learn a representation that
best preserves the spatio-temporal relations among the joints.
With a strong ability of modeling sequential data, Recur-
rent Neural Networks (RNN) with Long Short-Term Memory
(LSTM) neurons outperform the previous hand-crafted feature
based methods [10], [11]. Each skeleton frame is converted
into a feature vector and the whole sequence is fed into
the RNN. Despite the strong ability in modeling temporal
sequences, RNN structures lack the ability to efficiently learn
the spatial relations between the joints. To better use spatial in-
formation, a hierarchical structure is proposed in [12], [13] that
feeds the joints into the network as several pre-defined body
part groups. However, the pre-defined body regions still limit
the effectiveness of representing spatial relations. A spatio-
temporal 2D LSTM (ST-LSTM) network [14] is proposed
to learn the spatial and temporal relations simultaneously.
Furthermore, a two-stream RNN structure [15] is proposed to
learn the spatio-temporal relations with two RNN branches.
CNN has a natural ability to learn representations from 2D
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(a) Examples of key stages

(b) Examples of inaccurate keypoint predictions

Fig. 2. Examples of temporal key stages and inaccurate keypoint predictions
on NTU RGB+D. The actions in (a) are: throwing, crossing hands in front and
hand waving. Keypoint errors in (b) could lead to incorrect action predictions.

arrays. The works in [16], [17] first propose to represent the
skeleton sequences as 2D gray scale images and use CNN to
jointly learn a spatio-temporal representation. Each gray scale
image corresponds to one axis in the joint coordinates. For
example, the coordinates in the x-axis throughout a skeleton
sequence generate one single-channel image. Each row is a
spatial distribution of coordinates at a certain time-stamp, and
each column is the temporal evolution of a certain joint. The
generated 2D arrays are then scaled and resized into a fixed
size. The gray scale images generated from the same skeleton
sequence are concatenated together and processed as a multi-
channel image, which is called the skeleton image.

Despite the large boost in recognition accuracy achieved
by previous CNN based methods, there exist two problems.
First, previous skeleton image representations lose spatial in-
formation. In previous methods, each row represents skeleton’s
spatial information by chaining all joints with a fixed order.
This concatenation process lacks semantic meaning and leads
to a loss in skeleton’s structural information. Although a
good chain order can perverse more spatial information, it
is impossible to find a perfect chain order that maintains all
spatial relations in the original skeleton structure. We propose
a Tree Structure Skeleton Image (TSSI) to preserve spatial
relations. TSSI is generated by traversing a skeleton tree with
a depth-first order. We assume the spatial relations between
joints are represented by the edges that connect them in the
original skeleton structure, as shown in Figure 1 (a). The fewer
edges there are, the more relevant the joint pair is. Thus we
prove that TSSI best preserves the spatial relation.

Second, previous CNN based methods do not have the
ability to focus on spatial or temporal key stages. In skeleton
based action recognition, certain joints and frames are more in-
formative, like the joints on the arms in action ‘waving hands’.
Furthermore, certain joints may be inaccurately predicted and
should be neglected as shown in Figure 2. Therefore, it is
important to include attention mechanisms. Attention masks
[18], [19] learned from natural images are 2D weight matrices
that amplify the visual features from the regions of importance

and depress the others. Similarly, the idea of learning attention
masks can be adopted on ‘skeleton images’. The skeleton
image representation has a natural ability to represent spatio-
temporal importance jointly with 2D attention masks, where
each row represents the spatial importance of key joints
and each column represents the temporal importance of key
frames. Based on this, we propose a two-branch architecture
for visual attention on single skeleton images. One branch
of the architecture is designed with a larger receptive field
and generates the predicted attention mask. The other branch
maintains and refines the CNN feature. We first introduce the
two-branch architecture with a base attention model. A Global
Long-sequence Attention Network (GLAN) is then proposed
with refined branch structures. Experiments on public datasets
prove the effectiveness of the two improvements. The recog-
nition accuracy is superior to the state-of-the-art methods. The
GLAN alone achieves an accuracy of 80.1% on NTU RGB+D
and 95.6% on SBU Kinect Interaction, compared to the 79.6%
and 93.6% reported in CNN+MTLN [16].

Despite the effectiveness of the two-branch attention struc-
ture, representing an entire sequence as one skeleton image
lacks the ability to adjust kernels’ spatio-temporal resolutions
and learn the long-term dependencies. The original resolutions
are determined by the number of joints and the length of
the sequence. Furthermore, there is information loss with a
sequence longer than the height of the skeleton image. There-
fore, we represent the skeleton sequence as several overlapped
sub skeleton images and propose a Sub-Sequence Attention
Network (SSAN) based on the representation. Furthermore,
we show that the GLAN can be combined with the SSAN to
further improve the performance.

Our main contributions include the following:

e« We propose Tree Structure Skeleton Image (TSSI) to
better preserve the spatial relations in skeleton sequences.
TSSI improves the previous concatenation skeleton image
generation with the depth-first tree traversal.

« We propose a two-branch visual attention architecture
for skeleton based action recognition. A Global Long-
sequence Attention Network (GLAN) is introduced based
on the proposed architecture.

« We propose a Sub-Sequence Attention Network (SSAN)
to adjust spatio-temporal aspect ratios and better learn
long-term dependencies. We further show that the GLAN
and the SSAN can be well combined.

o The proposed method is compatible with both 3D skele-
tons and 2D poses. We evaluate the model on both
Kinect recorded skeletons and noisy estimated poses.
Experiments prove the effectiveness of the method and
the robustness against noisy inputs.

This paper contains published contents from an early con-
ference paper [20]. The key differences include the followings.
The conference version discusses visual attention on a single
skeleton image. Although the attention framework is effective,
it lacks the ability to adjust the spatio-temporal resolution
along the two axis of skeleton images. In this paper, we
propose to split a single skeleton image into a skeleton image
sequence and extend the GLAN with a temporal attention
network. Experiments show the effectiveness of the proposed
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model and the importance of a proper spatio-temporal resolu-
tion. Furthermore, the proposed model is evaluating on esti-
mated pose data with self-paced learning techniques. Finally,
more experiment results are included.

II. RELATED WORK

Historically, RGB video action recognition [21] consisted
of a feature extraction stage, a feature encoding stage and
a classification stage. Hand-crafted features including HOG
[22], MBH [23] and etc were designed to represent activity
features. Various feature encoding methods [24], [25] were
also studied. With the developments of deep neural networks
[26], [27], more deep models were designed to solve the action
recognition problem. Adopting ConvNets to encode frame-
level feature and using LSTM to learn the temporal evolution
had been proved to be an effective approach [1], [28], [29].
Optical flow [4], [5], [6] was another way of representing
temporal information. Furthermore, C3D [2] was proposed to
learn the spatial and temporal information simultaneously with
3D convolutional kernels.

Compared to other frequently used modalities including
RGB videos [1], [2], [3] and optical flow [4], [5], [6], skeleton
sequences required much less computation and were more
robust across views and datasets. With the advanced methods
to acquire reliable skeletons from RGBD sensors [7] or even
a single RGB camera [8], [30], [31], [32], skeleton-based ac-
tion recognition became increasingly popular. Many previous
skeleton-based action recognition methods [33] modeled the
temporal pattern of skeleton sequences with Recurrent Neural
Networks (RNN). Hierarchical structures [12], [13] better rep-
resented the spatial relations between body parts. Other works
[34], [35] adopted attention mechanisms to locate spatial key
joints and temporal key stages in skeleton sequences. Liu et
al. [14] proposed a 2D LSTM network to learn spatial and
temporal relations simultaneously. Wang et al. [15] modeled
spatio-temporal relations with a two-stream RNN structure.
Other effective approaches included lie groups [11], [36]
and nearest neighbor search [37]. Recently, graphical neural
networks [38], [39] achieved the state-of-the-art performance
on the skeleton based recognition. A performance summary
on two frequently used datasets NTU RGB+D [13] and SBU
Kinect Interaction [40] was shown in Table I.

As shown in Table I, the recently proposed CNN based
approaches showed a better performance in learning skeleton
representations compared to RNN based methods. Ke et al.
[16] proposed to convert human skeleton sequences into gray
scale images, where the joint coordinates were represented by
the intensity of pixels. Liu et al. [41] proposed to generate
skeleton images with ‘Skepxels’ to better represent the joint
correlations. In this paper, we further improved the design of
skeleton images with a depth-first traversal on skeleton trees.

Attention mechanisms were important for skeleton based
action recognition. Previous LSTM based methods [34], [35]
learned attention weights between the stacked LSTM layers.
For CNN based methods, we proposed that general visual
attention can be directly adopted to generate 2D attention
masks, where each row represented the spatial importance

TABLE I
THE PERFORMANCE SUMMARY OF THE STATE-OF-THE-ART ON SKELETON
BASED ACTION RECOGNITION.

NTU RGB+D  SBU Kinect
Methods Approach Cross Subject Interaction
Two-stream RNN [15] RNN 71.3% 94.8%
Ensemble TS-LSTM [33] RNN 76.0% -
Clips+CNN+MTLN [16] CNN 79.6% 93.6%
Skepxels [41] CNN 81.3% -
GLAN [20] CNN 80.1% 95.6%
A2GNN [38] Graphic NN 72.7% -
ST-GCN [39] Graphic NN 81.5% -

and each column represented the temporal importance. Visual
attention had achieved successes in many areas, including
image captioning [18], [42], RGB based action recognition
[19], [43], image classification [44], [45], sentiment analysis
[46] and etc. Many visual attention methods took an image
sequence as input [19], or used extra information from another
modality like text [18], [42], [43]. Because a single skeleton
image already represented a spatio-temporal sequence and
there was no need for an extra modality, we proposed a single
frame based visual attention structure.

III. METHODOLOGY

In this section, we first introduced the previous design
of skeleton images and the base CNN structure, before an
improved Tree Structure Skeleton Image (TSSI) was proposed.
Later, we proposed the idea of two-branch visual attention
and introduced a Global Long-sequence Attention Network
(GLAN) based on the idea. Finally, we introduced the Sub-
Sequence Attention Network (SSAN) to learn long-term de-
pendencies.

A. Base Model

In CNN based skeleton action recognition, joint sequences
were arranged as 2D arrays that were processed as gray scale
images. We named such a generated image the ‘Skeleton
Image’. For a channel in skeleton images, each row contained
the chaining of joint coordinates at a certain time-stamp.
Each column represented the coordinates of a certain joint
throughout the entire video clip. The chain order of joints was
pre-defined and fixed. A typical arrangement of the 2D array
was shown in Figure 1 (c). The generated 2D arrays were
then scaled into O to 255, and resized into a fixed size of
224 x 224. The processed 2D arrays were processed as gray
scale images, where each channel represented an axis of joint
coordinates. The skeleton images were then fed into CNNs for
action recognition. ResNet-50 [47] was adopted as the base
ConvNet model. Compared to RNN based or graph neural
network based method, CNN based methods could better learn
the spatio-temporal relations among joints.

B. Tree Structure Skeleton Image

A shortcoming in the previous skeleton images was that
each row was arranged by an improper fixed order. Each
row contained the concatenation of all joints with a pre-
defined chain order. CNN had a feature that the receptive field
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grows larger at higher levels. Therefore, the adjacent joints in
each row or column were learned first at lower levels. This
implied that the adjacent joints shared more spatial relations
in original skeleton structure, which did not hold frequently. In
previous skeleton images, a generated array had 25 columns
representing the joint coordinates 1 to 25 with a joint index
shown in Figure 1 (a). An arrangement of the skeleton image
was shown in Figure 1 (c). In this case, a convolutional kernel
would cover joints [20, 21, 22, 23, 24] at a certain level since
these joints were adjacent in skeleton images. However, these
joints had less spatial relations in original skeleton structures
and should not be learned together at lower levels.

To solve this problem, we proposed a Tree Structure Skele-
ton Image (TSSI) inspired by a recent LSTM based study [14].
The basic assumption was that the spatially related joints in
original skeletons had direct graph links between them. The
less edges required to connect a pair of joints, the more related
was the pair. The human structure graph was defined with
semantic meanings as shown in 1 (a). In the proposed TSSI,
the direct concatenation of joints was replaced by a depth-first
tree traversal order. One possible skeleton tree was defined in
Figure 1 (b) and the corresponding arrangement of TSSI was
shown in Figure 1 (d). Based on the shown skeleton tree, the
depth-first tree traversal order for each row was [2, 21, 3, 4,
3,21,5,6,7,8,22, 23,22, 8,7, 6,5, 21, 9, 10, 11, 12,
24, 25, 24, 12, 11, 10, 9, 21, 2, 1, 13, 14, 15, 16, 15, 14,
13, 1, 17, 18, 19, 20, 19, 18, 17, 1, 2]. It is worth noticing
that other torso nodes could also be selected as the root of
skeleton trees and the corresponding traversal order would be
different. Using different torso nodes (node 1, 2 or 21) as tree
roots generated a maximum accuracy difference of 0.6% on
NTU RGB+D with the cross subject setting.

With the depth-first tree traversal order, the neighboring
columns in skeleton images were spatially related in original
skeleton structures. This proved that the TSSI better preserved
the spatial relations. With TSSI, the spatial relations between
related joints were learned first at lower levels of CNN and the
relations between less relevant joints were learned later at high
levels when the receptive field became larger. An example of
the generated TSSI was shown in Figure 1 (e).

C. Attention Networks

In skeleton sequences, certain joints and frames were partic-
ularly distinguishable and informative for recognizing actions.
For example in action ‘waving hands’, the joints in arms were
more informative. These informative joints and frames were
referred to as ‘key stages’. Furthermore, noise existed in the
captured joint data and deteriorated the recognition accuracy.
The inaccurate joints should be automatically filtered out or
ignored by the network.

To alleviate the effect of data noises and to focus on
informative stages, skeleton based methods should adjust
weights for different inputs automatically. We proposed the
idea of two-branch visual attention and further designed a
Global Long-sequence Attention Network (GLAN) based on
the idea. In this section, we first introduced the basic idea
of the two-branch attention architecture with a base attention
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Fig. 3. A base attention module and a GLAN module: (a) A base attention
block, (b) An expanded plot for the Hourglass mask branch in GLAN, (c) An
attention block with GLAN structure, short for ‘GLAN block’.

model. Then the structure of Global Long-sequence Attention
Network (GLAN) was introduced.

Base Attention Model. Skeleton images naturally rep-
resented both spatial and temporal information of skeleton
sequences. Therefore a 2D attention mask could represent
spatio-temporal importance simultaneously, where the weights
in each row represented the spatial importance of joints and the
weight in each column represented the temporal importance
of frames. In order to generate the attention masks, we pro-
posed a two-branch attention architecture that learned attention
masks from a single skeleton image. The two-branch structure
contained a ‘mask branch’ and a ‘residual branch’. Taking
previous CNN feature blocks as inputs, the mask branch
learned a 2D attention mask and the residual branch refined
previous CNN feature. The two branches were then merged to
generate the weighted CNN feature block. To be specific, the
mask branch learned attention masks with structures that had
larger receptive fields. The residual branch was designed to
maintain and refine the input CNN features. The two branches
were fused at the end of each attention block with element-
wise multiplication and summation.

We first introduced the base attention model, which was
the simplest version of two-branch attention structures. As
shown in Figure 3 (a), the mask branch in the base model
gained a larger receptive field with a single convolutional layer.
Softmax or Sigmoid functions were used for mask generation.
The residual branch preserved the input CNN features with
a direct link. The ‘attention block’ was defined as a module
with one mask branch and one residual branch as in Figure 3
(a). The whole framework was built by mixing the proposed
attention blocks with the convolutional blocks from ResNet.
In the base attention model, attention blocks were inserted
between ResNet-50’s residual blocks, with the structure of
residual blocks unchanged.

Global Long-sequence Attention Network (GLAN).
Based on the proposed two-branch structure, we improved the
designs of both branches to learn attention masks and CNN
features more effectively. Inspired by the hourglass structure
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Fig. 4. The structure of the Global Long-sequence Attention Network (GLAN).

[48], [45], we proposed a Global Long-sequence Attention
Network (GLAN) as shown in Figure 4. The hourglass struc-
ture was adopted in mask branches to quickly adjust the feature
size and efficiently gain a larger receptive field. As shown
in Figure 3 (b), the hourglass structure consisted of a series
of down-sampling units followed by up-sampling units. In
each hourglass mask branch, input CNN features were first
down-sampled to the lowest spatial resolution of 7 % 7 and
recovered back to the original size. Max pooling was used
for down-sampling and bilinear interpolation was used for up-
sampling. Each down-sampling unit included a max pooling
layer, a followed residual unit and a link connection to the
recovered feature with a same size. Each up-sampling unit
contained a bilinear interpolation layer, a residual unit and
a element-wise sum with the link connection. We showed
that the Convolution-Deconvolution structure gained a large
receptive field effectively and therefore could better learn an
attention mask. For residual branches, we added two residual
units to further refine the learned CNN features. All residual
units were the same as ResNet [47], which contains three
convolutional units and a direct residual link.

As shown in Figure 4, three GLAN attention blocks were
added between the four residual blocks in ResNet-50 to build
the GLAN network. The depth of each GLAN blocks varied
due to the different input feature sizes. Furthermore, we
reduced the number of residual units in each residual block
to keep a proper depth of the GLAN network, since GLAN
blocks were much deeper than the base attention blocks. Only
one residual unit was kept for the first three residual blocks.
The final residual block kept all three residual units as in
ResNet-50.

D. Long-term Dependency Model

Although single-frame-based two-branch attention structure
achieved a good performance, it lacked the ability to learn
long-term dependences. The generated skeleton image had a
fix height of 224. This implied an information loss with a
sequence longer than 224 frames, which is around 7 seconds
with a frame rate of 30 fps. To better learn long-term de-
pendencies, we proposed a CNN + LSTM model with sub
skeleton image sequences. We first split skeleton sequences
into several overlapped sub-sequences and generated a series

of sub skeleton images for a skeleton sequence. CNN features
were first extracted from each sub-sequence skeleton image
and the long-term dependencies were modeled with RNNs.

Furthermore, in the original two-branch attention structures,
both the spatial and temporal resolutions in skeleton images
were fixed by the number of joints and the length of the
sequence. However, the kernel should be able to adjust the
number of joints and frames it jointly looked at to achieve
the best performance. The proposed sub-image model could
adjust the relative resolution flexibly by adjusting the number
of sub-images and the overlapping rate. This adjustment was
equivalent to adjusting the width and height of CNN kernels,
while it did not require retraining the model for each dataset.

Sub-Sequence Attention Network (SSAN). To further
improve the performance of the proposed sub-image model,
an long-term attention module was adopted. Inspired by [19],
[18], a Sub-Sequence Attention Network (SSAN) was pro-
posed with a structure shown in Figure 5. Long Short-Term
Memory (LSTM) was adopted as the RNN cells. The LSTM
implementation was based on [49], [18]:

n o
(]Z = Z Tit+D,4d (]L;j) (1)
Gt tanh
c=ftOc-1+itOg (2)
hi = oy © tanh(c) 3)

where i, ft, o¢, ¢, hy were the input gates, forget gates, output
gates, cell states and hidden states of the LSTM. g, was an
intermediate representation for updating cell states ¢;. 1" was
an affine transformation, where D was the depth of the CNN
feature block and d was the dimension of all LSTM states. x;
was the weighted CNN feature that input to the LSTM at time
t with length D.

Based on the LSTM model, the 2D attention map /; at time
t was defined as a K « K mask, where K was the output width
and height of the CNN feature block:

W, hy
L = Kfif( i tTl) iel.. K? (4)
> j=1 exp(W; hy_1)
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Fig. 5. The structure of the Sub-Sequence Attention Network (SSAN).

Inspired by [45], we also adopted the spatial-channel attention
with sigmoid activation, where i € 1... K2,z € 1...D.

lii,» = Sigmoid(W; hy_1) 5)

The weighted CNN feature z; at time ¢ was the element-wise
multiplication of attention mask [; and original CNN output
X, following Equation 6. In the SSAN, Resnet-50 was selected
as the CNN model.

2= X 6)

GLAN + SSAN. Furthermore, we showed that the GLAN
could replace Resnet-50 as the CNN structure in the long-term
dependency model. The combination of SSAN and GLAN
enabled the framework to generate attentions both in CNN
layers with a bottom-up approach and in LSTM layers with a
top-down approach. Experiments showed the effectiveness of
the proposed combination, and further proved the possibility
of using the proposed modules as atomic parts in other
frameworks.

IV. EXPERIMENTS

The proposed method is evaluated on both clean datasets
captured by Kinect and noisy datasets where the poses are
estimated from RGB videos. We adopt the NTU RGB+D
dataset [13] and the SBU Kinect Interaction Dataset [40] for
clean dataset evaluation. The estimated poses on UCF101 [50]
and Kinetics [51] are used to measure the performance with
potentially incomplete and noisy poses. We further evaluate
the effectiveness of each proposed module separately. The
experiments show that both the TSSI and the attention network
generate a large boost in the action recognition accuracy to
outperform the state-of-the-art.

6

A. Datasets

NTU RGB+D. The NTU RGB+D dataset [13] is so far the
largest 3D skeleton action recognition dataset. NTU RGB+D
has 56880 videos collected from 60 action classes, including
40 daily actions, 9 health-related actions and 11 mutual
actions. The dataset is collected with Kinect and the recorded
skeletons include 25 joints. The train/val/test split follows [13].
Samples with missing joints are discarded as in that paper.

SBU Kinect Interaction. The SBU Kinect Interaction
dataset [40] contains 282 skeleton sequences and 6822 frames.
We follow the standard experiment protocol of 5-fold cross
validations with the provided splits. The dataset contains eight
classes. There are two persons in each skeleton frame and
15 joints are labeled for each person. The two skeletons
are processed as two data samples during training and the
averaged prediction score is calculated for testing. During
training, random cropping is applied for data augmentation.
Prediction scores from the five crops in center and four corners
are averaged as testing prediction.

Kinetics-Motion. The Kinetics dataset [51] is the largest
RGB action recognition dataset, containing around 300,000
video clips from 400 action classes. The videos are collected
from YouTube and each clip is around 10 seconds long.
To conduct joints based action recognition, we use the pre-
calculated estimated poses provided by [39]. Videos are first
converted into a fixed resolution of 340 x 256 with a frame rate
of 30 FPS, and poses are then estimated with the OpenPose
toolbox [31]. Because the joint sequence contains no back-
ground context or object appearance, it fails to distinguish
certain classes defined in RGB action recognition datasets. To
better evaluate skeleton based methods on estimated joints,
Yan et al. [39] proposes a ‘Kinetics-Motion’ dataset, which
is a 30-class-subset of Kinetics with action labels strongly
related to body motion. We evaluate the proposed method on
the Kinetics-Motion dataset. The selected 30 classes are: belly
dancing, punching bag, capoeira, squat, windsurfing, skipping
rope, swimming backstroke, hammer throw, throwing discus,
tobogganing, hopscotch, hitting baseball, roller skating, arm
wrestling, snatch weight lifting, tai chi, riding mechanical bull,
salsa dancing, hurling (sport), lunge, skateboarding, country
line dancing, juggling balls, surfing crowd, dead lifting, clean
and jerk, crawling baby, push up, front raises, pull ups.

UCF101-Motion. The UCF101 dataset [50] contains 13,320
videos from 101 action categories. Videos have a fixed frame
rate and resolution of 25 FPS and 320 x 240. Using RGB
videos as inputs, we estimate 16-joint-poses with AlphaPose
toolbox [52]. The toolbox provides 2D joint locations and the
confidence values for predictions. Similar to Kinetics-Motion,
we argue the problem also exists on UCF101 that certain pre-
defined action classes such as ‘cutting in kitchen’ are more
relevant to objects and scenes. To prove this, we follow the
procedure in ST-GCN [39] and propose a subset from UCF-
101 named ‘UCF-Motion’. UCF-Motion contains 23 classes
that are strongly related to body motions with 3172 videos
in total. The selected classes are: playing dhol, clean and
Jjerk, writing on board, playing flute, playing cello, playing
guitar, bowling, ice dancing, playing piano, punch, playing
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tabla, soccer juggling, tai chi, boxing-speed bag, salsa spins,
jump rope, boxing-punching bag, hammer throw, rafting, push
ups, juggling balls, golf swing, baby crawling.

B. Ablation Studies

To prove the effectiveness of the TSSI and the proposed
attention networks, we separately evaluate each proposed
module with results shown in Table III. Each component of the
framework is evaluated on NTU RGB+D with the cross subject
setting. NTU RGB+D is selected for component evaluations
because it is the largest and the most challenging dataset so
far. Similar results are observed on other datasets.

Traditional Skeleton Image + ConvNet. As a baseline, we
adopt the previous skeleton image representation from [16] and
use ResNet-50 as a base CNN model to train spatio-temporal
skeleton representations. We test the three spatial joint orders
proposed by Sub-JHMDB [53], PennAction [54] and NTU
RGB+D [13]. Experiments show that the NTU RGB+D’s order
generates a better accuracy of 1.3% than the rest two orders.
Therefore, we adopt the joint order proposed by NTU RGB+D
for baseline comparison. The order is shown in Figure 1 (a).

TSSI + ConvNet. The effectiveness of the proposed Tree
Structure Skeleton Image (TSSI) is compared to the baseline
design of skeleton images. TSSI is the skeleton image gener-
ated with a depth-first tree traversal order. The skeleton tree
structure, TSSI arrangement and a TSSI example is shown in
Figure 1 (b), (d), (e). A large boost in accuracy is observed
from 68.0% to 73.1%, which proves the effectiveness of TSSI.

TSSI + Base Attention. The base attention model provides
a baseline for two-branch attention networks. The base at-
tention blocks with and without residual links are inserted at
three different locations in ResNet-50, that is at the front after
the first convolutional layer, in the middle after the second
residual block and in the end after the final residual block.
The input feature blocks to the three attention blocks have
the shapes of 112 % 112 % 64, 28 % 28 % 512 and 7 % 7 * 2048.
The recognition accuracy boosts from 73.1% to 74.9%. This
experiment shows that even the simplest two-branch attention
network can improve the recognition accuracy.

TSSI + GLAN. We evaluate the proposed Global Long-
sequence Attention Network (GLAN). The number of link
connections and the depth of the hourglass mask branch can
be manually adjusted. In experiments, we first down-sample
the feature blocks to a lowest resolution of 7 % 7 and then
up-sample them back to the input size. Each max pooling
layer goes with one residual unit, one link connection and one
up-sampling unit. With a GLAN structure shown in Figure
4, the recognition accuracy increases from 73.1% to 80.1%
compared to TSSI without attention mechanisms.

TSSI + SSAN. The SSAN is one of the two attention
networks we proposed. The number of sub-sequences and
the overlapping rate for the sub-sequences are two hyper-
parameters that are tuned with validation set. With a sub-
sequence number of 5 and an overlapping rate of 0.5, the
attention network achieves an accuracy of 80.9% from 73.1%
compared to the base TSSI structure.

TSSI + GLAN + SSAN. Individually, the GLAN and SSAN
san achieve a similar improvement in recognition accuracy.

7

TABLE II
GLAN + SSAN PERFORMANCE WITH DIFFERENT HYPER PARAMETERS
ON THE NTU RGB+D DATASET.

Sub-image | Sub-image | Overlapping
Lengths Numbers Rate Accuracy (%)
T/3 3 0% 80.80
T/3 5 50% 82.42
T/3 9 75% 81.38
T/5 5 0% 78.56
T/4 5 25% 80.30
T/3 5 50% 82.42
T/2 5 75% 81.57

Moreover, we show that the GLAN and SSAN can be well
combined to further improve the performance. By replac-
ing the Resnet-50 with the proposed GLAN, the framework
achieved an accuracy of 82.4%. This experiment also shows
that the proposed two branch attention structure can be adopted
as atomic CNN structure in various frameworks to achieve a
better performance.

Furthermore, we analyze the hyper-parameters in the SSAN,
i.e. the overlapping rate, the number and length of sub-images.
The relation of these parameters is:

T=tep*[1+(1—a)*(n—1)] (7

where t,,; is the number of frames in each sub-image or the
sub-image length, 7" is the number of frames in the whole
sequence, « is the overlapping rate and n is the number of
sub-images. We design two sets of experiments with fixed
sub-image lengths or fixed sub-image numbers to interpret
the effectiveness of the SSAN and find the best set of hyper
parameters. Experiments are conducted on NTU RGB+D with
the TSSI + GLAN + SSAN framework.

Starting from the optimal hyper-parameters of a 50% over-
lapping rate and 5 sub-images, we report the performances
under different hyper parameters with either sub-image num-
bers or sub-image lengths unchanged. For the fixed length
experiment as shown in Table II, the length of sub-images are
fixed and the number of sub-images changes from 3 to 9 by
adjusting the overlapping rate. We observe the accuracy drops
1.6% from 82.4% to 80.8%. In the fixed sub-image number
experiment, the number of sub-images is fixed as five where
the best performance is achieved. The length of sub-images
varies from T'/5 to T/2 with different overlapping rates. A
larger drop of accuracy of 3.8% is observed in the fixed sub-
image number experiment.

According to the experiment results, the length of sub-
images influence the performance of the SSAN most. This
implies that the SSAN produces a large boost in accuracy
mainly with its ability to flexibly adjusting the spatial-temporal
resolutions. The optimal hyper parameters of a 50% overlap-
ping rate, 5 sub-images and the 7'/3 temporal length works
best with the 25 joints on NTU RGB-D. The optimal hyper
parameters vary on different datasets with different averaged
sequence lengths and joint numbers. Furthermore, the SSAN
also better learns the long term dependencies. Most results
with the SSAN as shown in Table II outperform the methods
with single skeleton frames such as TSSI + GLAN.
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TABLE III
THE ACTION RECOGNITION ACCURACY COMPARED TO THE
STATE-OF-THE-ART METHODS ON THE NTU RGB+D DATASET.

. Cross Cross
State-of-the-art Subject  View

Lie Group [11] 51.0 52.8
HBRNN [12] 59.1 64.0
Part-aware LSTM [13] 62.9 70.3
Trust Gate LSTM [14] 69.2 71.7
Two-stream RNN [15] 71.3 79.5
TCN [17] 74.3 83.1
Global Attention LSTM [34] 74.4 82.8
A2GNN [38] 72.7 82.8
Clips+CNN+MTLN [16] 79.6 84.8
Ensemble TS-LSTM [33] 76.0 82.6
Skepxels [41] 81.3 89.2
ST-GCN [39] 81.5 88.3
Cross Cross

Proposed Model Subject  View
Base Model 68.0 75.5

With TSSI 73.1 76.5

TSSI + Base Attention 74.9 79.1
TSSI + GLAN [20] 80.1 85.2
TSSI + SSAN 80.9 86.1
TSSI + GLAN + SSAN 82.4 89.1

C. Evaluations on Clean Datasets

NTU RGB+D. The middle column of Table III shows
the results of the NTU RGB+D cross subject setting. The
base model with naive skeleton images already outperforms
a number of previous LSTM based method, without adopting
the attention mechanism. This shows that CNN based methods
are promising for skeleton based action recognition. With the
improved TSSI, the cross subject accuracy achieves 73.1%,
which is comparable to the state-of-the-art LSTM methods.
The proposed two-branch attention architecture further im-
proves the performance and the GLAN outperforms the state-
of-the-art. Experiments prove the effectiveness of the proposed
CNN based action recognition method.

Furthermore, we show that generating sub-sequences and
adopting the long-term dependency model (SSAN) can achieve
a better results. The SSAN with ResNet-50 achieves a cross
subject accuracy of 80.9%. By replacing the ResNet with
the proposed GLAN to provide the spatial attention, the
framework improves the state-of-the-art to 82.4%. Similar
results are observed in the NTU RGB+D cross view setting,
as shown in the right column of Table III.

SBU Kinect Interaction. Similar to the performance on
the NTU RGB+D dataset, the proposed TSSI and attention
framework generates a large boost in the recognition accuracy
on the SBU Kinect Interaction dataset that outperforms the
state-of-the-art. The performances are shown in Table IV. The
proposed TSSI+SSAN+GLAN achieves an accuracy of 95.7+
1.7% on the five splits provided by SBU Kinect Interaction.

D. Error Case Analysis

To better understand the successful and failure cases, exper-
iments are conducted to analyze the performance of each class
in NTU RGB+D. As shown in Table VII, two parts of analysis
are conducted. First, eight classes that constantly perform the
best or worst are selected on the left side of Table VII. Results

TABLE IV
THE RECOGNITION ACCURACY COMPARED TO THE STATE-OF-THE-ART
METHODS ON THE SBU KINETIC INTERACTION DATASET.

State-of-the-art Accuracy (%)

Raw Skeleton [40] 49.7
HBRNN [12] 80.4
Trust Gate LSTM [14] 93.3
Two-stream RNN [15] 94.8
Global Attention LSTM [34] 94.1
Clips+CNN+MTLN [16] 93.6
Proposed Model Accuracy (%)
Base Model 82.0
With TSSI 89.2
TSSI + Base Attention 93.6
TSSI + GLAN [20] 95.6
TSSI + SSAN 94.0
TSSI + SSAN + GLAN 95.7

show that the actions with dynamic body movements, such
as standing, sitting and walking, can be well classified with
skeletons, while the classes with less motion like reading,
writing and clapping usually have a poor result. The first,
middle and last frames from these classes are visualized in
the first row of Figure 6. This follows human intuition that
skeletons are more useful for distinguishing dynamic actions,
while additional background context information is necessary
for recognizing the actions with less motion.

The results also show that the proposed TSSI, GLAN and
SSAN all generate a large boost in performance in all the
listed classes. On the righthand side of the table, statistics of
the best and worst classes are listed. Results show that TSSI +
GLAN + SSAN greatly improve the accuracy in challenging
classes. The top 1 worst class in TSSI + GLAN + SSAN has
an accuracy of 42.8%, which is even better than the averaged
accuracy of the worst 10 in base model. For the best classes,
the top 1 accuracy between the baseline and TSSI + GLAN
+ SSAN are similar. The improvements are mainly obtained
through the improvements in the challenging classes.

E. Self-Paced Learning on Noisy Datasets

The model is then evaluated on large scale RGB datasets
with estimated and thus noisy poses. For a fair comparison,
we do not use any pre-processing methods like interpolation
to reduce the noise. To better learn a noise robust system,
we adopt self-paced learning [55], [56], [57], [58] during
the training process. The model is first trained with a small
portion of reliable pose estimates and then gradually take more
noisy data as inputs. The average pose estimation confidence
values provided by Openpose is used as the indication of
reliability and the level of noises. The model starts with a high
confidence threshold of 0.5, i.e. all estimated pose sequences
with an average confidence lower than 0.5 are eliminated in
the training process. We then fine-tune the model step by step
by feeding more unreliable noisy data. Experiments show that
self-paced learning can both accelerate the convergence speed
and improve the final accuracy.

Kinetics-Motion. As shown in Table V, the proposed long
term dependency model with attention is comparable to the
state-of-the-art performances. The recognition accuracy also
similar to the methods using other modalities including RGB
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TABLE V
THE RECOGNITION ACCURACY COMPARED TO THE STATE-OF-THE-ART
METHODS ON THE KINETICS-MOTION DATASET.

State-of-the-art Accuracy (%)

RGB CNN [51] 70.4

Flow CNN [51] 72.8

ST-GCN [39] 724
Proposed Model Accuracy (%)

With TSSI 58.8

TSSI + GLAN [20] 67.2

TSSI + SSAN + GLAN 68.7

TABLE VI
THE RECOGNITION ACCURACY COMPARED TO THE STATE-OF-THE-ART
METHODS ON THE UCF-MOTION DATASET.

State-of-the-art Accu. (%) RGB Flow Keypoints
HLPF [53] 71.4 - - v
LRCN [1] 81.6 v - -

3D-ConvNet [2] 75.2 v - -

Flow CNN [51] 85.1 - v -

Two-Stream [51] 91.3 v v -

Proposed Model Accu. (%)

With TSSI 87.9 - - v
TSSI + GLAN [20] 91.0 - - v
TSSI + SSAN + GLAN 91.7 - - v

and optical flow. This experiment proves that the proposed
GLAN + SSAN framework is noise robust. The first, middle
and last frames from example videos are shown for success and
failure cases in the third row of Figure 6. Observations show
that failure cases are mostly caused by missing or incorrect
pose estimates.

UCF101-Motion. As shown in Table VI, we evaluate the
framework on the proposed UCF-Motion dataset. The pro-
posed framework outperforms previous methods that use a
single modality [1], [2] or both appearance feature and optical
flow [4]. The experiment proves that joint is an effective
modality for recognizing motion related actions, although
joints alone are insufficient for distinguishing all defined action
classes since recognizing certain classes requires object and
scene appearances. Furthermore, the recognition accuracy is
still limited by the imperfect pose estimations. Example frames
are shown in the second row of Figure 6. The compared perfor-
mances are based on released codes or our reimplementation.

V. CONCLUSIONS

Using CNN for skeleton based action recognition is a
promising approach. In this work, we address the two major
problems with previous CNN based methods, i.e., the im-
proper design of skeleton images and the lack of attention
mechanisms. The design of skeleton images is improved by
introducing the Tree Structure Skeleton Image (TSSI). The
two-branch attention structure is then introduced for visual
attention on the skeleton image. A Global Long-sequence
Attention Network (GLAN) is proposed based on the two-
branch attention structure. We further propose the long-term
dependency model with a Sub-Sequence Attention Network
(SSAN). The effectiveness of combining the GLAN and the
SSAN is also validated. Experiments show that the pro-
posed enhancement modules greatly improve the recognition
accuracy, especially on the challenging classes. Extended
ablation studies prove that the improvements are achieved

by better retaining the skeletal information and focusing on
informative joints or time stamps. Moreover, the model shows
the robustness against noisy estimated poses. Next on our
agenda is to further improve the robustness against incomplete
and inaccurate estimated poses. Another direction for further
exploration is extending TSSI to automatically learn refined
joint relations.
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Fig. 6. Example frames from clean and noisy datasets. In the first row from left to right contains classes from NTU RGB+D: standing up, kicking something,
clapping and writing. The second and third row contains predicted noisy poses of success and failure cases. The second row is from UCF101 and the third
row is from Kinetics. Success cases are shown on the left side and the failure cases are shown on the right side.
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