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Abstract

In the era of Big Data, sharing neuroimaging data across multiple sites has
become increasingly important. However, researchers who want to engage in
centralized, large-scale data sharing and analysis must often contend with
problems such as high database cost, long data transfer time, extensive
manual effort, and privacy issues for sensitive data. To remove these barriers to
enable easier data sharing and analysis, we introduced a new, decentralized,
privacy-enabled infrastructure model for brain imaging data called COINSTAC
in 2016. We have continued development of COINSTAC since this model was
first introduced. One of the challenges with such a model is adapting the
required algorithms to function within a decentralized framework. In this paper,
we report on how we are solving this problem, along with our progress on
several fronts, including additional decentralized algorithms implementation,
user interface enhancement, decentralized regression statistic calculation, and
complete pipeline specifications.
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Introduction

Proliferating neuroimaging data present contemporary neurosci-
entists with both an exciting opportunity and a cumbersome chal-
lenge. The advantages of sharing data are clear. Adding datasets
to a study increases sample size, making predictions more cer-
tain, and increases diversity, allowing differences between groups
to be studied. Although there is indeed an abundance of data,
there exist multiple barriers to fully leverage such data. Firstly, a
significant amount of existing neuroimaging data has been col-
lected without proper provisions for post hoc data sharing.
Secondly, researchers must negotiate data usage agreements
(DUAS) to collaborate and build models using multiple sources of
data that can be anonymized and shared. Sharing data via a DUA
is advantageous in that all the variables collected can be studied.
However, these DUAs may require months to complete, and the
effort to obtain them could be ultimately fruitless, as research-
ers only know the utility of the data after they have obtained and
explored it. Thirdly, even if neuroimaging data can be shared in
an anonymized form, the data require a copious amount of stor-
age, and the algorithms applied to the data require significant cen-
tralized computational resources. Fourthly, even anonymized data
bears a risk of reidentification, especially for subjects who are
rare because of a combination of demographic and clinical data.
While centralized sharing efforts are powerful and unquestionably
should continue, the community needs a family of approaches to
address all the existing challenges, including decentralized mod-
els that we describe in this paper. One alternative to centralized
data sharing is to perform meta-analyses utilizing existing lit-
erature to avoid the burden of negotiating DUAs and storing and
processing data (Thompson ef al., 2017; Thompson et al., 2014).
However, meta-analyses suffer from heterogeneity among
studies caused by varying preprocessing methods applied to
the data and inconsistent variables collected. In addition, meta-
analytic results are not as accurate as those obtained from a
centralized analysis.

The Collaborative Informatics and Neuroimaging Suite Toolkit
for Anonymous Computation (COINSTAC), proposed by Plis et
al., in 2016 (Plis er al., 2016), solves the abovementioned prob-
lems by providing a decentralized platform by which research-
ers can collaboratively build statistical and machine learning
models, while neither transmitting their data nor sacrificing
privacy concerns, thanks to differentially private algorithms.
COINSTAC can run both meta-analyses and mega-analyses via
“single-shot” and “multi-shot” (iterative) computations, respec-
tively. The COINSTAC software (currently in an early proto-
type) is freely available, open source, and compatible with all
major operating systems (Windows, Mac OS, and Linux). It is an
easy-to-install, standalone application with a user-friendly,
simple, and intuitive interface. By utilizing Docker containers,
COINSTAC can run computations in any programming language
(including Python, R, Matlab, FORTRAN, and C++) and is
easily extensible. We are also building a development community
to help users create their own computations, as well.

The use of a decentralized analysis framework has many
advantages. For example, decentralized analysis can move
beyond meta-analysis via iteration, obtaining a solution equivalent
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to that of the centralized result. In addition, one can move
beyond sharing summary measures—which though plausibly
private canstill potentially be reidentified—to amore formally private
solution. Differential privacy has been touted as a solution to the
data sharing and reidentification problem. Developed by Dwork
et al., 2006, this approach statistically guarantees privacy
and allows for sharing aggregated results without the risk of
reidentification (Dwork er al., 2006).

In the past few years, we have developed many algorithms
that run in a decentralized and optionally a differentially private
manner. Decentralized computations include ridge regression
(Plis et al., 2016), multi-shot regression (Plis er al., 2016), inde-
pendent vector analysis (IVA) (Wojtalewicz er al., 2017), neural
networks (Lewis er al., 2017), decentralized stochastic neighbor
embedding (dSNE) (Saha er al, 2017), joint independent com-
ponent analysis (ICA) (Baker er al., 2015), and two-level dif-
ferentially private support vector machine (SVM) classification
(Sarwate et al., 2014). To facilitate and accelerate algorithm
development, we have created COINSTAC-simulator, which
allows algorithm developers to prototype and troubleshoot their
algorithms before deployment to real consortia in COINSTAC.

Furthermore, we include both input and output functionality
to the COINSTAC user interface. For example, the interface for
regression can accept data produced by FreeSurfer, with a menu
to select the region of interest (ROI) in the brain that will be
used as the dependent variable in the statistical analysis. Follow-
ing the analysis, COINSTAC produces a statistics table for the
output of ridge regression, which calculates the global p-values and
t-values in a decentralized fashion for each site in the consortium,
measuring goodness of fit.

COINSTAC also enables decentralized analyses with multiple
computation steps. Easy and flexible computation stacking is a
built-in feature in our framework. In this paper, we demonstrate
an implementation scheme for specifying and managing multiple
computations. With this framework, we can incorporate local
computations, such as common preprocessing brain imaging tasks,
into the analysis workflow.

A common nuisance among programmers and especially non-
expert users is the assembly of an environment to run a
computer program. This is a crucial step that may require upgrad-
ing an operating system and downloading and installing the
latest release of software, a compiler, or a supporting library.
Assembly of the environment may involve permission from IT
and a substantial amount of troubleshooting, which may lead to
a long delay before analysis can begin. Additionally, inconsistent
machine state between computers (including operating systems,
libraries, and compilers) can lead to inconsistent results from the
same computation.

A popular solution to this problem is utilizing a virtual machine
(VM) that contains all the dependencies needed to run a
program. Because VMs are resource-intensive, many developers
have switched to using containers, which are an efficient, light-
weight solution to the problem of heterogeneous development
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environments. Containers only bundle in the supporting software
needed to run the program and do not require running a full VM
with its own operating system. This reduces the required amount of
memory and number of CPUs.

COINSTAC encapsulates individual computations inside Docker
containers (https://www.docker.com/what-docker), which are run
in series in a pipeline. Containers holding computations can be
downloaded and run locally, which removes the need to assemble a
development environment and thus greatly reduces the time to ana-
lyze results. This solution will also allow consortium participants
to run coordinated preprocessing operations that must often occur
before a statistical analysis, such as FreeSurfer processing or voxel-
based morphometry. We have already created a Docker container
with a standalone SPM package utilizing the Matlab Compiler
Runtime. The normalization and coordination of preprocessing
operations reduce heterogeneity in the data, creating a solid basis
for the main analyses.

Methods and use cases

Algorithms for decentralized data analysis

In our previous paper (Plis ef al., 2016), we demonstrated the use
of decentralized gradient descent in the optimization of a basic
ridge regression model. This decentralized iterative optimiza-
tion process represents an analysis of virtual data pooling. The
resulting model generated in this manner is equivalent to the
model generated in centralized repository analysis (i.e., the meta-
analysis becomes a mega-analysis).

In this paper, we apply the decentralized gradient descent
methods to other more advanced algorithms in the neuroimag-
ing domain, including t-distributed nonlinear embedding (tSNE),
shallow and deep neural networks, joint ICA, and IVA. These
methods are already widely used in the neuroimaging domain,
but have not previously been extended to work in a decentralized
framework. We demonstrate how these methods can be com-
puted within a decentralized framework and report the algorithm
performance compared to a centralized analysis.

Decentralized tSNE (dSNE). A common method of visualizing
a dataset consisting of multiple high-dimensional data points
is embedding the points into a 2- or 3-dimensional space. Such
an embedding serves as an intuitive exploratory tool for quick
detection of underlying structure of a dataset. In 2008, van
der Maaten and Hinton proposed a method named tSNE to
efficiently handle this situation (Maaten & Hinton, 2008). The
embeddings produced by tSNE are usually intuitively appealing
and interpretable, which makes this method an attractive tool in
many domains, including neuroimaging (Panta e al., 2016).

We propose a method to embed a decentralized dataset that is
spread across multiple locations such that the data at each loca-
tion cannot be shared with others into a 2D plane. We build the
overall embedding by utilizing public, anonymized datasets. The
method is similar to the landmark achievements previously used to
improve computational efficiency (De Silva & Tenenbaum, 2004;
Silva & Tenenbaum, 2003). However, directly copying this
approach does not produce accurate results, so we introduce a
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dynamic modification that generates an embedding that reflects
relationships among points spread across multiple locations.

The detailed algorithm diagram for decentralized multi-shot
tSNE is demonstrated in Figure 1. X, and X represent the high-
dimensional site data and shared data, respectively. Y, and Y,
represent the low-dimensional mapping site data and shared data,
respectively. The master node initializes Y and subsequently calcu-
lates a common gradient VY (j) based on the site gradient VYW( 7)
for each iteration j and update Y, accordingly. Each local node
will calculate the pairwise affinities among its own dataset and the
shared dataset and then update Y, by locally calculating VY, (j).
With this scheme, Y, stays constant across all sites for every itera-
tion and serves as a reference function. Meanwhile, Y is influenced
by ¥, which allows local embedding information to flow across the
sites, resulting in a final map with less overlapping.

We have tested the performance of this algorithm by comparing
the decentralized result with that of centralized tSNE using the
quality control metric of the ABIDE dataset (Di Martino
et al., 2014). The results demonstrate that the centralized and
decentralized computations generate an equal number of clusters.
Additionally, random splits do not affect the stability of the clusters
(Saha er al., 2017). Please see Figure 2 for reference.

Decentralized neural networks. Recently, deep learning has
gained increasing attention because of its excellent performance
in pattern recognition and classification, including in the neu-
roimaging domain (Plis e al., 2014). To enable both shallow and
deep neural network computations within COINSTAC, we devel-
oped a feed-forward artificial neural network that is capable of
learning from data distributed across many sites in a decentral-
ized manner. We utilize mini-batch gradient descent to average
the gradient across sites. For our purposes, each batch contains one
sample per site. We then average the resulting gradients from the
batch.

Figure 3 shows a flow chart of the decentralized neural
network algorithm. As in a stochastic gradient descent (SGD)
model, we calculate the error function QP(W[) for each site p and
ith W. Q (W) represent the discrepancy between the expected result
Y, from the training set and the actual result from forward propaga-
tion ¥,(W,). Each site then sends VQP(Wi) to the master node, which
averages the gradient and returns the result to the sites. Each site
then updates W, on the basis of the mini-batch gradient decent equa-
tion until all training data are exhausted. With the same initializa-
tion W in the master node, we find that W, is always shared across
all sites, but the change in W, at each iteration is determined by the
data at each site.

We use a basic neural network known as a multilayer perceptron
to demonstrate the decentralized computation process, but this
framework can be easily extended to other types of neural networks.
We tested the performance of this model using real functional mag-
netic resonance imaging (fMRI) data from smokers (Fagerstrom
Test for Nicotine Dependence dataset) (Heatherton & Kozlowski,
1992) and found that the decentralized model and pooled central-
ized model yielded similar classification accuracy, which vastly
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Figure 1. Multi-shot decentralized stochastic neighbor embedding (dSNE) algorithm.
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Figure 2. Decentralized stochastic neighbor embedding (dSNE) results for quality control metric of the ABIDE datasets
(Saha et al., 2017). We randomly split the data into ten local and one reference dataset. The centralized results show ten different clusters.
For three random splits of decentralized computation, we also obtain ten different clusters, and the number of clusters in the embedding is
stable regardless of how the data are split among sites.
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outperformed the accuracy at local, isolated sites (Lewis ef al., to combine and identify shared information over multiple data-
2017). Please see Figure 4 for reference. sets. Although originally proposed as a method for multimodal

data fusion, jJICA can also implement group temporal ICA of
Decentralized joint ICA. When shared signal patterns are antici- fMRI data. In both cases, datasets are concatenated (over modali-
pated to exist among datasets, joint ICA (JICA) (Calhoun et al., ties in multimodal fusion and over subjects across time in tempo-

2006; Calhoun et al., 2001; Sui et al., 2009) presents a solution ral ICA) and then jointly analyzed. The jICA model is particularly
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Figure 3. Decentralized neural network algorithm.
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Figure 4. Experimental results for decentralized neural network using the Fagerstrom Test for Nicotine Dependence dataset addition
functional MRI dataset (Lewis ef al., 2017). In this experiment, we simulated an addiction dataset with two sites. The centralized classifier
(red) and decentralized neural network classifier (yellow) perform similarly, and local sites classifiers (green and aquamarine) perform

poorly.
Page 6 of 20



attractive for datasets where the number of observations is signifi-
cantly smaller than the dimensionality of the data, as in temporal
ICA of fMRI data (time points < voxels), as concatenation over
datasets effectively increases the number of observations. In decen-
tralized jICA (djICA), the datasets are stored at different sites,
rendering the traditional centralized approach for concatenation
ineffective. To solve this problem, we developed an implicit con-
catenation procedure based on the assumption that the data from
each site will share the same global unmixing matrix.

A diagram of djICA is shown in Figure 5. The global unmixing
matrix includes W and bias b. Using this unmixing matrix, each
site estimates the independent source Zp(j) and tries to maximize
the entropy function of a sigmoid transformation of Zp(j) ( Yp(j)).
G () and h (j) are the local gradients for W and b, respectively. The
master node sums the two gradients across all sites and updates the
global unmixing matrix for the next iteration until either conver-
gence or the stopping criteria is met.

The performance of djICA has been evaluated in studies by
Plis et al (Plis et al., 2016) and Baker et al (Baker et al., 2015).
The results of the experiments in these two studies convincingly
demonstrate that with increased sample size the quality of fea-
ture estimation increases for both pooled-data ICA and djICA.
Furthermore, we have found that splitting data across sites does
not degrade the results given the same global data volume. Please
see Figure 6 for reference.

Decentralized IVA. When using joint ICA to decompose temporal
or multimodal datasets containing a group of subjects, we make
a strong assumption that the underlying source maps are identi-
cal across subjects. Clearly, it is more desirable for source maps
to contain subject-specific features. IVA is an approach that allows
corresponding sources from different subjects to be similar rather
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than identical. IVA enables the subject source maps to contain
unique information, yet still be linked across different subjects
(Kim et al., 20006; Silva et al., 2016).

We proposed a decentralized IVA (dIVA) method, which allows
multiple institutions to not only collaborate on the same IVA
problem but also spread the computational load to multiple sites,
improving execution time. We use IVA with a Laplace assumption
for the dependence structure of the underlying source groups (Kim
et al., 2006; Lee ef al., 2008). Figure 7 shows a diagram of dIVA.
Specifically, dIVA optimizes the same information measure as [IVA
by exploiting the structure of the objective function and fitting it
into a decentralized computational model. In this model, a master
node (or centralized aggregator) sends requests to local sites that
contain the data. The sites send only data summaries (CP, dp) back
to the aggregator, which uses them to update a matrix of norms
(C) as well as the objective function (cost(j)). The aggregator sends
this matrix back to the sites, which use its inverse (C°") to apply a
relative gradient update on their local data. Subsequently, the local
gradients are transmitted to the master node and aggregated to cal-
culate a global step size (). «is then returned to the local sites to
update their weights. This process is orchestrated iteratively by the
local and master nodes until convergence, and results are stored at
local sites.

Figure 7 shows the optimization function utilized by IVA can
be split across sites, allowing the bulk of the computation to be
parallelized with the aid of an aggregator that collects summa-
ries from individual sites. We have already evaluated our decen-
tralized approach on synthetic sources, and experimental results
show that dIVA provides high accuracy and significantly reduces
the runtime of the method compared with a centralized com-
putation (Wojtalewicz er al., 2017). Please see Figure & for
reference.

Site data: {X,,,0q € R™*Np :p=12,-,P}, Psites,rissame across sites
Tolerance level t = 1079, iteration number j=1, j,,.. = /, I[VW (0)[|%=t,
initial learning rate p = 0.015/In(r)

For all sitesp=1,2 ..., Pdo
Z,(D=W({ - X, +b(j — D17

: 1
1 A0)) T lte 20D
Gp() =pU + (1 - Z?P(f)) LNIWG -

1
N,
=P " (1= 2%mp(0))

Initialize W (0), b(0)

.
YW(j) = Zp:ﬁ’(’)
WG =W, — 1) + VW()

N ey & :
b() = b —1) + zpzlhpo)

j>Jor
IPwplz <t

Figure 5. Decentralized joint independent component analysis (ICA) algorithm.
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Figure 6. Experimental results for decentralized joint independent component analysis (djICA) (Baker et al., 2015). The experiment is
based on synthetic functional MRI data using a generalized autoregressive conditional heteroscedastic model (Engle, 1982; Bollerslev, 1986).
The top figure shows that as the global number of subjects increases, the Moreau-Amari index (MAI) decreases for both pooled-data ICA
and djICA with different principal component analysis (PCA) operations. Additionally, MAI converges for pooled-data ICA and djICA when the
number of subjects increases. The bottom figure shows that number of splits in the data have no effect on MAI.

Improved COINSTAC user interface (Ul)

We have improved the Ul for COINSTAC by adding features
that facilitate the input of brain imaging data, allow users to
easily run computations, and keep users informed on the progress
of the computation. To begin a collaborative, decentralized
computation, a group of users that will participate in the analy-
sis, called a consortium, must be created. This involves naming
the consortium, choosing the computation, and defining the
dependent and independent variables. The user who completes
these steps is called the consortium owner. As shown in an
example in Figure 9, the Ul accepts FreeSurfer data saved in
a comma-separated value (CSV) file as an input. The ROI of
the brain computed by FreeSurfer is selected as the dependent
variable in a ridge regression computation. Additionally, the
regularization parameter (lambda), which limits overfitting in the

model, is selected via a numeric field. A standard regression with
no regularization is performed if lambda is given a value of zero.

Next, the consortium owner declares the covariates (independent
variables) and determines their types. The UI currently allows
either Boolean (True/False) or numeric covariates. Every user
who participates in the consortium must then choose a local data
source, such as a FreeSurfer CSV file, and map the columns in the
file to the variables declared by the consortium owner. Figure 10
shows how this is accomplished in the UL

Once all the participants in the consortium have mapped columns
in their local data sources to declared variables, the computation
commences. The progress of computations in multiple consor-
tiums is displayed on the Home tab of the UI. Figure 11 shows
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Figure 7. Decentralized independent vector analysis (IVA) algorithm.
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Name

Age

Name

isControl

Type

Number E = Delete
Type

True/False B = Delete

+ New

Figure 9. Example of how a consortium is created in the COINSTAC user interface.

an example of this. In the top computation, a multi-shot ridge
regression is on the third iteration out of a maximum of 25
iterations.

New output statistics table with decentralized statistics
computation for ridge regression

Regression analysis generates an equation to describe the statisti-
cal relationship between one or more predictor variables and the
response variable. Decentralized ridge regression first produces
the regression coefficients for all independent variables through an
iterative optimization process. However, in most cases, a researcher
may not only want to know the coefficient associated with certain

regressor but also the statistical significance of this coefficient and
the overall goodness of fit or coefficient of determination (R?) for
the global model. In order to generate a standard statistical output
accompanying the coefficient as in many major statistical tools, we
developed a decentralized approach to calculate the t-values and
goodness of fit for the global model without sharing any original
data.

The decentralized R calculation is demonstrated in Figure 12.
First, each local node calculates the local average of depend-

ent variable Y, and transmits it and the size of dataset N” to the
master node. Then, the master node calculates the global y and
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e e COINSTAC

» COINSTAC

Edit Files Collection

A Home
- Name:
iZ Consortia
Site 1
My Files
Consortium:
Q== - °
demo@mm.org
#* Settings
C Log Out

Metadata File

Upload a CSV with the full file paths to your data files in the first column and any covariates in the columns after

. site1_Covariate.csv ®
/Users/eric/Downloads/20170216-coinstac-test-data 2/site1

Map your metadata file’s columns to the required computation input fields:

Map column.. 4 Map column... ;i
. Age (Number) F
freesurferfile isControl Is Control (True/False)
subject0_aseg_stats.txt TRUE 27.0
subject1_aseg_stats.txt FALSE 69.0
subject?_aseg_stats txt FALSE 71.0
subject3_aseg_stats.txt FALSE 29.0
subject4_aseg_stats.ixt TRUE 5T.0
subject5_aseg_stats.txt TRUE 73.0

Figure 10. Example of binding files to a specific consortium in the COINSTAC user interface.

[ N ) COINSTAC

%+ COINSTAC Computation statuses:

Consortium: multi-shot demo4 for ohbm
Computation: Multi-Shot Ridge Regression (Version 3.1.11)
lterations: 3/25

= Consortia

My Files Covariates: Is Control?, Age
Freesurfer ROI: Right-Cerebellum-Cortex
demo 1 Lambda: @
demo@mrn.org Users: demot, demo?
£ Settings
G+ Log Out

Started 22 days ago

Consortium: demo2 on OHBM

Computation: Single-Shot Ridge Regression (Versicn 1.1.10)
Covariates: isControl, Age

Freesurfer ROI: Right-Cerebellum-Cortex

Lambda: &

Users: demo1, demo3

Started a month ago

Consortium: multi-shot second time 6_15

Waiting on: demo4

Computation: Multi-Shot Ridge Regression (Version 3.1.11)
Iterations: 1/100

Covariates: Is Control?, Age

Freesurfer ROI: Right-Cerebellum-Cortex

Lambda: @

Users: demoi, demo2, demod

Figure 11. COINSTAC user interface computation status dashboard.
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returns it to the local node. Subsequently, every node calculates the
local total sum of squares (88T) and sum of squared errors (SSE)
on the basis of y and send them to the master node. Finally, the
master node aggregates SST, and SSEP across all sites to calculate
the global value of R%.

The decentralized t-value calculation is demonstrated in Figure 13.
Each local node calculates the local covariance matrix of X, and
SSE, and transmits them and data size N, o the master node. The
master node then aggregates cov(X) to generate the covariance
matrix of global covariates X to allow the following calculation of

Site Data: ¥,,; ER, i=12,---,N

Xp

For each site p :

=l s
YP_N_p Zi:l Yo

N, =
SSE=Y,° (G — 11

Vi = WXy,
N -
SSEp L Z,j;l(y'p,i i} Yp,i)2

Figure 12. Decentralized R? calculation.
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the t-values. MSE represents the mean squared error of the esti-
mated coefficient W (or B).

After generating the t-value for every covariate and intercept, we
use the public distributions library on npm (https://www.npmjs.
com/package/distributions) to generate the Student’s t-distribu-
tion and then calculate the two-tailed p-value for corresponding
t-value.

Figure 14 shows an example statistical output table for ridge
regression. The COINSTAC Ul displays the result with summarized

P

o SR = =, Np, WE R™ , m = number of covariates
p=12-,P

P sites

—_ NP
SST = 2£:1 SST,
SSE-FL SSE

Site Data: Y,,; €ER, i =12, ,N,

Xp

i ER™, 1=12,---,N,, W€ R™, m=number of covariates

p=12,--,P P sites

For each site p :

Yp,i = WXp.i

N, o
SSEp = Ei:pl(-yp-i — )p,i)z
Cov(X,) = X, X,

Figure 13. Decentralized t-value calculation.

Cov(X) = Zp

p=1
(elementwise plus)

Cov(X,)

= .
p=1

P
ERSE

SE(W)

Page 12 of 20


https://www.npmjs.com/package/distributions
https://www.npmjs.com/package/distributions

Ended a few seconds ago 5ol

Computation: Single-Shot Ridge Regression (Version 1.1.10)

Covariates: Age, Is Control?

Freesurfer ROI: Right-Cerebellum-Cortex

Lambda: @
Users: demo1, demo2
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Global ©
R2 8.56571
Degrees of Freedom 120

Bo (Intercept) B1 (Age) Bz (Is Control?)
B Vector 4.8686 x 10* =1.9171 = 182 4.8736 = 102
P Value [ '] 0.09895
T Value 59.57608 -1.1619 = 1@? 1.66286
demo1
R? 0.82377
Degrees of Freedom 70

Bo (Intercept) B1 (Age) Bz (Is Control?)
B Vector 4.8199 = 18* -2.3417 x 102 6.5443 x 18?2
P value [ [} 8.0127 x 10-?
T Value 73.74491 -1.795 x 18? 2.72967
demo2
R2 8.65938
Degrees of Freedom 47

Bo (intercept) B1 (Age) B2 (Is Control?)
B Vector 4.9174 x 104 -1.4926 x 102 3.2028 x 102
P Value 8 1.4466 x 10-22 8.23201
T Value 64.73662 -9.5368 x 10* 1.21084

Figure 14. Example statistical output table for ridge regression. This output is generated using simulated freesurfer brain volume data.
In the simulation, the intercept part (B,) was set to a fixed amount (48466.3 for Right-Cerebellum-Cortex); the age effect(B,) was selected
randomly from range [-300, -100] and group(isControl) effect(B,) was selected randomly from range [500, 1000] for each pseudo subject; the
standard unit Gaussian noise multiplied by random index ranged from 1800 to 2200 was added subsequently.
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consortium information at the top. In the output table, we first
present the global fitting parameters, following by the fitting param-
eters locally calculated at each site. The COINSTAC UI also pro-
vides the detailed covariate name for each £.

Complete pipeline specification

COINSTAC is not only designed to apply individual computations,
but also to flexibly arrange multiple computations into a pipeline.
Both decentralized analyses and local preprocessing steps can be
included in a pipeline. The goal of COINSTAC is to provide a
shared preprocessing script that is convenient for researchers and
minimizes the data discrepancies across sites that become inputs to
decentralized computations.

COINSTAC concatenates multiple computations into a pipeline
and uses a pipeline manager to control the entire computation

Computationl
(local
computation)

preprocess

FreeSurfer
VBEM
fMRI

DSNE
djicA
dIVA

Computation2
(decentralized
computation)

mega comp

Ridge Regression

F1000Research 2017, 6:1512 Last updated: 25 OCT 2017

flow. Figure 15 shows a pipeline specification scheme with an ini-
tial preprocessing step and a following decentralized computation.
Consortium owners will be able to select the computation step and
output type through connected dropdown menus. After the compu-
tation steps have been selected, all users within a consortium will
be shown cascading interfaces to upload input data and set hyper-
parameters for each computation. Additionally, the input from the
latter computation step can be linked to the output from an earlier
computation step.

Once a complete pipeline has been formed, all pipeline information
is transmitted to the pipeline manager. Figure 16 shows how the
pipeline manager interacts with a pipeline and its internal computa-
tions. The pipeline manager controls the entire computation flow.
It is responsible for piping the input data to the first computation
step, caching and transferring intermediate computation output, and

QOutput
Format

output

Statistictable
Errorrate bar

Weights file
Statisticbrain
images

Figure 15. Example pipeline with one local, preprocessing computation and a decentralized computation. The output displayed in the

user interface can be selected as well.

Success met

twork churn to Central computation via
Co ler until success criteria met

output:
@ Pipeline Manager <; {Q: [1.44.5.4]
}

Type* Docker

Input:

{ e ema: E‘:>{
"Files" : ["1", "2"], {Input: %
"X 44 {

"Z": True Files: {count: 2},

} X: {type:number},

b
"

W: {type:number},

{
}

Controller: Iterate

Controller: once

Figure 16. COINSTAC pipeline architecture. The pipeline manager handles the input and output of each pipeline, providing a conduit
other nodes in the network. Each computation has its own schema that describes the names and types of its input and output parameters.
Controllers are used to manage specific behavior in each computation in the pipeline. Each computation is encapsulated in a Docker

container to improve portability among development environments.
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storing the final pipeline output. An intermediate controller is added
to provide fine-grained control for monitoring the iterative process
between local and remote nodes for every computation. The com-
putation schema is defined by a JavaScript object notation (JSON)
structure and includes input and output specifications. A Docker
container is used to encapsulate an individual computation block.

Discussion

In this paper, we reviewed our progress on the development
of decentralized algorithms that can be implemented on the
COINSTAC platform. Every algorithm is structured similarly
in that the local gradient of the objective function is transmitted
to the master node, and the master node either returns a com-
mon averaged gradient or a step size (dIVA) to update the local
weights. This scheme guarantees that information is shared
across all sites on every iteration in the optimization algorithm to
achieve a virtually pooled analysis effect (i.e., a mega-analysis).
This framework also facilitates differential privacy by allowing
for the addition of noise to each local objective function. We
continue to develop decentralized algorithms as described below.

Future decentralized algorithms

Decentralized network gradient descent. SGD has emerged as the
de facto approach to handle many optimization problems arising in
machine learning, from learning classification/regression models to
deep learning (Bottou, 2010; Song et al., 2013). For decentralized
settings, SGD can be costly in terms of message complexity. We are
currently developing approaches to limit this message complexity to
enable a variety of statistical learning methods within COINSTAC.
These approaches are guided by theory, but will involve developing
task-specific heuristics to tune the algorithm parameters.

Nonnegative matrix factorization (NMF). NMF is another popular
method for discovering latent features in data such as images, where
measurements are all nonnegative (Lee & Seung, 2001). Although
there has been significant work on NMF and its variants, the work
on decentralized implementations is more limited, and the focus has
been on improving parallelism for multicore systems (Potluru ez al.,
2014). Because of the message-passing nature of the COINSTAC
architecture, we are developing decentralized and accelerated NMF
algorithms that are optimized with gradient descent. Further exten-
sions could allow users to find an NMF to minimize a variety of cost
functions beyond squared error.

Canonical correlation analysis (CCA). One challenging task
in learning from multimodal or multiview data is to find repre-
sentations that can handle correlations between the two views

F1000Research 2017, 6:1512 Last updated: 25 OCT 2017

(Sui et al., 2012; Thompson, 2005). CCA is one such method. We
are currently developing privacy-preserving CCA methods, as well
as determining whether decentralized, message-passing approaches
will be feasible within the COINSTAC architecture.

Integration with large-scale collaborative frameworks

In recent years, the ENIGMA Consortium has conducted collabo-
rative meta-analyses of schizophrenia (van Erp er al., 2016) and
bipolar disorder (Hibar er al., 2017), in which subcortical brain
volumes and cortical thicknesses were compared between patients
and controls, respectively. In these studies, many univariate linear
regression models were created in parallel to examine group dif-
ferences for different regions of the brain. ENIGMA distributes
analysis software to many sites and aggregates the results to con-
duct a meta-analysis. The upcoming version of COINSTAC will
facilitate such studies by allowing researchers to specify models
that contain combinations of selected dependent and independent
variables. Table 1 elaborates on this point by showing an example in
which a researcher selects a group of dependent variables (right and
left cerebellum cortexes) and a group of independent variables (age
and isControl). One model is computed separately for each combi-
nation of dependent and independent variables. The advantage of
COINSTAC is that dissemination of software and aggregation of
results will be handled by our software, eliminating many manual
steps. In addition, as mentioned earlier, COINSTAC enables us to
run multishot regression (hence converting a meta-analysis into a
mega-analysis). Finally, COINSTAC opens up the possibility of
running multivariate analysis (such as SVM (Sarwate er al., 2014)
or IVA), as well as incorporating differentially private analyses,
which would significantly extend the current ENIGMA approach,
while also preserving the powerful decentralized model.

Table 1. Example parallel computation of
combinations of two independent and two
dependent variables.

Model Ing:g:gg«;nt Dependent variables
1 Age Right Cerebellum Cortex
2 isControl Right Cerebellum Cortex
3 Age, isControl  Right Cerebellum Cortex
4 Age Left Cerebellum Cortex
5 isControl Left Cerebellum Cortex
6 Age, isControl  Left Cerebellum Cortex
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Software and data availability
COINSTAC is free and open source and can be downloaded at:
https://github.com/MRN-code/coinstac

Archived source code as at time of publication: http://doi.
org/10.5281/zenodo.840562 (Reed et al., 2017)

License: MIT

ABIDE dataset can be accessed at http://fcon_1000.projects.nitrc.
org/indi/abide/

The Fagerstrom Test for Nicotine Dependence addiction dataset
was collected within the Mind Research Network using local fMRI
scanners. This dataset is stored in the Collaborative Informatics
and Neuroimage Suit (COINS) https://coins.mrn.org/. This dataset
is not a public dataset, but can be requested through COINS after
receiving approval from the dataset owner.
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This manuscript discusses the development and use of the COINSTAC system, a framework that is
meant to facilitate neuroimaging data sharing by allowing for easy decentralized analysis.

The authors provide a thorough and easily understandable introduction into recent advances and
challenges for neuroimaging data analysis: as technological barriers preventing the open sharing of large
amounts of data have been removed, other obstacles have become apparent, ranging from common
standards of analysis to legal issues.

The manuscript demonstrates the use of the COINSTAC system with existing neuroimaging data to show
that centralized and decentralized neural network classifiers lead to comparable results. The authors
argue that one advantage of a decentralized analysis approach is that individual data cannot be easily
compiled into a coherent data point, so that privacy is preserved through a process which essentially
fragments and distributes individual data components. While this approach makes sense to me, | cannot
judge whether this will in fact have an effect on the legal situation regarding the sharing of data between
groups; this will likely depend on specifications given by regional jurisdictions or institutional bodies.

Algorithms necessary for this decentralized processing are named and explained. Additional information
includes specification of user interface and processing pipelines.

Overall, this is a thorough and well-written article about software that is certainly needed to adapt to new
challenges and opportunities pertaining to large-scale neuroimaging analyses and that will likely be useful
to a large number of researchers.

Minor comments:
® The term ‘mega-analysis’ is used without explanation, before being mentioned later on in the text
with a quick description. | recommend defining the term at its first use, either in the text or as a
footnote.

®  For the different software packages mentioned, it should be made clear whether they are freely
available or whether they need to be purchased. This could be mentioned in the main text, or the
software can be included in the ‘Software and availability’ section at the end of the manuscript. One
instance where this was missed is the mention of the Docker software.

Is the rationale for developing the new software tool clearly explained?
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Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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doi:10.5256/f1000research.13376.r26634

v

Joshua Balsters
Department of Psychology, Royal Holloway, University of London, London, UK

This is a wonderful article describing an increasingly necessary resource. | have very little to add to this
manuscript.

1. The article mostly focuses on decentralized data analysis, however figure 15 highlights the
preprocessing and output stages. It would be useful if the article included some information about
the expected input formats. For example, does COINSTAC offer preprocessing tools? At the end
of the first paragraph of the introduction the authors critique meta-analyses by suggesting
"heterogeniety among studies caused by varying preprocessing methods applied to the data".
Does COINSTAC offer tools to harmonize preprocessing, and if so what are they? Similarly, it
would be good to have a summary figure of the output formats available. Can you visualise brain
images online or do you have to download these?

2. Figure 8b is cropped
| look forward to seeing more additions and extensions to COINSTAC in the future.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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