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Abstract
In the era of Big Data, sharing neuroimaging data across multiple sites has
become increasingly important. However, researchers who want to engage in
centralized, large-scale data sharing and analysis must often contend with
problems such as high database cost, long data transfer time, extensive
manual effort, and privacy issues for sensitive data. To remove these barriers to
enable easier data sharing and analysis, we introduced a new, decentralized,
privacy-enabled infrastructure model for brain imaging data called COINSTAC
in 2016. We have continued development of COINSTAC since this model was
first introduced. One of the challenges with such a model is adapting the
required algorithms to function within a decentralized framework. In this paper,
we report on how we are solving this problem, along with our progress on
several fronts, including additional decentralized algorithms implementation,
user interface enhancement, decentralized regression statistic calculation, and
complete pipeline specifications.
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Introduction
Proliferating neuroimaging data present contemporary neurosci-
entists with both an exciting opportunity and a cumbersome chal-
lenge. The advantages of sharing data are clear. Adding datasets 
to a study increases sample size, making predictions more cer-
tain, and increases diversity, allowing differences between groups 
to be studied. Although there is indeed an abundance of data, 
there exist multiple barriers to fully leverage such data. Firstly, a  
significant amount of existing neuroimaging data has been col-
lected without proper provisions for post hoc data sharing.  
Secondly, researchers must negotiate data usage agreements 
(DUAs) to collaborate and build models using multiple sources of 
data that can be anonymized and shared. Sharing data via a DUA 
is advantageous in that all the variables collected can be studied. 
However, these DUAs may require months to complete, and the 
effort to obtain them could be ultimately fruitless, as research-
ers only know the utility of the data after they have obtained and 
explored it. Thirdly, even if neuroimaging data can be shared in 
an anonymized form, the data require a copious amount of stor-
age, and the algorithms applied to the data require significant cen-
tralized computational resources. Fourthly, even anonymized data 
bears a risk of reidentification, especially for subjects who are 
rare because of a combination of demographic and clinical data. 
While centralized sharing efforts are powerful and unquestionably 
should continue, the community needs a family of approaches to 
address all the existing challenges, including decentralized mod-
els that we describe in this paper. One alternative to centralized 
data sharing is to perform meta-analyses utilizing existing lit-
erature to avoid the burden of negotiating DUAs and storing and 
processing data (Thompson et al., 2017; Thompson et al., 2014).  
However, meta-analyses suffer from heterogeneity among  
studies caused by varying preprocessing methods applied to 
the data and inconsistent variables collected. In addition, meta- 
analytic results are not as accurate as those obtained from a  
centralized analysis.

The Collaborative Informatics and Neuroimaging Suite Toolkit 
for Anonymous Computation (COINSTAC), proposed by Plis et 
al., in 2016 (Plis et al., 2016), solves the abovementioned prob-
lems by providing a decentralized platform by which research-
ers can collaboratively build statistical and machine learning  
models, while neither transmitting their data nor sacrificing  
privacy concerns, thanks to differentially private algorithms.  
COINSTAC can run both meta-analyses and mega-analyses via 
“single-shot” and “multi-shot” (iterative) computations, respec-
tively. The COINSTAC software (currently in an early proto-
type) is freely available, open source, and compatible with all 
major operating systems (Windows, Mac OS, and Linux). It is an  
easy-to-install, standalone application with a user-friendly,  
simple, and intuitive interface. By utilizing Docker containers, 
COINSTAC can run computations in any programming language 
(including Python, R, Matlab, FORTRAN, and C++) and is  
easily extensible. We are also building a development community  
to help users create their own computations, as well.

The use of a decentralized analysis framework has many  
advantages. For example, decentralized analysis can move  
beyond meta-analysis via iteration, obtaining a solution equivalent  

to that of the centralized result. In addition, one can move 
beyond sharing summary measures—which though plausibly  
private can still potentially be reidentified—to a more formally private  
solution. Differential privacy has been touted as a solution to the 
data sharing and reidentification problem. Developed by Dwork  
et al., 2006, this approach statistically guarantees privacy 
and allows for sharing aggregated results without the risk of  
reidentification (Dwork et al., 2006).

In the past few years, we have developed many algorithms  
that run in a decentralized and optionally a differentially private 
manner. Decentralized computations include ridge regression  
(Plis et al., 2016), multi-shot regression (Plis et al., 2016), inde-
pendent vector analysis (IVA) (Wojtalewicz et al., 2017), neural 
networks (Lewis et al., 2017), decentralized stochastic neighbor 
embedding (dSNE) (Saha et al., 2017), joint independent com-
ponent analysis (ICA) (Baker et al., 2015), and two-level dif-
ferentially private support vector machine (SVM) classification  
(Sarwate et al., 2014). To facilitate and accelerate algorithm  
development, we have created COINSTAC-simulator, which  
allows algorithm developers to prototype and troubleshoot their 
algorithms before deployment to real consortia in COINSTAC.

Furthermore, we include both input and output functionality  
to the COINSTAC user interface. For example, the interface for 
regression can accept data produced by FreeSurfer, with a menu 
to select the region of interest (ROI) in the brain that will be 
used as the dependent variable in the statistical analysis. Follow-
ing the analysis, COINSTAC produces a statistics table for the  
output of ridge regression, which calculates the global p-values and 
t-values in a decentralized fashion for each site in the consortium, 
measuring goodness of fit.

COINSTAC also enables decentralized analyses with multiple  
computation steps. Easy and flexible computation stacking is a 
built-in feature in our framework. In this paper, we demonstrate 
an implementation scheme for specifying and managing multiple 
computations. With this framework, we can incorporate local  
computations, such as common preprocessing brain imaging tasks, 
into the analysis workflow.

A common nuisance among programmers and especially non- 
expert users is the assembly of an environment to run a  
computer program. This is a crucial step that may require upgrad-
ing an operating system and downloading and installing the  
latest release of software, a compiler, or a supporting library. 
Assembly of the environment may involve permission from IT  
and a substantial amount of troubleshooting, which may lead to 
a long delay before analysis can begin. Additionally, inconsistent 
machine state between computers (including operating systems, 
libraries, and compilers) can lead to inconsistent results from the 
same computation.

A popular solution to this problem is utilizing a virtual machine 
(VM) that contains all the dependencies needed to run a  
program. Because VMs are resource-intensive, many developers 
have switched to using containers, which are an efficient, light-
weight solution to the problem of heterogeneous development 
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environments. Containers only bundle in the supporting software 
needed to run the program and do not require running a full VM 
with its own operating system. This reduces the required amount of 
memory and number of CPUs.

COINSTAC encapsulates individual computations inside Docker 
containers (https://www.docker.com/what-docker), which are run 
in series in a pipeline. Containers holding computations can be 
downloaded and run locally, which removes the need to assemble a 
development environment and thus greatly reduces the time to ana-
lyze results. This solution will also allow consortium participants 
to run coordinated preprocessing operations that must often occur 
before a statistical analysis, such as FreeSurfer processing or voxel-
based morphometry. We have already created a Docker container 
with a standalone SPM package utilizing the Matlab Compiler 
Runtime. The normalization and coordination of preprocessing 
operations reduce heterogeneity in the data, creating a solid basis 
for the main analyses.

Methods and use cases
Algorithms for decentralized data analysis
In our previous paper (Plis et al., 2016), we demonstrated the use 
of decentralized gradient descent in the optimization of a basic  
ridge regression model. This decentralized iterative optimiza-
tion process represents an analysis of virtual data pooling. The  
resulting model generated in this manner is equivalent to the  
model generated in centralized repository analysis (i.e., the meta-
analysis becomes a mega-analysis).

In this paper, we apply the decentralized gradient descent  
methods to other more advanced algorithms in the neuroimag-
ing domain, including t-distributed nonlinear embedding (tSNE), 
shallow and deep neural networks, joint ICA, and IVA. These  
methods are already widely used in the neuroimaging domain, 
but have not previously been extended to work in a decentralized  
framework. We demonstrate how these methods can be com-
puted within a decentralized framework and report the algorithm  
performance compared to a centralized analysis.

Decentralized tSNE (dSNE). A common method of visualizing 
a dataset consisting of multiple high-dimensional data points 
is embedding the points into a 2- or 3-dimensional space. Such 
an embedding serves as an intuitive exploratory tool for quick  
detection of underlying structure of a dataset. In 2008, van 
der Maaten and Hinton proposed a method named tSNE to  
efficiently handle this situation (Maaten & Hinton, 2008). The 
embeddings produced by tSNE are usually intuitively appealing 
and interpretable, which makes this method an attractive tool in 
many domains, including neuroimaging (Panta et al., 2016).

We propose a method to embed a decentralized dataset that is 
spread across multiple locations such that the data at each loca-
tion cannot be shared with others into a 2D plane. We build the 
overall embedding by utilizing public, anonymized datasets. The 
method is similar to the landmark achievements previously used to 
improve computational efficiency (De Silva & Tenenbaum, 2004;  
Silva & Tenenbaum, 2003). However, directly copying this  
approach does not produce accurate results, so we introduce a 

dynamic modification that generates an embedding that reflects 
relationships among points spread across multiple locations.

The detailed algorithm diagram for decentralized multi-shot 
tSNE is demonstrated in Figure 1. X

p
 and X

s
 represent the high- 

dimensional site data and shared data, respectively. Y
p
 and Y

s
  

represent the low-dimensional mapping site data and shared data, 
respectively. The master node initializes Y

s
 and subsequently calcu-

lates a common gradient ∇Y
s
(j) based on the site gradient ∇Y

sp
(j) 

for each iteration j and update Y
s
, accordingly. Each local node 

will calculate the pairwise affinities among its own dataset and the 
shared dataset and then update Y

p
 by locally calculating ∇Y

P
(j). 

With this scheme, Y
s
 stays constant across all sites for every itera-

tion and serves as a reference function. Meanwhile, Y
s
 is influenced 

by Y
p
, which allows local embedding information to flow across the 

sites, resulting in a final map with less overlapping.

We have tested the performance of this algorithm by comparing 
the decentralized result with that of centralized tSNE using the  
quality control metric of the ABIDE dataset (Di Martino  
et al., 2014). The results demonstrate that the centralized and 
decentralized computations generate an equal number of clusters. 
Additionally, random splits do not affect the stability of the clusters 
(Saha et al., 2017). Please see Figure 2 for reference.

Decentralized neural networks. Recently, deep learning has  
gained increasing attention because of its excellent performance 
in pattern recognition and classification, including in the neu-
roimaging domain (Plis et al., 2014). To enable both shallow and  
deep neural network computations within COINSTAC, we devel-
oped a feed-forward artificial neural network that is capable of 
learning from data distributed across many sites in a decentral-
ized manner. We utilize mini-batch gradient descent to average  
the gradient across sites. For our purposes, each batch contains one 
sample per site. We then average the resulting gradients from the 
batch.

Figure 3 shows a flow chart of the decentralized neural  
network algorithm. As in a stochastic gradient descent (SGD) 
model, we calculate the error function Q

p
(W

i
) for each site p and 

ith W. Q
p
(W

i
) represent the discrepancy between the expected result 

Y
i
 from the training set and the actual result from forward propaga-

tion ˆ ( )i iY W . Each site then sends ∇Q
p
(W

i
) to the master node, which 

averages the gradient and returns the result to the sites. Each site 
then updates W

i
 on the basis of the mini-batch gradient decent equa-

tion until all training data are exhausted. With the same initializa-
tion W in the master node, we find that W

i
 is always shared across 

all sites, but the change in W
i
 at each iteration is determined by the 

data at each site.

We use a basic neural network known as a multilayer perceptron 
to demonstrate the decentralized computation process, but this  
framework can be easily extended to other types of neural networks. 
We tested the performance of this model using real functional mag-
netic resonance imaging (fMRI) data from smokers (Fagerström 
Test for Nicotine Dependence dataset) (Heatherton & Kozlowski, 
1992) and found that the decentralized model and pooled central-
ized model yielded similar classification accuracy, which vastly 
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Figure 1. Multi-shot decentralized stochastic neighbor embedding (dSNE) algorithm.

Figure 2. Decentralized stochastic neighbor embedding (dSNE) results for quality control metric of the ABIDE datasets  
(Saha et al., 2017). We randomly split the data into ten local and one reference dataset. The centralized results show ten different clusters. 
For three random splits of decentralized computation, we also obtain ten different clusters, and the number of clusters in the embedding is 
stable regardless of how the data are split among sites.
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outperformed the accuracy at local, isolated sites (Lewis et al., 
2017). Please see Figure 4 for reference.

Decentralized joint ICA. When shared signal patterns are antici-
pated to exist among datasets, joint ICA (jICA) (Calhoun et al., 
2006; Calhoun et al., 2001; Sui et al., 2009) presents a solution 

to combine and identify shared information over multiple data-
sets. Although originally proposed as a method for multimodal 
data fusion, jICA can also implement group temporal ICA of 
fMRI data. In both cases, datasets are concatenated (over modali-
ties in multimodal fusion and over subjects across time in tempo-
ral ICA) and then jointly analyzed. The jICA model is particularly  

Figure 3. Decentralized neural network algorithm.

Figure 4. Experimental results for decentralized neural network using the Fagerström Test for Nicotine Dependence dataset addition 
functional MRI dataset (Lewis et al., 2017). In this experiment, we simulated an addiction dataset with two sites. The centralized classifier 
(red) and decentralized neural network classifier (yellow) perform similarly, and local sites classifiers (green and aquamarine) perform 
poorly.
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attractive for datasets where the number of observations is signifi-
cantly smaller than the dimensionality of the data, as in temporal 
ICA of fMRI data (time points < voxels), as concatenation over 
datasets effectively increases the number of observations. In decen-
tralized jICA (djICA), the datasets are stored at different sites, 
rendering the traditional centralized approach for concatenation 
ineffective. To solve this problem, we developed an implicit con-
catenation procedure based on the assumption that the data from 
each site will share the same global unmixing matrix.

A diagram of djICA is shown in Figure 5. The global unmixing 
matrix includes W and bias b. Using this unmixing matrix, each 
site estimates the independent source Z

p
(j) and tries to maximize 

the entropy function of a sigmoid transformation of Z
p
(j) (Y

p
(j)). 

G
p
(j) and h

p
(j) are the local gradients for W and b, respectively. The 

master node sums the two gradients across all sites and updates the 
global unmixing matrix for the next iteration until either conver-
gence or the stopping criteria is met.

The performance of djICA has been evaluated in studies by 
Plis et al (Plis et al., 2016) and Baker et al (Baker et al., 2015).  
The results of the experiments in these two studies convincingly 
demonstrate that with increased sample size the quality of fea-
ture estimation increases for both pooled-data ICA and djICA.  
Furthermore, we have found that splitting data across sites does  
not degrade the results given the same global data volume. Please 
see Figure 6 for reference.

Decentralized IVA. When using joint ICA to decompose temporal 
or multimodal datasets containing a group of subjects, we make 
a strong assumption that the underlying source maps are identi-
cal across subjects. Clearly, it is more desirable for source maps 
to contain subject-specific features. IVA is an approach that allows  
corresponding sources from different subjects to be similar rather 

than identical. IVA enables the subject source maps to contain 
unique information, yet still be linked across different subjects 
(Kim et al., 2006; Silva et al., 2016).

We proposed a decentralized IVA (dIVA) method, which allows 
multiple institutions to not only collaborate on the same IVA 
problem but also spread the computational load to multiple sites, 
improving execution time. We use IVA with a Laplace assumption 
for the dependence structure of the underlying source groups (Kim 
et al., 2006; Lee et al., 2008). Figure 7 shows a diagram of dIVA. 
Specifically, dIVA optimizes the same information measure as IVA 
by exploiting the structure of the objective function and fitting it 
into a decentralized computational model. In this model, a master 
node (or centralized aggregator) sends requests to local sites that 
contain the data. The sites send only data summaries (C

p
, d

p
) back 

to the aggregator, which uses them to update a matrix of norms 
(C) as well as the objective function (cost(j)). The aggregator sends 
this matrix back to the sites, which use its inverse (C0–1) to apply a 
relative gradient update on their local data. Subsequently, the local 
gradients are transmitted to the master node and aggregated to cal-
culate a global step size (α). α is then returned to the local sites to 
update their weights. This process is orchestrated iteratively by the 
local and master nodes until convergence, and results are stored at 
local sites.

Figure 7 shows the optimization function utilized by IVA can 
be split across sites, allowing the bulk of the computation to be 
parallelized with the aid of an aggregator that collects summa-
ries from individual sites. We have already evaluated our decen-
tralized approach on synthetic sources, and experimental results  
show that dIVA provides high accuracy and significantly reduces 
the runtime of the method compared with a centralized com-
putation (Wojtalewicz et al., 2017). Please see Figure 8 for  
reference.

Figure 5. Decentralized joint independent component analysis (ICA) algorithm.

Page 7 of 20

F1000Research 2017, 6:1512 Last updated: 25 OCT 2017



Figure 6. Experimental results for decentralized joint independent component analysis (djICA) (Baker et al., 2015). The experiment is 
based on synthetic functional MRI data using a generalized autoregressive conditional heteroscedastic model (Engle, 1982; Bollerslev, 1986). 
The top figure shows that as the global number of subjects increases, the Moreau-Amari index (MAI) decreases for both pooled-data ICA 
and djICA with different principal component analysis (PCA) operations. Additionally, MAI converges for pooled-data ICA and djICA when the 
number of subjects increases. The bottom figure shows that number of splits in the data have no effect on MAI.

Improved COINSTAC user interface (UI)
We have improved the UI for COINSTAC by adding features  
that facilitate the input of brain imaging data, allow users to  
easily run computations, and keep users informed on the progress 
of the computation. To begin a collaborative, decentralized  
computation, a group of users that will participate in the analy-
sis, called a consortium, must be created. This involves naming  
the consortium, choosing the computation, and defining the  
dependent and independent variables. The user who completes 
these steps is called the consortium owner. As shown in an  
example in Figure 9, the UI accepts FreeSurfer data saved in 
a comma-separated value (CSV) file as an input. The ROI of 
the brain computed by FreeSurfer is selected as the dependent  
variable in a ridge regression computation. Additionally, the  
regularization parameter (lambda), which limits overfitting in the 

model, is selected via a numeric field. A standard regression with  
no regularization is performed if lambda is given a value of zero.

Next, the consortium owner declares the covariates (independent 
variables) and determines their types. The UI currently allows 
either Boolean (True/False) or numeric covariates. Every user 
who participates in the consortium must then choose a local data  
source, such as a FreeSurfer CSV file, and map the columns in the 
file to the variables declared by the consortium owner. Figure 10 
shows how this is accomplished in the UI.

Once all the participants in the consortium have mapped columns 
in their local data sources to declared variables, the computation 
commences. The progress of computations in multiple consor-
tiums is displayed on the Home tab of the UI. Figure 11 shows 
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Figure 7. Decentralized independent vector analysis (IVA) algorithm.

Figure 8. Experimental results for decentralized independent vector analysis (dIVA) (Wojtalewicz et al., 2017). The experiment is based 
on synthetic data using a generalized autoregressive conditional heteroscedatic model and the SimTB functional MRI Simulation Toolbox 
(Erhardt et al., 2012). The top figure shows how the processing time, number of iterations, and intersymbol interference (ISI) change as the 
global number of subjects increases. The processing time increases with the number of subjects per site (A). Additionally, feature quality 
increases, indicated as decreasing ISI (C). The bottom figure shows the processing time ratio between dIVA and IVA decreases as the global 
number of subjects increases. When the global number of subjects reaches 512, dIVA requires only one quarter of the processing time of IVA.
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Figure 9. Example of how a consortium is created in the COINSTAC user interface.

an example of this. In the top computation, a multi-shot ridge  
regression is on the third iteration out of a maximum of 25  
iterations.

New output statistics table with decentralized statistics 
computation for ridge regression
Regression analysis generates an equation to describe the statisti-
cal relationship between one or more predictor variables and the 
response variable. Decentralized ridge regression first produces 
the regression coefficients for all independent variables through an 
iterative optimization process. However, in most cases, a researcher 
may not only want to know the coefficient associated with certain 

regressor but also the statistical significance of this coefficient and 
the overall goodness of fit or coefficient of determination (R2) for 
the global model. In order to generate a standard statistical output 
accompanying the coefficient as in many major statistical tools, we 
developed a decentralized approach to calculate the t-values and 
goodness of fit for the global model without sharing any original 
data.

The decentralized R2 calculation is demonstrated in Figure 12.  
First, each local node calculates the local average of depend-
ent variable pY  and transmits it and the size of dataset Np to the  
master node. Then, the master node calculates the global Y  and 
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Figure 10. Example of binding files to a specific consortium in the COINSTAC user interface.

Figure 11. COINSTAC user interface computation status dashboard.
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returns it to the local node. Subsequently, every node calculates the 
local total sum of squares (SST

p
) and sum of squared errors (SSE

p
) 

on the basis of Y  and send them to the master node. Finally, the 
master node aggregates SST

p
 and SSE

p
 across all sites to calculate 

the global value of R2.

The decentralized t-value calculation is demonstrated in Figure 13. 
Each local node calculates the local covariance matrix of X

p
 and 

SSE
p
 and transmits them and data size N

p
 to the master node. The 

master node then aggregates cov(X
p
) to generate the covariance 

matrix of global covariates X to allow the following calculation of 

the t-values. MSE represents the mean squared error of the esti-
mated coefficient W (or β).

After generating the t-value for every covariate and intercept, we 
use the public distributions library on npm (https://www.npmjs.
com/package/distributions) to generate the Student’s t-distribu-
tion and then calculate the two-tailed p-value for corresponding 
t-value.

Figure 14 shows an example statistical output table for ridge  
regression. The COINSTAC UI displays the result with summarized  

Figure 12. Decentralized R2 calculation.

Figure 13. Decentralized t-value calculation.
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Figure 14. Example statistical output table for ridge regression. This output is generated using simulated freesurfer brain volume data. 
In the simulation, the intercept part (β0) was set to a fixed amount (48466.3 for Right-Cerebellum-Cortex); the age effect(β1) was selected 
randomly from range [-300, -100] and group(isControl) effect(β2) was selected randomly from range [500, 1000] for each pseudo subject; the 
standard unit Gaussian noise multiplied by random index ranged from 1800 to 2200 was added subsequently.
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consortium information at the top. In the output table, we first 
present the global fitting parameters, following by the fitting param-
eters locally calculated at each site. The COINSTAC UI also pro-
vides the detailed covariate name for each β.

Complete pipeline specification
COINSTAC is not only designed to apply individual computations, 
but also to flexibly arrange multiple computations into a pipeline. 
Both decentralized analyses and local preprocessing steps can be 
included in a pipeline. The goal of COINSTAC is to provide a 
shared preprocessing script that is convenient for researchers and 
minimizes the data discrepancies across sites that become inputs to 
decentralized computations.

COINSTAC concatenates multiple computations into a pipeline 
and uses a pipeline manager to control the entire computation 

flow. Figure 15 shows a pipeline specification scheme with an ini-
tial preprocessing step and a following decentralized computation. 
Consortium owners will be able to select the computation step and 
output type through connected dropdown menus. After the compu-
tation steps have been selected, all users within a consortium will 
be shown cascading interfaces to upload input data and set hyper-
parameters for each computation. Additionally, the input from the 
latter computation step can be linked to the output from an earlier 
computation step.

Once a complete pipeline has been formed, all pipeline information 
is transmitted to the pipeline manager. Figure 16 shows how the 
pipeline manager interacts with a pipeline and its internal computa-
tions. The pipeline manager controls the entire computation flow. 
It is responsible for piping the input data to the first computation 
step, caching and transferring intermediate computation output, and 

Figure 15. Example pipeline with one local, preprocessing computation and a decentralized computation. The output displayed in the 
user interface can be selected as well.

Figure 16. COINSTAC pipeline architecture. The pipeline manager handles the input and output of each pipeline, providing a conduit 
other nodes in the network. Each computation has its own schema that describes the names and types of its input and output parameters. 
Controllers are used to manage specific behavior in each computation in the pipeline. Each computation is encapsulated in a Docker 
container to improve portability among development environments.
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storing the final pipeline output. An intermediate controller is added 
to provide fine-grained control for monitoring the iterative process 
between local and remote nodes for every computation. The com-
putation schema is defined by a JavaScript object notation (JSON) 
structure and includes input and output specifications. A Docker 
container is used to encapsulate an individual computation block.

Discussion
In this paper, we reviewed our progress on the development 
of decentralized algorithms that can be implemented on the  
COINSTAC platform. Every algorithm is structured similarly 
in that the local gradient of the objective function is transmitted  
to the master node, and the master node either returns a com-
mon averaged gradient or a step size (dIVA) to update the local  
weights. This scheme guarantees that information is shared 
across all sites on every iteration in the optimization algorithm to  
achieve a virtually pooled analysis effect (i.e., a mega-analysis). 
This framework also facilitates differential privacy by allowing  
for the addition of noise to each local objective function. We  
continue to develop decentralized algorithms as described below.

Future decentralized algorithms
Decentralized network gradient descent. SGD has emerged as the 
de facto approach to handle many optimization problems arising in 
machine learning, from learning classification/regression models to 
deep learning (Bottou, 2010; Song et al., 2013). For decentralized 
settings, SGD can be costly in terms of message complexity. We are 
currently developing approaches to limit this message complexity to 
enable a variety of statistical learning methods within COINSTAC. 
These approaches are guided by theory, but will involve developing 
task-specific heuristics to tune the algorithm parameters.

Nonnegative matrix factorization (NMF). NMF is another popular 
method for discovering latent features in data such as images, where 
measurements are all nonnegative (Lee & Seung, 2001). Although 
there has been significant work on NMF and its variants, the work 
on decentralized implementations is more limited, and the focus has 
been on improving parallelism for multicore systems (Potluru et al., 
2014). Because of the message-passing nature of the COINSTAC 
architecture, we are developing decentralized and accelerated NMF 
algorithms that are optimized with gradient descent. Further exten-
sions could allow users to find an NMF to minimize a variety of cost 
functions beyond squared error.

Canonical correlation analysis (CCA). One challenging task 
in learning from multimodal or multiview data is to find repre-
sentations that can handle correlations between the two views  

(Sui et al., 2012; Thompson, 2005). CCA is one such method. We 
are currently developing privacy-preserving CCA methods, as well 
as determining whether decentralized, message-passing approaches 
will be feasible within the COINSTAC architecture.

Integration with large-scale collaborative frameworks
In recent years, the ENIGMA Consortium has conducted collabo-
rative meta-analyses of schizophrenia (van Erp et al., 2016) and 
bipolar disorder (Hibar et al., 2017), in which subcortical brain 
volumes and cortical thicknesses were compared between patients 
and controls, respectively. In these studies, many univariate linear 
regression models were created in parallel to examine group dif-
ferences for different regions of the brain. ENIGMA distributes 
analysis software to many sites and aggregates the results to con-
duct a meta-analysis. The upcoming version of COINSTAC will 
facilitate such studies by allowing researchers to specify models 
that contain combinations of selected dependent and independent 
variables. Table 1 elaborates on this point by showing an example in 
which a researcher selects a group of dependent variables (right and 
left cerebellum cortexes) and a group of independent variables (age 
and isControl). One model is computed separately for each combi-
nation of dependent and independent variables. The advantage of 
COINSTAC is that dissemination of software and aggregation of 
results will be handled by our software, eliminating many manual 
steps. In addition, as mentioned earlier, COINSTAC enables us to 
run multishot regression (hence converting a meta-analysis into a 
mega-analysis). Finally, COINSTAC opens up the possibility of 
running multivariate analysis (such as SVM (Sarwate et al., 2014) 
or IVA), as well as incorporating differentially private analyses, 
which would significantly extend the current ENIGMA approach, 
while also preserving the powerful decentralized model.

Table 1. Example parallel computation of 
combinations of two independent and two 
dependent variables.

Model Independent 
variables Dependent variables

1 Age Right Cerebellum Cortex

2 isControl Right Cerebellum Cortex

3 Age, isControl Right Cerebellum Cortex

4 Age Left Cerebellum Cortex

5 isControl Left Cerebellum Cortex

6 Age, isControl Left Cerebellum Cortex
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Software and data availability
COINSTAC is free and open source and can be downloaded at: 
https://github.com/MRN-code/coinstac

Archived source code as at time of publication: http://doi.
org/10.5281/zenodo.840562 (Reed et al., 2017)

License: MIT

ABIDE dataset can be accessed at http://fcon_1000.projects.nitrc.
org/indi/abide/

The Fagerström Test for Nicotine Dependence addiction dataset 
was collected within the Mind Research Network using local fMRI 
scanners. This dataset is stored in the Collaborative Informatics 
and Neuroimage Suit (COINS) https://coins.mrn.org/. This dataset 
is not a public dataset, but can be requested through COINS after 
receiving approval from the dataset owner.
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