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We present a novel multi-modal deep feature learning architecture for RGB-D object detection. The cur-
rent paradigm for object detection typically consists of two stages: objectness estimation and region-wise
object recognition. Most existing RGB-D object detection approaches treat the two stages separately by
extracting RGB and depth features individually, thus ignore the correlated relationship between these two
modalities. In contrast, our proposed method is designed to take full advantages of both depth and color
cues by exploiting both modality-correlated and modality-specific features and jointly performing RGB-
D objectness estimation and region-wise object recognition. Specifically, shared weights strategy and a
parameter-free correlation layer are exploited to carry out RGB-D-correlated objectness estimation and
region-wise recognition in conjunction with RGB-specific and depth-specific procedures. The parameters
of these three networks are simultaneously optimized via end-to-end multi-task learning. The multi-
modal RGB-D objectness estimation results and RGB-D object recognition results are both boosted by
late-fusion ensemble. To validate the effectiveness of the proposed approach, we conduct extensive ex-
periments on two challenging RGB-D benchmark datasets, NYU Depth v2 and SUN RGB-D. The exper-
imental results show that by introducing the modality-correlated feature representation, the proposed
multi-modal RGB-D object detection approach is substantially superior to the state-of-the-art competitors.
Moreover, compared to the expensive deep architecture (VGG16) that the state-of-the-art methods pre-
ferred, our approach, which is built upon more lightweight deep architecture (AlexNet), performs slightly
better.
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1. Introduction as a lamp and the paint on the wall appears to be a television

(see Fig.1c). Fortunately, with the development of consumer-grade

Object detection, which aims to determine what objects are
present in the scene and where they are located, is one of the most
challenging problems in computer vision [1-3]. It has been suc-
cessfully addressed in many applications, including content anal-
ysis [4], image retrieval [5], image relevance prediction [6] and
object-level editing [7]. With the recent advent of large-scale la-
beled image corpora [8,9] and region-based convolutional neural
networks [10,11], the research on object detection has made re-
markable achievements in recent years.

Nevertheless, many challenges remain when seeking to effec-
tively detect objects in practice. For instance, in cluttered scenes, it
is still quite difficult to discriminate objects due to the variance
of object’s appearance, position, pose, lighting, and background.
As shown in Fig.1, the light and shadow is erroneously detected
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depth cameras, such as Microsoft Kinect, Intel RealSense, and Asus
Xtion, increasing amounts of depth data offer us additional cues
to revisit these problems. Since geometrical and structural proper-
ties of the scene are mostly invariant to visual changes, depth in-
formation shows powerful benefits in many vision tasks, including
salient object detection [12,13], image segmentation [14,15] and ac-
tivity classification [16,17]. Specifically, in object detection task, as
shown in Figs. 1b and d, we could effortlessly infer several objects
(e.g., lamp and bed) from the depth map. The whole object body
can be well estimated in this scene even regardless of its RGB map.
This is mainly owing to the obvious object boundaries, layered
structures and elegant object bodies in the depth map. Meanwhile,
the erroneously detected objects (e.g., lamp and television) could
also be corrected by the depth map, as shown in Fig. 1d. Therefore,
we consider introducing the depth information into object detec-
tion.

On the other hand, it should be noted that depth is not per-
fect for general object description. First, the discriminative power
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(c) RGB object detection results

(b) Refined depth map

(d) Depth object detection results

Fig. 1. An exemplar of RGB image and its corresponding refined depth map (color indicates depths: red is far, blue is near). (c) and (d) highlight the detected objects from
modality RGB and depth, respectively. For each bounding-box, one kind of color indicates one object category. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

of depth decays rapidly when the object depth increases. For ex-
ample, the depth difference between the upper left dresser and
the background is hard to discern in Fig.1b as it is too far from
the viewer. Second, depth boundaries only describe the structural
properties of objects, which are inadequate to detect objects due
to the lack of appearance discrimination. An example is given in
Fig. 1d that the plant is detected as a dresser because of the simi-
lar shapes. Moreover, it is still nontrivial to obtain accurate depth
map with the current techniques. The inaccuracy of depth map
will inevitably bring in noises in object description. A simple so-
lution is to straightforwardly fuse RGB and depth results. It is,
however, not difficult to find such solution is sub-optimal. RGB
and depth maps encode different aspects of scenes or objects, and
the straightforward fusion is vulnerable to disagreements between
RGB and depth results. Motivated by these observations, apart from
the complementarity of these two modalities (i.e., the specific con-
stituents), the consistency between RGB and depth modalities (i.e.,
the correlated ingredients) should be jointly exploited as well. To-
ward this end, we aim to take full advantages of both the depth
and color cues for RGB-D object detection in this study.

The currently dominant object detection paradigm includes two
key components: objectness estimation [18,19] and region-wise ob-
ject recognition [10,20]. Objectness estimation generates a sparse
set of category-agnostic object proposals’ in the form of region
candidates, which could substantially improve the efficiency and
accuracy of the subsequent object classifiers. Moreover, the region-
wise recognition accuracy can be further improved by enabling
more sophisticated and discriminative classifiers due to the sparse

T In this paper, we use objectness estimation, object proposals, and region pro-
posals interchangeably.

search space. To the best of our knowledge, little attention has
been paid to end-to-end object detection that leverages multi-
modal information, especially incorporating multi-modal object-
ness estimation in an end-to-end manner. With object detection as
the final goal, objectness estimation procedure could be boosted
in return to generate more high-quality and recognition-favorable
proposals. For this purpose, we come up with an end-to-end multi-
modal multi-task deep learning approach to tackle RGB-D object
detection. More specifically, we develop modality-correlated and
modality-specific deep convolutional neural networks to learn dis-
criminative RGB-D-correlated, RGB-specific, and depth-specific rep-
resentations for RGB-D object detection. It could simultaneously
generate RGB-D region proposals and perform region-wise ob-
ject recognition. The learning pipeline of the proposed approach
is illustrated in Fig.2. We first adopt three-way deep convolu-
tional neural networks (CNNs) to learn features from RGB and
depth modalities correlatively and specifically. In particular, the
shared weights strategy and a new parameter-free correlation layer
are proposed to learn the modality-correlated representations. At
the last convolution layer, the Region Proposal Networks (RPNs)
[19] are utilized to predict object proposals. We then feed the
learned feature maps with the late-fusion ensemble proposals gen-
erated from multi-modal RPNs to the subsequent RGB-D object
recognition task. The recognition task has two sibling outputs per
proposal: softmax probabilities and per-class bounding-box regres-
sion offsets. Finally, we assemble the correlated and specific out-
puts via late fusion to boost the RGB-D object detection perfor-
mance. More importantly, by introducing the proposed modality-
correlated model, disagreements between modality-specific results
could be alleviated.

To evaluate the performance of the proposed approach, we con-
duct extensive experiments on two RGB-D benchmark datasets:
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Fig. 2. The proposed modality-correlated and modality-specific deep feature learning architecture for RGB-D object detection. In correlated detection net, conv2 feature
maps from the RGB branch and the depth branch will separately go through the same convolutional network (first three layers in the correlated net). After the last convo-
lutional layer, the activations are integrated as RGB-D correlated features using corr operation. Each detection network has two outputs per proposal: softmax probabilities
and per-class bounding-box regression offsets. This multi-modal object detection approach is trained with end-to-end multi-task learning. For clarity, the ReLU, pooling and
local response normalization layers are omitted. The “+” operator denotes that the RGB-D region proposals are boosted from ensemble of modality-correlated and modality-
specific RPN results, and the output proposals are fed into RoI pooling layers. conv stands for convolutional layer, corr operator is short for the correlation layer and

fc means fully connected layer.

NYU Depth v2 [14] and SUN RGB-D [21]. On these two challeng-
ing datasets, we compare the proposed approach to the state-of-
the-art RGB-D objectness estimation methods and RGB-D object
detection methods. The experimental results show that our pro-
posed approach is superior to the state-of-the-art competing can-
didates. In summary, the main technical contributions of this study
are three-fold:

e We develop a multi-modal deep feature learning approach
for RGB-D object detection, which exploits both modality-
correlated and modality-specific relationships between RGB
and depth images. Notably, disagreements between modality-
specific results can be alleviated with the proposed modality-
correlated representation learning component.

We adopt the shared weights strategy in the correlated detec-
tion network and introduce a parameter-free correlation layer to
extract the modality-correlated representations. Together with
modality-specific representations, the proposed approach pro-
vides consistent and significant performance boosts on RGB-D
objectness estimation and object detection in terms of recall
and mean average precision (mAP), respectively.

We expand the state-of-the-art object proposal generator
to perform multi-modal object detection. In particular, the
modality-correlated and modality-specific detection networks
are optimized via end-to-end multi-task learning, which can
simultaneously generate RGB-D region proposals and perform
region-wise RGB-D object recognition.

The remainder of this paper is organized as follows. After re-
viewing related works on the corresponding fields in Section 2, we
describe our multi-modal deep feature learning approach for RGB-
D object detection in Section 3. Section 4 presents the experimental
results and analyses. The last section concludes this paper with re-
marks on the future work.

2. Related work

The goal of this work is to incorporate depth information to
multi-modal object detection, which consists of two key compo-
nents: objectness estimation and object recognition. In this section,
we first discuss the representative objectness estimation works

briefly, which are mainly performed on traditional RGB images. Af-
ter that, we will go through RGB-D object recognition and object
detection works.

The objectness estimation task aims to generate a moderate
number of generic-over-classes object proposals and is expected to
cover all objects in an image [18,22,23]. According to the object
distinctive characteristics, Alexe etal. [18] explored five window
cues for measuring the objectness, including multi-scale saliency,
color contrast, edge density, superpixels straddling, and window
location and size. These cues are formulated in a Bayesian frame-
work and each region proposal is assigned an objectness score,
which reflects how likely the region covers an object of any cat-
egory. But this framework takes much time to train and predict.
Cheng etal. [22] and Zitnick etal. [23] tried to assess each poten-
tial window with carefully defined objectness scores in near real-
time. It is worth noting that, they all share a common idea that
the borders or edges of the objects play a much more important
role in objectness estimation and should be incorporated into this
task. We argue that the depth map provides much more salient ob-
ject boundaries, layered scene structures and apparent object bod-
ies. To the best of our knowledge, little attention has been paid to
adopt the depth information into objectness estimation. Xu etal.
[24] tried to adaptively integrate RGB and depth information into
this task. However, their method is built upon Bing [22], which
is optimized for intersection-over-union (IoU) of 0.5 and not well
suited for object detectors. In contrast, we leverage not only RGB
images but also depth maps to carry out the objectness estima-
tion in this work, which is based on the recent region proposal
networks (RPN) [19] and improves the region proposal quality and
the overall object detection accuracy in return.

With the powerful deep convolutional neural networks (CNN)
[20], recent works on RGB-D object recognition have considered
neural networks for learning representations from RGB and depth
images [25,26]. Socher etal. [25] and Bo etal. [27] focused on rec-
ognizing small prop-like RGB-D objects imaged in controlled lab
settings. Instead of using the depth image directly, in [28], the au-
thors proposed a geocentric embedding for depth images and tack-
led RGB-D object detection in cluttered scenes. In the RGB sce-
nario, object detection has witnessed great improvements start-
ing from generic features that are learned on a large-scale RGB
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image corpus, ImageNet [8]. However, for depth modality, there
are no such large amounts of labeled data as ImageNet. Gupta
etal. [29] utilized learned representations from a large labeled RGB
dataset as a supervisory signal for training representations for un-
labeled paired depth modality, which provides better parameter
initialization for the depth network. However, they either simply
treat the depth map as an additional channel of corresponding
RGB image or separately learn representations from RGB and depth
modalities. In [30], Wang etal. embedded the RGB and depth deep
features into a transformed space to learn the shared and specific
representations for RGB-D object recognition. In contrast, we aim
to take full advantages of both depth and color cues by directly ex-
ploiting the modality-correlated and modality-specific deep feature
representations for RGB-D object detection in uncontrolled, clut-
tered environments as in the datasets NYU Depth v2 [14] and SUN
RGB-D [21].

3. Proposed approach

In this section, we describe the proposed multi-modal deep fea-
ture learning approach for RGB-D object detection.

Currently, the dominant paradigm for mono-modality object
detection contains two key components: objectness estimation
(e.g., selective search [31], edge box [23]) and deep feature based
region-wise object recognition (e.g., R-CNN [10], Fast R-CNN [11]).
Similarly, the RGB-D object detection is broken down into these
two sub-tasks. Most of the existing RGB-D object detection meth-
ods either simply treat depth map as an additional channel of
corresponding RGB image in an undifferentiated way as in [32],
or separately learn features from RGB and depth modalities as
in [26]. However, neither the intrinsic characteristic of depth in-
formation nor the relationship between different modalities can
be adequately exploited in such ways. As a result, sub-optimal
results are produced. Instead, we employ geocentric encoding of
depth map, HHA (Horizontal disparity, Height above ground and
Angle with gravity) embedding? [28], to capture the scene geo-
metrical features, which emphasize the complementary disconti-
nuities in the image (i.e., depth, surface normal and height) and
are proven to be useful in several works [21,29,33]. Moreover, mo-
tivated by the intuition that different modalities should contain not
only modality-specific information but also modality-correlated in-
formation [30,34], we propose to learn correlated features that are
shared between RGB and depth modalities as well as specific fea-
tures that are only captured at each single modality for RGB-D
object detection, and the learned modality-correlated features and
modality-specific features are complementary to each other. By in-
corporating the proposed correlated features, disagreements be-
tween modality-specific results can be rectified. The pipeline of our
proposed approach is depicted in Fig. 2.

3.1. Multi-modal deep feature learning

In [30], Wang etal. employed multi-modal feature learning car-
ried out in conjunction with convolutional neural network fea-
ture learning in RGB-D object recognition. They argued that in
the transformed feature space, RGB and depth modality should
have common parts and individual parts. In contrast, we employ
convolutional neural networks to learn discriminative modality-
correlated and modality-specific features in an end-to-end manner.

First, we develop a three-way fully convolutional neural net-
work to learn multi-modal deep features as shown in Fig. 2, which
is explicitly designed to learn RGB-D-correlated, RGB-specific, and
depth-specific feature representations. In [35], Li etal. found that

2 We use the term depth and HHA interchangeably.

network-specific features can be learned in multiple networks even
with the same modality. More notably, Gupta etal. [29] demon-
strated that even though the depth network is supervised by the
RGB network, the learned features on the depth images are still
complementary to the features on the RGB images. Therefore, it
is reasonable to assume that the RGB network and depth network
(shown in Fig.2) are able to learn modality-specific features with
our configuration.

It is well known that the shared weights strategy has been
demonstrated very effective in convolutional neural networks. On
one hand, it can substantially lower the complexity of the model.
Another important aspect is that the shared weights policy is ded-
icated to detecting the consistent or common patterns at all possi-
ble locations [36], which can increase the invariance of the learned
features. Inspired by the latter aspect, we make efforts to learn
the modality-correlated features through the shared weights pol-
icy across RGB and depth modalities. More formally, the shared
weights in CNNs correspond to different filters or templates Ws,
and for a specific W with inputs xm, (m € {RGB, Depth}), the activa-
tions (i.e., feature maps) hp, (m € {RGB, Depth}) are obtained as fol-
lows:

hm =0 (W %X + b), (1)

where o(-) stands for the activation function (e.g., ReLU [20], hy-
perbolic tangent or sigmoid function), operator * denotes the con-
volution and b is bias term. When the inputs x,, comprise the sim-
ilar pattern to W, h;; could be maximized. That is why the shared
weights filters are dedicated to detecting different kinds of com-
mon patterns. In consequence, we may reasonably interpret that
strong feature activations in the correlated network are responded
from similar patches, which are all similar to W and shared by RGB
and depth images or their feature maps. However, due to the hi-
erarchical nature of deep convolutional neural networks, the lay-
ered feature maps or vectors reveal progressive properties. Low-
level features are shown to be local and activated by edge-like pat-
terns. In contrast, mid-level semantic representations can tell the
context information (e.g., texture and shape) and respond to parts
of objects. In consideration of this nature, the mid-level semantic
representations, instead of raw RGB images and depth maps, are
utilized to learn the modality-correlated features via the shared
weights manner.

It is easy to see that the learned similar activations
hm (m € {RGB, Depth}) in Eq. (1) are not exactly the same because
the input x, are not equivalent. To encourage the network to
learn the integrated and correlated representations, we introduce a
parameter-free correlation layer, which performs multiplicative com-
parisons between similar feature maps of two modalities. Given
two feature maps hggg and hpep, the correlated feature maps heorr
are defined as:

heorr = vV hggg o hDepth , (2)

in which o denotes the Hadamard product. The multiplicative com-
parisons only keep the activations occurred both in RGB and depth
feature maps, which guarantee that modality-correlated network
dedicates to learning consistent and common representations be-
tween RGB and depth modalities.

The shared weights strategy comes with several advantages
in multi-modal setting. First, as mentioned earlier, the intra-
modalities and inter-modalities common patterns could be learned.
Moreover, the shared weights in the modality-correlated network
enable a favorable alignment between the learned RGB and depth
feature maps, which makes the Hadamard product in Eq. (2) rea-
sonable.

In practice, conv2 feature maps from the RGB branch and the
depth branch will separately go through the same convolutional
network (first three layers of “correlated” branch in Fig.2). After
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the last convolutional layer, the activations are integrated as RGB-
D correlated features using Eq. (2).

However, to learn modality-correlated features, there is a
straightforward approach, i.e., simply treating RGB and depth im-
ages or feature maps indistinguishably and concatenating their
channels. Its detection performance is significantly worse than ours
(46.4% vs. 49.5% on the NYU Depth v2 test set). We suspect that
straightforward concatenation largely explores the “linear” combi-
nation of RGB and depth modalities, while failing to learn discrimi-
native correlated relationship between the two modalities and pro-
ducing suboptimal results.

3.2. RGB-D objectness estimation

In order to generate multi-modal object proposals, three Region
Proposal Networks (RPNs) [19] are slid over the last conv feature
maps (as shown in Fig.2). One is for modality-correlated object-
ness estimation and the other two are for modality-specific object-
ness estimation. Each RPN is performed as a multi-task learning
module, which ends up with two sibling 1 x 1 convolutional layers
for binary classification (object or not) and bounding-box regres-
sion [1,11]. Specifically, the binary classification is carried out by
a two-class softmax layer, and its sibling layer outputs bounding-
box regression deviations. Given an anchor box with (x4, ya, Wq,
hg), bounding-box regression is developed to predict deviations
t* = (. t;. ty,. t;;) following [1,10]:

t = (" —¥a)/ha

ty = log(h*/hq) . (3)
where x, y, w and h denote the bounding box’s center coordinates
and its width and height. Variables x* and x, are for the ground-
truth box and anchor box respectively (likewise for y, w, h). The

smoothed ¢; loss [11] is adopted as the bounding-box regression
loss function.

0.5x2
S (%) = {|x| 05

With these definitions, the objectness estimation multi-task
loss L is defined as:

L(p.p". t.t") = Aas(p. P+ D> P'se, (G —t)), (5)
ie{x,y,w,h}

ty = (X" —Xq)/Wq
ty, = log(w*/wq)

if |x] <1
otherwise.

(4)

where the mini-batch size is ignored. p and p* are the predicted
objectness probability of an anchor and ground-truth label (1 if
the anchor is positive, and 0 if the anchor is negative), respectively.
Two types of anchors are treated as positive: the anchors with the
highest IoU overlap with a ground-truth box, and the ones that
have an IoU overlap higher than 0.7 with any ground-truth box
[19]. An anchor is considered as negative example if its IoU ratio
is lower than 0.3 for all ground-truth boxes. L., (p, p*) = — log pp*
is the standard cross-entropy loss. The modality-correlated RPN
and modality-specific RPNs are trained simultaneously with the
same supervision. At last, the ensemble object proposal scores and
bounding-box deviations are computed from the average of three
RPNs predictions.

3.3. Region-wise RGB-D object recognition

With the recognition using region proposals framework (e.g., R-
CNN [10]), the objects detection capability has been greatly im-
proved. For the recognition networks, we build upon the more re-
cent Fast R-CNN [11]. Similar to the RGB-D objectness estimation,
the recognition networks consist of three independent parts: one is
modality-correlated and the other two are modality-specific, which
are trained separately with the same supervision. Each recogni-
tion network simultaneously optimizes two tasks: K-class softmax

classification and bounding-box regression. The multi-task loss for
object recognition is similar to Eq. (5), except for the number
of classes changed from 2 to K, and the bounding-box regres-
sion in this stage uses the similar parameterization as Eq. (3). The
bounding-box regression in previous RGB-D objectness estimation
stage could be considered as differentiating coarse-grained class-
agnostic object candidates from chaos, and the latter one in this
stage aims to refine the coarse object proposals. Moreover, with
object detection as the final goal, previous objectness estimation
procedure could be further boosted in return to generate more
high-quality and recognition-favorable region proposals.

Likewise in RGB-D objectness estimation, the ensemble detec-
tion performance is based on the simple arithmetic average of class
probabilities and bounding-box deviations predicted by these three
constituent detection networks.

3.4. Training

The proposed multi-modal object detection networks can be
trained end-to-end with back-propagation and stochastic gradient
descent (SGD) [37]. For RPN networks, each mini-batch arises from
a single image that contains many positive and negative example
anchors.

During region-wise recognition training, RPNs generates region
proposals which are treated as being fixed, i.e., the derivatives with
regard to the proposal boxes’ coordinates are ignored during back-
propagation. Some proposals generated from RPNs highly overlap
with each other. To reduce redundancy, non-maximum suppression
(NMS) is performed over the proposals according to their ensem-
ble objectness scores with an IoU threshold of 0.7, which leaves
about 2000 proposal regions per image. In each SGD iteration, we
uniformly sample 128 positives ( > 0.5 IoU overlap with a ground-
truth box over all classes) and 128 negatives (a maximum IoU with
any ground-truth boxes in the interval [0.1, 0.5), following [38])
from the rest of proposals to construct a mini-batch of size 256,
which are treated as inputs to the following recognition networks.

4. Experiments and results
4.1. Dataset

We comprehensively evaluate our algorithm on the NYU Depth
v2 [14] and SUN RGB-D [21] benchmark datasets. NYU Depth v2
is comprised of 1449 densely labeled pairs of aligned RGB and
depth images, which are captured by Microsoft Kinect v1. Simi-
larly, SUN RGB-D is comprised of 3784 Microsoft Kinect v2 im-
ages, 3389 Asus Xtion images, 2003 Microsoft Kinect vl images
and 1159 Intel RealSense images. NYU Depth v2 is a subset of SUN
RGB-D. Since sensor bias does exist [21], we use these two datasets
for evaluation. Due to measurement noises, diffuse or specular re-
flections, and occlusion boundaries, etc., the depth maps in SUN
RGB-D come with missing a significant amount of points. We first
fill the missing values with colorization algorithm [39]. Following
[21,28,29], we only work with 19 major furniture categories avail-
able in the datasets: bathtub, bed, bookshelf, box, chair, counter, desk,
door, dresser, garbage bin, lamp, monitor, night stand, pillow, sink,
sofa, table, television, and toilet.

4.2. Implementation details

In [19], the authors integrated the RPNs with Fast R-CNN [11],
called Faster R-CNN, which is built upon the popular deep learning
framework Caffe [40]. The proposed correlation layer can be eas-
ily implemented in two steps: element-wise square root followed
by element-wise product. Faster R-CNN shares the computation for
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Fig. 3. Controlled experiments on the NYU Depth v2 test set. (a) and (b) demonstrate recall versus the number of proposals at different IoU threshold. (c) shows average
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Table 1
Object detection average precision (%) on the NYU Depth v2 test set.

method RGB Arch. Depth Arch. RGBD Arch.  bathtub bed bookshelf  box chair  counter  desk door
RPN-RGB AlexNet - - 20.0 57.2 338 2.0 332 343 12.6 16.4
RPN-Depth - AlexNet - 349 80.3 41.8 23 53.0 493 18.1 17.2
RPN-Corr - - AlexNet 41.7 82.7 435 3.2 53.5 52.0 18.3 17.2
RPN-RGBD AlexNet AlexNet - 46.5 79.8 49.1 3.1 53.9 55.0 23.8 235

Super. Trans. [29] AlexNet AlexNet - 45.6 78.7 48.5 43 50.5 57.8 214 29.6

Super. Trans. [29] VGG16 AlexNet - 50.6 81.0 52.6 54 53.0 56.1 20.9 34.6

Ours AlexNet AlexNet AlexNet 49.1 82.7 50.4 44 57.5 56.8 223 25.0

SUN w/o fine-tune  AlexNet AlexNet AlexNet 61.3 79.2 46.2 5.6 53.6 12.7 22.0 23.6

SUN w/ fine-tune AlexNet AlexNet AlexNet 61.9 85.7 50.5 6.2 60.5 59.1 273 26.0

method dresser garbage-bin  lamp monitor  night-stand  pillow sink  sofa table television  toilet =~ mAP
RPN-RGB 24.6 21.6 231 33.0 20.8 22.0 30.1 31.6 18.0 321 56.6 275
RPN-Depth 49.2 294 385 42.6 49.1 40.2 479 63.1 34.0 34.6 62.7 41.5
RPN-Corr 54.5 294 39.7 39.1 50.7 374 511 63.9 309 451 63.9 43.0
RPN-RGBD 56.1 443 441 62.2 493 43.7 463 648 336 54.2 65.5 473
Super. Trans. [29] 54.0 41.6 45.4 61.2 57.9 473 489 632 29.5 50.0 60.1 471
Super. Trans. [29] 57.9 46.2 425 62.9 54.7 491 50.0 659 319 50.1 68.0 49.1
Ours 57.9 424 45.2 59.8 60.7 441 556 65.0 334 55.6 719 49.5
SUN wjo fine-tune  44.8 432 45.0 68.7 61.7 47.7 51.8 72.0 341 58.3 70.4 475
SUN w/ fine-tune 54.2 51.1 484 74.7 60.2 48.8 622 684 38.2 57.3 66.3 53.0

convolutional layers. Therefore, the cost for object proposal predic-
tion is marginal (e.g., 10ms per image typically). Moreover, the gen-
erated object proposals are somewhat adaptive to the subsequent
recognition networks.

In addition, due to the GPU memory consumption, we only
conduct the experiment on the AlexNet architecture [20] with
an NVIDIA GeForce GTX TITAN Black. We fine-tune the proposed
multi-modal object detection networks for 70,000 iterations with
a base learning rate of 0.001 and reduce it by a factor of 10
after every 40,000 iterations from pre-trained models. The RGB-
specific detection network is initialized with ImageNet [8] RGB
classification model.> To better leverage the depth information,
the modality-correlated and depth-specific networks are initialized
from a supervision transfer model [29]. All new layers are initial-
ized by drawing weights from a Gaussian distribution A/(0, 0.012).
A momentum term with a weight of 0.9 and weight decay factor
of 0.0005 are used in all experiments. For simplicity, we choose
to weight category loss and bounding-box regression loss equally,
i.e., the balancing parameter A in Eq. (5) is set to 1. We follow
the default setup for Faster R-CNN that the input images are re-
scaled such that their shorter side is s = 600 pixels. During training
and testing, only the single re-scaled images (s = 600) are passed
through both region proposal and object recognition networks. For
RPN anchors, we use 3 scales with box areas of 1282, 2562, and

3 https://github.com/BVLC/caffe/wiki/Model-Zoo.

5122 pixels, and 3 aspect ratios of 1: 1, 1: 2, and 2: 1 following
[19]. During testing, object detection is carried out on the top 2000
proposals.

4.3. Evaluation metrics

Evaluating class-agnostic object proposals is quite different
from the traditional object detection task [41]. It is not practical
to evaluate the object proposals’ class confusion and background
confusion and so forth. Instead, we report recall at a particular loU
threshold with a given number of proposals (#PRPSL):

#(loU > €)@#PRPSL 6
#GT ’ ®)
where IoU is the de facto criterion to determine whether a pro-
posal covers an object. €(e €[0.5, 1]) is IoU threshold and GT
means object ground-truth bounding-boxes. In addition, we also
report the average recall (AR) [42] with [oU between 0.5 to 1:

recall(e, #PRPSL) =

1
AR(#PRPSL) = 2 / recall (¢, #PRPSL)de
0.5

2 n
=< > f(gt;, #PRPSL) (7)
i=1
where f(gt;, #PRPSL) denotes the IoU between the ground-truth
annotation gt; and the best detection proposal with different
#PRPSL. When the IoU between the ground-truth annotation gt;
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Fig. 4. Detection results of examples from the NYU Depth v2 test set, comparing on different detection networks. (a) RGB-specific detection results. (b) Depth-specific
detection results. (c) RGB-D correlated detection results. (d) Ensemble detection results from the proposed modality-specific and modality-correlated detection networks.
Each detected box is associated with a category label and a softmax score in [0, 1]. A score threshold with 0.6 is used to display these images. For each bounding-box, one

kind of color indicates one object category.

and the best detection proposal is less than 0.5, f(gt;, #PRPSL) is
set to 0. It has been demonstrated that the average recall cor-
relates surprisingly well with almost all object detectors’ perfor-
mance [42].

As to RGB-D object detection, the commonly used average pre-
cision (AP) is adopted to assess the detection performance.

4.4. Experiments on NYU Depth v2

We use the standard splits of 795 training and validation im-
ages for training and remaining 654 images for testing. These splits
are all carefully selected by making sure images from the same
scene do not spread across both sets.

4.4.1. Object proposal evaluation

In our initial experiments, we fine-tune two modality-specific
Faster R-CNNs as baselines, RPN-RGB and RPN-Depth. Apart from
the modality-correlated networks in Fig.2, the straightforward in-
tegration of modality-specific ones, RPN-RGBD, is also treated as a
baseline, which leverages the RGB and Depth information in a pre-
liminary way. Furthermore, by taking into account the efficiency of

objectness estimation, we compare our approach with the state-of-
the-art methods, SS [31], BING [22], EdgeBox [23] and BING-RGBD
[24], which all perform reasonably in terms of proposal quality and
speed [42]. In all experiments, we adopt the authors’ open-source
codes with the suggested parameters in their papers.

Since Eq. (6) indicates a proposal method’s effectiveness, we
first evaluate the recall with respect to various numbers of candi-
date proposals. Fig.3a illustrates the recall(0.5, #PRPSL) with dif-
ferent truncated numbers of proposals. The proposed modality-
correlated and modality-specific approach, RPN-RGBDCS, outper-
forms both the baselines and the competitors. However, the IoU
score above 0.5 is quite loose for objectness estimation, and the
detection algorithm may not benefit much from this setup. There-
fore, we further report the detection rate at IoU above 0.7, as
shown in Fig.3b. Due to the bounding-box regression, RPN-RGBDCS
produces much tighter proposals compared with state-of-the-art
methods. It is noteworthy that the recall metric is more appro-
priate to diagnose the proposal method and loosely related to
the downstream detection accuracy [19,42]. Therefore, in addi-
tion to reporting the recall with different truncated number of
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Fig. 5. Weighted averaging results of the modality-correlated, RGB-specific and depth-specific networks on the NYU Depth v2 validation set. Warmer colors correspond to
larger values, cooler colors are small values. « = 0.3, 8 = 0.35 give the best result (36.7%).

proposals, we also highlight the novel metric, average recall (AR),
between IoU 0.5 to 1 for a varying number of proposals in Fig.3c.
AR summarizes proposal performance across different IoU thresh-
olds, which has proven to be an excellent indicator for downstream
object detection performance [42]. As can be seen in Fig.3c, RPN-
RGBDCS performs well across the entire range of number of pro-
posals.

Overall, we have shown in this subsection that the proposed
RPN-RGBDCS outperforms the existing objectness estimation meth-
ods.

4.4.2. Object detection evaluation

In this subsection, we report the performance of the proposed
multi-modal object detection results on the NYU Depth v2 test set
in Table1 and compare our performance against the state-of-the-
art methods. The proposal methods are utilized to denote the base-
line detection methods. RGB Arch., Depth Arch., and RGBD Arch. re-
fer to the CNN architecture used by the modality-specific detectors
and modality-correlated detectors, respectively. We can see when
using only the depth information, the detection rate is well above
that of only using RGB images. We attribute this to the robust char-
acteristics of depth information, which is largely invariant to vi-
sual changes. By investigating the consistent and common ingredi-
ents between RGB and depth cues, the modality-correlated detec-
tor (RPN-corr), predicts more accurate objects. The object detec-
tion performance can be significantly boosted from the late fusion
of modality-specific detectors (from 41.5% to 47.3%). This also holds
true for the state-of-the-art competitor [29]. Moreover, the detec-
tion results can be further rectified by incorporating the additional
modality-correlated recognition network. Fig.4 illustrates some

examples evaluated on each detection network. Regions with simi-
lar appearance are easily misclassified (e.g., televisions and lamp in
Fig.4 (a)). In contrast, depth maps generally predict more precise
object locations. The detection results can be improved by explor-
ing modality-correlated features (as shown in Fig.4 (c) and (d)).

The proposed multi-modal RGB-D object detection approach is
substantially superior to the state-of-the-art competitor, supervi-
sion transfer [29], in terms of mAP with the normal deep archi-
tecture (AlexNet [20]). Surprisingly, compared to Gupta etal.’s su-
pervision transfer VGG model [29], our approach, which is built
upon AlexNet, performs slightly better. Moreover, it is noteworthy
that the proposed modality-correlated and modality-specific object
detection approach is built upon an almost cost-free objectness
estimation. In comparison, supervision transfer [29] employed a
prohibitively time-consuming object proposal method, RGBD MCG
[28], which typically takes about 30s for a 500 x 400 image.

4.4.3. Ensemble strategy

In practice, we find training three independent detection mod-
els all the way and then assembling the correlated and specific
outputs (class scores and bounding-box deviations) via late fusion
perform better than early fusion, which is also verified in [29].
Moreover, to investigate the relative importance amongst the three
branches, we conduct an experiment to perform weighted averag-
ing instead of simple averaging among the three branches on the
NYU Depth v2 validation set as follows:

G(x) = agrop(X) + BEpeptn (%) + (1 —a — B)&eorr (X) - (8)

where g(-) is the output of detection network, «, B(x >0, 8 >
0, + B < 1) are the ensemble weights for RGB and depth branch,
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respectively. «, B vary in [0, 1] with a step size of 0.05. The en-
semble results are shown in Fig.5. o = 0.3, 8 = 0.35 give the best
result (36.7%). Furthermore, we also experiment stacking strategy
to learn a meta-learner based on three branches’ outputs, which
is not better than simple averaging either. We suspect that the
weighted averaging and meta-learner are prone to overfitting and
are not always superior to simple averaging [43-45]. Therefore,
we use simple averaging in the following experiments. In addition,
these experiments also imply that apart from the modality-specific
constituents, the correlated ingredients are another complemen-
tary view of multi-modal data and should be jointly exploited as
well.

4.4.4. Control experiments on ensemble of multiple detection
networks

There exists a suspicion that most of the detection performance
gain comes from the ensemble of multiple detection models rather
than from the learned modality-correlated representation. To bet-
ter understand the effects of adding modality-correlated detec-
tion network, we perform control experiments on ensemble of
multiple detection models. With same experimental settings as
in Section4.2, we fine-tune modality-specific detection networks
twice resulting two color and two depth detection networks. The
ensemble detection rates are 46.2% and 48.2% for two color + one
depth detection networks and one color + two depth detection
networks respectively, which are much lower than the proposed
detection approach. Even with two color + two depth detection
networks (i.e., four detection models), the achieved object detec-
tion performance is 48.7%. It is 0.8% worse than ours, which only
relies on three detection models. We attribute that disagreements
between RGB-specific and depth-specific object detection results
can be rectified with the additional proposed modality-correlated
model. In consequence, these control experiments imply that the
proposed detection approach may take full advantages from the
developed modality-correlated and modality-specific feature repre-
sentations, and performs more effectively and powerfully than the
straightforward combination with just modality-specific features
dose, which is vulnerable to disagreements between modality-
specific object detection results.

4.4.5. Features visualization

Fig.6 shows the pool5 feature maps from RGB-specific, depth-
specific, and modality-correlated networks for each dresser and
sink in the NYU Depth v2 trainval set.* We adopt the “aggregation
map” [46] to visualize the resulted 6 x 6 x 256 pool5 feature
maps, which is proven effective in fine-grained image retrieval.
More specifically, poolb features are aggregated via global average
pooling across the channels to produce 6 x 6 object pool5 descrip-
tors. It is worth noting that although the weights in the correlated
detection network and depth-specific detection network were
initialized from the same source, the learned features are diverse
after fine-tuning (as illustrated in Figs.6b-d and f). Furthermore,
different regions are activated in modality-correlated and
modality-specific feature maps. In other words, the correlated,
RGB-specific, and depth-specific detection nets are dedicated to
covering different aspects of an object.

In addition, to give an overview visualization of the learned
multi-modal features for each object, we employ a high-
dimensional data visualization technique, t-distributed stochas-
tic neighbor embedding (t-SNE) [47], to map the learned high-
dimensional features to two-dimensional locations. We can obtain
a rough idea about the feature space’s topology through t-SNE,
because it is capable of retaining the local structure [47]. Fig.7

4 More object pool5 features of the NYU Depth v2 trainval set can be visualized
from http://mcg.nju.edu.cn/dataset/pool5/.

depicts poolb object features from different networks. These fea-
tures are extracted from the NYU Depth v2 trainval set. We believe
that the object feature distributions in RGB-specific, depth-specific,
and modality-correlated feature spaces are essentially different by
investigating the differences of object feature distributions. In par-
ticular, differences of inter-object feature distributions between ob-
ject categories and intra-object feature distributions in each cat-
egory demonstrate that the feature’s implicit structure varies in
these three feature spaces. We can draw a conclusion that the de-
veloped components in Fig.2 are dedicated to exploring different
aspects of the RGB-D data from Figs.6 and 7. Consequently, the
complementarity among features can considerably benefit the pro-
posed multi-modal RGB-D object detection approach.

4.4.6. Convergent rate for different modality networks

The proposed modality-correlated and modality-specific RGB-
D object detection networks are simultaneously optimized. How-
ever, the convergent rate for these three networks may vary. In
this subsection, we examine the convergent speed for modality-
correlated and modality-specific networks on the NYU Depth v2
training and validation set. The training softmax, bounding-box re-
gression loss and validating error are shown in Figs.8a and b, re-
spectively. Note that the tendency of convergence is very close for
optimizing modality-correlated network and modality-specific net-
works. Therefore, when training the proposed multi-modal object
detection approach, we choose the same learning rate and loss
weights for different networks.

4.5. Experiments on SUN RGB-D

SUN RGB-D [21] is a very recent PASCAL VOC [48] scale RGB-
D dataset, which is a superset of NYU Depth v2. This data set
consists of RGB-D image pairs captured by various RGB-D sensors.
Song etal. pointed out that sensor bias does exist due to the di-
verse capabilities for different devices [21]. It is crucial that an
algorithm can generalize to different types of RGB-D sensors, be-
cause real data usually come from different sensors. For this rea-
son, we also present extensive experimental results on this much
more challenging dataset. However, SUN RGB-D consists of RGB-
D image pairs captured by Intel RealSense, whose effective range
for reliable depth is very short. Besides, we found that its depth
map quality is too low for use in the accurate object detection
task. Therefore, we leave out the RGB-D images captured by Intel
RealSense and adopt the remaining standard splits in following ex-
periments: 4,698 for training and 4478 for testing. These splits are
also carefully selected as suggested in [21]. There are a few mi-
nor changes of our system made for this dataset. First, SUN RGB-D
consists of RGB-D captured by several devices, thus the modality-
correlated and modality-specific networks are all fine-tuned from
pre-trained ImageNet RGB classification models. Second, SUN RGB-
D is a much larger dataset, thus it is trained for 100,000 iterations
with a step size of 50,000.

4.5.1. Object proposal evaluation

Under the same protocol as in Section 4.4, we first evaluate the
object proposal performance with the same experimental setup
to the NYU Depth v2 dataset, as shown in Fig.9. The modality-
correlated and modality-specific objectness estimation method,
RPN-RGBDCS, consistently performs better than the baselines and
the state-of-the-art competitors, which indicates that the proposed
RPN-RGBDCS can be well generalized to different types of RGB-D
devices. Better proposals do matter for better object detection per-
formance [11]. In the following, we will see that the high-quality
and recognition-favorable proposals generated from the modality-
correlated and modality-specific objectness estimation models can
benefit downstream object detection task.
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(b) dresser depth pool5
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Fig. 6. pool5 feature maps from RGB-specific, depth-specific, and modality-correlated networks for each dresser and sink in the NYU Depth v2 trainval set (best viewed
in color). Each object’s 6 x 6 x 256 poolb maps are aggregated via the “aggregation map” [46] to produce 6 x 6 pool5 descriptors. The features are normalized to [0, 1].

Warmer colors correspond to larger values, cooler colors are small values.
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Fig. 7. t-SNE [47] embedded pool5 features from RGB-specific, depth-specific, and modality-correlated networks (best viewed in color). One kind of color indicates one

object category.

4.5.2. Object detection evaluation

Next, we evaluate the detection performance on the SUN RGB-
D dataset. Compared to the NYU Depth v2 dataset, RGB detection
performance is greatly improved with more training object exam-
ples in SUN RGB-D. The detection performance gap between RGB
and depth models is not as significant as on NYU Depth v2. We
conjecture that this is because the scenes in SUN RGB-D are much
more diverse. Object poses and relative object positions vary much
more. Consequently, it is much more difficult to detect the objects
with only depth maps. The modality-correlated detection network
(RPN-corr) and late fusion of modality-specific detection networks
(RPN-RGBD), which both take advantages of RGB and depth modal-
ities, perform much better than mono-modal detection networks.
Likewise, the detection performance can be further improved by
the proposed modality-correlated and modality-specific detection
networks (from 51.8% to 52.9%). The detailed numbers are reported
in Table 2. Fig. 10 shows some detection results on the SUN RGB-D

test set returned from the proposed multi-modal object detection
approach.

With the convolutional features shared for proposal generation
and region-wise recognition, the proposed modality-correlated and
modality-specific RGB-D object detection approach takes a total of
~ 0.290s for a RGB-D image pair, which is much more efficient
than the supervision transfer [29].

4.6. From SUN RGB-D to NYU Depth v2

A large-scale labeled dataset is of crucial importance for im-
proving the performance of object detection. In this subsection, we
investigate how the SUN RGB-D dataset can help improving the de-
tection performance on the NYU Depth V2 dataset.

As the original training and testing splits from NYU Depth V2
are kept in SUN RGB-D, we first directly evaluate the trained SUN
RGB-D detection models on the NYU Depth V2 test set without
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(AR) versus the number of proposals between [0.5, 1] loU.

Table 2
Object detection average precision (%) on the SUN RGB-D test set.

method RGB Arch.  Depth Arch.  RGBD Arch.  bathtub  bed bookshelf  box chair  counter  desk door
RPN-RGB AlexNet - - 36.4 67.0 34.8 6.2 433 453 17.5 22.0
RPN-Depth - AlexNet - 55.8 777 26.7 5.0 49.9 47.6 21.8 6.9

RPN-Corr - - AlexNet 50.7 78.9 36.1 8.7 53.1 479 24.2 21.8
RPN-RGBD AlexNet AlexNet - 70.3 79.2 35.1 11.0 53.5 50.6 251 18.8

RGBD RCNN [28]  AlexNet AlexNet - 49.6 76.0 35.0 5.8 41.2 8.1 16.6 42

Ours AlexNet AlexNet AlexNet 70.5 80.8 384 114 54.3 51.5 26.5 22.2

method dresser garbage-bin  lamp monitor  night-stand  pillow sink  sofa table television  toilet =~ mAP
RPN-RGB 383 57.8 42.0 51.6 43.6 31.6 462 572 371 20.1 74.7 40.7
RPN-Depth 313 54.0 46.4 50.6 45.0 47.0 50.5 67.8 433 12.9 74.2 429
RPN-Corr 46.6 65.5 54.4 60.6 51.2 476 61.9 69.3 45.7 34.9 78.5 49.3
RPN-RGBD 48.0 671 57.5 62.0 56.5 49.4 62.3 71.9 474 34.7 834 51.8
RGBD RCNN [28] 314 46.8 220 10.8 372 16.5 419 422 43.0 329 69.8 33.2
Ours 49.2 68.1 58.0 63.4 56.6 50.8 63.1 721 48.4 385 81.6 529

fine-tuning. The mAP under this setting is 47.5%, which is lower
than the performance fine-tuned from the ImageNet and supervi-
sion transfer models (49.5%), as shown in Table 1. We attribute this
to the scene and device biases. We then fine-tune the SUN RGB-D
detection models on the NYU Depth v2 trainval set. In this experi-
ment, the trained SUN RGB-D models are in place of the ImageNet
model and supervision transfer model, and are used to initialize
the weights in multi-modal detection networks. The networks are
fine-tuned for 40,000 iterations with a step size of 15,000. Doing
so leads to 53.0% mAP on the NYU Depth v2 test set. The extra
data from the SUN RGB-D set increase the mAP by 3.5%. Details
are reported in the last row of Table 1.

5. Conclusions and future work

We have presented a multi-modal deep feature learning ap-
proach for RGB-D object detection. More specifically, our method
allows learning modality-correlated and modality-specific feature
representations. The shared weights strategy and a parameter-free
correlation layer are employed to learn modality-correlated fea-
tures. In order to demonstrate the effectiveness of the learned
modality-correlated and modality-specific feature representations,
we have conducted extensive experimental analyses in RGB-D ob-
jectness estimation and RGB-D object detection tasks. Experimen-
tal results on two challenging standard datasets, NYU Depth v2
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Fig. 10. SUN RGB-D test detection results returned from the proposed modality-correlated and modality-specific RGB-D object detection networks. Each detected box is
associated with a category label and a softmax score in [0, 1]. A score threshold with 0.6 is used to display these images. For each bounding-box, one kind of color indicates

one object category.

and SUN RGB-D, show that the proposed approach outperforms
the state-of-the-art competitors, and confirms the benefits for joint
consideration of modality-correlated and modality-specific compo-
nents in RGB-D object detection.

Our experimental results show consistent improvements in
overall detection accuracy (mAP). However, for some categories,
the improvements are not as noticeable. It will be an interesting
future direction to study the specific impact of depth information
on various object classes.
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