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a b s t r a c t 

We present a novel multi-modal deep feature learning architecture for RGB-D object detection. The cur- 

rent paradigm for object detection typically consists of two stages: objectness estimation and region-wise 

object recognition. Most existing RGB-D object detection approaches treat the two stages separately by 

extracting RGB and depth features individually, thus ignore the correlated relationship between these two 

modalities. In contrast, our proposed method is designed to take full advantages of both depth and color 

cues by exploiting both modality-correlated and modality-specific features and jointly performing RGB- 

D objectness estimation and region-wise object recognition. Specifically, shared weights strategy and a 

parameter-free correlation layer are exploited to carry out RGB-D-correlated objectness estimation and 

region-wise recognition in conjunction with RGB-specific and depth-specific procedures. The parameters 

of these three networks are simultaneously optimized via end-to-end multi-task learning. The multi- 

modal RGB-D objectness estimation results and RGB-D object recognition results are both boosted by 

late-fusion ensemble. To validate the effectiveness of the proposed approach, we conduct extensive ex- 

periments on two challenging RGB-D benchmark datasets, NYU Depth v2 and SUN RGB-D. The exper- 

imental results show that by introducing the modality-correlated feature representation, the proposed 

multi-modal RGB-D object detection approach is substantially superior to the state-of-the-art competitors. 

Moreover, compared to the expensive deep architecture (VGG16) that the state-of-the-art methods pre- 

ferred, our approach, which is built upon more lightweight deep architecture (AlexNet), performs slightly 

better. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Object detection, which aims to determine what objects are 

present in the scene and where they are located, is one of the most 

challenging problems in computer vision [1–3] . It has been suc- 

cessfully addressed in many applications, including content anal- 

ysis [4] , image retrieval [5] , image relevance prediction [6] and 

object-level editing [7] . With the recent advent of large-scale la- 

beled image corpora [8,9] and region-based convolutional neural 

networks [10,11] , the research on object detection has made re- 

markable achievements in recent years. 

Nevertheless, many challenges remain when seeking to effec- 

tively detect objects in practice. For instance, in cluttered scenes, it 

is still quite difficult to discriminate objects due to the variance 

of object’s appearance, position, pose, lighting, and background. 

As shown in Fig. 1 , the light and shadow is erroneously detected 
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as a lamp and the paint on the wall appears to be a television 

(see Fig. 1 c). Fortunately, with the development of consumer-grade 

depth cameras, such as Microsoft Kinect, Intel RealSense, and Asus 

Xtion, increasing amounts of depth data offer us additional cues 

to revisit these problems. Since geometrical and structural proper- 

ties of the scene are mostly invariant to visual changes, depth in- 

formation shows powerful benefits in many vision tasks, including 

salient object detection [12,13] , image segmentation [14,15] and ac- 

tivity classification [16,17] . Specifically, in object detection task, as 

shown in Figs. 1 b and d, we could effortlessly infer several objects 

( e.g ., lamp and bed) from the depth map. The whole object body 

can be well estimated in this scene even regardless of its RGB map. 

This is mainly owing to the obvious object boundaries, layered 

structures and elegant object bodies in the depth map. Meanwhile, 

the erroneously detected objects ( e.g ., lamp and television) could 

also be corrected by the depth map, as shown in Fig. 1 d. Therefore, 

we consider introducing the depth information into object detec- 

tion. 

On the other hand, it should be noted that depth is not per- 

fect for general object description. First, the discriminative power 

http://dx.doi.org/10.1016/j.patcog.2017.07.026 
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Fig. 1. An exemplar of RGB image and its corresponding refined depth map (color indicates depths: red is far, blue is near). (c) and (d) highlight the detected objects from 

modality RGB and depth, respectively. For each bounding-box, one kind of color indicates one object category. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

of depth decays rapidly when the object depth increases. For ex- 

ample, the depth difference between the upper left dresser and 

the background is hard to discern in Fig. 1 b as it is too far from 

the viewer. Second, depth boundaries only describe the structural 

properties of objects, which are inadequate to detect objects due 

to the lack of appearance discrimination. An example is given in 

Fig. 1 d that the plant is detected as a dresser because of the simi- 

lar shapes. Moreover, it is still nontrivial to obtain accurate depth 

map with the current techniques. The inaccuracy of depth map 

will inevitably bring in noises in object description. A simple so- 

lution is to straightforwardly fuse RGB and depth results. It is, 

however, not difficult to find such solution is sub-optimal. RGB 

and depth maps encode different aspects of scenes or objects, and 

the straightforward fusion is vulnerable to disagreements between 

RGB and depth results. Motivated by these observations, apart from 

the complementarity of these two modalities ( i.e ., the specific con- 

stituents), the consistency between RGB and depth modalities ( i.e ., 

the correlated ingredients) should be jointly exploited as well. To- 

ward this end, we aim to take full advantages of both the depth 

and color cues for RGB-D object detection in this study. 

The currently dominant object detection paradigm includes two 

key components: objectness estimation [18,19] and region-wise ob- 

ject recognition [10,20] . Objectness estimation generates a sparse 

set of category-agnostic object proposals 1 in the form of region 

candidates, which could substantially improve the efficiency and 

accuracy of the subsequent object classifiers. Moreover, the region- 

wise recognition accuracy can be further improved by enabling 

more sophisticated and discriminative classifiers due to the sparse 

1 In this paper, we use objectness estimation, object proposals, and region pro- 

posals interchangeably. 

search space. To the best of our knowledge, little attention has 

been paid to end-to-end object detection that leverages multi- 

modal information, especially incorporating multi-modal object- 

ness estimation in an end-to-end manner. With object detection as 

the final goal, objectness estimation procedure could be boosted 

in return to generate more high-quality and recognition-favorable 

proposals. For this purpose, we come up with an end-to-end multi- 

modal multi-task deep learning approach to tackle RGB-D object 

detection. More specifically, we develop modality-correlated and 

modality-specific deep convolutional neural networks to learn dis- 

criminative RGB-D-correlated, RGB-specific, and depth-specific rep- 

resentations for RGB-D object detection. It could simultaneously 

generate RGB-D region proposals and perform region-wise ob- 

ject recognition. The learning pipeline of the proposed approach 

is illustrated in Fig. 2 . We first adopt three-way deep convolu- 

tional neural networks (CNNs) to learn features from RGB and 

depth modalities correlatively and specifically. In particular, the 

shared weights strategy and a new parameter-free correlation layer 

are proposed to learn the modality-correlated representations. At 

the last convolution layer, the Region Proposal Networks (RPNs) 

[19] are utilized to predict object proposals. We then feed the 

learned feature maps with the late-fusion ensemble proposals gen- 

erated from multi-modal RPNs to the subsequent RGB-D object 

recognition task. The recognition task has two sibling outputs per 

proposal: softmax probabilities and per-class bounding-box regres- 

sion offsets. Finally, we assemble the correlated and specific out- 

puts via late fusion to boost the RGB-D object detection perfor- 

mance. More importantly, by introducing the proposed modality- 

correlated model, disagreements between modality-specific results 

could be alleviated. 

To evaluate the performance of the proposed approach, we con- 

duct extensive experiments on two RGB-D benchmark datasets: 



302 X. Xu et al. / Pattern Recognition 72 (2017) 300–313 

Correlated detec�on net

RGB image

Geometrical features

conv1 conv2 conv3 conv4 conv5

RPN

RoI

pooling
fc fc

conv1 conv2 conv3 conv4 conv5

RPN

RoI

pooling
fc fc

conv3 conv4 conv5

RPN

RoI

pooling
fc fc

+

so�max

bbox

regressor

so�max

bbox

regressor

so�max

bbox

regressor

RGB-specific detec�on net

Depth-specific detec�on net

corr

Fig. 2. The proposed modality-correlated and modality-specific deep feature learning architecture for RGB-D object detection. In correlated detection net, conv2 feature 

maps from the RGB branch and the depth branch will separately go through the same convolutional network (first three layers in the correlated net). After the last convo- 

lutional layer, the activations are integrated as RGB-D correlated features using corr operation. Each detection network has two outputs per proposal: softmax probabilities 

and per-class bounding-box regression offsets. This multi-modal object detection approach is trained with end-to-end multi-task learning. For clarity, the ReLU, pooling and 

local response normalization layers are omitted. The “+ ” operator denotes that the RGB-D region proposals are boosted from ensemble of modality-correlated and modality- 

specific RPN results, and the output proposals are fed into RoI pooling layers. conv stands for convolutional layer, corr operator is short for the correlation layer and 

fc means fully connected layer. 

NYU Depth v2 [14] and SUN RGB-D [21] . On these two challeng- 

ing datasets, we compare the proposed approach to the state-of- 

the-art RGB-D objectness estimation methods and RGB-D object 

detection methods. The experimental results show that our pro- 

posed approach is superior to the state-of-the-art competing can- 

didates. In summary, the main technical contributions of this study 

are three-fold: 

• We develop a multi-modal deep feature learning approach 

for RGB-D object detection, which exploits both modality- 

correlated and modality-specific relationships between RGB 

and depth images. Notably, disagreements between modality- 

specific results can be alleviated with the proposed modality- 

correlated representation learning component. 
• We adopt the shared weights strategy in the correlated detec- 

tion network and introduce a parameter-free correlation layer to 

extract the modality-correlated representations. Together with 

modality-specific representations, the proposed approach pro- 

vides consistent and significant performance boosts on RGB-D 

objectness estimation and object detection in terms of recall 

and mean average precision (mAP), respectively. 
• We expand the state-of-the-art object proposal generator 

to perform multi-modal object detection. In particular, the 

modality-correlated and modality-specific detection networks 

are optimized via end-to-end multi-task learning, which can 

simultaneously generate RGB-D region proposals and perform 

region-wise RGB-D object recognition. 

The remainder of this paper is organized as follows. After re- 

viewing related works on the corresponding fields in Section 2 , we 

describe our multi-modal deep feature learning approach for RGB- 

D object detection in Section 3 . Section 4 presents the experimental 

results and analyses. The last section concludes this paper with re- 

marks on the future work. 

2. Related work 

The goal of this work is to incorporate depth information to 

multi-modal object detection, which consists of two key compo- 

nents: objectness estimation and object recognition. In this section, 

we first discuss the representative objectness estimation works 

briefly, which are mainl y performed on traditional RGB images. Af- 

ter that, we will go through RGB-D object recognition and object 

detection works. 

The objectness estimation task aims to generate a moderate 

number of generic-over-classes object proposals and is expected to 

cover all objects in an image [18,22,23] . According to the object 

distinctive characteristics, Alexe et al. [18] explored five window 

cues for measuring the objectness, including multi-scale saliency, 

color contrast, edge density, superpixels straddling, and window 

location and size. These cues are formulated in a Bayesian frame- 

work and each region proposal is assigned an objectness score, 

which reflects how likely the region covers an object of any cat- 

egory. But this framework takes much time to train and predict. 

Cheng et al. [22] and Zitnick et al. [23] tried to assess each poten- 

tial window with carefully defined objectness scores in near real- 

time. It is worth noting that, they all share a common idea that 

the borders or edges of the objects play a much more important 

role in objectness estimation and should be incorporated into this 

task. We argue that the depth map provides much more salient ob- 

ject boundaries, layered scene structures and apparent object bod- 

ies. To the best of our knowledge, little attention has been paid to 

adopt the depth information into objectness estimation. Xu et al. 

[24] tried to adaptively integrate RGB and depth information into 

this task. However, their method is built upon Bing [22] , which 

is optimized for intersection-over-union (IoU) of 0.5 and not well 

suited for object detectors. In contrast, we leverage not only RGB 

images but also depth maps to carry out the objectness estima- 

tion in this work, which is based on the recent region proposal 

networks (RPN) [19] and improves the region proposal quality and 

the overall object detection accuracy in return. 

With the powerful deep convolutional neural networks (CNN) 

[20] , recent works on RGB-D object recognition have considered 

neural networks for learning representations from RGB and depth 

images [25,26] . Socher et al. [25] and Bo et al. [27] focused on rec- 

ognizing small prop-like RGB-D objects imaged in controlled lab 

settings. Instead of using the depth image directly, in [28] , the au- 

thors proposed a geocentric embedding for depth images and tack- 

led RGB-D object detection in cluttered scenes. In the RGB sce- 

nario, object detection has witnessed great improvements start- 

ing from generic features that are learned on a large-scale RGB 
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image corpus, ImageNet [8] . However, for depth modality, there 

are no such large amounts of labeled data as ImageNet. Gupta 

et al. [29] utilized learned representations from a large labeled RGB 

dataset as a supervisory signal for training representations for un- 

labeled paired depth modality, which provides better parameter 

initialization for the depth network. However, they either simply 

treat the depth map as an additional channel of corresponding 

RGB image or separately learn representations from RGB and depth 

modalities. In [30] , Wang et al. embedded the RGB and depth deep 

features into a transformed space to learn the shared and specific 

representations for RGB-D object recognition. In contrast, we aim 

to take full advantages of both depth and color cues by directly ex- 

ploiting the modality-correlated and modality-specific deep feature 

representations for RGB-D object detection in uncontrolled, clut- 

tered environments as in the datasets NYU Depth v2 [14] and SUN 

RGB-D [21] . 

3. Proposed approach 

In this section, we describe the proposed multi-modal deep fea- 

ture learning approach for RGB-D object detection. 

Currently, the dominant paradigm for mono-modality object 

detection contains two key components: objectness estimation 

( e.g ., selective search [31] , edge box [23] ) and deep feature based 

region-wise object recognition ( e.g ., R-CNN [10] , Fast R-CNN [11] ). 

Similarly, the RGB-D object detection is broken down into these 

two sub-tasks. Most of the existing RGB-D object detection meth- 

ods either simply treat depth map as an additional channel of 

corresponding RGB image in an undifferentiated way as in [32] , 

or separately learn features from RGB and depth modalities as 

in [26] . However, neither the intrinsic characteristic of depth in- 

formation nor the relationship between different modalities can 

be adequately exploited in such ways. As a result, sub-optimal 

results are produced. Instead, we employ geocentric encoding of 

depth map, HHA (Horizontal disparity, Height above ground and 

Angle with gravity) embedding 2 [28] , to capture the scene geo- 

metrical features, which emphasize the complementary disconti- 

nuities in the image ( i.e ., depth, surface normal and height) and 

are proven to be useful in several works [21,29,33] . Moreover, mo- 

tivated by the intuition that different modalities should contain not 

only modality-specific information but also modality-correlated in- 

formation [30,34] , we propose to learn correlated features that are 

shared between RGB and depth modalities as well as specific fea- 

tures that are only captured at each single modality for RGB-D 

object detection, and the learned modality-correlated features and 

modality-specific features are complementary to each other. By in- 

corporating the proposed correlated features, disagreements be- 

tween modality-specific results can be rectified. The pipeline of our 

proposed approach is depicted in Fig. 2 . 

3.1. Multi-modal deep feature learning 

In [30] , Wang et al. employed multi-modal feature learning car- 

ried out in conjunction with convolutional neural network fea- 

ture learning in RGB-D object recognition. They argued that in 

the transformed feature space, RGB and depth modality should 

have common parts and individual parts. In contrast, we employ 

convolutional neural networks to learn discriminative modality- 

correlated and modality-specific features in an end-to-end manner. 

First, we develop a three-way fully convolutional neural net- 

work to learn multi-modal deep features as shown in Fig. 2 , which 

is explicitly designed to learn RGB-D-correlated, RGB-specific, and 

depth-specific feature representations. In [35] , Li et al. found that 

2 We use the term depth and HHA interchangeably. 

network-specific features can be learned in multiple networks even 

with the same modality. More notably, Gupta et al. [29] demon- 

strated that even though the depth network is supervised by the 

RGB network, the learned features on the depth images are still 

complementary to the features on the RGB images. Therefore, it 

is reasonable to assume that the RGB network and depth network 

(shown in Fig. 2 ) are able to learn modality-specific features with 

our configuration. 

It is well known that the shared weights strategy has been 

demonstrated very effective in convolutional neural networks. On 

one hand, it can substantially lower the complexity of the model. 

Another important aspect is that the shared weights policy is ded- 

icated to detecting the consistent or common patterns at all possi- 

ble locations [36] , which can increase the invariance of the learned 

features. Inspired by the latter aspect, we make efforts to learn 

the modality-correlated features through the shared weights pol- 

icy across RGB and depth modalities. More formally, the shared 

weights in CNNs correspond to different filters or templates W s, 

and for a specific W with inputs x m ( m ∈ { RGB, Depth }), the activa- 

tions ( i.e ., feature maps) h m ( m ∈ { RGB, Depth }) are obtained as fol- 

lows: 

h m = σ (W ∗ x m + b) , (1) 

where σ ( ·) stands for the activation function ( e.g ., ReLU [20] , hy- 

perbolic tangent or sigmoid function), operator ∗ denotes the con- 

volution and b is bias term. When the inputs x m comprise the sim- 

ilar pattern to W, h m could be maximized. That is why the shared 

weights filters are dedicated to detecting different kinds of com- 

mon patterns. In consequence, we may reasonably interpret that 

strong feature activations in the correlated network are responded 

from similar patches , which are all similar to W and shared by RGB 

and depth images or their feature maps. However, due to the hi- 

erarchical nature of deep convolutional neural networks, the lay- 

ered feature maps or vectors reveal progressive properties. Low- 

level features are shown to be local and activated by edge-like pat- 

terns. In contrast, mid-level semantic representations can tell the 

context information ( e.g ., texture and shape) and respond to parts 

of objects. In consideration of this nature, the mid-level semantic 

representations, instead of raw RGB images and depth maps, are 

utilized to learn the modality-correlated features via the shared 

weights manner. 

It is easy to see that the learned similar activations 

h m ( m ∈ { RGB, Depth }) in Eq. (1) are not exactly the same because 

the input x m are not equivalent. To encourage the network to 

learn the integrated and correlated representations, we introduce a 

parameter-free correlation layer, which performs multiplicative com- 

parisons between similar feature maps of two modalities. Given 

two feature maps h RGB and h Depth , the correlated feature maps h corr 
are defined as: 

h corr = 

√ 

h RGB ◦ h Depth , (2) 

in which ◦ denotes the Hadamard product. The multiplicative com- 

parisons only keep the activations occurred both in RGB and depth 

feature maps, which guarantee that modality-correlated network 

dedicates to learning consistent and common representations be- 

tween RGB and depth modalities. 

The shared weights strategy comes with several advantages 

in multi-modal setting. First, as mentioned earlier, the intra- 

modalities and inter-modalities common patterns could be learned. 

Moreover, the shared weights in the modality-correlated network 

enable a favorable alignment between the learned RGB and depth 

feature maps, which makes the Hadamard product in Eq. (2) rea- 

sonable. 

In practice, conv2 feature maps from the RGB branch and the 

depth branch will separately go through the same convolutional 

network (first three layers of “correlated” branch in Fig. 2 ). After 
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the last convolutional layer, the activations are integrated as RGB- 

D correlated features using Eq. (2) . 

However, to learn modality-correlated features, there is a 

straightforward approach, i.e ., simply treating RGB and depth im- 

ages or feature maps indistinguishably and concatenating their 

channels. Its detection performance is significantly worse than ours 

(46.4% vs . 49.5% on the NYU Depth v2 test set). We suspect that 

straightforward concatenation largely explores the “linear” combi- 

nation of RGB and depth modalities, while failing to learn discrimi- 

native correlated relationship between the two modalities and pro- 

ducing suboptimal results. 

3.2. RGB-D objectness estimation 

In order to generate multi-modal object proposals, three Region 

Proposal Networks (RPNs) [19] are slid over the last conv feature 
maps (as shown in Fig. 2 ). One is for modality-correlated object- 

ness estimation and the other two are for modality-specific object- 

ness estimation. Each RPN is performed as a multi-task learning 

module, which ends up with two sibling 1 ×1 convolutional layers 

for binary classification (object or not) and bounding-box regres- 

sion [1,11] . Specifically, the binary classification is carried out by 

a two-class softmax layer, and its sibling layer outputs bounding- 

box regression deviations. Given an anchor box with ( x a , y a , w a , 

h a ), bounding-box regression is developed to predict deviations 

t ∗ = (t ∗x , t 
∗
y , t 

∗
w , t 

∗
h 
) following [1,10] : 

t ∗x = (x ∗ − x a ) /w a t ∗y = (y ∗ − y a ) /h a 

t ∗w = log (w 
∗/w a ) t ∗h = log (h ∗/h a ) , (3) 

where x, y, w and h denote the bounding box’s center coordinates 

and its width and height. Variables x ∗ and x a are for the ground- 

truth box and anchor box respectively (likewise for y, w, h ). The 

smoothed � 1 loss [11] is adopted as the bounding-box regression 

loss function. 

s � 1 (x ) = 

{

0 . 5 x 2 if | x | < 1 
| x | − 0 . 5 otherwise . 

(4) 

With these definitions, the objectness estimation multi-task 

loss L is defined as: 

L (p, p ∗, t , t ∗) = λL cls (p, p 
∗) + 

∑ 

i ∈{ x,y,w,h } 

p ∗s � 1 (t i − t ∗i ) , (5) 

where the mini-batch size is ignored. p and p ∗ are the predicted 

objectness probability of an anchor and ground-truth label (1 if 

the anchor is positive, and 0 if the anchor is negative), respectively. 

Two types of anchors are treated as positive: the anchors with the 

highest IoU overlap with a ground-truth box, and the ones that 

have an IoU overlap higher than 0.7 with any ground-truth box 

[19] . An anchor is considered as negative example if its IoU ratio 

is lower than 0.3 for all ground-truth boxes. L cls (p, p 
∗) = − log pp ∗

is the standard cross-entropy loss. The modality-correlated RPN 

and modality-specific RPNs are trained simultaneously with the 

same supervision. At last, the ensemble object proposal scores and 

bounding-box deviations are computed from the average of three 

RPNs predictions. 

3.3. Region-wise RGB-D object recognition 

With the recognition using region proposals framework ( e.g ., R- 

CNN [10] ), the objects detection capability has been greatly im- 

proved. For the recognition networks, we build upon the more re- 

cent Fast R-CNN [11] . Similar to the RGB-D objectness estimation, 

the recognition networks consist of three independent parts: one is 

modality-correlated and the other two are modality-specific, which 

are trained separately with the same supervision. Each recogni- 

tion network simultaneously optimizes two tasks: K -class softmax 

classification and bounding-box regression. The multi-task loss for 

object recognition is similar to Eq. (5) , except for the number 

of classes changed from 2 to K , and the bounding-box regres- 

sion in this stage uses the similar parameterization as Eq. (3) . The 

bounding-box regression in previous RGB-D objectness estimation 

stage could be considered as differentiating coarse-grained class- 

agnostic object candidates from chaos, and the latter one in this 

stage aims to refine the coarse object proposals. Moreover, with 

object detection as the final goal, previous objectness estimation 

procedure could be further boosted in return to generate more 

high-quality and recognition-favorable region proposals. 

Likewise in RGB-D objectness estimation, the ensemble detec- 

tion performance is based on the simple arithmetic average of class 

probabilities and bounding-box deviations predicted by these three 

constituent detection networks. 

3.4. Training 

The proposed multi-modal object detection networks can be 

trained end-to-end with back-propagation and stochastic gradient 

descent (SGD) [37] . For RPN networks, each mini-batch arises from 

a single image that contains many positive and negative example 

anchors. 

During region-wise recognition training, RPNs generates region 

proposals which are treated as being fixed, i.e ., the derivatives with 

regard to the proposal boxes’ coordinates are ignored during back- 

propagation. Some proposals generated from RPNs highly overlap 

with each other. To reduce redundancy, non-maximum suppression 

(NMS) is performed over the proposals according to their ensem- 

ble objectness scores with an IoU threshold of 0.7, which leaves 

about 20 0 0 proposal regions per image. In each SGD iteration, we 

uniformly sample 128 positives ( ≥0.5 IoU overlap with a ground- 

truth box over all classes) and 128 negatives (a maximum IoU with 

any ground-truth boxes in the interval [0.1, 0.5), following [38] ) 

from the rest of proposals to construct a mini-batch of size 256, 

which are treated as inputs to the following recognition networks. 

4. Experiments and results 

4.1. Dataset 

We comprehensively evaluate our algorithm on the NYU Depth 

v2 [14] and SUN RGB-D [21] benchmark datasets. NYU Depth v2 

is comprised of 1449 densely labeled pairs of aligned RGB and 

depth images, which are captured by Microsoft Kinect v1. Simi- 

larly, SUN RGB-D is comprised of 3784 Microsoft Kinect v2 im- 

ages, 3389 Asus Xtion images, 2003 Microsoft Kinect v1 images 

and 1159 Intel RealSense images. NYU Depth v2 is a subset of SUN 

RGB-D. Since sensor bias does exist [21] , we use these two datasets 

for evaluation. Due to measurement noises, diffuse or specular re- 

flections, and occlusion boundaries, etc ., the depth maps in SUN 

RGB-D come with missing a significant amount of points. We first 

fill the missing values with colorization algorithm [39] . Following 

[21,28,29] , we only work with 19 major furniture categories avail- 

able in the datasets: bathtub, bed, bookshelf, box, chair, counter, desk, 

door, dresser, garbage bin, lamp, monitor, night stand, pillow, sink, 

sofa, table, television , and toilet . 

4.2. Implementation details 

In [19] , the authors integrated the RPNs with Fast R-CNN [11] , 

called Faster R-CNN, which is built upon the popular deep learning 

framework Caffe [40] . The proposed correlation layer can be eas- 

ily implemented in two steps: element-wise square root followed 

by element-wise product. Faster R-CNN shares the computation for 
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Fig. 3. Controlled experiments on the NYU Depth v2 test set. (a) and (b) demonstrate recall versus the number of proposals at different IoU threshold. (c) shows average 

recall (AR) versus the number of proposals between [0 . 5 , 1] IoU. 

Table 1 

Object detection average precision (%) on the NYU Depth v2 test set. 

method RGB Arch. Depth Arch. RGBD Arch. bathtub bed bookshelf box chair counter desk door 

RPN-RGB AlexNet – – 20.0 57.2 33.8 2.0 33.2 34.3 12.6 16.4 

RPN-Depth – AlexNet – 34.9 80.3 41.8 2.3 53.0 49.3 18.1 17.2 

RPN-Corr – – AlexNet 41.7 82.7 43.5 3.2 53.5 52.0 18.3 17.2 

RPN-RGBD AlexNet AlexNet – 46.5 79.8 49.1 3.1 53.9 55.0 23.8 23.5 

Super. Trans. [29] AlexNet AlexNet – 45.6 78.7 48.5 4.3 50.5 57.8 21.4 29.6 

Super. Trans. [29] VGG16 AlexNet – 50.6 81.0 52.6 5.4 53.0 56.1 20.9 34.6 

Ours AlexNet AlexNet AlexNet 49.1 82.7 50.4 4.4 57.5 56.8 22.3 25.0 

SUN w/o fine-tune AlexNet AlexNet AlexNet 61.3 79.2 46.2 5.6 53.6 12.7 22.0 23.6 

SUN w/ fine-tune AlexNet AlexNet AlexNet 61.9 85.7 50.5 6.2 60.5 59.1 27.3 26.0 

method dresser garbage-bin lamp monitor night-stand pillow sink sofa table television toilet mAP 

RPN-RGB 24.6 21.6 23.1 33.0 20.8 22.0 30.1 31.6 18.0 32.1 56.6 27.5 

RPN-Depth 49.2 29.4 38.5 42.6 49.1 40.2 47.9 63.1 34.0 34.6 62.7 41.5 

RPN-Corr 54.5 29.4 39.7 39.1 50.7 37.4 51.1 63.9 30.9 45.1 63.9 43.0 

RPN-RGBD 56.1 44.3 44.1 62.2 49.3 43.7 46.3 64.8 33.6 54.2 65.5 47.3 

Super. Trans. [29] 54.0 41.6 45.4 61.2 57.9 47.3 48.9 63.2 29.5 50.0 60.1 47.1 

Super. Trans. [29] 57.9 46.2 42.5 62.9 54.7 49.1 50.0 65.9 31.9 50.1 68.0 49.1 

Ours 57.9 42.4 45.2 59.8 60.7 44.1 55.6 65.0 33.4 55.6 71.9 49.5 

SUN w/o fine-tune 44.8 43.2 45.0 68.7 61.7 47.7 51.8 72.0 34.1 58.3 70.4 47.5 

SUN w/ fine-tune 54.2 51.1 48.4 74.7 60.2 48.8 62.2 68.4 38.2 57.3 66.3 53.0 

convolutional layers. Therefore, the cost for object proposal predic- 

tion is marginal ( e.g ., 10ms per image typically). Moreover, the gen- 

erated object proposals are somewhat adaptive to the subsequent 

recognition networks. 

In addition, due to the GPU memory consumption, we only 

conduct the experiment on the AlexNet architecture [20] with 

an NVIDIA GeForce GTX TITAN Black. We fine-tune the proposed 

multi-modal object detection networks for 70,0 0 0 iterations with 

a base learning rate of 0.001 and reduce it by a factor of 10 

after every 40,0 0 0 iterations from pre-trained models. The RGB- 

specific detection network is initialized with ImageNet [8] RGB 

classification model. 3 To better leverage the depth information, 

the modality-correlated and depth-specific networks are initialized 

from a supervision transfer model [29] . All new layers are initial- 

ized by drawing weights from a Gaussian distribution N (0 , 0 . 01 2 ) . 

A momentum term with a weight of 0.9 and weight decay factor 

of 0.0 0 05 are used in all experiments. For simplicity, we choose 

to weight category loss and bounding-box regression loss equally, 

i.e ., the balancing parameter λ in Eq. (5) is set to 1. We follow 

the default setup for Faster R-CNN that the input images are re- 

scaled such that their shorter side is s = 600 pixels. During training 

and testing, only the single re-scaled images ( s = 600 ) are passed 

through both region proposal and object recognition networks. For 

RPN anchors, we use 3 scales with box areas of 128 2 , 256 2 , and 

3 https://github.com/BVLC/caffe/wiki/Model-Zoo. 

512 2 pixels, and 3 aspect ratios of 1: 1, 1: 2, and 2: 1 following 

[19] . During testing, object detection is carried out on the top 20 0 0 

proposals. 

4.3. Evaluation metrics 

Evaluating class-agnostic object proposals is quite different 

from the traditional object detection task [41] . It is not practical 

to evaluate the object proposals’ class confusion and background 

confusion and so forth. Instead, we report recall at a particular IoU 

threshold with a given number of proposals (#PRPSL): 

recal l (ε, # PRPSL ) = 
#( IoU ≥ ε)@# PRPSL 

# GT 
, (6) 

where IoU is the de facto criterion to determine whether a pro- 

posal covers an object. ε ( ε ∈ [0.5, 1]) is IoU threshold and GT 

means object ground-truth bounding-boxes. In addition, we also 

report the average recall (AR) [42] with IoU between 0.5 to 1: 

AR (# PRPSL ) = 2 

∫ 1 

0 . 5 
recal l (ε, # PRPSL ) dε

= 
2 

n 

n 
∑ 

i =1 

f (gt i , # PRPSL ) , (7) 

where f (gt i , # PRPSL ) denotes the IoU between the ground-truth 

annotation gt i and the best detection proposal with different 

#PRPSL. When the IoU between the ground-truth annotation gt i 
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Fig. 4. Detection results of examples from the NYU Depth v2 test set, comparing on different detection networks. (a) RGB-specific detection results. (b) Depth-specific 

detection results. (c) RGB-D correlated detection results. (d) Ensemble detection results from the proposed modality-specific and modality-correlated detection networks. 

Each detected box is associated with a category label and a softmax score in [0, 1]. A score threshold with 0.6 is used to display these images. For each bounding-box, one 

kind of color indicates one object category. 

and the best detection proposal is less than 0.5, f (gt i , # PRPSL ) is 

set to 0. It has been demonstrated that the average recall cor- 

relates surprisingly well with almost all object detectors’ perfor- 

mance [42] . 

As to RGB-D object detection, the commonly used average pre- 

cision (AP) is adopted to assess the detection performance. 

4.4. Experiments on NYU Depth v2 

We use the standard splits of 795 training and validation im- 

ages for training and remaining 654 images for testing. These splits 

are all carefully selected by making sure images from the same 

scene do not spread across both sets. 

4.4.1. Object proposal evaluation 

In our initial experiments, we fine-tune two modality-specific 

Faster R-CNNs as baselines, RPN-RGB and RPN-Depth. Apart from 

the modality-correlated networks in Fig. 2 , the straightforward in- 

tegration of modality-specific ones, RPN-RGBD, is also treated as a 

baseline, which leverages the RGB and Depth information in a pre- 

liminary way. Furthermore, by taking into account the efficiency of 

objectness estimation, we compare our approach with the state-of- 

the-art methods, SS [31] , BING [22] , EdgeBox [23] and BING-RGBD 

[24] , which all perform reasonably in terms of proposal quality and 

speed [42] . In all experiments, we adopt the authors’ open-source 

codes with the suggested parameters in their papers. 

Since Eq. (6) indicates a proposal method’s effectiveness, we 

first evaluate the recall with respect to various numbers of candi- 

date proposals. Fig. 3 a illustrates the recal l (0 . 5 , # PRPSL ) with dif- 

ferent truncated numbers of proposals. The proposed modality- 

correlated and modality-specific approach, RPN-RGBDCS, outper- 

forms both the baselines and the competitors. However, the IoU 

score above 0.5 is quite loose for objectness estimation, and the 

detection algorithm may not benefit much from this setup. There- 

fore, we further report the detection rate at IoU above 0.7, as 

shown in Fig. 3 b. Due to the bounding-box regression, RPN-RGBDCS 

produces much tighter proposals compared with state-of-the-art 

methods. It is noteworthy that the recall metric is more appro- 

priate to diagnose the proposal method and loosely related to 

the downstream detection accuracy [19,42] . Therefore, in addi- 

tion to reporting the recall with different truncated number of 
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Fig. 5. Weighted averaging results of the modality-correlated, RGB-specific and depth-specific networks on the NYU Depth v2 validation set. Warmer colors correspond to 

larger values, cooler colors are small values. α = 0 . 3 , β = 0 . 35 give the best result (36.7%). 

proposals, we also highlight the novel metric, average recall (AR), 

between IoU 0.5 to 1 for a varying number of proposals in Fig. 3 c. 

AR summarizes proposal performance across different IoU thresh- 

olds, which has proven to be an excellent indicator for downstream 

object detection performance [42] . As can be seen in Fig. 3 c, RPN- 

RGBDCS performs well across the entire range of number of pro- 

posals. 

Overall, we have shown in this subsection that the proposed 

RPN-RGBDCS outperforms the existing objectness estimation meth- 

ods. 

4.4.2. Object detection evaluation 

In this subsection, we report the performance of the proposed 

multi-modal object detection results on the NYU Depth v2 test set 

in Table 1 and compare our performance against the state-of-the- 

art methods. The proposal methods are utilized to denote the base- 

line detection methods. RGB Arch., Depth Arch., and RGBD Arch. re- 

fer to the CNN architecture used by the modality-specific detectors 

and modality-correlated detectors, respectively. We can see when 

using only the depth information, the detection rate is well above 

that of only using RGB images. We attribute this to the robust char- 

acteristics of depth information, which is largely invariant to vi- 

sual changes. By investigating the consistent and common ingredi- 

ents between RGB and depth cues, the modality-correlated detec- 

tor (RPN-corr), predicts more accurate objects. The object detec- 

tion performance can be significantly boosted from the late fusion 

of modality-specific detectors (from 41.5% to 47.3%). This also holds 

true for the state-of-the-art competitor [29] . Moreover, the detec- 

tion results can be further rectified by incorporating the additional 

modality-correlated recognition network. Fig. 4 illustrates some 

examples evaluated on each detection network. Regions with simi- 

lar appearance are easily misclassified ( e.g ., televisions and lamp in 

Fig. 4 (a)). In contrast, depth maps generally predict more precise 

object locations. The detection results can be improved by explor- 

ing modality-correlated features (as shown in Fig. 4 (c) and (d)). 

The proposed multi-modal RGB-D object detection approach is 

substantially superior to the state-of-the-art competitor, supervi- 

sion transfer [29] , in terms of mAP with the normal deep archi- 

tecture (AlexNet [20] ). Surprisingly, compared to Gupta et al.’s su- 

pervision transfer VGG model [29] , our approach, which is built 

upon AlexNet, performs slightly better. Moreover, it is noteworthy 

that the proposed modality-correlated and modality-specific object 

detection approach is built upon an almost cost-free objectness 

estimation. In comparison, supervision transfer [29] employed a 

prohibitively time-consuming object proposal method, RGBD MCG 

[28] , which typically takes about 30s for a 500 ×400 image. 

4.4.3. Ensemble strategy 

In practice, we find training three independent detection mod- 

els all the way and then assembling the correlated and specific 

outputs (class scores and bounding-box deviations) via late fusion 

perform better than early fusion, which is also verified in [29] . 

Moreover, to investigate the relative importance amongst the three 

branches, we conduct an experiment to perform weighted averag- 

ing instead of simple averaging among the three branches on the 

NYU Depth v2 validation set as follows: 

G (x ) = αg RGB (x ) + βg Depth (x ) + (1 − α − β) g corr (x ) . (8) 

where g ( ·) is the output of detection network, α, β(α ≥ 0 , β ≥

0 , α + β ≤ 1) are the ensemble weights for RGB and depth branch, 
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respectively. α, β vary in [0, 1] with a step size of 0.05. The en- 

semble results are shown in Fig. 5 . α = 0 . 3 , β = 0 . 35 give the best 

result (36.7%). Furthermore, we also experiment stacking strategy 

to learn a meta-learner based on three branches’ outputs, which 

is not better than simple averaging either. We suspect that the 

weighted averaging and meta-learner are prone to overfitting and 

are not always superior to simple averaging [43–45] . Therefore, 

we use simple averaging in the following experiments. In addition, 

these experiments also imply that apart from the modality-specific 

constituents, the correlated ingredients are another complemen- 

tary view of multi-modal data and should be jointly exploited as 

well. 

4.4.4. Control experiments on ensemble of multiple detection 

networks 

There exists a suspicion that most of the detection performance 

gain comes from the ensemble of multiple detection models rather 

than from the learned modality-correlated representation. To bet- 

ter understand the effects of adding modality-correlated detec- 

tion network, we perform control experiments on ensemble of 

multiple detection models. With same experimental settings as 

in Section 4.2 , we fine-tune modality-specific detection networks 

twice resulting two color and two depth detection networks. The 

ensemble detection rates are 46.2% and 48.2% for two color + one 

depth detection networks and one color + two depth detection 

networks respectively, which are much lower than the proposed 

detection approach. Even with two color + two depth detection 

networks ( i.e ., four detection models), the achieved object detec- 

tion performance is 48.7%. It is 0.8% worse than ours, which only 

relies on three detection models. We attribute that disagreements 

between RGB-specific and depth-specific object detection results 

can be rectified with the additional proposed modality-correlated 

model. In consequence, these control experiments imply that the 

proposed detection approach may take full advantages from the 

developed modality-correlated and modality-specific feature repre- 

sentations, and performs more effectively and powerfully than the 

straightforward combination with just modality-specific features 

dose, which is vulnerable to disagreements between modality- 

specific object detection results. 

4.4.5. Features visualization 

Fig. 6 shows the pool5 feature maps from RGB-specific, depth- 

specific, and modality-correlated networks for each dresser and 

sink in the NYU Depth v2 trainval set. 4 We adopt the “aggregation 

map” [46] to visualize the resulted 6 ×6 ×256 pool5 feature 
maps, which is proven effective in fine-grained image retrieval. 

More specifically, pool5 features are aggregated via global average 
pooling across the channels to produce 6 ×6 object pool5 descrip- 

tors. It is worth noting that although the weights in the correlated 

detection network and depth-specific detection network were 

initialized from the same source, the learned features are diverse 

after fine-tuning (as illustrated in Figs. 6 b–d and f). Furthermore, 

different regions are activated in modality-correlated and 

modality-specific feature maps. In other words, the correlated, 

RGB-specific, and depth-specific detection nets are dedicated to 

covering different aspects of an object. 

In addition, to give an overview visualization of the learned 

multi-modal features for each object, we employ a high- 

dimensional data visualization technique, t-distributed stochas- 

tic neighbor embedding (t-SNE) [47] , to map the learned high- 

dimensional features to two-dimensional locations. We can obtain 

a rough idea about the feature space’s topology through t-SNE, 

because it is capable of retaining the local structure [47] . Fig. 7 

4 More object pool5 features of the NYU Depth v2 trainval set can be visualized 

from http://mcg.nju.edu.cn/dataset/pool5/ . 

depicts pool5 object features from different networks. These fea- 

tures are extracted from the NYU Depth v2 trainval set. We believe 

that the object feature distributions in RGB-specific, depth-specific, 

and modality-correlated feature spaces are essentially different by 

investigating the differences of object feature distributions. In par- 

ticular, differences of inter-object feature distributions between ob- 

ject categories and intra-object feature distributions in each cat- 

egory demonstrate that the feature’s implicit structure varies in 

these three feature spaces. We can draw a conclusion that the de- 

veloped components in Fig. 2 are dedicated to exploring different 

aspects of the RGB-D data from Figs. 6 and 7 . Consequently, the 

complementarity among features can considerably benefit the pro- 

posed multi-modal RGB-D object detection approach. 

4.4.6. Convergent rate for different modality networks 

The proposed modality-correlated and modality-specific RGB- 

D object detection networks are simultaneously optimized. How- 

ever, the convergent rate for these three networks may vary. In 

this subsection, we examine the convergent speed for modality- 

correlated and modality-specific networks on the NYU Depth v2 

training and validation set. The training softmax, bounding-box re- 

gression loss and validating error are shown in Figs. 8 a and b, re- 

spectively. Note that the tendency of convergence is very close for 

optimizing modality-correlated network and modality-specific net- 

works. Therefore, when training the proposed multi-modal object 

detection approach, we choose the same learning rate and loss 

weights for different networks. 

4.5. Experiments on SUN RGB-D 

SUN RGB-D [21] is a very recent PASCAL VOC [48] scale RGB- 

D dataset, which is a superset of NYU Depth v2. This data set 

consists of RGB-D image pairs captured by various RGB-D sensors. 

Song et al. pointed out that sensor bias does exist due to the di- 

verse capabilities for different devices [21] . It is crucial that an 

algorithm can generalize to different types of RGB-D sensors, be- 

cause real data usually come from different sensors. For this rea- 

son, we also present extensive experimental results on this much 

more challenging dataset. However, SUN RGB-D consists of RGB- 

D image pairs captured by Intel RealSense, whose effective range 

for reliable depth is very short. Besides, we found that its depth 

map quality is too low for use in the accurate object detection 

task. Therefore, we leave out the RGB-D images captured by Intel 

RealSense and adopt the remaining standard splits in following ex- 

periments: 4,698 for training and 4478 for testing. These splits are 

also carefully selected as suggested in [21] . There are a few mi- 

nor changes of our system made for this dataset. First, SUN RGB-D 

consists of RGB-D captured by several devices, thus the modality- 

correlated and modality-specific networks are all fine-tuned from 

pre-trained ImageNet RGB classification models. Second, SUN RGB- 

D is a much larger dataset, thus it is trained for 10 0,0 0 0 iterations 

with a step size of 50,0 0 0. 

4.5.1. Object proposal evaluation 

Under the same protocol as in Section 4.4 , we first evaluate the 

object proposal performance with the same experimental setup 

to the NYU Depth v2 dataset, as shown in Fig. 9 . The modality- 

correlated and modality-specific objectness estimation method, 

RPN-RGBDCS, consistently performs better than the baselines and 

the state-of-the-art competitors, which indicates that the proposed 

RPN-RGBDCS can be well generalized to different types of RGB-D 

devices. Better proposals do matter for better object detection per- 

formance [11] . In the following, we will see that the high-quality 

and recognition-favorable proposals generated from the modality- 

correlated and modality-specific objectness estimation models can 

benefit downstream object detection task. 
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Fig. 6. pool5 feature maps from RGB-specific, depth-specific, and modality-correlated networks for each dresser and sink in the NYU Depth v2 trainval set (best viewed 

in color). Each object’s 6 ×6 ×256 pool5 maps are aggregated via the “aggregation map” [46] to produce 6 ×6 pool5 descriptors. The features are normalized to [0, 1]. 

Warmer colors correspond to larger values, cooler colors are small values. 

Fig. 7. t-SNE [47] embedded pool5 features from RGB-specific, depth-specific, and modality-correlated networks (best viewed in color). One kind of color indicates one 

object category. 

4.5.2. Object detection evaluation 

Next, we evaluate the detection performance on the SUN RGB- 

D dataset. Compared to the NYU Depth v2 dataset, RGB detection 

performance is greatly improved with more training object exam- 

ples in SUN RGB-D. The detection performance gap between RGB 

and depth models is not as significant as on NYU Depth v2. We 

conjecture that this is because the scenes in SUN RGB-D are much 

more diverse. Object poses and relative object positions vary much 

more. Consequently, it is much more difficult to detect the objects 

with only depth maps. The modality-correlated detection network 

(RPN-corr) and late fusion of modality-specific detection networks 

(RPN-RGBD), which both take advantages of RGB and depth modal- 

ities, perform much better than mono-modal detection networks. 

Likewise, the detection performance can be further improved by 

the proposed modality-correlated and modality-specific detection 

networks (from 51.8% to 52.9%). The detailed numbers are reported 

in Table 2 . Fig. 10 shows some detection results on the SUN RGB-D 

test set returned from the proposed multi-modal object detection 

approach. 

With the convolutional features shared for proposal generation 

and region-wise recognition, the proposed modality-correlated and 

modality-specific RGB-D object detection approach takes a total of 

∼ 0.290s for a RGB-D image pair, which is much more efficient 

than the supervision transfer [29] . 

4.6. From SUN RGB-D to NYU Depth v2 

A large-scale labeled dataset is of crucial importance for im- 

proving the performance of object detection. In this subsection, we 

investigate how the SUN RGB-D dataset can help improving the de- 

tection performance on the NYU Depth V2 dataset. 

As the original training and testing splits from NYU Depth V2 

are kept in SUN RGB-D, we first directly evaluate the trained SUN 

RGB-D detection models on the NYU Depth V2 test set without 
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Fig. 8. The training loss and validation error for modality-correlated and modality-specific RGB-D object detection networks, which are evaluated on the NYU Depth v2 

training and validation set. 

Fig. 9. Controlled experiments on the SUN RGB-D test set. (a) and (b) demonstrate recall versus the number of proposals at different IoU threshold. (c) shows average recall 

(AR) versus the number of proposals between [0 . 5 , 1] IoU. 

Table 2 

Object detection average precision (%) on the SUN RGB-D test set. 

method RGB Arch. Depth Arch. RGBD Arch. bathtub bed bookshelf box chair counter desk door 

RPN-RGB AlexNet – – 36.4 67.0 34.8 6.2 43.3 45.3 17.5 22.0 

RPN-Depth – AlexNet – 55.8 77.7 26.7 5.0 49.9 47.6 21.8 6.9 

RPN-Corr – – AlexNet 50.7 78.9 36.1 8.7 53.1 47.9 24.2 21.8 

RPN-RGBD AlexNet AlexNet – 70.3 79.2 35.1 11.0 53.5 50.6 25.1 18.8 

RGBD RCNN [28] AlexNet AlexNet – 49.6 76.0 35.0 5.8 41.2 8.1 16.6 4.2 

Ours AlexNet AlexNet AlexNet 70.5 80.8 38.4 11.4 54.3 51.5 26.5 22.2 

method dresser garbage-bin lamp monitor night-stand pillow sink sofa table television toilet mAP 

RPN-RGB 38.3 57.8 42.0 51.6 43.6 31.6 46.2 57.2 37.1 20.1 74.7 40.7 

RPN-Depth 31.3 54.0 46.4 50.6 45.0 47.0 50.5 67.8 43.3 12.9 74.2 42.9 

RPN-Corr 46.6 65.5 54.4 60.6 51.2 47.6 61.9 69.3 45.7 34.9 78.5 49.3 

RPN-RGBD 48.0 67.1 57.5 62.0 56.5 49.4 62.3 71.9 47.4 34.7 83.4 51.8 

RGBD RCNN [28] 31.4 46.8 22.0 10.8 37.2 16.5 41.9 42.2 43.0 32.9 69.8 33.2 

Ours 49.2 68.1 58.0 63.4 56.6 50.8 63.1 72.1 48.4 38.5 81.6 52.9 

fine-tuning. The mAP under this setting is 47.5%, which is lower 

than the performance fine-tuned from the ImageNet and supervi- 

sion transfer models (49.5%), as shown in Table 1 . We attribute this 

to the scene and device biases. We then fine-tune the SUN RGB-D 

detection models on the NYU Depth v2 trainval set. In this experi- 

ment, the trained SUN RGB-D models are in place of the ImageNet 

model and supervision transfer model, and are used to initialize 

the weights in multi-modal detection networks. The networks are 

fine-tuned for 40,0 0 0 iterations with a step size of 15,0 0 0. Doing 

so leads to 53.0% mAP on the NYU Depth v2 test set. The extra 

data from the SUN RGB-D set increase the mAP by 3.5%. Details 

are reported in the last row of Table 1 . 

5. Conclusions and future work 

We have presented a multi-modal deep feature learning ap- 

proach for RGB-D object detection. More specifically, our method 

allows learning modality-correlated and modality-specific feature 

representations. The shared weights strategy and a parameter-free 

correlation layer are employed to learn modality-correlated fea- 

tures. In order to demonstrate the effectiveness of the learned 

modality-correlated and modality-specific feature representations, 

we have conducted extensive experimental analyses in RGB-D ob- 

jectness estimation and RGB-D object detection tasks. Experimen- 

tal results on two challenging standard datasets, NYU Depth v2 
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Fig. 10. SUN RGB-D test detection results returned from the proposed modality-correlated and modality-specific RGB-D object detection networks. Each detected box is 

associated with a category label and a softmax score in [0, 1]. A score threshold with 0.6 is used to display these images. For each bounding-box, one kind of color indicates 

one object category. 

and SUN RGB-D, show that the proposed approach outperforms 

the state-of-the-art competitors, and confirms the benefits for joint 

consideration of modality-correlated and modality-specific compo- 

nents in RGB-D object detection. 

Our experimental results show consistent improvements in 

overall detection accuracy (mAP). However, for some categories, 

the improvements are not as noticeable. It will be an interesting 

future direction to study the specific impact of depth information 

on various object classes. 
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