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a b s t r a c t

The problem of closed-loop enhanced sensitivity design is as follows: Given a linear time

invariant system, find a (realizable) feedback gain such that: (1) the closed-loop is stable

in the reference and the potentially damaged states, and (2) the eigenstructure includes

a subset of poles, with desirable derivatives, that lie in a part of the plane where identifi-

cation is feasible. This paper shows that pole derivatives with respect to system parameters

for a controller/observer system, contrary to the assumption often made, depend on both

the controller and the observer gains, i.e. the separation principle holds for placing the

poles but does not extend to the pole derivatives. Closed-form expressions for the deriva-

tives with due consideration to both gains are presented. Examination shows that the sum

of these derivatives is independent of both gains, is constant along the nonlinear paths

traced by the poles as damage increases and, provided the damage affects only the stiff-

ness, is nearly zero.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Eigenstructure assignment is a well-known scheme in which a static linear gain that satisfies design objectives is

obtained by directly specifying closed loop poles and eigenvectors. Eigenstructures that, in addition to satisfying some per-

formance objectives are least sensitive to uncertainties in some parameters are also of interest, and work related to this goal

can be found in [1–5], among others. The flip side of sensitivity minimization, sensitivity maximization, has been proposed in

Structural Health Monitoring to improve the resolution of damage characterization from identified eigenvalue shifts [6–10].

This paper examines how the presence of an observer in the loop, necessary when the operating mode is estimated state

feedback, affects the sensitivities. Eigenvalue sensitivities depend on the right and left side eigenvectors of the controller/

observer system and in this regard design for sensitivity enhancement is an eigenvector placement problem. Pole locations

remaining relevant, however, since apart from the constraints imposed on them by identifiability and stability, their posi-

tions determine the subspaces wherein the closed-loop eigenvectors must lay [11].

The design of closed-loop eigenstructures for monitoring requires decisions on the cost function to be maximized (min-

imized), decisions on the extent and distribution of damage for which closed-loop stability must be satisfied, and specifica-

tion of the limits the hardware imposes on the controller. While specific choices on these items are made in the numerical

example, the objective of this paper is not to propose design criteria but to present consistent expressions for the evaluation

of the derivatives of the poles of a controller/observer system. In as far as these derivatives go the common practice has been

to assume that the separation principle, which holds true for pole positions, extends to the derivatives and, therefore, that
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results for the controller poles do not depend on the observer gain. It is shown here that this is not so, and while the reason is

best appreciated in the context of the derivations, the essence can be stated from the outset, namely: pole derivatives depend

on both gains because parameter shifts resulting from damage are not known to the observer and, as a consequence, pole

positions in the perturbed state depend on both gains. It’s opportune to note that the problem of robust pole placement

in the presence of an observer [3,4] differs from the one considered here in that the issue in the former is how to select gains

such that the deviations between the target and the realized controller/observer poles from inevitable model error are min-

imized; the focus here being, instead, on how small changes in parameters, taking place after the controller/observer is for-

mulated, translate into movement of the poles.

In this paper we parameterize the controller/observer transition matrix to reflect the fact that the observer is

unaware of changes due to damage and derive the consistent closed form expressions for the pole derivatives.

Comparison between the expressions obtained and the ones that hold for full state measurements show that the effect

of the observer is captured by a matrix that is the stabilizing solution of a Sylvester equation [12]. Numerical results show

that the effect of the observer on the Jacobian of the controller poles, and on the extent of damage for which the

closed-loop is stable, can be large. A number of lemmas extracted from the derivation are presented and proved; the most

significant, given its implications in the design for stability, shows that the sum of the discrete time (DT) derivatives is

independent of the controller and of the observer gains. A numerical section exemplifying the analytical examinations is

included.

2. Sensitivity of controller/observer system

Let S be a non-defective but otherwise arbitrary square matrix that is a function of some parameter, h. We shall refer to

the derivatives of the eigenvalues of S with respect to h as sensitivities; not to be confused with the matrix in the Laplace

domain that carries the same name [13,14]. The sensitivity of the jth eigenvalue with respect to h writes

k0j ¼ uT
j S

0
wj ð1Þ

where wj and uj are the right and left side eigenvectors and the prime indicates differentiation with respect to h.

We now particularize Eq. (1) to the case where S is the transition matrix of a finite dimensional linear time invariant

system under estimated state feedback. We begin with the expression that governs the evolution of the state in DT,

namely

xkþ1 ¼ Adxk þ Bduk þ Bxxk þ Bf f k ð2Þ

where Ad 2 RN�N is the transition matrix, Bd, 2 RN�r and Bx 2 RN�z are the control input and disturbance influence matrices,

uk 2 Rr�1 are the control inputs and xk 2 Rz�1 the disturbances, which are typically assumed to be zero mean, Gaussian, and

white, with covariance Q. Finally, if there are any deterministic exogenous excitations, f k 2 Rh�1, then Bf 2 RN�h is the asso-

ciated influence matrix. Given the stochastic disturbances (plus the measurement noise) the poles identified from finite

length signals are random variables and, consequently, so are the identified pole movements due to plant parameter changes

(damage in this application). The expressions derived next are deterministic and correspond to the expectation level from an

unbiased identification. With K 2 RN�m as the time invariant gain of the observer, the evolution of the estimated state is gov-

erned by

x̂kþ1 ¼ Adx̂k þ Bduk þ Bf f k þ Kðyk � ŷkÞ ð3Þ

where the true and the estimated outputs are denoted yk and ŷk 2 Rm�1. For full estimated state feedback we have

uk ¼ �G � x̂k ð4Þ

where G 2 Rr�N is the control gain, x̂ is the estimated state and the minus sign is, of course, conventional. We restrict the

output yk to be a linear combination of the state plus some measurement noise, mk, typically assumed zero mean, Gaussian,

and white, with covariance R. Excluding cases with direct transmission, or assuming the direct transmission contribution is

subtracted from the output, one has

yk ¼ Cdxk þ mk ð5Þ

From previous results it follows that the state and the estimated state form a 2N linear system having the state space

recurrence

xkþ1

x̂kþ1

� �

¼
Ad �BdG

KCd Ado � KCd � BdG

� �

xk

x̂k

� �

þ
Bf

Bf

� �

ff kg þ
Bx 0

0 K

� �

xk

vk

� �

ð6Þ

where the reader will note that we’ve introduced notation to distinguish between the transition matrix that reflects changes

due to damage, Ad, and the invariant transition matrix of the state estimator, Ado. Needless to say, in the reference state Ado =

Ad. Observations on the poles and eigenvectors of the system in Eq. (6) are most easily made after introducing the basis

transformation
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xk

ek

� �

¼
I 0

I �I

� �

xk

x̂k

� �

ð7Þ

where ek ¼ xk � x̂k is the state error. Substituting Eq. (7) into Eq. (6) and recognizing that the matrix in Eq. (7) is involutory

one finds

xkþ1

ekþ1

� �

¼
Ad � BdG BdG

0 Ado � KCd

� �

xk

ek

� �

þ
Bf

0

� �

ff kg þ
Bx 0

Bx �K

� �

xk

mk

� �

ð8Þ

Since the transition matrices in Eqs. (6) and (8) are related by a similarity the poles are preserved and are, as can be seen

from the fact that the transition matrix in Eq. (8) is block triangular, the union of the closed-loop poles of the controller and

the observer; a result known as the separation principle [15]. Also clear from the block triangular nature is the fact that the

eigenvector matrix of the transition in Eq. (8) has the form

U ¼
Wa Z

0 Wb

� �

ð9Þ

where Wa and Wb are the eigenvectors of the controller and of the observer, namely

ðAd � BdGÞWa ¼ WaKa ð10Þ

and

ðAdo � KCdÞWb ¼ WbKb ð11Þ

Inspection of Eq. (8) shows that the matrix Z in Eq. (9) satisfies the Sylvester equation

L1Z � Z L2 ¼ E ð12Þ

where, in this case,

L1 ¼ Ad � BdG; L2 ¼ Kb; E ¼ �BdGWb ð13a-cÞ

It is known that Sylvester’s equation has a unique solution provided there are no common eigenvalues in L1 and L2; a con-

straint that in this case translates to the requirement that the poles of the controller and of the observer, Ka and Kb have no

common entries. The constraint is here easily satisfied because the poles of the observer are typically much more damped

than those of the controller. We move forward, therefore, on the premise that there are no coincident poles. It is useful to

note that the solution of Sylvester’s equation is particularly simple in this case because the matrix L2 is diagonal and this

allows Z to be formed one column at a time. Specifically, from Eqs. (12) and (13) one gathers that the jth column is given by

zj ¼ ðI � kb;j � Ad þ BdGÞ
�1BdG � wb;j ð14Þ

We nowmove to the task of evaluating the derivatives of the poles of the system in Eq. (6). From Eqs. (7) and (9) one finds

that the right side eigenvector matrix is

W ¼
Wa Z

Wa Z �Wb

� �

ð15Þ

The inverse of the matrix in Eq. (15), which is the transpose of the left side eigenvectors, can be expressed in block par-

titioned form as

W
�1 ¼

X1 X2

X3 X4

� �

ð16Þ

Differentiating the transition matrix in Eq. (6) and substituting Eqs. (15) and (16) in the expression for the pole derivative

writes

diagðK0
aÞ

diagðK0
bÞ

( )

¼ diag
X1 X2

X3 X4

� �

A0
d �B0

dG

0 0

" #

Wa Z

Wa Z �Wb

� �

 !

ð17Þ

The partitions in Eq. (16) are easily found to be

X1 ¼ W
�1
a ðI � ZW�1

b Þ; X2 ¼ W
�1
a ZW�1

b ; X3 ¼ �X4 ¼ W
�1
b ð18a-cÞ

Substituting Eqs. (18) into Eq. (17) writes

diagðK0
aÞ ¼ diagðW�1

a LðA0
d � B0

dGÞWaÞ ð19Þ

and

diagðK0
bÞ ¼ diagðW�1

b ðA0
dðI � LÞ þ B0

dGLÞWbÞ ð20Þ
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where we’ve taken

L ¼ I � ZW�1
b ð21Þ

Although damage induces (in general) changes in all the poles, one generally focuses on the controller poles because the

observer ones are often highly damped and thus difficult to identify. At this juncture we note that the matrix L in Eq. (21)

captures all the effect that the observer has on the derivatives, namely, for L = I Eq. (19) gives the derivatives of the controller

that hold true when the full state is measured. Evaluation of Eqs. (19) and (20) requires the derivatives of Bd and Ad. The first

depends on how the control action is delivered and for the commonly used zero order hold circuit writes

B0
d ¼ A�1

c A0
dBc � A0

cBd þ ðAd � IÞB0
c

� �

ð22Þ

The second involves the matrix exponential and is most conveniently evaluated using the complex perturbation

approach, which in our case writes [16–18]

A0
d ¼ lim

e!0
I

eðAcþA0
ceiÞDt

e

 !

ð23Þ

where the subscript c has been used to indicate the continuous time version of the respective matrices.

2.1. Direct solution for ZW�1
b

Examination of Eq. (19) shows that the derivatives of the controller poles do not depend on Z andW
�1
b separately but only

on their product. If one is not interested in the derivatives of the observer poles (as is generally the case) this product can be

obtained directly without solving the eigenvalue problem of the observer. Specifically, one notes that Eq. (12) can be written

as

ðAd � BdGÞZW
�1
b � ZW�1

b WbKbW
�1
b þ BdG ¼ 0 ð24Þ

or, using Eq. (11), as

ðAd � BdGÞZW
�1
b � ZW�1

b ðAd0 � KCÞ þ BdG ¼ 0 ð25Þ

which is a Sylvester equation for ZW�1
b . In Eq. (25) Ad = Ad0.

2.2. Pseudo continuous time

The sensitivities obtained from measurements using an unbiased identification algorithm have an expectation equal to

the DT results from Eq. (19) and (20) with a variance that approaches zero asymptotically as the signals duration approaches

infinity. In practice it is customary to report results on the s-plane because physical significance is more readily judged. The

standard mapping relating the poles in discrete and continuous time is

kc ¼
logðkdÞ

Dt
ð26Þ

from where it follows that

k0c ¼
k0d

kdDt
ð27Þ

Note that while Eqs. (26) and (27) give true system properties when the operation is in open loop, in the closed-loop case

there is no real ‘‘continuous time” as the transition matrix includes the matrix B, which depends on how the control action is

delivered.

2.3. Is Z = 0 Possible?

We close by noting that the possibility of an observer that has no effect on the controller sensitivities, namely, one for

which Z = 0 does not exist. Indeed, to realize Z = 0 it is necessary, by inspection of Eqs. (12) and (13c), to have BdGWb ¼ 0,

and this is precluded by the fact that BdG is not zero and Wb is full column rank.

3. Constraints on the sum of the sensitivities

Some constraints that can aid qualitative reasoning on how the poles evolve as damage progresses are derived next.

Lemma#1. The sum of the sensitivities of the controller/observer system is independent of the gain of the controller and of the gain

of the observer.
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Proof. Recognizing that Eq. (17) is a similarity transformation and the fact that the trace of a matrix is equal to the sum of its

eigenvalues one has
X

diagðK0
aÞ diagðK0

bÞ
� 	

¼ traceðA0
dÞ ð28Þ

and independence follows since Ad is the transition matrix of the open loop. h

Lemma#2. For stiffness related damage the result from Eq. (28) is (almost) independent of the spatial distribution of the damage

and is close to zero - exact zero reached asymptotically as Dt ! 0.

Proof. The transition matrix in continuous time for a system with mass, damping and stiffness {M,Cdam,Ks} writes

Ac ¼
0 I

�M�1Ks �M�1Cdam

� �

ð29Þ

so for stiffness related damage one has

A0
c ¼

0 0

�M�1K 0
s 0

� �

ð30Þ

A two term Taylor approximation of the DT transition is

Ad ffi I þ AcDt ð31Þ

and thus

A0
d ffi A0

cDt ð32Þ

so

traceðA0
dÞ ffi traceðA0

cÞDt ð33Þ

where the right-hand side is identically zero as shown by Eq. (30). h

Lemma#3. On the premise that stiffness is linear on the parameters one has that for stiffness related damage the sum of the

updated sensitivities, as damage evolves, is nearly constant, with exact invariance realized as Dt ! 0.

Proof. The statement follows as an immediate consequence of lemma#2 and the premise that the stiffness is linear on the

parameters so that the derivative is independent of the stiffness. h

We close by noting that while the previous results apply strictly to the sum of the derivatives of the controller and the

observer, the derivatives of the observer poles are typically small compared to those of the controller and one is justified, at

least for qualitative reasoning, to treat these results as applying to the derivatives of the controller separately.

4. Numerical illustration

The structure in Fig. 1 is selected to give some quantitative context to the analytical work. We restrict attention to the two

closed-loop poles having the lowest frequencies and to two damage distributions, loss of stiffness in levels #1 or level #3,

making the inspected eigenvalue Jacobian 2 � 2. The essential point is to illustrate that an observer/controller, deployed

to track parameter changes, cannot be judged from the behavior of the associated state feedback controller. Design of the

full state feedback controller is carried out as follows:

10

9 

2 

1 

displacement sensing  @ {2,4,6,10}

actuators

2% modal damping

floor masses = {1,2,1…..2}

inter-story stiffness ={1000,1000,….1000}

Fig. 1. Structure used for numerical illustrations.
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(1) Free parameters: H ¼ f h1 � � � h6 g with kCLj ¼ hjk
OL
j j ¼ 1;2 H 2 R

1�6 uCL
1 ¼ V1f h3 h4 g

T uCL
2 ¼ V2f h5 h6 g

T

where Vj are the subspaces where the closed loop modes can be placed, namely V j ¼ Null½Ad � I � kCLj �Bd �

(2) Constraints: RðkCLÞ 6 0 for 25% damage in levels #1 or #3, and kGk 6 2000, where G is the controller gain.

(3) Objective: argmax
H

z :¼ fzjminðrÞg where r ¼ singular values of the Jacobian.

(4) All poles not part of the optimization are placed at the location of the open loop ones and the constants that collapse

the allowable eigenvector bases are taken to maximize the projection of the closed-loop eigenvectors on the corre-

sponding open loop ones.

Note that restriction of h3�6 to the real domain and the fact that the poles in the optimization are placed on specified

radial lines, are not constraints imposed by the problem but are adopted (at some loss in optimality) to reduce the number

of free parameters. Finally, although a single constant suffices here to collapse the eigenvector basis into a realization, two

constants were chosen to reduce the range over which the search is carried out. Appendix A includes, for convenience, a

summary of the standard SVD approach used to map the eigenstructure parametrization to the gain [11].

4.1. Observers

Two observers are formulated, a Kalman filter [19] for process and measurement noise Q ¼ Bxð100 � I10ÞB
T
x and

R ¼ 10�5 � I4, which corresponds to around 5% SNR in the open loop response, and a Luenberger observer [20], with poles

having the same magnitude as the open-loop ones and damping increased by a factor of 10 (from 2 to 20%). The 2-norm

of the Kalman and the Luenberger observers are 20.3 and 93.8 respectively.

4.2. Effect of the observer on the CT Jacobian

The Jacobians, identified by their superscripts are:

JSF ¼
0:05þ 4:00i 0:05þ 5:40i

�0:04� 4:92i �0:05� 4:62i

� �

� 10�2 JKAL ¼
�0:06þ 3:15i �0:09þ 3:02i

0:10� 3:89i 0:080� 2:56i

� �

� 10�2

JLUEN ¼
1:31� 10:17i �9:35þ 3:37i

2:28þ 14:60i 9:61� 6:58i

� �

� 10�2 JOL ¼
0:035i 0:095i

0:096i 0:087i

� �

� 10�2

A cursory examination shows that the Jacobian for state feedback does not, as expected, reflect the sensitivities that hold

when either the Kalman or the Luenberger observer is in the loop. Other {Q,R} pairs and other Luenberger poles would lead to

different results and the point here is not to suggest one observer over the other but to stress that the results obtained on the

premise of full state measurements are, in general, far from those realized in the controller/observer implementation.

4.3. Closed-Loop stability

Stability in the reference condition is guaranteed since the separation principle holds and both the observer and the con-

troller poles are stable. The situation once damage ensues differs. In this particular example what is found is that the con-

troller + Kalman system satisfies the stability constraints but the controller + Luenberger becomes unstable at small stiffness

losses. The behavior is easily rationalized by noting that the largest negative real part in the Jacobian for the controller + Kal-

man (indicating that a loss of stiffness moves the pole towards the imaginary) is�9e�4 while for the Luenberger is more than

one hundred times larger at �935e�4. We take the opportunity to note that the path of a closed-loop pole in the complex

plane, as damage increases, can be highly nonlinear and thus predictions of instability thresholds based on Jacobians can

be poor. A good example is the second closed-loop pole when damage takes place in level#3 as shown in Fig. 2b.

Two comments regarding the stability check are opportune. First, because of potentially high nonlinearity checking sta-

bility at the largest damage considered does not exclude the possibility of unstable behavior at smaller damages. Second,

checking maximum damage one parameter at a time does not ensure stability for distributions that involve multiple dam-

ages, even if the multiple damage patterns have smaller parameter change vector norms than the single damage cases. At the

time of writing it is not clear whether these are important or marginal concerns.

5. Conclusions

The paper has shown that the separation principle does not hold in the computation of derivatives of a controller/obser-

ver because the observer properties are independent of the damaged. Design of closed-loop eigenstructures for sensitivity

based on estimated state feedback must, therefore, consider the gain of the observer. Expressions to compute the pole

derivatives accounting for both gains are presented in the paper. A result of some interest is the fact that the sum of the

DT sensitivities is independent of both the controller and the observer gains and that it is nearly zero. The noteworthy obser-

vation in this result is that if in the closed-loop one or more poles move at a high rate away from the imaginary, as damage
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takes place, then some other poles have to make up for it by moving towards the imaginary with the obvious stability

implications.
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Appendix A. Mapping of closed-loop eigenstructure to controller gain

Taking the entries of the controller gain as free parameters is generally prohibitive from a dimensionality perspective but

an option along the same line is to parameterize it as

G ¼
X

‘

j¼1

ajGj ðA:1Þ

where ‘ depends on what the nonlinear optimization algorithm can handle and aj are the free parameters. Apart from the

obvious question of how to best select the Gj matrices, an inconvenient feature of this alternative is that realizations can

prove unstable. A parametrization where stability can be guaranteed in every trial uses pole locations and the constants that

collapse the eigenvector basis as the free parameters and we summarize it next for convenience in reviewing the numerical

example. Let, KCL ¼ f kCL1 � � � kCLN g be a trial closed-loop eigenstructure; to ensure that the associated controller gain, G, is

real KCL must be closed under conjugation and is evident that stability is realized by taking RðkCLj Þ 6 0. Since the controller is

implemented in DT it is appropriate to extract the gain by operating in DT so that the effect of the inter-sample behavior of

the control can be appropriately considered [21]. The eigenvalue problem writes

ðAd � BdGÞw
CL
j ¼ wCL

j kCLj ðA:2Þ

from where

Ad � I � kCLj �Bd

h i wCL
j

GwCL
j

( )

¼ 0 ðA:3Þ

with

V j ¼ Null Ad � I � kCLj �Bd

h i
 �

¼
Sj

Q j

� �

ðA:4Þ

where Sj 2 C
Nxr and Q j 2 C

rxr it follows that

Sj

Q j

� �

fhjg ¼
wCL

j

bj

( )

ðA:5Þ

where it’s evident that

bj ¼ G � wCL
j ðA:6Þ

Fig. 2. Path of the two closed loop poles monitored as damage in level#3 increases from 0 to 10%.
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Taking

W
CL ¼ wCL

1 � � � wCL
N

� 


and C ¼ b1 � � � bN½ � ðA:7-A:8Þ

one has

G �WCL ¼ C ðA:9Þ

and thus, on the premise that the eigenvectors have been selected so that WCL is full rank

G ¼ C � ðWCLÞ
�1

ðA:10Þ
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