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a b s t r a c t

The use of feedback to create closed-loop eigenstructures with high sensitivity has received

some attention in the Structural Health Monitoring field. Although practical implementa-

tion is necessarily digital, and thus in sampled time, work thus far has center on the con-

tinuous time framework, both in design and in checking performance. It is shown in this

paper that the performance in discrete time, at typical sampling rates, can differ notably

from that anticipated in the continuous time formulation and that discrepancies can be

particularly large on the real part of the eigenvalue sensitivities; a consequence being

important error on the (linear estimate) of the level of damage at which closed-loop stabil-

ity is lost. As one anticipates, explicit consideration of the sampling rate poses no special

difficulties in the closed-loop eigenstructure design and the relevant expressions are devel-

oped in the paper, including a formula for the efficient evaluation of the derivative of the

matrix exponential based on the theory of complex perturbations. The paper presents an

easily reproduced numerical example showing the level of error that can result when

the discrete time implementation of the controller is not considered.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A classic problem in control theory is the selection of static gains leading to closed-loop eigenstructures with desired

characteristics. In structures subjected to narrow band disturbances, for example, one seeks to keep all the close-loop poles

away from the peaks of the excitation spectrum. Hardware deployed for vibration control can also be used to perform closed-

loop Structural Health Monitoring (SHM) in periods when its primary function is unnecessary. In this instance the objective

is not to exert control on the response but to create an eigenstructure whose sensitivity facilitates interrogation regarding

the existence of damage. As one gathers, this is an application where eigenvalue sensitivity plays a central role.

The idea of doubling up the hardware to perform SHM in closed-loop was introduced by Ray and Tian [1] who recom-

mended, based on single-degree-of-freedom considerations, that the gain be selected to shift the poles towards lower fre-

quencies. In a subsequent examination, Jiang, Tang and Wang [2] used the fact that the expression for the closed-loop

sensitivity is a function of the right and left eigenvectors and exploited the freedom in eigenvector placement offered by

multiple actuators to increase sensitivity while penalizing the magnitude of the control gain. Other work on the optimization

of the gain for sensitivity and some exploratory experimental work can be found in [3–8].

Studies carried out thus far on closed-loop sensitivity enhancement have been based on the continuous time (CT) frame-

work. Practical implementations are, however, invariably digital and the question opens up as to how the digital to analog
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(D/A) conversion and the sampling rate affect the results. This paper shows that the eigenvalue sensitivities realized in the

discrete time (DT) implementation can differ significantly from the CT results, even at sampling rates that can be considered

fast relative to the shortest resonant period in the system. Particularly important in this regard being the fact that the dis-

crepancy is often large on the real part of the sensitivity, and thus on the level of parameter changes (damage in the Struc-

tural Health Monitoring application) for which the closed-loop is predicted to remain stable in a linear estimate. In what

follows we will refer to the eigenvalues and sensitivities that would be obtained by an ideal identification algorithm oper-

ating on the sampled data as the ‘‘realized” closed-loop eigenvalues and sensitivities. As noted, the realized properties

depend on the sampling rate and on the specifics of the D/A conversion, and on this last aspect we adopt the simplest of

all the options that satisfy the causality constraint, the widely used zero order hold (ZOH).

A feature in the computation of DT sensitivities that does not exist in the CT model is the need for the derivative of the

matrix exponential. Included in the paper are two exact expressions for this derivative, the first in terms of an integral [9]

and the second as an infinite series in terms of lie brackets [10]. Because it is somewhat tangential to the paper’s objective we

do not discuss the matter in detail but note that their numerical evaluation is not efficient compared to an estimation based

on the theory of complex perturbations [11–13], which is thus recommended for applications. The paper derives the expres-

sions that give the realized closed-loop sensitivity, presents a brief discussion on the linear estimation of parameter changes

leading to closed-loop instability and includes an easily reproducible numerical example exemplifying the main points.

2. Effective closed-loop sensitivity

The state space recurrence in discrete time for a Linear Time Invariant system operating in closed-loop writes

xkþ1 ¼ Adxk þ Bd;uuk þ Bd;f fk ð1Þ

where Ad 2 RNxN, Bd;u 2 RNxr and Bd;f 2 RNxq are the transition, control to state, and external forces to state matrices, respec-

tively, and x, u and f 2 RNx1
;2 Rrx1

;2 Rqx1 are the state, the control forces, and the exogenous excitation, with N = system

order, r = number of actuators and q = number of external actions. For a control action based on static constant gain one has

uk ¼ �Kyk ¼ �KCxk ð2Þ

where C 2 RmxN is the state to output matrix, with m = number of measurements, and the minus sign is, of course, conven-

tional. In writing Eq. (2) we’ve assumed that the measurements do not include collocated accelerations. Substituting Eq. (2)

into Eq. (1) the transition matrix in closed-loop writes

�Ad ¼ Ad � BdKC ð3Þ

Let h be a parameter of the description of the system in CT, differentiating Eq. (3) with respect to h writes

�A0
d ¼ A0

d � B0
dKC ð4Þ

where independence of C from the parameter implies that acceleration measurements have been excluded. Given a non-

defective matrix �AdðhÞwith eigenvalues kdðhÞ and left and right side eigenvectorsuðhÞ and wðhÞ the derivative of the jth eigen-

value with respect to h writes

k0
j ¼ u

T
j
�A0
dwj ð5Þ

where we’ve left out explicit reference to the parameter to simplify the notation. The relation between Bd in Eq. (4) and its

continuous time counterpart is a function of how the control action is delivered. It is common to operate on the premise that

this action is applied though a D/A zero order hold circuit, which, neglecting delays, leads to the relation [14,15]

Bd ¼ A�1
c ðAd � IÞBc ð6Þ

with Bc = the control input to state matrix in continuous time. Differentiating Eq. (6) writes

B0
d ¼ A�1

c ðA0
dBc þ AdB

0
c � B0

c � A0
cBdÞ ð7Þ

and substituting Eq. (7) into Eq. (4) gives

�A0
d ¼ A0

d � A�1
c fA0

dBc þ ðAd � IÞB0
c � A0

cBdgKC ð8Þ

The open-loop transition matrix in discrete time is given by

Ad ¼ eAcDt ð9Þ

where Dt is the sampling time step. The derivative of Eq. (9) is needed to evaluate Eq. (8) and in doing so it is necessary to

keep in mind that the derivative of the exponential matrix does not follow the elementary calculus rules but writes [9]
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d

dh
ðeQðhÞÞ ¼

Z 1

0

eaQðhÞ dQðhÞ

dh
eð1�aÞQðhÞda ð10Þ

where (in this instance) we have QðhÞ ¼ AcðhÞDt. The result in Eq. (10) can also be expressed as an infinite series that writes

d

dh
ðeQ Þ ¼ Q 0 þ

1

2!
½Q ;Q 0� þ

1

3!
½Q ;½Q ;Q 0�� þ � � �

� �

� eQ ð11Þ

where we’ve omitted explicit reference to the dependence of Q on the parameter h to simplify the notation and where the

operation [X, Y], known as the commutator of the matrices X and Y, also known as the lie bracket of X, Y [10] is defined as

½X;Y� ¼
:

XY � YX ð12Þ

Much more computationally efficient than the numerical evaluation of the integral in Eq. (10) or the summation of

enough terms in Eq. (11) is to estimate the matrix exponential derivative using the complex perturbation scheme [11–

13]. This approach involves only one evaluation of the matrix exponential (albeit with complex entries) and in this case

writes

A0
d ¼ lim

e!0
I

eðAcþA0
ceiÞDt

e

 !

ð13Þ

where e can be taken very small without incurring finite precision difficulties. The DT sensitivity realized in a conventional

identification is the result from Eq. (5), with the matrix from Eq. (8). The sensitivities that a user observes in an identification

campaign are the DT results mapped to CT according to Eq. (9), namely

kc ¼
logðkdÞ

Dt
ð14Þ

and

k0
c ¼

k0
d

kdDt
ð15Þ

In summary, the sensitivities that can be used to judge the effectiveness of any postulated closed-loop gain are those from

Eq. (15) and not the sensitivity of the closed-loop transition matrix in CT used thus far in the literature. Note that the values

in Eqs. (14) and (15) are only ‘‘operationally equivalent” CT properties since the mapping of Eq. (5) does not hold for the

input to state matrix that appears in the closed-loop transition matrix expression.

3. Closed-loop stability

Among the items that need to be addressed to make closed-loop monitoring viable is ensuring that the operation is stable

for the range of parameter variations that may occur as a result of damage. The problem can be generically described as one

of ensuring that

S [ P ¼ S ð16Þ

where P is the region in parameter space for which the design requires that the system be stable and S is the region for which

the closed-loop is in fact stable. One expects stability to be an important constraint in using feedback to enhance sensitivity

because sensitivity and stability are conflicting goals. Since the theme of this paper is not the design of closed-loop eigen-

structures we do not pursue the issues that arise in the characterization of P and S but limit our discussion to showing that if

any estimation of S is to be carried out using sensitivities then these sensitivities must account for the manner in which the

control forces are delivered.

3.1. Linear estimate of parameter changes at incipient instability

To make the computations in the numerical section transparent we outline the approach used there to obtain instability

bound information. The approach is a first order Taylor expansion of the eigenvalue locus which does not require explicit

discussion. A couple of observations that can enhance clarity, however, may be worth noting and we make them within a

narrative that outlines the approach.

The linear approximation of the eigenvalue locus for any change in the parameter vector Dh 2 Rqx1 writes

k ffi k0 þ J � Dh ð17Þ

where the subscript 0 is used to indicate the reference state and J 2 C
nxq is the Jacobian that lists the eigenvalue derivatives

with respect to each parameter as its columns. Designating ! as the vector space that contains all the Dh vectors for which

incipient instability is predicted (by linear analysis) one has
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! ¼ fDhjRðkjÞ ¼ 0 _ IðkjÞ ¼ 0 j ¼ 1;2; . . . ;qg ð18Þ

where all entries on Dh must be 6 0. It’s worth noting that we’ve designated the event of reaching the real line (not only the

imaginary) as incipient instability. This is justified by the fact that when an eigenvalue pair migrates to the real line (becom-

ing a repeated pole) additional parameter changes split the repeated pole into two real ones that move in opposite directions

and very small additional perturbations make the one that moves to the right cross the imaginary. For all practical purposes,

therefore, hitting the real line is a stability limit.

There are infinite vectors Dh that satisfy Eq. (18) and their tips define, in hyperspace, the surface of the linear estimate of

S. The simplest and probably most informative vectors in this space are those in the set of minimum cardinality, namely the

set in which only one entry in Dh is non-zero. The non-zero entry in these vectors being the minimum scalar for which the

associated column of the Jacobian moves some eigenvalue to an instability boundary.

4. Numerical examination

Weconsider a simple system forwhich the computations are easily reproduced, if desired, specifically, a 2-DOF systemdriven

by one actuator, as shown inFig. 1. Due to the single actuator the closed-loop eigenvectors are fully specifiedby the location of the

closed-looppoles and tomake the scenario even simplerwe assume full state feedback,whichmakes thematrix C inEq. (8) equal

to the identity.We take theposition that a user computes the gain and the resulting sensitivities in aCT frameworkand then illus-

trate how these values compare to the real situationwhere the control action is delivered through a ZOH circuit, as a function of

the sampling rate. Referring to the upper quadrant we place one closed-loop pole at the location of the open-loop that has the

lowest frequency and the other such that the closed-loop eigenvalue gap is collinear with the open-loop one and equals 25% of

its magnitude. The resulting gain is listed in Fig. 1 together with the open loop and the ‘‘equivalent” closed-loop poles.

The real and the imaginary parts of the sensitivity with respect to reductions in the stiffness of the first and second levels

are depicted in Figs. 2 and 3, respectively, for both poles, as a function of the sampling time step and are compared to the

sensitivity predicted by the CT formulation. To judge the range selected for the time steps we note that the shortest period in

the CT closed-loop is 0.86 s; sampling rates in practice for a system like this would likely be in the order of 0.03–0.06 s (1/30–

1/15 of the shortest relevant period).

A cursory examination of Figs. 2 and 3 shows that the CT result deviates significantly from what is actually realized, even

at relatively high sampling rates, and, in particular, that the discrepancies are large in the real part, which often dominates

instability estimates.

4.1. Stability

For specificity we obtain the linear estimate of the instability bound for a time step of 0.025 s, which is around 34 times

faster than the shortest period and can thus be considered fast sampling. The Jacobian is

J ¼
2:87þ 8:61i �2:87� 6:27i

�2:86þ 1:91i 2:87þ 14:11i

� �

10�2 ð19Þ

and the reference state realized in ‘‘equivalent” CT poles are

k0 ¼
�0:094þ 4:68i

�1:257þ 7:23i

� �

ð20Þ

From these results the estimate of the vector of maximum parameter changes based on a linear analysis is

Dh ¼
44

3:3

� �

ð21Þ

where the first and second entries are governed by the second and the first pole reaching the imaginary, respectively.

Fig. 1. Structure of numerical example.
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If the effect of sampling is neglected, i.e. if the user assumes that the results of the CT model hold with sufficient accuracy

the results are:

JCL ¼
0:06þ 9:62i �0:06� 7:28i

�0:06þ 0:68i 0:06þ 14:97i

� �

10�2 ð22Þ
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Fig. 2. Real and imaginary parts of the sensitivity of the two closed-loop eigenvalues for the system of Fig. 1 for changes in k1.
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k0;CL ¼
�0:094þ 4:68i

�0:146þ 7:29i

� �

ð23Þ

and the estimated parameter changes at incipient instability are then

DhCL ¼
48:7

48:7

� �

ð24Þ

The first and second entries determined by the first pole reaching the real line and the second the imaginary, respectively.

Comparison of the results of Eq. (21) with those in Eq. (24) shows that the CT predictions do not capture the fact that the

system is marginally stable when it comes to losses in stiffness in the second level. Note that since the reference value of

both parameters is 100, parameter changes are also % reductions needed to reach instability, and in the second level the pre-

diction is only 3.3%. Also worth explicit note is the fact that the reasonable agreement in the change needed to reach insta-

bility in the first parameter is incidental since the boundary that is reached in the CT case (the real line) is not the actual one.

To validate the previous predictions, while minimizing circularity, we do not evaluate instability by computing eigenval-

ues but rather simulate the response in closed-loop and detect instability by increasing the parameter changes (one at a

time) until instability is reached. Responses at either side of the detected instability boundary are depicted in Fig. 4. As

can be seen, instability takes place at a reduction of around 23% in the first parameter and between 2.5 and 3.5% in the sec-

ond. The prediction of the linear analysis is accurate in the (practically important) case where only a small change is needed

and, not surprisingly, is poor in predicting the limit of the first parameter, which is relatively large. The important observa-

tion being, of course, that the instability estimate for the second parameter based on the CT sensitivities is in gross error.

5. Conclusions

The primary objective of this paper is to bring attention to the fact that the predictions based on a CT formulation of

closed-loop eigenstructure sensitivity can be poor indicatives of what is realized in the actual DT implementation. It is

important, therefore, that the DT nature of the implementation be explicitly considered. As one anticipates, the design

and assessment of closed-loop eigenstructure with due consideration for the DT nature of the controller presents no partic-

ular difficulty and the relevant expressions are given in the paper, including an efficient approach to evaluate the matrix

exponential derivative, which is needed. The paper stresses the fact that the error in the CT estimate of the DT realized sen-

sitivity can be particularly large in the real part, and therefore, on the linear estimate of the damage level for which the

closed-loop is anticipated stable.
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