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Abstract 

As drinking water supply systems plan for sustainable management practices, impacts from future water 

quality and climate changes are a major concern. This study aims to understand the intraannual changes 

of energy consumption for water treatment, investigate the relative importance of water quality and 

climate indicators on energy consumption for water treatment, and predict the effects of climate change 

on the embodied energy of treated, potable water at two municipal drinking water systems located in the 

northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify 

the monthly energy consumption in the two drinking water systems. Regression and relative importance 

analyses were then performed between climate indicators, raw water quality indicators, and chemical and 

energy usages in the treatment processes to determine their correlations. These relationships were then 

used to project changes in embodied energy associated with the plants’ processes, and the results were 

compared between the two regions. The projections of the southeastern US water plant were for an 

increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US 

plant was projected to decrease its energy demand due to a reduced demand for heating the plant’s 

infrastructure. The findings indicate that geographic location and treatment process may determine the 

way climate change affects drinking water systems.  
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1. Introduction 

The prosperity of our society relies on a variety of highly interdependent infrastructure systems (e.g., 

water treatment and distribution, electricity grids, food production and supply network, etc.) working 

together without major interruptions (Konrad II and Fuhrmann, 2013; Vespignani, 2010). Such 

interdependencies emerged along with the development of modern infrastructure. They can manifest as 

the functioning of one infrastructure relies on the functioning or resources provided by other 

infrastructures or when multiple infrastructures compete for the same resources. The water-energy nexus, 

for instance, has been widely recognized as a critical type of infrastructure interdependency that, if not 

understood and managed properly, could bring short and long term problems such as power plant shut 

downs due to water shortages and pollution (DOE, 2014), energy and financial stresses due to water 

pumping and treatment (Cherubini et al., 2009; Mo et al., 2016; Searchinger et al., 2008), as well as 

increased system vulnerability as a result of natural hazards, manmade threats (Hu et al., 2016), and 

climate change (Conway et al., 2015).   

 

The degree and nature of infrastructure interdependencies continue to evolve under population, 

technology, climate, and policy changes. For instance, population growth could increase resource 

demand, and exacerbate the interdependency among their service infrastructures (Siddiqi and Anadon, 

2011; Stillwell et al., 2011). Technology changes and utilization of unconventional resources (e.g., using 

desalinated seawater as a source of drinking water supply) sometimes also increase the degree of 

interdependency (Hussey and Pittock, 2012; Mo et al., 2014). Short and long term climate variabilities 

influence the quantity, and sometimes, the quality of available resources, as well as their societal 

demands, which further change the interdependencies among pertinent infrastructures (Delpla et al., 2009; 

Vörösmarty et al., 2000). Policies and regulations could have direct and indirect effects on all the 

aforementioned aspects (Romero-Lankao et al., 2017). Meanwhile, they can also be used as a means to 

guide the development of infrastructure and to reduce vulnerability resulting from infrastructure 

interdependency.  

 

Recognition of the importance of infrastructure interdependencies, including the water-energy nexus, has 

motivated improved understanding of their dynamic complexity to inform future management decisions; 

yet our understanding of such dynamic changes is still very limited. Quantification of the water-energy 

nexus requires a comprehensive understanding of both direct and indirect (supply chain) interactions 

among the pertinent infrastructure. Life cycle assessment (LCA) has been a predominant tool used in 

previous studies for such quantifications as more data have become available. For example, the life cycle 

energy consumption of water supply, wastewater treatment (de Faria et al., 2015; Mo and Zhang, 2012), 

and water reclamation has been studied both separately and as a whole (Mo et al., 2014; Wakeel et al., 

2016). Additionally, the life cycle water use of various types of energy supply has also been widely 

investigated. Nevertheless, most of these studies remain static and not suitable for predictions. Only a few 

efforts have been made to understand the future potential changes of the water-energy relationships from 

a life cycle perspective (Fulton and Cooley, 2015; Gerbens-Leenes et al., 2009), especially from the 

perspective of energy use by water supply. One study of a drinking water plant located in Florida reported 

that influent water quality could be responsible for about 14.5% of the changes of the plant’s total 

operational embodied energy (Santana et al., 2014). Meanwhile, changes of water source mix combined 

with water demand growth have been found to significantly increase the electricity consumption of water 

supply, especially in coastal arid regions (Mo et al., 2014; Stokes-Draut et al., 2017). Efforts have also 

been made to project the future water-energy interdependence that could result from projected population 

growth, per capita water demand changes, preferred water supply options, and the required level of 

service (Hall et al., 2011; Lam et al., 2016). Very few studies have included climate variations in their 

future projections, and hence could only provide limited understanding of the influence of extreme 

climate events as well as gradual climate change on the water-energy nexus (Mo et al., 2016). The 

mechanism of how climate influences water treatment systems is still not well understood. Hence, 
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empirical analysis based upon historical operational data have been suggested and applied (Mo et al., 

2016; Santana et al., 2014).   

 

While infrastructure interdependency is inherently complex, the current study adopts an empirical 

approach to investigate the temporal influences of climate, water quality, and water demand on the 

embodied energy of water supply. An assessment framework including life cycle energy assessment, 

regression analysis, relative importance analysis, and prediction analysis was applied. The influence of 

climate and water quality on the embodied energy of supply water from two surface water supply 

systems, each with distinct raw water quality, treatment processes, demand pattern, and local climate 

variations were investigated and compared. This study aims to assist proactive management of water and 

energy resources in different climates with the ultimate goal of improving the long term resiliency and 

sustainability of water and energy supply systems under global changes.   

 

2. Methodology 

2.1 Study site description 

Two large-scale drinking water systems located in Tampa, FL and Boston, MA were selected for this 

study because coastal cities in the US are the most vulnerable to water supply and demand gaps; they 

represent two very different climates and have different source water quality (Oki and Kanae, 2006). The 

Tampa Water Treatment Plant (WTP) provides about 300 megalitre (ML) of water per day to 

approximately 588,000 customers in a service area of ~550 km2. It relies on the Hillsborough River as the 

main water source, and employs a treatment process of rapid mixing, flocculation, sedimentation, pre-

ozonation, biologically activated carbon (BAC) filtration, and disinfection to treat the water (Figure 1). 

Ten types of chemicals are added at different points of the process: 1) sulfuric acid and ferric sulfate are 

added during rapid mixing for pH adjustment and coagulation, respectively; 2) dry polymer is added 

during flocculation for larger floc to form; 3) ozone is applied during pre-ozonation to destroy bacteria, 

viruses, pathogens, and taste- and odor-causing compounds; 4) hydrogen peroxide is used to remove 

ozone residuals; 5) lime is added to stabilize the pH of the water before it is filtered; 6) chlorine and 

ammonia are added together during the disinfection stage to form chloramine, a type of disinfectant that 

minimizes the formation of disinfection byproducts (DBPs); 7) sodium hydroxide is used for final pH 

adjustment; and, 8) fluoride is added for dental health benefits. Tampa Electric provides the facility with 

power, and the facility uses kerosene as backup energy. The Boston WTP, on the other hand, supplies 

around 750 ML of water per day serving 2.55 million customers in 48 communities in east and central 

MA (Mo et al., 2016). Water obtained from two adjacent reservoirs is used as the source water, and these 

reservoirs combined hold 1.8 trillion liters. Because of a relatively high raw water quality, the Boston 

WTP adopts a much simpler treatment chain of ozonation, chlorination, and final pH adjustment (Figure 

1; Mo et al., 2016). Seven types of chemicals are added for treatment: 1) liquid oxygen is used for ozone 

generation and the ozonation process; 2) sodium bisulfite is used for ozone removal; 3) sodium 

hypochlorite and ammonia are added to form chloramine for disinfection; 4) soda ash is added to raise the 

water alkalinity for pH buffering; 5) carbon dioxide is used for final pH adjustment; and 6) fluoride is 

used for dental protection. Furthermore, electricity and natural gas are used for pumping, treatment, and 

heating, and diesel is used as backup energy. 
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Figure 1. The treatment process flow diagrams for the Boston and Tampa water treatment plants with chemical and 

energy inputs. The treatment processes reflect conditions during the treatment data records.  

 

Tampa has a humid subtropical climate with strong alternating wet and dry seasonal cycles. The wet 

season, typically from June to September, has an average monthly rainfall of 17.7 cm, which is around 

two times higher than the rest of the year (5.86 cm) (Marda et al., 2008). The average monthly 

temperature in Tampa gets as high as 32.3°C in July and August, and as low as 10.9°C in January. Boston 

has a humid continental climate with mild summers and cold and snowy winters. Average monthly 

temperature varies from around 27.4°C in July to around -5.4°C in January. There is no significant 

intraannual precipitation variation in Boston. The highest amount of precipitation occurs in March (10.9 

cm) and the lowest occurs in February (8.2 cm). Climate data of both WTPs were obtained from the 

National Oceanic and Atmospheric Administration (NOAA) National Climate Data Center, and the 

observation stations that are closest to the water sources were selected. Available climate data include 

monthly mean maximum temperature (Tmax), monthly mean minimum temperature (Tmin), monthly mean 

temperature (Tmean), and total precipitation amount for the month (Ptotal). Additionally, the greatest 

observed precipitation (Pmax) and the monthly total snowfall (Stotal) are available for the Tampa and 

Boston WTP, respectively. Air temperature influences water temperature and the amount of space heating 

and cooling. Precipitation and the associated runoff have a significant effect on water quality.  

 

Twelve raw water quality indicators of the influent from the Tampa WTP are monitored on a daily basis: 

pH, color, CaCO₃ alkalinity, water temperature, specific conductance, threshold odor number (TON), 

iron, total organic carbon (TOC), specific ultraviolet absorbance (SUVA), turbidity, CaCO₃ hardness, and 

total coliform. Monthly data for these water quality indicators were obtained for a period of ~9 years 

(Figure S1 in SI). pH influences all stages of water treatment, and it is maintained at the range of 7.1-8.5 

to avoid pipe corrosion (CTWD, 2018). Color (tea-like), TOC, and SUVA are related to the amount of 

natural organic matter (NOM) in the Hillsborough River, which affect the amount of energy and 

chemicals used during coagulation, flocculation, and pre-ozonation processes. Particularly, SUVA 

characterizes NOM’s aromaticity, which serves as a predictor of DBP formation potential (Hua et al., 

2015). Alkalinity reflects water’s ability to neutralize acids, which influences the amount of chemicals 

needed for pH adjustment. Water temperature directly affects the reaction efficiency and chemical 

solubility throughout the entire treatment train. Specific conductance, hardness, and iron measure the 
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amount of total dissolved ions, calcium and magnesium ions, and iron ions in water, respectively. 

Depending on the chemical species present in water, these ions could affect the coagulation, flocculation, 

pre-ozonation (through oxidization of iron), and pH adjustment stages. TON is a measure of the odor and 

its control requires adjustments to the treatment process. Total coliform indicates the amount of 

pathogenic bacteria in water and affects the disinfection stage. Color, turbidity, SUVA, and TOC are 

shown to have the highest levels in the wet season when rainfall is most intense, and total hardness, 

alkalinity, and specific conductance are at their lowest levels. pH, TON, iron, and total coliform, on the 

other hand, do not show regular seasonal cycles; they may be influenced by a combined effect of both 

temperature and precipitation changes. Water temperature, on the other hand, has the most prominent 

seasonal cycling in response to air temperature changes. The Boston WTP regularly monitors three water 

indicators: water temperature (Twater), pH, and UV254 (Figure S2 in SI). UV254 is another indicator of NOM 

in water. It influences the amount of energy and ozone used during the ozonation stage. Water 

temperature and pH in the Boston WTP have strong seasonal cycles corresponding to air temperature 

changes. However, UV254 does not demonstrate a seasonal cycling pattern. 

  

2.2 Life cycle assessment 

We only include the operation phase of the treatment plant in this study as the construction and end-of-

life of water infrastructure have been found to be insignificant by previous studies (Mo et al., 2010; Mo et 

al., 2011) and are less relevant to climate and water quality changes. A functional unit of 1 million liter 

(ML) of water delivered to end users was adopted. Two types of environmental impacts were estimated 

using SimaPro 8®, embodied energy and carbon emissions. The embodied energy is estimated using the 

“Cumulative Energy Demand” method and the carbon emission is estimated using the “IPCC 2013 GWP 

100a” method. We use “direct energy” to refer to the energy used onsite of the WTP, and indirect energy 

to refer to the energy associated with the supply chain of producing and providing chemicals. Embodied 

energy is the sum of the direct and indirect energy. Monthly chemical and energy usage data were 

obtained from the two WTPs. A list of corresponding data entries used in SimaPro is provided in Table 

S1 of the supporting information (SI). We used the seasonal climate variations as a surrogate to model the 

influence of long term climate change on embodied energy. This is because of a lack of available long 

term WTP operation records to quantify the historical influence of global climate change. Hence, the 

results do not consider the cumulative effect of multi-year events, such as prolonged droughts.   

 

2.3 Statistical analysis 
Statistical analysis was used to identify the relative contribution of water quality and climate indicators to 

the change of energy use by the two WTPs as well as to predict the future changes of embodied energy of 

produced water that could result from climate change. The analysis consisted the following four steps: (1) 

covariate correlation analysis, (2) variable selection, (3) relative importance analysis, and (4) prediction 

analysis. Correlation analysis was first performed to identify potentially high collinearities among the 

climate and water quality indicators for the two WTPs. Negative effects of high collinearity can be 

reduced by eliminating one of the two variables with extremely high collinearity from the subsequent 

analyses. However, there are two contradicting factors that need to be considered when selecting the 

elimination criteria. Noted that from a statistical perspective, no two variables are entirely “independent” 

and certain levels of collinearity among the variables is always present. A certain amount of collinearity is 

taken into account in the regression analysis with a result of increased variances in parameter estimation 

and hence, variables do not have to be intentionally eliminated. As such, the more “independent” 

variables that are included in the regression analysis, the better explanation of the historical embodied 

energy changes that can be achieved and hence the regression can be more accurate. On the other hand, 

extremely high collinearity could mean that these variables essentially represent the same information, 

and information redundancy could result in over-inflated variances and make the regression analysis 

inaccurate. This dilemma manifests when determining whether to eliminate water temperature from the 

analysis as it has a relatively high correlation with air temperature (r=0.98 in Tampa WTP and 0.91 in 

Boston WTP). While a causal relationship exists between the air and water temperatures, they could 
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influence the WTP embodied energy through different paths. For instance, water temperature influences 

treatment efficiency directly and air temperature influences space and water heating demand. Therefore, 

both water and air temperatures are kept for the subsequent analyses in this study. Based upon the number 

of historical observations that are available for the two WTPs, an elimination criteria of r>0.99 was 

selected for this study.   

 

A regression analysis was then performed to identify predictor variables for each type of chemical and 

energy usages. Three variable selection methods were used, the corrected Akaike Information Criterion 

(AICc) method (Burnham and Anderson, 2002), the Bayesian Information Criterion (BIC) method 

(Schwarz, 1978), and the Adaptive Lasso method (Zou, 2006). All selected predictor variables were then 

combined to form the final linear regression model to prevent potential omissions of important variables 

(Mo et al., 2016). R2 values were calculated for each regression to estimate the percentage of the chemical 

and energy usage variations that can be explained by the regression. The standard errors (s) and p-values 

(p) were also calculated to characterize the confidence intervals and the observed significance levels of 

each predictor variable. These values are provided in Table S1 of the SI. Based upon the selected 

predictor variables, a relative importance analysis was then performed to examine the contribution of the 

water quality and climate indicators on the embodied energy of the two WTPs. Two relative importance 

methods were examined: the dominance analysis method (Budescu, 1993) and the decomposition method 

(Genizi, 1993). The dominance analysis method determines the dominance of one predictor over another 

by comparing their additional R2 contributions across all subset models (Azen and Budescu, 2006). The 

decomposition method, on the other hand, measures the relative importance of a predictor by partitioning 

the R2 by averaging over orders. Both methods were performed using the R software utilizing the 

Relaimpo package (Grömping, 2006). Results from both relative importance methods were calculated and 

the averages are reported. Once the relative importance of the water quality and climate indicators on 

each regression was calculated, Equation (1) was used to estimate their overall contribution to the 

embodied energy. 

Ctot=∑ (∑ RIi,j×Rsqj×Cji )j    (1) 

Where 

Ctot = Total contribution of water quality and/or climate indicators on the WTP embodied energy; 

RI = The relative importance of indicator i on chemical and/or energy type j; 

Rsq = The R2 value of the regression analysis of chemical and/or energy type j; 

Cj = Contribution of chemical and/or energy type j to the WTP embodied energy; 

i = Water quality and/or climate indicator index; and, 

j = Chemical and/or energy type index. 

 

Results from the regression analysis were further used to predict the influence of future climate change on 

the embodied energy of the water produced from the two WTPs. Climate variation could directly 

influence the treatment efficiency via changes in chemical solubility and reaction kinetics as well as the 

space and water heating demand of a WTP, all of which further affect the WTP’s energy use. 

Additionally, climate can alter water quality and hence indirectly change a WTP’s energy use. In order to 

capture the climate change alone, changes of water quality as a result of climate change were modelled 

via a set of additional regressions using climate indicators as predictor variables and each water quality 

indicator as a dependent variable. If the regression yields an R2 value of 0.5 or larger, the regression is 

deemed statistically significant and the resulting model is used for calculating the future changes of that 

particular water quality parameter as a result of climate change. On the other hand, an R2 value of less 

than 0.5 was assumed to indicate that climate has a weak influence on the particular water quality 

parameter, and hence no change of the water quality parameter is included. Future changes of volumetric 

chemical and energy usages at the two WTPs were then calculated applying the same statistical 

significance cut-off criteria using downscaled climate change projections and the predicted water quality 

changes calculated from the previous step. These values were then converted into volumetric embodied 
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energy and carbon emission changes using the unit life cycle impact values calculated in Section 2.2 for 

each chemical and energy type and summed up. Future changes of the total embodied energy also have to 

take account of the potential water demand change that could result from climate change. The influence 

of climate change on water demand is modelled via a regression between the climate indicators and the 

monthly water flow rates for each WTP. Similarly, if the regression results in an R2 value of 0.5 or larger, 

climate is considered to have a strong influence on water demand. Hence, the future embodied energy 

change is calculated as a product of the predicted water demand change and the volumetric embodied 

energy change.     

 

2.4 Climate change scenarios 

Statistically downscaled future temperature and precipitation predictions for both southeast and northeast 

US were obtained from NOAA (Kunkel, 2013). These predictions were calculated based upon 29 (14 for 

B1 scenarios and 15 for A2 scenarios) Climate Model Intercomparison Project phase 3 (CMIP3) global 

climate simulations (Kunkel, 2013). Two emission scenarios provided by the Intergovernmental Panel on 

Climate Change (IPCC) were investigated, representing the highest (A2 scenario) and lowest bound (B1 

scenario) of future climate changes. For each scenario, the lowest, median, and highest temperature and 

precipitation changes towards the end of this century were considered (Table 1). Percentage changes of 

snowfall and the greatest observed precipitation were assumed to be the same as precipitation.  

 
Table 1. Downscaled regional temperature and precipitation predictions for the southeast and northeast US  

Region Climate Scenarios 
Change in Temperature (°F) Change in Precipitation (%) 

2035 2055 2085 2035 2055 2085 

Southeast US (Konrad 
II and Fuhrmann, 

2013) 
(used for Tampa 

WTP) 

A2 

Lowest 1.3 2.3 3.9 -9 -14 -23 

Median 2.8 4.4 6.8 2 2 4 

Highest 3.6 5.4 9.6 8 8 11 

B1 

Lowest 1.3 1.6 2.5 -9 -11 -12 

Median 2.3 3.1 4.1 1 3 4 

Highest 3.2 3.8 5.2 5 7 9 

Northeast US (Kunkel, 
2013) 

(used for Boston 
WTP) 

A2 

Lowest 1.7 2.9 4.8 -5 -6 -8 

Median 3.1 4.9 7.9 4 5 9 

Highest 4.5 6.4 11.3 7 10 16 

B1 

Lowest 1.7 2.2 3.4 -5 -4 -2 

Median 2.7 3.6 4.6 3 4 6 

Highest 3.4 4.7 6.3 9 8 10 

 

3. Results and Discussion 

3.1 Seasonal Embodied Energy Consumptions  

Notable seasonal variations of energy consumptions (Figure 2) and carbon emissions (Figure S3 in SI) are 

evident in both WTPs. For the Boston WTP, summer months generally have a lower volumetric energy 

consumption than the winter months, which is mainly due to the reduced heating need during summer 

months corresponding to air temperature changes. The Tampa WTP’s volumetric energy consumption 

shows more diverse variations during a year. Generally, lowest consumptions happen during months with 

a mild temperature and relatively low precipitation, and highest consumptions occur during months that 

are relatively wet and the temperature is more extreme. Changes of the volumetric energy consumptions 

at the Tampa WTP resonate with both temperature and precipitation changes. Two possible reasons might 

explain the discrepancy of the seasonal trends between the two WTPs. One is the much more prominent 

wet and dry cycles in Tampa than in Boston that effect water quality parameters. The other is because the 

Boston WTP has a much larger source water storage than the Tampa WTP (477 billion vs. 1 billion 

gallons), which provides a considerable buffer on the potential water quality changes due to runoff 

changes. This shows that climate could potentially change the energy consumption of the WTPs via 

different pathways, depending on the characteristics of the raw water source. 

 

Volumetric embodied energy consumption in the Tampa WTP is around three times that of the Boston 

WTP. The difference in pumping needs could not explain the higher volumetric direct energy in the 
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Tampa WTP, as both WTPs have relatively flat service areas, and the Boston WTP has a much larger 

pipeline network than the Tampa WTP (~ 6400 miles vs. 2200 miles). Hence, the higher volumetric 

energy consumption, both direct and indirect, in the Tampa WTP might be primarily contributed by the 

difference in source water quality of the two WTPs and the treatment technology difference that comes 

with it, although the economies of scale might also have a partial contribution (water flow at the Boston 

WTP is around three times of the Tampa WTP). This implies the significance of raw water quality in 

technology selection and hence the embodied energy consumption, even though both use surface water as 

a source.  

 

Seasonal climate variations result in a change of 1.2 times the volumetric energy consumption in the 

Tampa WTP and 1.4 times in the Boston WTP when comparing the highest monthly consumption with 

the lowest. Furthermore, for both WTPs, direct energy presents a stronger seasonal variation than the 

indirect energy. For instance, for the Boston WTP, the highest volumetric direct energy consumption 

(occurring in February, 1,002 MJ/ML) is 48% higher than the lowest (occurs in September, 522 MJ/ML), 

while the highest volumetric indirect energy consumption (occurs in February, 1,245 MJ/ML) is only 

15% higher than the lowest (occurs in May, 1,060 MJ/ML). Similarly, for the Tampa WTP, the highest 

volumetric direct energy consumption (occurs in November, 4,719 MJ/ML) is 27% higher than the lowest 

(occurs in March, 3,442 MJ/ML), while the highest volumetric indirect energy consumption (occurs in 

August, 3,515 MJ/ML) is around 15% higher than the lowest (occurs in February, 2,982 MJ/ML). Direct 

energy also represents a significant portion of the total embodied energy for both WTPs, ranging from 

around 33-45% in the Boston WTP to 51-59% in the Tampa WTP. Among the indirect energy 

contributors, certain chemical usages and treatment processes do present critical seasonal variations 

(Figure S3 in SI; Mo et al., 2016). For the Boston WTP, chemicals used for ozonation require a much 

higher consumption of ozone and bisulfite in winter than in summer due to higher natural organic matter 

(NOM) concentration in winter. Chemicals used for residual disinfection have a higher volumetric 

consumption in summer than in winter due to increased decay of the residual under higher temperatures. 

For the Tampa WTP, the volumetric consumption of chemicals used for coagulation (sulfuric acid and 

ferric sulfate) peak during July to September, as does the amount of ozone used for ozonation. Both are 

potentially a result of a decrease in water quality during the peak months of heat and precipitation.  

 

Total embodied energy consumption is a function of both volumetric energy consumption and water 

demand. Water demand from the Boston WTP has a strong seasonal trend, which peaks in July mainly 

due to increased outdoor irrigation. Water demand at the Tampa WTP, however, does not present a strong 

seasonal trend. An average of the historical monthly water demand record shows it peaks in October, but 

the intraannual change is relatively small. The seasonal variations of water demand have an essential 

influence on the total embodied energy, especially in the Boston WTP. When the change of water demand 

is considered, the total energy consumption in the Boston WTP peaks in both July and January, while the 

total energy consumption in the Tampa WTP peaks in November. A comparison of these seasonal trends 

with the intraannual energy demand for the two regions shows that water supply’s energy demand peaks 

around the same time as the total regional energy demand. This indicates a potential competition of 

energy between water supply and other energy users, especially given the significance of the direct energy 

consumptions within both systems. A comparison of the intraannual volumetric energy consumption and 

water demand trends show that the optimal strategy for reducing total energy consumption and hence 

alleviate the water-energy nexus competitions could vary over a year. Taking the Boston WTP for 

example, it might be more effective to conduct water conservation practices (e.g., restriction on irrigation 

and outdoor water uses) during summer months and energy conservation practices (e.g, reducing space 

and water heating) during winter months for the Boston WTP to reduce its total energy consumption.   
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Figure 2. Volumetric and total embodied energy of the Boston and Tampa water treatment plants. The left figure 

shows the monthly embodied energy consumptions associated with producing 1 million liters of water as well as the 
monthly total water flow in the two treatment plants; the right figure shows the total monthly embodied energy 
consumptions of the two treatment plants as well as the regional monthly electricity demand from where the two 
plants are located. 

 

3.2 Regression Analysis and Relative Importance 

Results from the correlation analyses were presented in Figure S4 in the SI. Among the climate indicators, 

Tmax, Tmin, and Tmean have very significant positive correlations for both cities with correlation coefficients 

above 0.99 (r>0.99). Hence, Tmax and Tmin were eliminated from the succeeding regression analysis in 

order to improve the regression performance. Among the water quality indicators, the primary NOM 

indicator in the Boston WTP, UV254, is relatively independent, while pH and water temperature (Twater) 

have a moderate negative correlation (r=-0.54). In the Tampa WTP, pH, conductance, hardness, and 

alkalinity have strong positive correlations among each other (r>0.80), all of which are related to the 

amount of dissolved ions in water. The source of the Tampa WTP, the Hillsborough River, is underlain 

by limestone and dolomite, which release calcium and/or magnesium (hardness) and carbonate 

(alkalinity) when water passes through. The release of the minerals consequently contributes to the 

slightly basic pH and increased conductance. Unlike the Boston WTP, the major NOM indicator in the 

Tampa WTP, TOC, shares a strong negative correlation with water pH (r=-0.86), which might be resulted 

from a higher contribution of groundwater (characterized by higher pH and lower TOC) in the river flow 

during the drier months. Water temperature, on the other hand, only has a weak correlation with the pH, 

indicating the release of minerals has a weak response to temperature signals. TOC also has a strong 

positive correlation with iron levels. These two indicators also explain most of the water color changes in 

the Tampa WTP. SUVA indicates the aromatic character of the dissolved organic matter in the raw water, 

and hence it shares a moderate positive correlation with TOC. Turbidity, TON, and total coliform are 

relatively independent indicators in the Tampa WTP. Between the climate and water quality indicators, 

strong correlations were only found to exist between air and water temperatures in both WTPs (r=0.94 

and 0.91in the Tampa and Boston WTP respectively). Despite the concurring effect of water quality 

degradation and wet season, however, precipitation was found to have no significant statistical 

correlations with any of the water quality indicators. This indicates the amount of rainfall does not 

necessarily reflect the degree of water quality degradation, which can be explained by the opposing effect 

of increased erosion/agitation and dilution under increased precipitation in Tampa.       

 

Regression analyses were performed to first examine how climate indicators contribute to water 

indicators (Table S1 in the SI), then contributions of both climate and water indicators to chemical and 

0

3

6

9
V

o
lu

m
e

tr
ic

 E
m

b
o

d
ie

d
 E

n
e

r
g

y
 (

G
J

/M
L

)

D ir e c t  e n e r g y

In d i r e c t  e n e r g y
B o s to n   W T P T a m p a  W T P

J an F e b M a r A pr M ay J u n J u l Aug S e p O c t N o v D e c

H ig h e s t  e n e r g y  v a lu e L o w e s t  e n e r g y  v a lu e

0

1 0

2 0

3 0

M
o

n
th

ly
 F

lo
w

 (b
illio

n
 lite

r
)

T a m p a  w a te r  d e m a n dB o s t o n  w a t e r  d e m a n d

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

T
o

ta
l 

E
m

b
o

d
ie

d
 E

n
e

r
g

y
 (

T
J

)

J an F e b M a r A pr M ay J u n J u l Aug S e p O c t N o v D e c
0

5

1 0

1 5

2 0

2 5 M
o

n
th

ly
 S

ta
te

 E
n

e
r
g

y
 D

e
m

a
n

d
 (T

W
h

)

F L  e n e r g y  d e m a n dM A   e n e r g y  d e m a n d



 

10 

 

energy uses (Tables 2 and S1). Most of the Boston WTP’s chemical and energy usages yield a relatively 

high R2 value (>0.5), indicating the significance of the climate and water quality indicators in explaining 

the variances of the chemical and energy usages. On the other hand, only three types of chemicals (ferric 

sulfate, sulfuric acid, and ozone) in the Tampa WTP have R2 values larger than 0.5, although these three 

chemicals represent a significant portion of the indirect energy. One notable difference between the WTPs 

is that climate and water quality could explain 66% of the electricity consumption variances in the Boston 

WTP while this number is only 16% for the Tampa WTP. Water temperature has a 44% relative 

importance (RI) to Boston WTP’s explainable electricity variances. Yet in the Tampa WTP, water 

temperature does not present any statistically significant contribution. This can partly be explained by the 

less significant interannual water and space heating demand variations due to relatively mild interannual 

temperature changes and the complex combined effect of both temperature and precipitation on raw water 

quality in the Tampa WTP.    

 

In the Boston WTP, UV254 has a relatively high RI on liquid oxygen and electricity usages (RI>45%), 

which can be explained by the more intense ozone disinfection treatment (higher liquid oxygen usage, 

electricity for mixing) when the influent water has a higher NOM concentration. In the Tampa WTP, 

Tmean and influent pH were the significant contributors of ozone usage (R2 = 0.64) with relative 

importance of 57% and 43%. Ozone solubility decreases as temperature increases which could explain the 

relationship between ozone usage and Tmean. Ozone dosing is also dependent on pH; higher pH increases 

the rate of ozone decomposition and decreases the ozone residual (Langlais et al., 1991). In the Boston 

WTP, water temperature significantly influences all types of chemical and energy uses except for soda 

ash. Air temperature (Tmean) also has high contributions to the natural gas usages as well as the residual 

disinfection process. In the Tampa WTP, however, influence of temperature on chemical usages is 

relatively small, with ozone being the only chemical specie that is strongly influenced by temperature. 

Ferric sulfate is only statistically significant to water quality indicators with the most important being 

TOC (RI = 27%), color (RI = 26%), and iron (RI = 17%). Ferric sulfate is used as a coagulant to remove 

NOMs, and iron and TOC contribute to color in the water, which may explain their relationship with 

ferric sulfate (Bratby, 2006). Similarly, climate indicators were not found to be statistically significant for 

sulfuric acid. The most significant water quality indicators were alkalinity (RI = 49%) and color (RI = 

31%). Higher alkalinity requires larger sulfuric acid dosages to regulate pH which could explain this 

relationship. In both WTPs, precipitation does not show statistically significant correlations with most 

chemical and energy uses, except that total snowfall (Stotal) has a relative high contribution to the bisulfite 

usages in the Boston WTP, which might be explained by its statistical correlation with UV254.  

 
Table 2. Relative importance of the climate and water quality indicators in explaining the volumetric chemical and 

energy usages of the Boston and Tampa water treatment plants (the relative importance values of 40% or higher are 
highlighted in green) and the R2 values of each regression (the R2 values of 0.50 or higher are highlighted in blue).  

Chemical  
and Energy  

Consumptions 

Climate Indicators Water Quality Indicators R² 
T

mean Ptotal P
max S

total Color ALKY Hard 
ness pH Cond. Twater Turb. TON Iron TOC SUVA Total 

Coli. 
UV 
254  

T
a

m
p

a
 W

T
P
 

Lime   8%      40%  13%   3% 6%  19% 12%    0.42 

Chlorine            17% 10% 28% 34%  11%     0.41 

Fluoride       11% 5%  11% 8%  18% 36% 12%      0.29 

Ferric Sulfate       26%    11% 3%  2% 17% 27% 13%    0.83 

Sulfuric Acid       31% 49%    8%  1%   10%    0.86 

Ammonia           23%  12% 28% 23%  15%     0.29 

Sodium 
Hydroxide       17% 56%    28%         0.45 

Hydrogen 
Peroxide    4%         4% 40%  12% 19% 22%    0.45 

Dry Polymer            18%   22%  36% 25%    0.30 

Ozone 57%         43%           0.64 
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Emulsion 
Polymer       21%  79%            0.17 

Kerosene         13%   12%   45%    30%   0.22 

Electricity         30% 28%               42%       0.16 

B
o

s
to

n
 W

T
P
 

Ammonia 28%           65%       7% 0.56 

Bisulfite     39%       59%       2% 0.69 

Hypochlorite 23%         32%  45%         0.46 

Liquid Oxygen   3%  8%     11%  22%       56% 0.77 

Soda Ash                      0.00 

Fluoride 30%           70%         0.33 

Carbon Dioxide           36%  51%       12% 0.70 

Electricity   5%        5%  44%       46% 0.66 

Natural Gas 50%             8%   43%               0.84 

 
Figure 3 presents the summed contributions of the climate and water quality indicators on the linear 

variations of both direct and indirect energy in the two WTPs. We separate water temperature from the 

rest of the water quality indicators because it is highly influenced by air temperature. Overall, climate and 

water quality explain around 40% (10% direct and 30% indirect) and 55% (25% direct and 30% indirect) 

of the total embodied energy variations in the Tampa and Boston WTPs respectively. The rest of the 

embodied energy variations could potentially have resulted from non-linearity, stochastic properties 

associated with climate, water quality and treatment processes, as well as other factors such as 

infrastructure aging. In the Tampa WTP, changes of climate and water quality have a much larger 

influence on the indirect energy variations than the direct energy variations; whereas in the Boston WTP, 

their influences on direct and indirect energy are similar. Furthermore, water quality indicators present a 

much stronger influence than the climate indicators in the Tampa WTP; while the climate indicators 

together with water temperature show slightly larger contribution to energy variations in the Boston WTP 

compared with other water quality indicators combined. This indicates the extent of climate change’s 

influence on the embodied energy of water supply could vary significantly based upon the spatial location 

of the treatment plants. Meanwhile, water quality degradation also has varied influence on the embodied 

energy depending on the local water quality. Figure 3 shows that water quality has a larger impact on 

indirect energy usage at the Tampa WTP than Boston. This could be attributed to variability of the raw 

water quality at the plants. Tampa’s raw water source originates from a swamp before flowing into the 

reservoir and has a high concentration of organic matter. The plant has management practices for algal 

blooms before the water is treated at the plant (Marda et al., 2008). On the other hand, the Boston WTP 

has been operating without filtration because its source water quality has met turbidity and coliform 

standards set by the Surface Water Treatment Rule (Alcott et al., 2013). These findings show that poor 

raw water quality can make a treatment process for drinking water more complex and intensive, which 

adds to the required direct and indirect energy to reach the desired water quality for the end users.            

 
Figure 3. Percent contributions of the climate and water quality indicators in explaining the historical variations of the 

direct and indirect embodied energy consumptions in the Boston and Tampa water treatment plants. Water 
temperature is separated from other water quality indicators because of its significant correlation with air temperature.  
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3.3 Influence of Climate Change on Future Energy Consumption 
Figure 4 presents the influence of climate change on the two WTPs using predictions of volumetric 

(energy/ML) and total energy consumption under different downscaled climate scenarios. The A2 

scenarios for both locations predict larger changes in temperature and precipitation than the B1 scenarios. 

At the Tampa WTP, the volumetric and total energy percent changes were the same because there was no 

significant relationship between the climate and flow demand (R2=0.20). Boston’s water demand is 

predicted to increase with temperature (R2=0.80), so the volumetric and total life cycle energy predictions 

differ. Tampa’s embodied energy is predicted to increase in the three analyzed time periods: 2035, 2055, 

and 2085, and the A2 climate projections result in a larger increase than the B1 projections. This is 

because temperature has a strong positive relationship with ozone which has the largest embodied energy 

of all chemicals used at the Tampa WTP (Table S1 in SI). For the Boston WTP, the volumetric and total 

embodied energy is predicted to decrease in the three time ranges. The A2 projections result in a larger 

decrease than the B1 projections at Boston. This is because the increase in temperature decreases the 

amount of natural gas required to heat the plant. In both locations, the magnitude of the percent change 

increases over time. The opposite trends in the two WTPs indicate that the influence of climate change on 

embodied energy is dependent on the WTPs’ local climate, influent water quality, and treatment process. 

Since Boston’s climate includes colder temperatures than Tampa for much of the year, an increasing 

temperature will lower the embodied energy demand because the WTP building will not require as much 

heat. This effect is infrastructure based. In contrast, climate change will increase the embodied energy 

demand of the Tampa WTP mainly because of a predicted higher ozone usage. This effect is water 

treatment process based. The findings of this study show that geographic location and treatment process 

need to be considered for predicting future energy changes at drinking water plants.  

 

 
Figure 4. Predicted climate-resulted future changes of volumetric (left) and total (right) embodied energy changes in 

the Boston and Tampa water treatment plants.  
 

4. Conclusions  

This study comparing the effects of climate change on the embodied energy of drinking water in two 

different regions of the US found that the potential impacts of climate and water quality changes on the 

embodied energy of water supply vary depending on local conditions. Intraannual volumetric energy 

changes were found to be less uniform and predictable in Tampa than in Boston, and Boston’s intraannual 

water demand fluctuations are more dramatic than Tampa’s. The total embodied energy at both WTPs 

peaks at a similar time as the regional energy demand. This shows that the energy required for water 

treatment could compete with other types of energy use. To minimize the competition, Boston and Tampa 

could conduct water conservation practices to reduce energy consumption during peak months.   
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Water quality has a much larger contribution to the direct and indirect energy variances at the Tampa 

WTP than the Boston WTP. As pollution and stress on water sources increases globally in the future, 

more of the lower quality alternative water sources, such as brackish water, seawater, or even reclaimed 

water, are expected to be utilized as drinking water sources. The energy implications of such shifts can be 

potentially significant. This is partially reflected in this study; the two WTPs investigated have a threefold 

difference in their volumetric embodied energy while both of them rely on conventional surface water. 

The two WTPs also demonstrate opposite trends of energy use under predicted climate projections, with a 

reduced embodied energy in the Boston WTP and an increased embodied energy in the Tampa WTP. The 

differences in projections show that climate change’s effects on the treatment process are highly spatially 

variable, and these effects need to be examined on a case-by-case basis. 
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