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a b s t r a c t

The problem of closed-loop enhanced sensitivity design is as follows: given a linear, time-

invariant system, find a (realizable) feedback gain such that (1) the closed-loop is stable in

the reference and the potentially damaged states, and (2) the eigenstructure includes a

subset of poles, with desirable derivatives, that lie in a part of the plane where identifica-

tion is feasible. For state feedback the eigenstructure is typically assignable and stability in

the reference state is easily enforced. For output feedback, however, only partial assign-

ment is possible, and it is here shown that the standard SVD design scheme leads to gener-

ically unstable eigenstructures when measurands are homogeneous (that is, when all

sensors measure displacements, velocities, or accelerations). The mechanics that govern

this behavior are clarified and a mitigating strategy that retains the convenience of homo-

geneous sensing is offered.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Eigenstructure assignment is a control design scheme where objectives are attained by directly specifying closed-loop

poles and eigenvectors [1]. The topic of this paper is eigenstructure assignment using output feedback when the purpose

of the assignment is the realization of pole sensitivities favorable for Structural Health Monitoring (SHM) purposes [2–4].

A difficulty in designing for this objective derives from the fact that output feedback allows only partial control of the eigen-

structure and that little can be said about where the poles that are not directly assigned end up [5]. The foregoing would not

be an important issue if instability was encountered sporadically in the search for suitable gain, but results show that this is

not so. Instead, what is found is that in the common case where measurands are homogeneous, that is, when all sensors are

of the same type, instability in the optimization search is the norm, not the exception.

The reason why homogeneous sensing enters the problem is best appreciated in the derivations, but it can be outlined

qualitatively from the outset and we do so next. Namely, in the typical (and most convenient) parameterization the gain

is computed as the product of two matrices where one is the inverse of a matrix, W, that lists, at the measured coordinates,

the right-side eigenvectors of the placed poles of the closed-loop transition matrix. The eigenvectors of the first order for-

mulation can be written as wj ¼ uj ujkj

n oT

, where uj is the latent vector of the second-order formulation, and since the

gain is real, the columns of W come in complex conjugate pairs. The issue arises because, for homogeneous measurements,

all the entries in the columns ofW come from the top, or the bottom partition, of the eigenvectors and are, therefore, from the

https://doi.org/10.1016/j.ymssp.2018.04.032

0888-3270/� 2018 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.

E-mail address: bernal@neu.edu (D. Bernal).

Mechanical Systems and Signal Processing 112 (2018) 22–30

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier .com/locate /ymssp



latent vector. The latent vector is nearly real in the open loop (exactly real if the damping is assumed classical), and while

this is not so in the closed loop, since the system is no longer self-adjoin, the coherence between the real and the imaginary

parts is generally high. High coherence translates into poor conditioning; which implies a high norm of the inverse of W,

hence resulting in large feedback gains and, as such, in large movements of the unplaced poles that, with near certainty, lead

to instability. A solution that suggests itself is to use sensors such that the columns in W contain entries from the displace-

ment and velocity partitions of the eigenvectors, and numerical examination shows that this approach does mitigate insta-

bility. Analysis also reveals, however, that a mixed sensing scheme is not the ideal solution; not just because it is less

desirable from a practical perspective, but because it does not offer a convenient means to affect the critical point, namely,

the tradeoff between sensitivity and stability.

The pole placement problem by output feedback has long been known to be nonlinear in nature and it remains, in spite of

significant progress, only partially solved [5–8]. In particular, it is known that for n 6 m � r, where m, r, and n are the number

of outputs, inputs and the system order, the system is pole assignable, although no effective algorithm to determine a gain

that attains a given desired eigenstructure is available. For n > m � r, some eigenstructures can be realized and others cannot,

and it is not known how to distinguish between them; what is known, and for which there is an effective algorithm, is how to

find a gain that placesm poles with right-side eigenvector amplitudes generically fixed at r locations or r poles with left-side

eigenvectors fixed atm locations [9,10]. Also available is a scheme that trades flexibility in the placement of r eigenvectors to

allow placement of m + r � 1 poles [11]. Note that inasmuch as pole derivatives depend on the right- and left-side eigenvec-

tors, design for sensitivity is an eigenstructure assignment problem, not just a pole placement one. Needless to say, the lit-

erature on the use of output feedback for stabilization, tracking, or regulation of linear systems is extensive and a survey can

be found in [12]. References on its use in the control of nonlinear systems can be found in [13,14], among others.

The rest of the paper is organized as follows: following this introduction, the standard SVD eigenstructure design scheme

and the computation of the closed-loop eigenvalue derivatives are reviewed. The next section clarifies the behavior that

leads to ubiquitous instability for homogeneous sensing and puts forth a solution that retains the option of equal sensor

types. A numerical example and a brief concluding section close the paper.

2. Pole and eigenvector placement using output feedback

Consider a linear, time-invariant system in discrete time described by

xkþ1 ¼ Adxk þ Bduk þ Bf f k ð1Þ

yk ¼ Cxk ð2Þ

operating under the influence of static output feedback of the form

uk ¼ �Gyk ð3Þ

Here, xk 2 R
n�1 is the state, yk 2 R

m�1 is the output, uk 2 R
r�1 are the control inputs, and fk 2 R

z�1 is the exogenous load-

ing, which may be stochastic, if from ambient sources, or deterministic, if actuators are used to deliver it. G 2 R
r�m is the

controller gain while Ad 2 R
n�n, Bd 2 R

n�r , Bf 2 R
n�z and C 2 R

m�n are the system matrices, and we assume throughout that

{Ad, Bd} is controllable and {Ad, C} is observable. Eq. (2) holds directly when measurements are displacements, velocities, or

non-collocated accelerations and can be used in the case of collocated accelerations if the direct transmission matrix is

known and its contribution is subtracted from the measurements. Substituting Eq. (2) into Eq. (1) one finds that the

closed-loop system is

xkþ1 ¼ ðAd � BdGCÞxk þ Bf f k ð4Þ

Let, K ¼ k1 � � � kpf g be the location of p closed-loop poles. For G, to be real, K must be closed under conjugation, and it

is evident that a necessary condition for stability is kkjk 6 1. Since the controller is implemented in discrete time (DT), it is

appropriate to extract the gain operating in DT so that the effect of the inter-sample behavior of the control can be consid-

ered [15]. The closed-loop eigenvalue problem writes

ðAd � BdGCÞwj ¼ wjkj ð5Þ

from where

Ad � I � kj �Bd½ �
wj

GCwj

( )

¼ 0 ð6Þ

Defining

V j ¼ Null Ad � I � kj �Bd½ �ð Þ ¼
Sj

Q j

" #

ð7Þ
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where Null indicates the null space of the matrix in parenthesis and, assuming full row rank, Sj 2 C
n�r and Q j 2 C

r�r and it

follow that

Sj

Q j

" #

fhjg ¼
wj

bj

� �

ð8Þ

where hj are arbitrary constants (except for the fact that they must be conjugates for conjugate poles) and it is clear that

we’ve defined

bj ¼ GCwj ð9Þ

Taking

W ¼ C � wCL
1 � � �wCL

p

h i

and C ¼ b1 � � � bp

� �

ð10-11Þ

writes

G �W ¼ C ð12Þ

where W 2 C
m�p and C 2 C

r�p. Inspecting the dimensions one finds that the coefficient matrix is square when the number of

placed poles equals the number of outputs and thus, on the premise that the eigenvectors have been selected so thatW is full

rank, one has

G ¼ C � ðWÞ�1 ð13Þ

Since transposition does not change the eigenvalues it is also possible, as noted previously, to operate with left-side

eigenvectors and place r poles.

3. Closed-loop pole sensitivities

Let P be a non-defective but otherwise arbitrary square matrix that is a function of some parameter, h. We shall refer to

the derivatives of the eigenvalues of P with respect to h as sensitivities; not to be confused with the matrix in the Laplace

domain that carries the same name [16]. The sensitivity of the jth eigenvalue writes

k0j ¼ uT
j P

0
wj ð14Þ

where wj and uj are the right- and left-side eigenvectors and the prime indicates differentiation with respect to h. We now

particularize Eq. (14) to the case where P is the transition matrix of a finite-dimensional, linear, time-invariant, discrete-time

system under output feedback. From Eq. (4), we have that the closed-loop matrix is

P ¼ Ad � BdGC ð15Þ

which, noting that the gain is not a function of h, has the derivative

P0 ¼ A0
d � B0

dGC � B0
dGC

0 ð16Þ

The relation between Bd and its continuous-time counterpart is a function of how the control action is delivered. It is com-

mon to operate on the premise that this action is applied through a D/A zero-order-hold circuit, which, when neglecting

delays, leads to the relation

Bd ¼ A�1
c ðAd � IÞBc ð17Þ

with Bc 2 R
n�r being the control input-to-state matrix in continuous time. Differentiating Eq. (17) with respect to h writes

B0
d ¼ A�1

d ðA0
dBc þ AdB

0
c � B0

c � A0
cBdÞ ð18Þ

thus Eq. (16) can be restated as

P0 ¼ A0
d � A�1

c ðA0
dBc þ ðAd � IÞA0

dB
0
c � A0

cBdÞGC � BdGC
0 ð19Þ

The open-loop transition matrix in discrete time is given by

Ad ¼ eAcDt ð20Þ

where Dt is the sampling time step. The derivative of Eq. (20) with respect to h is needed to evaluate Eq. (18), and in doing so

it is necessary to keep in mind that the derivative of the exponential matrix does not follow the elementary calculus rules. An

efficient numerical approach uses the complex perturbation scheme [17–19] and writes

A0
d ¼ lim

e!0
I

eðAcþA0
ceiÞDt

e

 !

ð21Þ
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where e can be taken very small without incurring finite precision difficulties. The eigenvalue sensitivity realized in a con-

ventional identification is a result in DT but the sensitivities that a user is reported on pole positions is typically mapped to

continuous time using Eq. (20). Therefore, since

kc ¼
logðkdÞ

Dt
ð22Þ

one has

k0c ¼
k0d

kdDt
ð23Þ

and it is the result from Eq. (23) that determines the ‘‘reported” tangent to the pole path. It is worth noting that Eqs. (22) and

(23) are only operational since there is no strict continuous time closed-loop eigenvalue, given that the closed loop transition

matrix depends on the inter-sample behavior of the control signal.

4. Instability in SVD assignment for homogeneous measurements

Eq. (13) shows that m poles can be arbitrarily placed provided W is invertible. This matrix, as previously noted, lists the

right-side eigenvectors at the location of the sensors and one gathers that since these vectors come in conjugate pairs, the

conditioning of W depends on the degree of linear dependence between the real and the imaginary component of its col-

umns. When measurements are all displacements, all velocities, or all accelerations, the entries in W are from the latent vec-

tors of the second-order formulation, where these are, we recall, the ‘‘eigenvectors” of the polynomial eigenvalue problem of

the damped second order formulation [20]. In the closed-loop the latent vectors are complex independently of the damping,

because the system is not self-adjoin [21], but, as the next subsection shows, the irreducible complexity is typically small

and, as a consequence, W, when formed as a square matrix, is poorly conditioned. Needless to say, poor conditioning of W

leads to large gains, large gains lead to large movements of the unplaced poles and, with near certainty, to some poles taking

unstable positions.

4.1. On the irreducible complexity of the closed loop latent vectors

This section offers support to the contention that the latent vectors in closed-loop (for typical conditions) have strongly

coherent real and imaginary parts. It is shown that this contention holds quite generally for displacement and acceleration

measurements, while for velocity it holds conditional on the imaginary component of the closed-loop pole in question being

close to that of an open-loop one.

4.1.1. Displacement measurements

Consider the closed-loop system in second-order form. For displacement measurements, one has

Mk2 þ Cdamkþ ðK þ b2GdCdÞ
� �

u ¼ 0 ð24Þ

where we have added the subscript ‘‘d” to indicate displacement, b2 2 R
dof�r is the matrix that gives the position of the actu-

ators, and it is understood that the eigenvalue and latent vector correspond to a particular mode. Finally, we note for clarity

that the positive sign in the feedback term is consistent with the negative sign used in Eq. (3), and that the matrix Cd 2 R
m�dof

is the selector of the measured coordinates in the second-order formulation, not the state-to-output matrix of Eq. (2). When

the measurements are velocities or accelerations we shall use the notation, Cv and Ca to refer to the selector matrices.

Expressing the eigenvalue and the latent vector in terms of their real and imaginary parts writes

ðLþ SiÞðuR þuIiÞ ¼ 0 ð25Þ

where

L ¼ Mðk2R � k2I Þ þ ðK þ b2GdCdÞ þ CdamkR ð26Þ

and

S ¼ 2MkRkI þ CdamkI ð27Þ

In the undamped case with closed-loop poles on the imaginary one has, S = 0, and Eq. (25) shows that the real and the

imaginary parts of the latent vector are scaled versions of the null space of L (which is of dimension one for simple poles)

and are thus perfectly correlated. In the general case this is not exactly so, but inspection of Eqs. (26) and (27) shows that

kLk � kSk and one surmises, on a continuity argument, that the correlation between the two components of the latent vector

is strong.
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4.1.2. Velocity measurements

The matrices L and S are now

L ¼ Mðk2R � k2I Þ þ ðK þ b2GvCvkRÞ þ CdamkR ð28Þ

and

S ¼ 2MkRkI þ ðCdam þ b2GvCvÞkI ð29Þ

and examination shows that the previous argument of the dominance of L over S does not hold true. One can gain some

insight, however, by postulating that the latent vector can be normalized to real and examining the implications. Indeed,

taking the latent vector as q, Eqs. (25), (28) and (29) require that

Mðk2R � k2I Þqþ ðK þ b2GvCvkRÞqþ CdamkRq ¼ 0 ð30Þ

and

2MkRqþ ðCdam þ b2GvCvÞq ¼ 0 ð31Þ

Multiplying Eq. (31) by kR and substituting the result in Eq. (30) writes

�Mk2I q�Mk2Rqþ Kq ¼ 0 ð32Þ

and, since the real part of the eigenvalue is small,

ðK �Mk2I Þq ffi 0 ð33Þ

From Eq. (33) one gathers that if the imaginary part of the closed-loop eigenvalue is close to the jth open loop undamped

frequency then the jth undamped mode shape, which is real, is a good approximation of q. In practice the noted proximity is

typically realized and the latent vector proves to have strongly correlated real and imaginary parts.

4.1.3. Acceleration measurements

The matrices L and S are now

L ¼ ðM þ b2GaCaÞðk
2
R � k2I Þ þ CdamkR þ K ð34Þ

and

S ¼ 2ðM þ b2GaCaÞkRkI þ CdamkI ð35Þ

and one can confirm that kLk � kSk and thus the argument made in the case of displacement measurements holds. Numer-

ical validation of the contentions made in this section can be found in Appendix A.

5. Solution alternatives

There are at least two ways to mitigate the ubiquitous instability that plagues the SVD assignment scheme when mea-

surements are homogeneous. The first is, of course, to discard homogeneous sensing and use heterogeneous measurement

feedback. Indeed, if, for example, some measurements are displacements and some are velocities, one has that the jth col-

umn of W is

Cd 0

0 Cv

� 	

�
uj

ujkj

( )

¼
Cduj

Cvujkj

( )

ð36Þ

and since kj is complex, and is dominated by the imaginary part, the vector in Eq. (36) and its conjugate are not highly coher-

ent. This solution, however, is not ideal for two reasons: the first is the practical matter that homogeneous sensing is a ‘‘sim-

pler alternative”, and the second, the most important, is that it does not offer a clear means to affect the tradeoff between

sensitivity and stability. Recalling that the transpose of the left eigenvectors is the inverse of the right, it is evident that sen-

sitivity is intimately connected with the conditioning of the right-side eigenvectors. If the conditioning is too poor sensitivity

is too large and instability results. If, instead, the condition number is too low, substantial eigenvalue derivatives cannot be

attained.

5.1. Weighted least square solution

A simple approach that retains the possibility of homogeneous sensing and allows effective control of the tradeoff

between sensitivity and stability is to form W using pP 2m, so that nearly coherent pairs of columns are no longer critical,

and introduce a weighting affecting m poles. As the weights increase the least square solution approaches that when W is

square and instability reigns. In the unweighted solution conditioning depends on how large one takes p. Needless to say,

for p > m Eq. (12) is overdetermined and the gain in any given trial may or may not realize the target poles. Discrepancies
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between target and realized positions are not, however, particularly important since it is not the positions but the derivatives

that are of interest, and these are computed for the actual realization. From Eq. (12) and the well-known weighted least

squares formulation one has

G ¼ CWWHðWWWHÞ
�1

ð37Þ

where the superscript H stands for conjugate transpose and W is the weighting matrix; which one would likely take as

W ¼ diag a � 1m 1p�mð Þ where 1j is a vector of ones with j entries, and where it is understood that W is assembled using

pP 2m poles. In the numerical section we take p ¼ n. We note in closing that the selection of a does not require ‘‘fine tun-

ing” since good performance can be obtained over a wide range of values.

6. Numerical illustrations

The design of closed-loop eigenstructures for monitoring requires decisions on the cost function to be maximized (min-

imized), decisions on where to set the constraints regarding stability during interrogation, and specification of the limits that

the hardware imposes on the controller. Specific choices on these items are made in this example, but the objective here is

not to suggest design criteria. It is, instead, to highlight the stability issue when output feedback is selected, and how it can

be effectively mitigated. The structure, depicted in Fig. 1, has 4 displacement sensors and 2 actuators, and we consider two

damage distributions, loss of stiffness in level #1 or level #3. The points to be exemplified are: (a) the SVD eigenstructure

design with homogeneous measurands and precise pole placement is typically unstable, (b) use of non-homogeneous mea-

surements resolves the stability issue but restricts the sensitivity improvements, (c) a least square solution that places the

full spectrum behaves similar to (b), and (d) a weighted least square solution allows convenient control of the tradeoff

between sensitivity and stability.

Design is carried out as follows:

� Free parameters: H ¼ h1 � � � h6f gwith kj ¼ hjk
OL
j j ¼ 1;2 H 2 R

1�6 and the other 4 constants are used to collapse the

eigenvector basis.

� Constraints: RðkcÞ 6 0 for 25% damage in levels #1 or #3, and kGk2 6 2000, where G is the controller gain.

� Objective: arg max
H

z :¼ fzjminðrÞg where r ¼ singular values of the Jacobian.

In cases (a) and (b) nothing has to be said regarding the unplaced poles and in (c) and (d) we attempt to place them at the

location of the open loop ones and take the constants that collapse the eigenvector bases to maximize the projection of the

closed-loop eigenvectors on the corresponding open loop ones. The stability constraint considers only single damage and the

limit at 25%, needless to say, is a judgement on the maximum extent that appeared reasonable to contemplate. A realistic

constraint on the feedback gain requires information on the hardware. In this case the selection was made so the maximum

forces appeared ‘‘reasonable” when compared to the open-loop story shears for the excitation level used.

6.1. Results

For the purpose of subsequent contrast we note that the open loop Jacobian is

JOL ¼
0:035i 0:095i

0:096i 0:087i

� 	

� 10�2

10

9 

2 

1 

displacement sensing  @ {2,4,6,10} 

actuators 

2% modal damping 

floor masses = {1,2,1…..2}

 inter-story stiffness ={1000,1000,….1000}

Fig. 1. Structure used for numerical illustrations.
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(a) Precise placement of 4 poles

A genetic optimization algorithmwas run to search for the gain and it failed to identify any gain for which the eigenstructure

proved stable.

(b) The sensors at coordinates 4 and 6 are switched from displacement to velocity

The optimization converged to

JHS ¼
0:002þ 0:081i �0:006þ 0:281i

0:014þ 0:263i �0:018� 0:061i

� 	

� 10�2

At the ‘‘optimal” solution, the 6 free parameters were H ¼ f0:260;0:878;0:058;0:990;1:287;0:008g and tracking showed

1044 trials where the eigenstructure satisfied all the stability constraints and 176 where it did not. The improvement in sen-

sitivity over the open loop is notable but not large.

(c) Least square placement of all the poles

The optimization converged to

JLS ¼
0:004þ 0:142i 0:003þ 0:299i

�0:0005þ 0:180i �0:004þ 0:067i

� 	

� 10�2

At the ‘‘optimal” solution, the 6 free parameters were H ¼ f0:278;0:462;5:357;9:864;9:900;�1:583g and tracking

showed 2001 trials where the eigenstructure satisfied all the stability constraints and 19 where it did not. The performance

is qualitatively the same as in the non-homogeneous sensing in (b).

(d) Weighted least square placement (a ¼ 104)

JWLS ¼
0:112þ 0:192i 0:087þ 0:467i

�0:104þ 0:524i �0:091� 0:147i

� 	

� 10�2

At the ‘‘optimal” solution, the 6 free parameters were H ¼ f0:253;0:322;0:271;0:280;�0:474;0:820g and tracking

showed 918 trials where the eigenstructure satisfied all the stability constraints and 422 where it did not.

Fig. 2 depicts the sum of the absolute value of the Jacobian entries, normalized to the result of the open loop and shows, as

expected, that the performance (as viewed from this index) is best in the weighted least square option.

7. Concluding observations

The paper has shown that the standard SVD eigenstructure assignment leads to generically unstable eigenstructures for

precise pole placement from output feedback when sensors measure the same quantities. The issue proves to be ultimately

one of controlling the conditioning of the right-side eigenvector matrix that needs to be ‘‘inverted” to solve for the gain. If the

conditioning is too poor generic instability results, but if it is too low improvements in sensitivity are marginal. It is shown

that a weighted least square solution, where the full spectrum is ‘‘placed” with high weights assigned to a number of poles

equal to the number of sensors, provides a convenient means to control the trade-off between sensitivity and stability.

0

1

2

3

4

5

Fig. 2. Sum of the absolute values of the imaginary part of the Jacobians, normalized to the open-loop.
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Appendix A. On the inherent complexity of the closed-loop latent vectors (numerical validation)

We consider a 4-dof shear building with m ¼ f1;2;1;2g, k ¼ f1;1;1; g � 500 and 5% modal damping. Actuators are placed

in levels 1 and 2 and sensors in levels 3 and 4. The feedback gains are selected using the unweighted least squares scheme

taking p = 8 (the system order) and K ¼ 0:85KOL with the latent vectors obtained by taking the constants in Eq. (8) equal to

one. The results are as follows:

Displacement measurements

Gd ¼ 2914:7 �926:4f g kLk ¼ 3184:1 kSk ¼ 21:7

confirming the contention kLk � kSk. The pole with the lowest frequency and the associated latent vector are:

k ¼ �0:259þ 5:178i u ¼

0:21

0:41þ 0:0001i

0:56þ 0:0005i

0:69þ 0:0013i

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

clearly showing that the latent vector is nearly normalizable to real.

Velocity measurements

In this case the results are

Gv ¼ �12398 3785f g kLk ¼ 3466:9 kSk ¼ 67121:1

Confirming that the argument based on the norm of L and S does not apply. The latent vector associated with the lowest

frequency pole is the same as when measuring displacements. The undamped frequency closest to the closed loop value is

6.09 and the associated open loop undamped vector is

/1 ¼

0:21

0:40

0:54

0:63

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

which can be seen to be close to the realized latent vector. To further confirm the validity of the contention regarding the

required proximity of the closed loop pole to an undamped one we redesigned the closed loop by shifting the poles to

K ¼ 0:5KOL and get

Gv ¼ �2:92 0:78f g � 104 kLk ¼ 0:12e6 kSk ¼ 1:1e6

with the lowest frequency pole and the associated latent vector as

k ¼ �0:153þ 3:046i u ¼

0:19

�0:095þ 0:1556i

�0:173� 0:6379i

0:703� 0:0052i

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

which is now strongly complex.

Acceleration measurements

The results are

Ga ¼ �139:2 126:6f g kLk ¼ 4929:6 kSk ¼ 503:0

confirming that kLk > kSk. The latent vector for the pole with lowest frequency (for the K ¼ 0:85KOL design) is:

u ¼

0:24

0:41þ 0:0003i

0:57þ 0:0009i

0:63þ 0:0016i

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

which, as before, is nearly real.

D. Bernal, M.D. Ulriksen /Mechanical Systems and Signal Processing 112 (2018) 22–30 29



References

[1] G.P. Liu, R.J. Patton, Eigenstructure Assignment for Control System Design, John Wiley & Sons, Chichester, 1998.
[2] L. Ray, L. Tian, Damage detection in smart structures through sensitivity enhancing feedback control, J. Sound Vib. 227 (5) (1999) 987–1002.

[3] B.H. Koh, L.R. Ray, Feedback controller design for sensitivity-based damage localization, J. Sound Vib. 273 (1) (2004) 317–335.

[4] L.J. Jiang, J.J. Tang, K.W. Wang, An optimal sensitivity-enhancing feedback control approach via eigenstructure assignment for structural damage
identification, J. Vib. Acoust. 129 (6) (2007) 771–783.

[5] H. Kimura, Pole assignment by output feedback: a long standing open problem, in: Proceedings of the 33rd Conference on Decision and Control, Lake
Buena Vista FL, 1994, pp. 2101–2105.

[6] V.L. Syrmos, C. Abdallah and P. Dorato, Static output feedback: A survey, Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista

FL (1994) 837-842.
[7] B.-H. Kwon, M.-J. Youn, Eigenvalue-generalized eigenvector assignment by output feedback, IEEE Trans. Autom. Control 32 (5) (1987) 417–421.

[8] J. Rosenthal, J.C. Willems, Open problems in the area of pole placement, in: V. Blondel, E.D. Sontag, M. Vidyasagar, J.C. Willems (Eds.), Open Problems in
Mathematical Systems and Control Theory, 1999, pp. 181–191.

[9] T.B. Cunningham, Eigenspace selection procedures for closed loop response shaping with modal control, in: 19th IEEE Conference on Decision and

Control including the Symposium on Adaptive Processes, 1980, pp. 178–186.
[10] C.I. Byrnes, Pole assignment by output feedback, in: H. Nijmeijer, J.M.Schumacher (Eds.), Three Decades of Mathematical System Theory, ser. Lecture

Notes in Control and Information Sciences #135, Springer–Verlag, 1989, pp. 31–78.
[11] S. Srinathkumar, Eigenvalue/eigenvector assignment using output feedback, NASA Technical Paper 1118, 1978.

[12] V.L. Syrmos, C. Abdallah, P. Dorato, K. Grigoriadis, Static output feedback: a survey, 1995, <http://digitalrepository.unm.edu/ece_rpts/10>.
[13] A. Isidori, Nonlinear Control Systems, third ed., Springer-Verlag, London, 1995.

[14] A. Isidori, Nonlinear Control Systems II, first ed., Springer-Verlag, London, 1999.

[15] D. Bernal, Eigenvalue sensitivity of sampled time systems operating in closed loop, Mech. Syst. Signal Process. 105 (2018) 481–487.
[16] W.L. Brogan, Modern Control Theory, third ed., Prentice Hall, 1991.

[17] J.N. Lyness, C.B. Moler, Numerical differentiation of analytic functions, SIAM J. Numer. Anal. 4 (2) (1967) 202–210.
[18] G.M. Tuynman, The derivation of the exponential map of matrices, Am. Math. Mon. 102 (9) (1995) 818–820.

[19] D. Bernal, Sensitivities of eigenvalues and eigenvectors from complex perturbations, in: Topics in Modal Analysis II, Volume 6: Proceedings of the 30th

IMAC, A Conference on Structural Dynamics, 2012, pp. 589–593.
[20] E. Balmes, New results on the identification of normal modes from experimental complex modes, Mech. Syst. Signal Process. 11 (2) (1997) 229–243.

[21] Q. Zhang, G. Lallement, R. Fillod, Relations between the right and left eigenvectors of non-symmetric structural models. Applications to rotors, Mech.
Syst. Signal Process. 2 (1) (1988) 97–103.

30 D. Bernal, M.D. Ulriksen /Mechanical Systems and Signal Processing 112 (2018) 22–30


	Output feedback in the design of eigenstructures for enhanced sensitivity
	1 Introduction
	2 Pole and eigenvector placement using output feedback
	3 Closed-loop pole sensitivities
	4 Instability in SVD assignment for homogeneous measurements
	4.1 On the irreducible complexity of the closed loop latent vectors
	4.1.1 Displacement measurements
	4.1.2 Velocity measurements
	4.1.3 Acceleration measurements


	5 Solution alternatives
	5.1 Weighted least square solution

	6 Numerical illustrations
	6.1 Results

	7 Concluding observations
	Acknowledgements
	Appendix A On the inherent complexity of the closed-loop latent vectors (numerical validation)
	References


