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Abstract

Closure phases along different baseline triangles carry a large amount of information regarding the structures of the
images of black holes in interferometric observations with the Event Horizon Telescope. We use long time span,
high cadence, GRMHD+radiative transfer models of Sgr A* to investigate the expected variability of closure
phases in such observations. We find that, in general, closure phases along small baseline triangles show little
variability, except in the cases when one of the triangle vertices crosses one of the small regions of low visibility
amplitude. The closure phase variability increases with the size of the baseline triangle, as larger baselines probe
the small-scale structures of the images, which are highly variable. On average, the funnel-dominated MAD
models show less closure phase variability than the disk-dominated SANE models, even in the large baseline
triangles, because the images from the latter are more sensitive to the turbulence in the accretion flow. Our results
suggest that image reconstruction techniques need to explicitly take into account the closure phase variability,
especially if the quality and quantity of data allow for a detailed characterization of the nature of variability. This
also implies that, if image reconstruction techniques that rely on the assumption of a static image are utilized,
regions of the u–v space that show a high level of variability will need to be identified and excised.
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1. Introduction

The Event Horizon Telescope (EHT), a 1.3 mm wavelength
VLBI experiment, will image, for the first time, black holes at
event horizon scales (see, e.g., Doeleman et al. 2009a). One of
the primary observing targets for the EHT is Sagittarius A* (Sgr
A*), the supermassive black hole at the center of our galaxy.
Sgr A* is an ideal candidate for the EHT since it has the largest
angular size among the known nearby black holes (Johannsen
et al. 2012), a well measured mass and distance (Ghez et al.
2008; Gillessen et al. 2009), and has been extensively studied
at a variety of wavelengths for over a decade (see Baganoff
et al. 2001 and Genzel et al. 2003 for early studies).

The EHT will, in principle, measure visibility amplitudes
and phases, which are the complex components of the Fourier
transform of the image. However, millimeter wavelength VLBI
interferometers cannot measure absolute phases at each u–v
point covered by the array. This is because there are no point
sources that are both close enough to Sgr A* and bright enough
at 1.3 mm to be used for calibration and because the timescale
for variability of the atmospheric interference at 1.3 mm due to
water vapor is only of the order of 10 s (Doeleman et al. 2002).
Instead, the EHT will measure closure phases, which are the
sum of phases at three points in u–v space, such that the effect
of the atmosphere at each telescope cancels out (Jenni-
son 1958). The EHT has already obtained closure phase data
for Sgr A* for the Hawaii, Arizona, California (HI–AZ–CA)
triangle. Fish et al. (2016) reported a median closure phase of
+ 6 .3 over 13 observing nights during a four-year period. The
positive, non-zero average closure phase demonstrates that Sgr
A* is not circularly symmetric on event horizon scales.

Even though closure phase measurements eliminate the
variability due to atmospheric interference, they do not mitigate
the effects of intrinsic source variability. Indeed, the flux from

Sgr A* has been observed to be variable at many wavelengths,
including at 1.3 mm (e.g., Marrone et al. 2008; Porquet et al.
2008; Do et al. 2009). The EHT observed variability at 1.3 mm
on scales of a few Schwarzschild radii (Fish et al. 2011). The
dynamical timescale, for Sgr A* at event horizon scales is about
10 minutes. In contrast, the imaging timescale for the EHT is of
the order of hours because the interferometer relies on the
rotation of the Earth to map out the u–v space. This points to
the necessity of taking the intrinsic source variability into
account when analyzing EHT data (see, e.g., Lu et al. 2016) but
also offers the potential of using source variability to probe the
spacetime of the black hole near its horizon (Doeleman et al.
2009a).
A number of groups have considered the effects of closure

phase variability in interpreting EHT data. Doeleman et al.
(2009b) used a semi-analytic model to explore the variability in
closure phases caused by an orbiting hot spot for a few EHT
closure triangles. Dexter et al. (2010) performed an early study
of the properties of closure phase variability in GRMHD
simulations focusing on disk-dominated models and triangles,
which are appropriate for the already existing EHT observa-
tions. Broderick et al. (2011) compared stationary semi-analytic
models with variable normalization to early EHT closure phase
data. Broderick et al. (2016) studied closure phases for the HI–
AZ–CA triangle in a stationary semi-analytic accretion flow
model, when small-scale Gaussian brightness fluctuations were
introduced. Fraga-Encinas et al. (2016) used two GRMHD
models, one funnel dominated and one disk dominated, to
explore the effect of the Earthʼs rotation on the variability of
closure phases in the HI–AZ–CA triangle but did not include
the effect of intrinsic source variability.
In this paper, we aim to characterize the expected properties

of closure phases for Sgr A* in a wide range of EHT triangles
of various sizes and orientations, using a suite of disk- and
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funnel-dominated GRMHD+radiative transfer simulations. We
employ five long time span models that probe a range of black
hole spins, initial magnetic field geometries, and thermody-
namic prescriptions for the electrons (see Chan et al.
2015a, 2015b for details of the models). The parameters of
the models, which we review in Section 2, have been calibrated
to fit the broadband spectra, the 1.3 mm image size, and were
then shown to be consistent with the multi wavelength
variability of Sgr A* (see Ball et al. 2016). In Section 3, we
investigate the expected magnitudes of the interferometric
visibility phases throughout the u–v plane. Even though the
EHT will not be able to directly measure the visibility phases at
individual locations on the u–v plane, exploring their properties
allows us to understand in Section 4 the variability of the
closure phases that the EHT will measure. We conclude in
Section 5 and compare our results to the existing limited
number of closure phase measurements from Sgr A* on a single
baseline triangle (Fish et al. 2016).

2. The GRMHD+Ray Tracing Simulations

In previous work, we considered a large number of GRMHD
+ radiative transfer simulations where we varied the black hole
spin, the initial geometry of the magnetic field, the accretion
rate, and the thermodynamic prescription for the electrons
(Chan et al. 2015b). We created these models using HARM
(Gammie et al. 2003) for the GRMHD simulations (Narayan
et al. 2012; Saḑowski et al. 2013) and GRay (Chan et al. 2013)
to solve the radiative transfer equation along null geodesics. As
discussed in Chan et al. (2013), our dynamical simulations
were performed under the assumptions of ideal MHD and
radiative transfer calculations were performed using the fast-
light approximation. We calibrated the simulations using Sgr
A* data. Specifically, we enforced the following constraints: (a)
a flux and a slope in the 1011–1012 Hz range that matches
observations, (b) a flux at 1014 Hz that falls within the
observed range of the highly variable infrared flux, (c) an X-ray
flux that is consistent with 10% of the observed quiescent flux,
i.e., the percentage that has been attributed to emission from the
inner accretion flow (Neilsen et al. 2013), and (d) the size of the
emission region that is consistent with the size determined by
the early EHT observations (Doeleman et al. 2008).

We use a threshold in plasma β to define two regions: the
disk (b > 0.2) and the funnel, which is a low density region
dominated by magnetic pressure (b < 0.2). We use a constant
electron-to-ion temperature ratio for the disk region and
consider two possible, physically motivated models for the
funnel region. In the first model, we assume a constant
electron-to-ion temperature ratio (which is different than the
ratio for the disk region) and, in the second, a constant electron
temperature. These models reproduce a disk/funnel structure
that is similar to the results discussed in Ressler et al. (2017),
who use a more detailed treatment developed to model particle
heating in the solar wind (Howes 2010, 2011).

From our large suite of simulations, we identified five
models that fit all observational constraints. All models have an
observer inclination of = i 60 with respect to the spin axis of
the black hole. Model A has a black hole spin of =a 0.7, an
initial magnetic field geometry that leads to weak, turbulent
fields near the horizon (Standard and Normal Evolution;
SANE), and a plasma model with a constant electron
temperature for the funnel region. Model B is the same as
Model A but with a black hole spin of =a 0.9.

Models C–E, in contrast, have an initial magnetic field
geometry that leads to coherent magnetic field structures near
the horizon (MAD, Magnetically Arrested Disk). In addition,
Model C has a black hole spin of =a 0.0 and a plasma model
with a constant electron-to-ion temperature ratio for the funnel
region. Model D has a black hole spin of =a 0.9 and, again, a
plasma model with a constant electron-to-ion temperature ratio
for the funnel region. Model E is like Model D but uses a
plasma model with a constant electron temperature in the
funnel region. For all models, the values for the normalization
of the electron number density, the electron-to-ion temperature
ratio for the disk and funnel and/or the electron temperature for
the funnel were fit to the observations described above (see
Chan et al. 2015b for detailed model parameters). We use 1024
snapshots from each simulation with a time resolution of

-GMc10 3 or»3.5 minutes, which results in a total time span of
approximately 60 hr. Table 1 summarizes the parameters of the
models we consider.
Figure 1 shows the average 1.3 mm wavelength images for

the five simulations we consider. Models A and B, the SANE
models, have 1.3 mm wavelength emission regions that are
dominated by the thick accretion disk. The emission from these
models is asymmetric due to the effects of relativistic Doppler
beaming, because the part of the orbiting accretion flow that is
coming toward the observer is beamed and appears brighter
than the part that is moving away from the observer. The MAD
models, (C, D, and E), however, have 1.3 mm wavelength
emission regions that are dominated by the funnel regions.
Model C is unique in that its emission is dominated by the
footpoints of the funnel region with negligible emission coming
from the disk. Models D and E have emission coming from
both the Doppler beamed disk and the funnels.
The red circles superimposed on the images correspond to

the size of the black hole shadow predicted by general
relativity. For comparison, the red dots show the location of the
center of the black hole. Frame dragging effects cause the
emission to be offset (red circles are not centered on the black
hole) for models that have a non-zero spin. The red stars in the
figures indicate the calculated center of light for each image.
The center of light was used in the calculation of the Fourier
transform of the image, as we will discuss in Section 3.
Figure 2 shows a few example snapshots from models B and

D. We can see that the disk-dominated model (Model B) shows

Table 1
Summary of our Five Models

Name a B0 ne qdisk Te,funnel qfunnel
A 0.7 SANE 6.885 × 107 0.02371 56.23 L
B 0.9 SANE 5.465 × 107 0.01000 31.62 L
C 0.0 MAD 5.932 × 108 0.00056 L 0.01000
D 0.9 MAD 1.599 × 108 0.00075 1.78 L
E 0.9 MAD 1.599 × 108 0.00075 L 0.00316

Note. Summary of the five best-fit models from Chan et al. (2015b). The first
column lists the model names used throughout the paper. The second and third
columns list the black hole spin (a) and the accretion flow state that depends on
the initial magnetic field geometry (B0). The fourth column refers to the density
normalization (ne) while the fifth column refers to the electron-to-ion
temperature ratio in the disk (qdisk). The last two columns refer to the treatment
of the funnel region, we consider two plasma models: one with a constant
electron temperature for the funnel (Te,funnel) and the other with a constant
electron-to-ion temperature ratio for the funnel (qfunnel).
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Figure 1. Average 1.3 mm images of the five models we consider in this paper. The SANE models (A and B) have most of their emission originating from the disk
region, while the MAD models (C, D, and E) have significant emission originating from the footpoints of the funnels. Model C is unique, with negligible emission
from the disk and a black hole spin of zero. The red circles indicate the expected size of the black hole shadow according to general relativity. The red stars correspond
to the location of the center of light for each model while the red dots are the location of the center of the black hole. Since the orientation of Sgr A* on the sky is not
known, these images show an arbitrary orientation where the spin axis of the black hole points north. The maximum intensity in each panel has been normalized to
unity.

Figure 2. Several example snapshots from Model B (top row) and Model D (Bottom row) showing significant structural variation of the image with time. All
snapshots have the same brightness normalization such that differences in brightness between snapshots are real. Although SANE models are more variable, MAD
models still show significant variability.
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significant structural changes in the images with time as
opposed to a constant structure with varying flux. In large part,
these variations are caused by short lived flux tubes that come
in and out of the line of sight. However, there is also significant
variability in the thickness and structure of the crescent. The
hybrid model (Model D) has a funnel component and a disk
component in its emission region. In general, models like this
show less overall variability than the disk-dominated models
but still show significant structural changes with time.

3. Visibility Phases

Since the EHT is an interferometer, it will observe the
visibilities, or the complex Fourier components, of the image of
Sgr A*. The amplitudes of these Fourier components, or
visibility amplitudes, for our five models have been discussed
in Medeiros et al. (2016). Here we focus on the phases of the
complex Fourier components, or visibility phases.

Due to the effects of gravitational lensing and Doppler
beaming, the emission predicted by these models is not
centered on the black hole (the red stars and red dots in
Figure 1 are in different locations), which results in an overall
rapid gradient in phase. We removed this unmeasurable phase
gradient by shifting the snapshots such that the center of light
of the images (the red stars in Figure 1) coincide with the center
of the average image (red dots in Figure 1) before calculating
the transforms. We performed the same shift for all snapshots
within each simulation such that they all have the same phase
centers.

In Figure 3, we present the structure of the complex
visibilities for the different GRMHD models denoting the

average visibility phases with contours and the visibility
amplitudes in color maps. These averages are obtained by
finding the phases and amplitudes of each snapshot and
subsequently averaging them. Because angles are directional,
periodic quantities, we need to employ a method for calculating
means that is appropriate for them. In the Appendix, we
describe the directional statistic we use hereafter.
Figure 3 highlights the fact that minima in visibility

amplitudes coincide with steep gradients in phase. This is
particularly prominent in the MAD models (C, D, and E),
which have clear minima that are preserved in the average of
the visibility amplitudes as we showed in our previous paper
(Medeiros et al. 2016). In each panel, the black dashed (solid)
triangle corresponds to the HI–AZ–CA closure triangle for a
black hole with spin axis pointing north (east). For brevity, we
plotted the visibility amplitude and phase averages of the black
hole at a constant (north) orientation but moved the triangle so
that the relative orientation of the visibilities and the triangles is
correct for the quoted black hole spin axis orientation. In
reality, the orientation of the triangle is fixed and the orientation
of the black hole in the sky is unknown. We will discuss these
triangles further below.
We explore the structure of the variability in the visibility

phases in Figure 4, where the dispersion in visibility phases is
shown in color, while the average visibility phases are shown
as white contours for comparison. The dispersion was
calculated by taking into account the fact that angles are
directional quantities, as discussed in the Appendix. The
directional dispersion, D (see Equation (4)), is approximately
equal to s 22 for small σ, where σ is the dispersion of a non-
directional Gaussian distribution, and approaches unity in the

Figure 3. Color maps show the average visibility amplitudes and the white contours show the average visibility phases for the five models. Minima in the visibility
amplitudes correspond to steep gradients in visibility phases. The black dashed triangles correspond to the HI–AZ–CA triangle for a black hole with a spin axis
pointing north, while the solid black triangles correspond to the same HI–AZ–CA triangle for a black hole with spin axis pointing east. The visibility amplitude maps
have been normalized to unity.
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limit of a flat distribution. In the figure, the black and dark blue
regions have small dispersions, while the yellow or white
regions have very broad, and possibly flat distributions. For
reference, =D 0.5 shown in pink corresponds to a Gaussian
with a standard deviation of about 1 rad or 57°.

Figure 4 shows two general characteristics of variability in
the visibility phase throughout the u–v plane. First, for each
model, there are a number of localized regions on the u–v plane
that exhibit very large dispersions in phase. These regions
coincide with the locations of the minima in the visibility
amplitudes. Phase variability is related to visibility amplitude
since, for similar perturbations in its real and imaginary
components, a vector with larger magnitude will experience a
smaller change in phase. This means that, if all complex
Fourier components of the image experience perturbations to
their real and imaginary components of similar size, the
complex vectors with smaller amplitude will experience a
larger change in phase than those with a larger amplitude.
Therefore, the regions that have low visibility amplitude also
have very high phase variability as a direct consequence of the
low amplitude (see also the discussion in Dexter et al. 2010).

Second, outside the confined locations of the amplitude
minima, the variability in the visibility phases at small baseline
lengths (less than a few Gλ) is, in general, very small, even
though the accretion flow is highly turbulent. This happens
because the small baselines primarily probe the overall
structure of the image, which is determined by special and
general relativistic effects rather than gas dynamics and shows
little variability. However, at larger baseline lengths, for most
baseline orientations, the SANE models A and B show

significant phase variability, while the MAD models C–E
remain relatively quiet. The large baselines probe the small-
scale structures, which, in the case of the SANE models, are
dominated by, e.g., small hot magnetic flux tubes that are
highly variable. In the case of the MAD models, even the
small-scale structure is dominated by the emission at the funnel
footpoints and, for the models we consider here, the closure
phases along large baseline triangles are not significantly
variable.
In order to demonstrate one of the above points in a different

way, we show in Figure 5 the overall anticorrelation between
the average visibility amplitude throughout the u–v plane and
the corresponding dispersion in the visibility phase. Indeed, the
largest phase dispersions occur when the visibility amplitude is
very low, i.e., at least an order of magnitude smaller than its
maximum. As this figure demonstrates, this anticorrelation is
independent of the particular cause of variability or the
specifics of the models explored.

4. Closure Phases

As we discussed in the previous sections, millimeter VLBI
experiments cannot measure absolute phase since the atmos-
phere introduces an arbitrary phase that is variable on a »10 s
timescale. Instead, the EHT measures closure phases, defined
as the sum of the phases at the corners of a triangle in u–v space
that corresponds to three telescopes on Earth. Measuring
closure phases removes the effects of the atmosphere and
instrumental noise from the phase measurements, but cannot
recover all absolute phase information, because there are never
enough closure triangles to solve for all absolute phases.

Figure 4. Color map shows the dispersion in visibility phase at each point in the u–v space throughout each ∼60 hr simulation. These dispersions were calculated
using the directional statistics described in the Appendix. The white contours correspond to the average phase. Regions of steep phase gradients (and minimum
amplitudes; see Figure 3) correspond to large dispersion in visibility phase. The red dashed (solid) triangle corresponds to the HI–AZ–CA closure triangle for a black
hole with spin axis pointing north (east).
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Our aim is to explore what the closure phases that the EHT
measures will reveal about horizon-scale structures and how
they will probe small-scale variability. During the span of an
observation, closure triangles move through the u–v space.
Therefore, the observed variability in closure phases will reflect
the combined effect of the intrinsic variability of the source, the
variability caused by the fact that the closure triangles are
probing different parts of u–v space as the Earth rotates (see,
e.g., Doeleman et al. 2009b; Broderick et al. 2011, 2016;
Fraga-Encinas et al. 2016), and the variability caused by
diffractive scattering effects (see Johnson & Gwinn 2015). In
the current section, we are primarily interested in exploring the
intrinsic variability caused by the accretion flow itself. Because
of this, we keep the triangles constant in time for the majority
of our analysis (fixed at GMST 01:54:03.4706); we will
explore the effect of the Earthʼs rotation at the end of this
section and the effects of scattering in a forthcoming paper.

We choose four representative triangles of varying shapes
and sizes, shown in Figure 6. The smallest triangle, shown in
red, is the Hawaii (Submillimeter Array-SMA)-Arizona (Sub-
millimeter Telescope-SMT)-California (Combined Array for
Research in Millimeter-wave Astronomy-CARMA) triangle.
This is the only triangle on which the EHT has observed
closure phases to date. The next smallest triangle, shown in
magenta, is the Arizona (SMT)-Mexico (Large Millimeter
Telescope-LMT)-Chile (Atacama Large Millimeter/submilli-
meter Array-ALMA) triangle. The bigger triangles are Arizona
(SMT)-Chile (ALMA)-South Pole (South Pole Telescope-
SPT), shown in green, and Hawaii (SMA)-Arizona (SMT)-
South Pole (SPT), shown in blue.

We calculate closure phases for the four triangles for each
snapshot of our five models, for black holes with spin axes
pointing north and east. Due to the symmetry of Fourier
transforms, the closure phases for black holes with spin axes
pointing south (west) are the negative of the closure phase for
black holes pointing north (east). We use the same sign
convention as described in Fish et al. (2016). Figures 7 and 8
show closure phases as a function of time for both spin
orientations, for the four triangles (ordered from the smaller
triangle in the top row to the largest in the bottom row), and for

the five models. To explore the distribution of closure phases
more quantitatively, we also plot them as histograms in
Figure 9.
As the top panels for each model in Figures 7 and 8 and the

leftmost panels in Figure 9 show, all of our GRMHD models
produce little phase variability on small triangles, with the
exception of situations where at least one vertex of the triangle
crosses an amplitude minimum (see, e.g., the east orientation

Figure 5. Normalized visibility amplitude vs. directional dispersion (D) of visibility phase. The different columns correspond to the different models and each dot is a
point in u–v space. In all models, the regions of largest dispersion in visibility phase correspond to the lowest visibility amplitudes.

Figure 6. The four triangles we used to calculate closure phases (shown here at
GMST 01:54:03.4706). In order of increasing size, they are Hawaii (SMA)-
Arizona (SMT)-California (CARMA), shown in red, Arizona (SMT)-Mexico
(LMT)-Chile (ALMA), shown in magenta, Arizona (SMT)-Chile (ALMA)-
South Pole (SPT), shown in green, and Hawaii (SMA)-Arizona (SMT)-South
Pole (SPT), shown in blue. The black curves correspond to the EHT baselines
for reference. These triangles move through u–v space following the baseline
tracks as the Earth rotates.
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Figure 7. Closure phases as a function of time for the five simulations and the four closure triangles we consider for a black hole with a spin axis pointing north.
Different rows correspond to different triangles in order of increasing size from top to bottom.

7

The Astrophysical Journal, 844:35 (13pp), 2017 July 20 Medeiros et al.



Figure 8. Same as Figure 7 but for a black hole with spin axis pointing east.
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for models D and E). On larger triangles, the closure phases
generally show larger dispersion. For these triangles, however,
there is an important difference between the SANE and the
MAD models. The MAD models still show peaked distribu-
tions of closure phases with well defined means and
dispersions, whereas the histograms of the SANE models

become nearly flat. Both of these results are expected given our
discussion of visibility phase variability in Section 3.
The results shown in Figures 7–9 are not specific to the

particular black hole spin orientations chosen for these
examples but are generically encountered in all orientations.
We demonstrate this in Figure 10, which shows the dependence

Figure 9. Histograms of closure phases calculated for the four triangles we consider. Rows correspond to the different models and columns to different closure
triangles in order of increasing size. In all panels, the blue histograms correspond to a black hole with spin axis that points north, while the red histograms correspond
to a spin axis that points east. The orientation of the black hole has a very large effect on the mean and width of the distribution of the closure phases. Some of the
peaks of the histograms are not shown in this figure since we are not concerned primarily with the value of the peak but rather with the width of the distribution.
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of the closure phase dispersions on black hole orientation, for
the four triangles and for the five models we consider here. In
the smallest of the triangles, a small phase dispersion (at the
level recently reported by Fish et al. 2016) occurs for about half
of the spin-orientation parameter space for all five models.
However, for the largest triangles, the large dispersion in the
SANE models persists for all spin orientations.

The statistical properties of closure phase variability that we
discussed so far correspond to fixed orientations of the baseline
triangles on the u–v plane. In practice, we can observationally
infer these properties if we combine data from different epochs
and stack them based on the location of each triangle on the u–v
plane. However, in the course of a single observation epoch,
the orientation of each baseline triangle changes in time and the
measured closure phases will sample different locations of the
u–v plane, while the underlying image is varying at the same
time. A consequence of this may be that a given triangle will
rotate from a region of small variability to one of large
variability (e.g., near a visibility minimum) or vice versa in
the course of a night. In this case, the characteristics of phase
variability will change dramatically in the course of the
observation.

We show an example of this situation in Figure 11 for the
small HI–AZ–CA triangle (top panels) and the SANE model A
as well as for the larger AZ–MX–CH triangle (bottom panels)
and for MAD model E, for two different orientations of the
black hole spin. In two of the configurations shown (Model A,
HI–AZ–CA south orientation and Model E AZ–MX–CH east
orientation), the closure phase remains very stable throughout
the observation, because the triangles remain away from the
locations of the amplitude minima. In a third configuration
(Model A, east orientation), the HI–AZ–CA triangle can follow

Sgr A* for 4 hr. Because the size of this baseline track is
comparable to the extent of the high-variability region, the
closure phase is variable throughout the observation. In the last
configuration (model E, north orientation), only a part of the
longer (6 hr) baseline track cuts through the region of high
variability, causing a very sudden decline in the closure phase
variability in the midst of the observation.

5. Discussion and Conclusions

We used five GRMHD+radiative transfer simulations of
accretion onto Sgr A* to explore the predicted magnitudes of
closure phases and their variability for the upcoming interfero-
metric observations with the EHT. We now compare these
predictions to existing data to asses the prospects of
distinguishing between different models and black hole spin
orientations. Currently, there exist only limited measurements
of the closure phases, spanning different epochs, along the HI–
AZ–CA triangle. These yield a median value of -

+6.3 2.0
0.7 degrees

(Fish et al. 2016).
Statistically comparing the predicted distribution of closure

phases to the observed ones requires separately treating the
formal and systematic uncertainties in the measurements.
Because the variability in Sgr A*, as inferred both observa-
tionally (Meyer et al. 2008; Dexter et al. 2014) and from
theoretical models (e.g., Dolence et al. 2012 and Chan et al.
2015a), points to a red noise process, comparing theoretical
models to observations also requires incorporating the effects
of finite observing time. We will perform a detailed comparison
taking into account these considerations in a future study.
For a more preliminary comparison, we plot in Figure 12 not

only the median measured closure phase but also a gray band
that corresponds to the range of median values in the various
subsets of the data in Fish et al. (2016). Even though both the
disk-dominated SANE models and the funnel-dominated MAD
models we analyzed here have significant asymmetric struc-
tures, Figure 12 shows that they produce closure phases and
dispersions (Figure 10) in the HI–AZ–CA triangle that are
consistent with the measurements for a wide range of black
hole spin orientations on the sky.
In the near future, closure phases will be detected with the

full EHT array over a wide range of baseline triangles, covering
long tracks in the u–v plane. Our models show that, for
triangles with sizes similar to that of the existing measure-
ments, the closure phases will show little variability, unless one
of the baseline vertices crosses a region of low visibility
amplitude. However, the turbulent nature of the flow introduces
significant variability on the small scales and, hence, significant
closure phase variability might be present at large baseline
triangles.
Despite this overall trend, the funnel-dominated MAD

models that we studied produce less closure phase variability
on the large triangles than the disk-dominated SANE models.
This is because the images of the former are dominated by
emission at the footpoints of the funnels and, even though these
footpoints flicker, their image structure is not greatly influenced
by the variability in the turbulent accretion flow. Therefore,
future data will help distinguish between these possibilities.
Furthermore, for both SANE and MAD models, we find that
there is no trend between flaring events (see, e.g., Figure 1 in
Medeiros et al. 2016) and higher closure phase variability.
Because the highest dispersion in phase occurs at low

visibility amplitude, the question of detectability arises when

Figure 10. Directional dispersion of closure phase for the four closure phase
triangles we consider as a function of the orientation of the black hole spin axis.
The black dashed line in the third panel corresponds to a directional dispersion
of 0.4, which corresponds to a Gaussian with a dispersion of about 51°. The
black dashed line in the fourth panel corresponds to a directional dispersion of
0.5, which corresponds to a Gaussian with a dispersion of about 57°.
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discussing the potential of observing such large dispersions.
The EHT has already detected fringes at levels below 10% of
the flux at zero baseline (Johnson et al. 2015). Additionally, the
incorporation of ALMA into the EHT array (2017 April) is
expected to increase the sensitivity of the latter by at least a
factor of a few. In most models, the directional dispersion (D)
is of order unity in places in u–v space where the visibility

amplitude is 5% of the zero baseline flux (see Figure 5),
indicating that regions with dispersion of order unity will be
detectable if present. Even with improved sensitivity, we also
expect regions and periods of low visibility amplitudes that fall
below the signal-to-noise threshold. In such cases, following a
non-detection, we expect that when the source is detected
again, the phase will be uncorrelated with the prior phase due to
the highly variable nature of phases near regions of minima in
visibility amplitude.
Our results have important implications for the image

reconstruction techniques that will rely on the closure phase
data. Because of the possibility of substantial dispersion, even
at small triangles, large amounts of high-quality data will need
to be used to characterize the variability properties of the
closure phases. Image reconstruction techniques will then need
to take explicitly into account the observed variability.
Alternatively, if image reconstruction techniques are used that
rely on the assumption of a stationary image, the regions of
high closure phase variability will need to be excised.
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acknowledges support from NSF grant AST-1207752. F.O.
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Guggenheim Memorial Foundation in support of this work.

Figure 11. Effect of Earth rotation on the variability of closure phases. The top two color maps show the directional dispersion of Model A, the green tracks and
dashed triangles correspond to the HI–AZ–CA closure triangle for a black hole pointing south (left panel) and east (middle panel). The bottom two color maps show
the directional dispersion of Model E, the green tracks and dashed triangles correspond to the AZ–MX–CH closure triangle for a black hole pointing north (left panel)
and east (middle panel). During the course of an observation, both closure triangles move from light green to dark green. The rightmost column shows how closure
phase varies as a function of time due to the combined effect of intrinsic variability from the simulation and the motion of the closure triangles shown in the color
maps. Depending on the orientation of the black hole, the rotation of the Earth may move the triangles to regions of high variability of closure phases during an
observation.

Figure 12. Directional mean closure phase for the HI–AZ–CA triangle (in
degrees) as a function of the orientation of the black hole spin axis. The dashed
black line corresponds to the median closure phase measured by the EHT for
this triangle (Fish et al. 2016). The gray band corresponds to the range of
median values in the various subsets of the data in Table 3 of Fish et al. (2016).
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Appendix
Directional Statistics

Calculating statistical moments of distributions of quantities
that are periodic in nature, such as closure phases, requires
special care. Mardia & Jupp (1999) explore meaningful ways
of determining the mean and dispersion of distributions of
angles. Specifically, they suggest that the mean of a distribution
of n angles qj may be obtained using
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In other words, to calculate the mean of a distribution of angles,
we calculate the mean of the unit vectors that correspond to the
distribution of angles. The dispersion of a distribution of angles
then is defined as

å q q= - -
=

{ ( ¯)} ( )D
n

1
1 cos . 4

j

n

j
1

Hereafter, we will refer to this dispersion relation as the
directional dispersion when comparing it to the dispersion
relation commonly used for non-directional data.

To understand the behavior of the directional dispersion, we
consider here two limiting cases. For a small deviation from the
mean q q-( ¯)j , the directional dispersion can be approximated
as
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where we have denoted the normal definition of dispersion
by σ.

In the limit of a continuous flat distribution of deviations
from the mean, on the other hand, we find
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In Figure 13, we explore the behavior of the directional
dispersion further by comparing this quantity to the dispersion

σ of an ensemble of Monte Carlo points drawn from a
Gaussian distribution. The blue points are the square root of
the directional dispersion of simulated data created using
Gaussian distributions with different dispersions. As expected,
the directional dispersion scales with the dispersion of the
Gaussian distribution when the latter is small. However, as
s p, the periodic nature of the angular data causes the

directional dispersion to asymptote to unity.
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Narayan, R., Saḑowski, A., Penna, R. F., & Kulkarni, A. K. 2012, MNRAS,

426, 3241
Neilsen, J., Nowak, M. A., Gammie, C., et al. 2013, ApJ, 774, 42
Porquet, D., Grosso, N., Predehl, P., et al. 2008, A&A, 488, 549
Ressler, S. M., Tchekhovskoy, A., Quataert, E., & Gammie, C. F. 2017,

MNRAS, 467, 3604
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