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ABSTRACT
Motivated by the increasing need to understand the distributed

algorithmic foundations of large-scale graph computations, we

study some fundamental graph problems in a message-passing

model for distributed computing where k ⩾ 2 machines jointly

perform computations on graphs with n nodes (typically, n ≫ k).
The input graph is assumed to be initially randomly partitioned

among the k machines, a common implementation in many real-

world systems. Communication is point-to-point, and the goal is to

minimize the number of communication rounds of the computation.

Our main contribution is the General Lower Bound Theorem, a

theorem that can be used to show non-trivial lower bounds on the

round complexity of distributed large-scale data computations. The

General Lower Bound Theorem is established via an information-

theoretic approach that relates the round complexity to the minimal

amount of information required by machines to solve the problem.

Our approach is generic and this theorem can be used in a “cook-

book" fashion to show distributed lower bounds in the context of

several problems, including non-graph problems. We present two

applications by showing (almost) tight lower bounds for the round

complexity of two fundamental graph problems, namely PageRank
computation and triangle enumeration. Our approach, as demon-

strated in the case of PageRank, can yield tight lower bounds for

problems (including, and especially, under a stochastic partition of

the input) where communication complexity techniques are not

obvious. Our approach, as demonstrated in the case of triangle

enumeration, can yield stronger round lower bounds as well as

message-round tradeoffs compared to approaches that use commu-

nication complexity techniques.

We then present distributed algorithms for PageRank and trian-

gle enumeration with a round complexity that (almost) matches

the respective lower bounds; these algorithms exhibit a round com-

plexity which scales superlinearly in k , improving significantly

over previous results for these problems [Klauck et al., SODA 2015].

Specifically, we show the following results:

• PageRank:We show a lower bound of Ω̃(n/k2) rounds, and
present a distributed algorithm that computes the PageRank

of all the nodes of a graph in Õ(n/k2) rounds.
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• Triangle enumeration: We show that there exist graphs with

m edges where any distributed algorithm requires Ω̃(m/k5/3)
rounds. This result also implies the first non-trivial lower

bound of Ω̃(n1/3) rounds for the congested clique model,

which is tight up to logarithmic factors. We then present a

distributed algorithm that enumerates all the triangles of a

graph in Õ(m/k5/3 + n/k4/3) rounds.
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1 INTRODUCTION
The focus of this paper is on the distributed processing of large-

scale data, in particular, graph data, which is becoming increasingly

important with the rise of massive graphs such as the Web graph,

social networks, biological networks, and other graph-structured

data and the consequent need for fast distributed algorithms to pro-

cess such graphs. Several large-scale graph processing systems such

as Pregel [23] and Giraph [1] have been recently designed based

on the message-passing distributed computing model [22, 30]. In

these systems, the input graph, which is simply too large to fit into

a single machine, is distributed across a group of machines that are

connected via a communication network and the machines jointly

perform computation in a distributed fashion by sending/receiving

messages. A key goal in distributed large-scale computation is to

minimize the amount of communication across machines, as this

typically dominates the overall cost of the computation.

We study fundamental graph problems in a message-passing dis-

tributed computing model and present almost tight bounds on the

number of communication rounds needed to solve these problems.

In the model, called the k-machine model [19] (explained in detail

in Section 1.1), the input graph (or more generally, any other type

of data) is distributed across a group of k machines that are pair-

wise interconnected via a communication network. The k machines

jointly perform computations on an arbitrary n-vertex input graph
(where typically n ≫ k) distributed among the machines. The com-

munication is point-to-point via message passing. The goal is to

minimize the round complexity, i.e., the number of communication
rounds, given some (bandwidth) constraint on the amount of data

that each link of the network can deliver in one round. We address

https://doi.org/10.1145/3210377.3210409
https://doi.org/10.1145/3210377.3210409
https://doi.org/10.1145/3210377.3210409
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a fundamental issue in distributed computing of large-scale data:

What is the distributed (round) complexity of solving problems

when each machine can see only a portion of the input and there is

a limited bandwidth for communication? We would like to quantify

the round complexity of solving problems as a function of the size
of the input and the number of machines used in the computation.

A main contribution of this paper is a technique that can be used

to show non-trivial lower bounds on the distributed complexity

(number of communication rounds) of large-scale data computa-

tions, and its application to graph problems.

1.1 The Model
We now describe the adopted model of distributed computation,

the k-machine model (a.k.a. the Big Data model), introduced in [19]

and further investigated in [3, 7, 27, 29, 32]. The model consists

of a set of k ⩾ 2 machines {M1,M2, . . . ,Mk } pairwise intercon-

nected by bidirectional point-to-point communication links. Each

machine executes an instance of a distributed algorithm. The com-

putation advances in synchronous rounds where, in each round,

machines can exchange messages over their communication links

and perform some local computation. Each link is assumed to have

a bandwidth of B bits per round; unless otherwise stated, we assume

B = Θ(polylogn). Machines do not share any memory and have no

other means of communication. We assume that each machine has

access to a private source of true random bits. We say that algo-

rithmA has ϵ-error if, in any run ofA, the output of the machines

corresponds to a correct solution with probability at least 1−ϵ . The
round complexity of A is defined to be the worst-case number of

rounds required by any machine when executing A.

Local computation within a machine is considered to happen in-

stantaneously at zero cost, while the exchange of messages between

machines is the costly operation. However, we note that in all the

algorithms of this paper, every machine in every round performs

lightweight computations; in particular, these computations are

bounded by a polynomial (typically, even linear) in the size of the

input assigned to that machine.

Although the k-machine model is a general model of distributed

computation that can be applied to study any (large-scale data)

problem, in this paper we focus on investigating graph problems in

it. Specifically, we are given an input graph G with n vertices, each

associated with a unique integer ID from [n], andm edges. To avoid

trivialities, we will assume that n ⩾ k (typically, n ≫ k). Initially,
the entire graph G is not known by any single machine, but rather

partitioned among the k machines in a “balanced” fashion, i.e., the

nodes and/or edges of G must be partitioned approximately evenly

among the machines. We assume a vertex-partition model, whereby

vertices (and their incident edges) are partitioned across machines.

Specifically, the type of partition that we will assume throughout is

the random vertex partition (RVP), i.e., vertices (and their incident

edges) of the input graph are assigned randomly to machines. This

is the typical way used by many real graph processing systems,

such as Pregel [23] and Giraph [1, 6], to partition the input graph

among the machines; it is easy to accomplish, e.g., via hashing.

More formally, in the random vertex partition model each vertex

of G is assigned independently and uniformly at random to one

of the k machines. If a vertex v is assigned to machine Mi we

say that Mi is the home machine of v and, with a slight abuse of

notation, write v ∈ Mi . When a vertex is assigned to a machine, all

its incident edges are known to that machine as well, i.e., the home

machine initially knows the IDs of the neighbors of that vertex

as well as the identities of their home machines (and the weights

of the corresponding edges in case G is weighted). For directed

graphs, we assume that out-edges of vertices are known to the

assigned machine. (However, we note that our lower bounds hold

even if both in- and out-edges are known to the home machine.) An

immediate property of the RVP model is that the number of vertices

at each machine is balanced, i.e., each machine is the home machine

of Θ̃(n/k) vertices with high probability (see [19]); we shall assume

this throughout the paper.

1.2 Our Results
We present a general information-theoretic approach for show-

ing non-trivial round lower bounds for certain graph problems

in the k-machine model. This approach can be useful in the con-

text of showing round lower bounds for many other (including

non-graph) problems in a distributed setting where the input is

partitioned across several machines and the output size is large. Us-

ing our approach we show almost tight (up to logarithmic factors)

lower bounds for two fundamental, seemingly unrelated, problems,

namely PageRank computation and triangle enumeration. These

lower bounds apply to distributed computations in essentially all

point-to-point communication models, since they apply even to a

synchronous complete network (where k = n), and even when the

input is partitioned randomly, and thus they apply to worst-case

balanced partitions as well (unlike some previous lower bounds,

e.g., [39], which apply only under some worst-case partition).

To demonstrate the near-tightness of our lower bounds we

present optimal (up to polylog(n) factors) distributed algorithms

for such problems. The round complexity of these algorithms scales

superlinearly in k , improving significantly over previous results.

1. PageRank Computation. In Section 2.3 we show an almost

tight lower bound of Ω̃(n/k2) rounds.1 In Section 3.1 we present an

algorithm that computes the PageRank of all nodes of a graph in

Õ(n/k2) rounds, thus improving over the previously known bound

of Õ(n/k) rounds [19].
2. Triangle Enumeration. In Section 2.4 we show that there exist

graphs with m edges where any distributed algorithm requires

Ω̃(m/k5/3) rounds. In Section 3.2 we present an algorithm that

enumerates all the triangles of a graph in Õ(m/k5/3+n/k4/3) rounds.

This improves over the previously known bound of Õ(n7/3/k2)
rounds [19].

Our technique can be used to derive lower bounds in other mod-

els of distributed computing as well. Specifically, the approach used

to show the lower bound for triangle enumeration can be adapted

for the popular congested clique model (discussed in Section 1.4),

yielding an Ω(n1/3/logn) lower bound for the same problem.
2
(No-

tice that this does not contradict the impossibility result of [12],

1
Notation Ω̃ hides a 1/polylog(n) factor, and Õ hides a polylog(n) factor and an

additive polylog(n) term.

2
A preliminary version of this paper, appeared on arXiv [28], contained a slightly

worse lower bound of the form Ω(n1/3/log3 n); later, a subsequent work by Izumi and

Le Gall [16] showed a lower bound of the form Ω(n1/3/logn) using our information-

theoretic approach.
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which states that any super-constant lower bound for the congested

clique would give new lower bounds in circuit complexity: because

of the size required by any solution for triangle enumeration, Re-

mark 3 in [12] does not apply.) To the best of our knowledge, this

is the first super-constant lower bound known for the congested

clique model. (Previous bounds were known for weaker versions

of the model, e.g., which allowed only broadcast communication,

or which applied only to deterministic algorithms [12], or for im-

plementations of specific algorithms [5].)

Our bounds for triangle enumeration also apply to the problem

of enumerating all the open triads, that is, all the sets of three

vertices with exactly two edges. Our techniques and results can be

generalized to the enumeration of other small subgraphs such as

cycles and cliques.

Due to lack of space, full proofs and additional details are deferred

to the full version of the paper.

1.3 Overview of Techniques
Lower Bounds. In Theorem 2.1 we prove a general result, the

General Lower Bound Theorem, which relates the round complex-

ity in the k-machine model to the minimal amount of informa-

tion required by machines for correctly solving a problem. While

PageRank and triangle enumeration are fundamentally different

problems, we derive lower bounds for both problems via the “infor-

mation to running time” relationship of Theorem 2.1. The General

Lower Bound Theorem gives two probabilistic bounds that must be

satisfied in order to obtain a lower bound on the round complexity

of any problem. The two bounds together capture the decrease in

uncertainty (called surprisal, see Section 2) that happens to some

machine as a result of outputting the solution. We can show that

this “surprisal change” represents the maximum expected “Informa-

tion Cost" over all machines which can be used to lower bound the

run time. The proof of the General Lower Bound Theorem makes

use of information-theoretic machinery, yet its application requires

no use of information theory.

We conjecture that Theorem 2.1 can be used to obtain lower

bounds for various problems (including non-graph problems) that

have a relatively large output size (e.g., shortest paths, sorting, ma-

trix multiplication, etc.) thus complementing the approach based

on communication complexity (see, e.g., [9, 12, 13, 19, 24–27, 31]

and references therein). In fact, our approach, as demonstrated in

the case of triangle enumeration, can yield stronger round lower

bounds as well as message-round tradeoffs compared to approaches

that use communication complexity techniques (more on this in

the next paragraph). Our approach, as demonstrated in the case of

PageRank, can yield tight lower bounds for problems (including,

and especially, under a stochastic/random partition of the input)

where communication complexity techniques are not obvious. In

fact, for many problems, applying the General Lower Bound The-

orem gives non-trivial lower bounds in a fairly straightforward

way that are not (at least easily) obtainable by communication

complexity techniques. To give an example, the work of Klauck

et al. [19] showed a lower bound of Ω̃(n/k2) for connectivity by

appealing to random partition communication complexity—this

involved proving the classical set disjointness lower bound un-
der random input partition, which involved non-trivial work. On

the other hand, the same lower bound of Ω̃(n/k2) for MST can be

shown directly
3
via the General Lower Bound Theorem (this bound

is tight due to the algorithm of [27]). To give another example,

consider the problem of distributed sorting (see, e.g., [26]), whereby

n elements are randomly distributed across the k machines and

the requirement is that, at the end, the i-th machine must hold the

(i − 1)k + 1, (i − 1)k + 2, . . . , i ·k-th order statistics. One can use the

General Lower Bound Theorem to show a Ω̃(n/k2) lower bound
for this problem (and this is tight, as there exists an Õ(n/k2)-round
sorting algorithm). Note that the same lower bound (under a ran-

dom partition) is harder to show using communication complexity

techniques.

We also note that tight round complexity lower bounds do not al-

ways directly follow from exploitingmessage (bit) complexity lower

bounds obtained by leveraging communication complexity results.

For example, for the problem of triangle enumeration, even assum-

ing the highest possible message lower bound of Ω(m), this would
directly imply a round lower bound of Ω̃(m/k2) (since Θ(k2) mes-

sages can be exchanged in one round) and not the tight Ω̃(m/k5/3)
shown in this paper. Furthermore, our approach can show round-

message tradeoffs giving stronger message lower bounds for algo-

rithms constrained to run in a prescribed round bound compared to

what one can obtain using communication complexity approaches.

In particular, for triangle enumeration, we show that any round-

optimal algorithm that enumerates all triangles with high probabil-

ity in the k-machine model needs to exchange a total of Ω̃(mk1/3)
messages in the worst case.

We emphasize that our General Lower Bound theorem gives

non-trivial lower bounds only when the output size is large enough,

but it still works seamlessly across all output sizes. To illustrate this,

we note that the triangle enumeration lower bound of Ω̃(m/k5/3)
is true only for dense graphs, i.e.,m = Θ(n2). In fact, the real lower

bound derived through our theorem is Ω̃((t/k)2/3/k), where t is the
number of triangles in the input graph; this bound can be shown to

apply even for sparse (random) graphs by extending our analysis.

Entropy-based information-theoretic arguments have been used

in prior work [19]. However, there is a crucial difference, as ex-

plained next. In [19], it was shown that Ω̃(n/k) is a lower bound
for computing a spanning tree (ST) of a graph. However, this lower

bound holds under the criterion that the machine which hosts the

vertex (i.e., its home machine) must know at the end of the computa-

tion the status of all of its incident edges (whether they belong to a

ST or not) and output their respective status. The lower bound proof

exploits this criterion to show that any algorithm will require some

machine receiving Ω(n) bits of information, and since any machine

has k−1 links, this gives a Ω̃(n/k) lower bound. This argument fails

if we require the final status of each edge to be known by some ma-

chine (different machines might know the status of different edges);

indeed under this output criterion, it can be shown that MST can

be solved in Õ(n/k2) rounds [27]. On the other hand, the lower

bound proof technique of this paper applies to the less restrictive

(and more natural) criterion that any machine can output any part

of the solution. In [4], a direct sum theorem is shown that yields a

communication complexity lower bound for set disjointness. The

method of [4] can be applied to obtain lower bounds for functions

3
The lower bound graph can be a complete graph with random edge weights.
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F that can be “decomposed” as F (x, y) = f (д(x1,y1), . . . ,д(xn ,yn )),
by reduction from the information complexity of the function д.
These methods do not seem applicable to our setting as we are

considering problems where the output size is large.

Upper Bounds. The Conversion Theorem of [19] directly trans-

lates algorithms designed for a message passing model for network

algorithms to the k-machine model, and almost all the previous

algorithms [7, 19, 32] were derived using this result. In contrast,

the present paper does not use the Conversion Theorem; instead, it

gives direct solutions for the problems at hand, leading to improved

algorithms with significantly better round complexity.

While our algorithms use techniques specific to each problem,

we point out a simple, but key, unifying technique that proves

very useful in designing fast algorithms, called randomized proxy
computation.4 Randomized proxy computation is crucially used

to distribute communication and computation across machines to

avoid congestion at any particular machine, which instead is redis-

tributed evenly across all the machines. This is achieved, roughly

speaking, by re-assigning the executions of individual nodes uni-
formly at random among the machines. Proxy computation allows

one to move away from the communication pattern imposed by

the topology of the input graph, which can cause congestion at a

particular machine, to a more balanced communication overall.

1.4 Related Work
For a comparison of the k-machine model with other parallel and

distributed models proposed for large-scale data processing, includ-

ing Bulk Synchronous Parallel (BSP) model [37], MapReduce [18],

and the congested clique, we refer to [38]. In particular, according

to [38], “Among all models with restricted communication the “big

data” [k-machine] model is the one most similar to the MapReduce

model".

Klauck et al. [19] present lower and upper bounds for several

fundamental graph problems in the k-machine model. In particular,

they presented weaker upper bounds for PageRank and triangle

verification (which also works for triangle enumeration), which

are substantially improved in this paper. They do not present any

non-trivial lower bound for any of these problems. Also, as pointed

out earlier, some lower bounds shown in [19], most notably the

Ω(n/k2) lower bound of MST (under random input partition and

under the requirement that each MST edge has to be output by some
machine), can be shown in a simpler way using the General Lower

Bound Theorem of this paper. Pandurangan et al. [27] showed

Õ(n/k2)-round algorithms in the k-machine model for connectivity,

MST, approximate min-cut, and other graph verification problems.

The algorithmic techniques used in that paper (except for the ran-

domized proxy computation) cannot be applied for PageRank and

triangle enumeration.

The k-machine model is closely related to the BSP model [37];

it can be considered to be a simplified version of BSP, where local

computation is ignored and synchronization happens at the end

of every round (the synchronization cost is ignored). Unlike BSP

which has a lot of different parameters (which typically makes it

harder to prove rigorous theoretical bounds [38]), the k-machine

4
Similar ideas have been used in parallel and distributed computation in different

contexts, see, e.g., [35, 36].

model is characterized by one parameter (the number of machines)

which allows one to develop and prove clean bounds and serves as

a basis for comparing various distributed algorithms.

The k-machine model is also closely related to the classical

CONGEST model [30], and in particular to the congested clique
model, which recently has received considerable attention (see, e.g.,

[5, 12, 14, 15, 17, 20, 21]). The main difference is that the k-machine

model is aimed at the study of large-scale computations, where

the size n of the input is significantly bigger than the number of

available machines k , and thus many vertices of the input graph

are mapped to the same machine, whereas the two aforementioned

models are aimed at the study of distributed network algorithms,

where n = k and each vertex corresponds to a dedicated machine.

More “local knowledge” is available per vertex (since it can access

for free information about other vertices in the same machine) in

the k-machine model compared to the other two models. On the

other hand, all vertices assigned to a machine have to communicate

through the links incident on this machine, which can limit the

bandwidth (unlike the other two models where each vertex has a

dedicated processor). These differences manifest in the design of

fast algorithms for these models. In particular, the best distributed

algorithm in the congested clique model may not directly yield the

fastest algorithm in the k-machine model [27].

2 LOWER BOUNDS
2.1 A General Lower Bound Theorem
In this section we present a result, called General Lower Bound
Theorem, which provides a general way to obtain round lower

bounds in the k-machine model. In Section 2.2 we provide the full

of this result. We will then apply it to derive lower bounds for two

graph problems, namely, PageRank computation (Section 2.3) and

triangle enumeration (Section 2.4).

Consider an n-vertex input graph G partitioned across the ma-

chines via the random-vertex partition in the k-machine model.

Note that the input graph G is sampled from a probability distri-

bution on a (suitably chosen) set of graphs G. (For example, in

the case of PageRank, G is the set of all possible instantiations of

the lower bound graph H shown in Figure 1.) Consider a partition

p = (p1, . . . ,pk ) of an input graphG . We use boldface p to denote a

vector and pi to denote the i-th entry of p, which corresponds to the
subgraph assigned to machineMi . In our analysis, we frequently

condition on the event that a subgraph pi ⊆ G is assigned to a

certain machine Mi . To simplify the notation, we also use pi to
denote the event that this happens, e.g., Pr[E | pi ] is the probability
of event E conditioned on the assignment of pi to machineMi .

Let Πi be the random variable representing the transcript of

the messages received by machine Mi across its k − 1 links when
executing a given algorithm A for (at most) T rounds, and let GP

be the set of all possible partitions of the graphs in G among the

k machines. The execution of algorithm A is fully determined by

the given input partitioning p ∈ GP and the public random bit

string R ∈ RS, where RS is the set of all possible strings that

are used as random bit string by the algorithm. Note that R is

itself a random variable. Similarly to above, we write Pr[E | pi , r ]
when conditioning event E on the events that the public random

string is r and machine Mi obtains subgraph pi as its input, where
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p = (p1, . . . ,pi , . . . ,pk ) and (p, r ) ∈ GP × RS. We use Ai (p, r ) to
denote the output of machine Mi , when executing the algorithm

for a given (p, r ). For technical reasons, we assume that the output

Ai (p, r ) also includesMi ’s initial graph input pi and the random

string r .

Theorem 2.1 (General Lower Bound Theorem). Let IC =
IC(n,k) be a positive integer-valued function called information cost,
and let Z be a random variable depending only on the input graph.
Consider a T -round ϵ-error algorithm A, for some ϵ = o(IC/H[Z ]),
whereH[Z ] is the entropy ofZ . Let Good ⊆ GP×RS be a set of pairs
(p, r ) where p = (p1, . . . ,pk ) ∈ GP is an input partition and r ∈ RS
is a public random string, and |Good| ⩾ (1 − ϵ − n−Ω(1))|GP × RS|.
Suppose that, for every (p, r ) ∈ Good, there exists a machine Mi
receiving input graph pi and outputting Ai (p, r ), such that

Pr[Z = z | pi , r ] ⩽
(
1

2

)H[Z ]−o(IC)
, (1)

Pr[Z = z | Ai (p, r ),pi , r ] ⩾
(
1

2

)H[Z ]−IC
, (2)

for every z that has nonzero probability conditioned on events Outi =
Ai (p, r ), Pi =pi , and R=r . Then, if B denotes the per-round commu-
nication link bandwidth, it holds that

T = Ω

(
IC

Bk

)
. (3)

Intuition. We can think of Premise (1) as bounding the initial

knowledge of the machines about the random variable Z . On the

other hand, Premise (2) says that at least one machine is able to

increase its knowledge on the value of Z eventually, which we

formalize by conditioning on its output in addition to the initial

knowledge. Then, if there is a large set (calledGood) of inputs where
these premises hold, then our theorem says that the worst-case

time of the algorithm must be sufficiently large. These insights are

formally captured by the self-information or surprisal of an event E,
which is defined as log

2
(1/Pr[E]) [33] and measures the “amount

of surprise” or information contained in observing E. Premises (1)

and (2) imply that, from some machine Mi ’s point of view, the

occurrence of {Z =z} is “Ω(IC) more surprising” given its initial

knowledge, compared to observing this event after computing the

output. We can show that this surprisal change IC bounds from

below the maximum communication cost over all machines. In

this light, (3) says that the run time of the algorithm is roughly a

(1/kB)-fraction of the maximum expected information cost.

2.2 Proof of the General Lower Bound
Theorem

In the proof of Theorem 2.1 we make use of some standard defini-

tions in information theory, such as entropy, denoted with H, and
mutual information, denoted with I (see, e.g., [8]).

Critical Index. For a given input graph partition p and a random

string r , we are interested in identifying the machine that has the

maximum expected value of the amount of information that its

output reveals about the random variable Z . This motivates us to

define the critical index function as

ℓ(p, r ) := argmax

1⩽i⩽k
I[Outi ;Z | pi , r ], (4)

and define randomvariablesΠ∗(p, r ) = Πℓ(p,r )(p, r ) andOut∗(p, r ) =
Outℓ(p,r )(p, r ). Intuitively speaking, for each (p, r ) ∈ GP ×RS, the
random variable Out∗ is the output of the machine Mi (where i
depends on p, r ) that attains the maximum mutual information be-

tween its output and the random variable Z . For a given (p, r ), we
use p∗ = pℓ(p,r ) to denote the input partition of machine Mℓ(p,r ).
Note that Z depends only on the input graph, whereas Π∗, P∗, and
Out∗ depend on the input graph and, in addition, also on the chosen

partition p and random string r . From (4), we immediately obtain

the following property of the critical index.

Observation 1. For all (p, r ) ∈ GP × RS, and for all i ∈ [k], it
holds that

I[Out∗;Z | p∗, r ] ⩾ I[Outi ;Z | pi , r ],
where p∗ = pℓ(p,r ) and p = (p1, . . . ,pℓ(p,r ), . . . ,pk ).

Lemma 2.2. For every (p, r ) ∈ GP×RS where p = (p1, . . . ,p∗, . . . ,pk ),
it holds that

I[Π∗;Z | p∗, r ] ⩾ I[Out∗;Z | p∗, r ].

Lemma 2.3. For all (p, r ) ∈ Good where p = (p1, . . . ,pk ), there is
an i ∈ [k] (which satisfies (1) and (2) in the premise of the theorem)
such that I[Outi ;Z | pi , r ] ⩾ IC − o(IC).

Proof. For a given (p, r ) ∈ Good, letMi be a machine satisfying

(2) (in addition to (1)). By definition,

I[Outi ;Z | pi , r ] = H[Z | pi , r ] − H[Z | Outi ,pi , r ]. (5)

We will now bound the terms on the right-hand side. By definition,

we obtain

H[Z | pi , r ] = −
∑
z

Pr[Z = z | pi , r ] log2 Pr[Z = z | pi , r ]

⩾ (H[Z ] − o(IC))
∑
z

Pr[Z = z | pi , r ] (by (1))

= H[Z ] − o(IC), (6)

where the last inequality follows from

∑
z Pr[Z = z | pi , r ] = 1.

In the remainder of the proof, we derive an upper bound on

H[Z | Outi ,pi , r ]. Since

H[Z | Outi ,pi , r ] ⩽ H[Z | Outi ], (7)

we will proceed by proving an upper bound on the latter term. To

simplify the notation, we use “Ai (p, r )” as a shorthand for the event
“Outi = Ai (p, r )”. By definition, we have

H[Z | Outi ] =
∑
(p,r )

Pr[Ai (p, r )] H[Z | Ai (p, r )]

=
∑

(p,r )∈Good

Pr[Ai (p, r )] H[Z | Ai (p, r )]

+
∑

(p,r )<Good

Pr[Ai (p, r )] H[Z | Ai (p, r )]

⩽
∑

(p,r )∈Good

Pr[Ai (p, r )] H[Z | Ai (p, r )]

+ H[Z ]
©­«

∑
(p,r )<Good

Pr[Ai (p, r )]
ª®¬, (8)

where the last inequality follows from H[Z ] ⩾ H[Z | Ai (p, r )].
Intuitively speaking, the first sum in (8) represents the remaining
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uncertainty of Z upon termination, assuming machines start with

a hard input assignment (i.e., in Good), whereas the second term

is weighted by the probability that either the input was easy or

the algorithm failed (i.e. � Good). The following claim bounds the

entropy term in the first sum of (8), where (p, r ) is restricted to the
set Good.

Claim 1. H[Z | Ai (p, r )] � H[Z ] − IC.

We will now derive an upper bound on the second sum in (8).

Claim 2.
∑
(p,r )�Good Pr[Ai (p, r )] � ϵ + n−Ω(1).

Plugging the bounds in Claims 1 and 2 into (8), we get

H[Z | Outi ] � (H[Z ] − IC)
∑

(p,r )∈Good

Pr[Ai (p, r )] + H[Z ]
(
ϵ + n−Ω(1)

)
� (H[Z ] − IC) + H[Z ]

(
ϵ + n−Ω(1)

)
.

Assuming a sufficiently large constant in the exponent ofn−Ω(1), we

observe thatH[Z ] ·n−Ω(1) = o(1) since Z depends only on the input

graph. By the premise of Theorem 2.1, we have ϵ = o(IC/H[Z ]) and
IC � H[Z ], hence ϵ · H[Z ] = o(IC). From this and (7) we conclude

that

H[Z | Outi ,pi , r ] � H[Z ] − IC + o(IC).

Plugging this upper bound and the lower bound of (6) into the

right-hand side of (5), completes the proof of Lemma 2.3. �

Recall that Lemma 2.2 holds for any (p, r ) ∈ GP × RS; in par-

ticular, even if we restrict our choice to the set Good. Thus, for

(p, r ) ∈ Good, where p = (p1, . . . ,pk ), let i ∈ [k] be the index
for which Lemma 2.3 holds (which is the index of the machine

satisfying Premises (1) and (2)). This yields

H[Π∗ | p∗, r ] � I[Π∗;Z | p∗, r ]

� I[Out∗;Z | p∗, r ] (by Lemma 2.2)

� I[Outi ;Z | pi , r ] (by Obs. 1)

� IC − o(IC), (9)

where the last inequality follows from Lemma 2.3. To complete the

proof of Theorem 2.1, we will argue that the worst-case run time

needs to be large, as otherwise the entropy of machine M�(p,r )’s

transcriptΠ∗ would be less than IC−o(IC). The value ofH[Π∗ | p∗, r ]
is maximized if the distribution of (Π∗ | p∗, r ) is uniform over all

possible choices. In the next lemma we show that, during T rounds

of the algorithm, the transcript can take at most 2(B+1)(k−1)T dis-

tinct values, and thus

H[Π∗ | p∗, r ] � log2

(
2(B+1)(k−1)T

)
= O(B k T ). (10)

Lemma 2.4. Suppose that some machineMi can receive a message

of at most B bits on each of its k − 1 links in a single round. Let Γ be
the bits received by Mi over its k − 1 links during T rounds. Then, Γ

can take at most 2(k−1)(B+1)T distinct values.

Recall that the run time T is the maximum time required by any

machine Mi , over all random strings and input assignments, i.e.,

T = max(p,r ) T (p, r ). Combining (9) and (10), it follows that

T = max
(p,r )

T (p, r ) = Ω

(
IC

Bk

)
.

2.3 A Lower Bound for PageRank Computation

Theorem 2.5. LetA be an algorithm that computes aδ -approximation

of the PageRank vector of ann-node graph for a small constant δ > 0
(depending on the reset probability), and suppose that A succeeds

with probability � 1 − o(1/k). Then, the run time of A is Ω
(

n
B ·k2

)
,

assuming a communication link bandwidth of B bits per round and

k = Ω(log2 n) machines. This holds even when the input graph is

assigned to the machines via random vertex partitioning.

Wefirst give a high-level overview of the proof. As input graphG ,
we construct a weakly connected directed graphwhere the direction

of certain “important” edges is determined by a random bit vector,

and assign random IDs to all the vertices. Flipping the direction

of an important edge changes the PageRank of connected vertices

by a constant factor and hence any (correct) algorithm needs to

know about these edge directions. It is crucial that the vertex IDs

are chosen randomly, to ensure that knowing just the direction

of important edges is not sufficient for computing the PageRank

of the adjacent nodes, as these random vertex IDs “obfuscate the

position” of a vertex in the graph. This means that a machine needs

to know both, the direction of an important edge and the IDs of the

connected vertices to be able to output a correct result. By using a

Chernoff bound, we can show that the random vertex partitioning of

the input graph does not reveal too many edge-directions together

with the matching vertex IDs to a single machine. This sets the

stage for applying our generic lower bound theorem (Theorem 2.1)

to obtain a lower bound on the run time.

The Lower Bound Graph. We consider the following directed

graphH (see Figure 1) of n vertices andm = n−1 edges; for simplic-
ity, assume thatm/4 is an integer. Let X = {x1,x2, . . . ,xm/4}, U =
{u1,u2, . . . ,um/4}, T = {t1, t2, . . . , tm/4}, V = {v1,v2, . . . ,vm/4},

and let V (G) = {X ∪U ∪T ∪V ∪ {w}}. The edges between these

vertices are given as follows: For 1 � i �m/4, there is a directed

edge ui → ti , a directed edge ti → vi , and a directed edge vi → w .
The edges between ui and xi (these are the “important” edges men-
tioned above) are determined by a bit vector b of lengthm/4 where

each entry bi of b is determined by a fair coin flip: If bi = 0 then
there is an edge ui → xi , otherwise there is an edge xi → ui .
Lemma 2.6 shows that, for any 1 � i � m/4 and for any ϵ < 1,

there is a constant factor separation between the PageRank of any

node vi if we switch the direction of the edge between xi and ui .

Lemma 2.6. The following holds for the PageRank value of ver-

tices vi of G, for 1 � i � n/4: If bi = 0, then PageRank(vi ) =
(2.5−2ϵ+ϵ 2/2)ϵ

n . Otherwise, ifbi = 1, thenPageRank(vi ) � (3−3ϵ+ϵ 2)ϵ
n .

For any ϵ < 1, there is a constant factor (where the constant depends
on ϵ) separation between the two cases.

The Input Graph Distribution. We now build our input graph

G as follows. Let m = n − 1, and let ID be the random variable

representing a set of n unique integers chosen uniformly at random
from {S ⊂ [1, poly(n)] : |S | = n}. Assigning each vertex of H a

unique integer from ID (in an arbitrary predetermined way) yields

a graph G. Let G denote the set of graphs G determined by all

possible (different) ID assignments to all possible instances of H
considering all possible edge directions. Let GP be the set of all

input graph partitions (i.e., the set of all graphs in G and all their

possible input partitions) among the k machines, and let RS be
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X[m/4] = 1
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Figure 1: The graph H used to derive a lower bound on the

round complexity of PageRank computations.

the set of all random strings used by a given PageRank algorithm

A. Let Bal ⊆ GP be the set of all input partitions where each

machine receives Θ̃(n/k) vertices of the input graph. Note that
(p, r ) ∈ GP × RS fully determines the run of A. We assume that

each machineMi outputs a set {(π1, id1), . . . , (π� , id�)}, where πj
refers to the PageRank value of the vertex with ID idj . Note that
we do not make assumptions neither on which machine being the

one that outputs the PageRank of a specific vertex v (which could

be a machine that holds no initial knowledge about v and its ID),
nor on the individual sizes of these output sets.

Discovering Weakly Connected Paths of Vertices. By the ran-

dom vertex partitioning, each machine Mi initially holds Θ̃(n/k)
vertices in total. More specifically,Mi receives random sets Xi ⊆ X ,
Ui ⊆ U , Ti ⊆ T , and Vi ⊆ V , each containing O(n log(n)/k)
vertices. As machine Mi also gets to know the incident edges of

these vertices, Mi can locally check if a path induced by some

(x j1 ,uj2 , tj3 ,vj4 ) ∈ Xi × Ui × Ti × Vi is weakly connected, i.e.,

j1 = · · · = j4. Since Mi learns the output pair (PageRank(v), idv )
at zero cost, we upper bound the number of such paths that the

machines learn initially by using a Chernoff bound. That is, we

show that each machine learns at most O
(
n logn

k3/2

)
paths.

Lemma 2.7. With probability at least 1 − n−4, the initial graph

partition reveals at mostO
(
n logn
k2

)
weakly connected paths between

vertices in X and V to every machine.

Good Inputs. We define Good ⊆ Bal × RS to be the set of all

(balanced) inputs and random strings where (1)A correctly outputs

the PageRank of each vertex, (2) partition p is “balanced”, i.e., each

machine is assigned O(n logn/k) vertices (and hence O(n logn/k)
edges sincem = O(n)), and (3) the partitioning is such that each
machine knows at most O((n logn)/k2) weakly connected paths
initially; we define Bad = GP × RS \ Good.

Lemma 2.8. (A) For any (p, r ) ∈ Good, algorithm A is correct

and there must be at least one machineMi whose output list contains

Ω(n/k) vertices ofV . (B) |Good| �
(
1 − o(1/k) − n−Ω(1)

)
|GP×RS|.

To instantiate Theorem 2.1, we show in Lemma 2.9 and Lemma 2.10

that we can satisfy the Premises (1) and (2), by setting IC =m/4k =
Θ(n/k). Plugging the above value of IC in (3) then gives the claimed
lower bound.

Lemma 2.9. Let Z be the random variable representing the set

of pairs {(b1,v1), . . . , (bm/4,vm/4)}, where bj refers to the direction
of the edge (x j ,uj ) in the weakly connected path (x j ,uj , tj ,vj ) of
the input graph of Figure 1. Then, for each (p, r ) ∈ Good, where

p = (p1, . . . ,pk ), and for every possible choice of z, it holds that

Pr[Z = z | pi , r ] � 2−(m/4−O (n log(n)/k2)).

Lemma 2.10. For each (p, r ) ∈ Good, where p = (p1, . . . ,pk ), there
exists a machineMi with output Ai (p, r ) such that, for every choice

of z for Z (defined in Lemma 2.9) that has nonzero probability con-

ditioned on Ai (p, r ),pi , r , it holds that Pr[Z = z | Ai (p, r ),pi , r ] �
1/2

m
4 −

m
4k .

2.4 A Lower Bound for Triangle Enumeration

We first give a high-level overview of the proof. The input graphs

that we use for our lower bounds are sampled according to the

Gn,1/2 Erdös-Renyi random graph model. We will argue that enu-

merating triangles implies a large reduction of the entropy of the

characteristic vector of edges Z , i.e., Z is a bit vector whose entries

reflect the presence/absence of an edge in the input graph.We prove

that initially the machines do not have significant knowledge of

Z , which is equivalent to having a small probability for the event
{Z = z}, for any z. Then, we show that any machine that outputs

t/k triangles, for a parameter t , must have reduced its uncertainty

about Z by approximately (t/k)2/3 bits. In other words, the infor-
mation obtained by such a machine throughout the course of the

algorithm is high. We apply Theorem 2.1 to obtain a lower bound

on the run time of any algorithm. This yields the following result.

Theorem 2.11. There exists a class of graphs G of n nodes for

which every distributed algorithm that solves triangle enumeration

in the k-machine model has a time complexity of Ω
(

n2

B ·k5/3

)
, assum-

ing a link bandwidth of B bits per round, k = Ω(logn)machines, and

an error probability of ϵ = o(k−2/3). This holds even when the input

graph is assigned to the machines via random vertex partitioning.

The Input Graph Distribution.We choose our input graphs ac-

cording to the Erdös-Renyi random graph model Gn,1/2, which

samples an n-node graph where each possible edge is included

independently with probability 1/2. We use GP to denote the set

of all possible partitions of all possible sampled n-node graphs and,
similarly to before, denote the set of all random strings used by the

algorithm by RS.

Let Z be the characteristic vector of the edges5 of the input

graph G. Note that the execution of A is fully determined by the

given graph input partition p = (p1, . . . ,pk ) ∈ GP and the shared

(among all machines) random bit string r ∈ RS, where RS is the

set of all possible strings that are used as random bit string by the

algorithm. Hence we have |GP × RS| possible outcomes when

running A on a graph sampled from G.

5The characteristic vector specifies the graphG . Order the
(n
2

)
possible edges in some

fixed ordering; if the j th edge in this ordering appears in G , then Z j = 1, otherwise it
is 0.
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Good Inputs.We define Good ⊆ GP × RS to be the set of input

pairs (p, r ) such that (1)A performs correctly for the graph partition

p of graph G and the random string r , (2) partition p is “balanced”,

i.e., each machine is assigned O(n log(n)/k) vertices (and hence
O(n2 log(n)/k) edges), and (3) G has � t triangles, for some fixed
t = Θ(

(n
3

)
).

Similarly as for Theorem 2.5, we prove that Pr[Z =z | pi , r ] �

1/2(
n
2)−O(n

2 logn/k) and Pr[Z = z | oi ,pi , r ] � 1/2
(n2)−

1
3

(
t
k
−O

(
n2 logn

k

))2/3
.

Then, setting IC = Θ(n2/k2/3), and applying Theorem 2.1, com-

pletes the proof of Theorem 2.11.

A tight lower bound in the congested clique. Our analysis ex-

tends in a straightforward way to the congested clique model where,

in a synchronous complete network of n machines, every machine
u receives exactly one input vertex of the input graph and gets to
know all its incident edges. Together with the deterministic upper

bound of O(n1/3) shown in [11], we have the following.

Corollary 2.12. The round complexity of enumerating all trian-

gles in the congested clique ofn nodes with high probability of success

is Ω
(
n1/3

B

)
, assuming a link bandwidth of B bits. This bound is tight

up to logarithmic factors.

Message lower bounds.We have the following.

Corollary 2.13. Let A by any algorithm that enumerates all

triangles with high probability and terminates in Õ( n2

k5/3
) rounds.

Then, the total message complexity in the k-machine model of A

is Ω̃(n2k1/3). For Õ(n1/3)-rounds algorithms in the congested clique,

the message complexity is Ω̃(n7/3).

3 UPPER BOUNDS

3.1 An Almost Optimal Algorithm for

PageRank Computation

In this section we present a simple distributed algorithm to compute

the PageRank vector of an input graph in thek-machinemodel. This
algorithm has a round complexity of Õ(n/k2), which significantly
improves over the previous Õ(n/k)-round solution [19].
We first recall the distributed random walk-based Monte-Carlo

algorithm for computing PageRank, for a given reset probability

ϵ , as described in [10]. This algorithm is designed and analyzed

in the standard CONGEST model, where each vertex of the graph

executes the algorithm. The algorithm is as follows. Initially, each

vertex creates c logn random walk tokens, where c = c(ϵ) is a
parameter defined in [10] (c(ϵ) is inversely proportional to ϵ), which
are then forwarded according to the following process: when a node

u receives some random walk token ρ, it terminates the token with
probability ϵ and, with probability 1−ϵ , forwards it to a neighbor of
u chosen uniformly at random. Each node keeps a variableψv , for
each of its nodesv , which counts the number of randomwalk tokens

that were addressed to v (i.e., the total number of all random walks

that visitv). Each nodev then estimates its PageRank by computing
ϵψv

cn logn
. It can be shown that this estimate gives a δ -approximation,

for any constant δ > 0, to the PageRank value of each node v with

high probability, and that this algorithm terminates in O(logn/ϵ)
rounds with high probability [10]. The key idea to obtain such a fast

runtime is to send only the counts of the random walks, instead of

keeping track of the random walks from different sources. Clearly,

only the number (i.e., count) of the random walks visiting a node at

any step is required to estimate the PageRank. In the full paper, we

describe why a naïve implementation of the above approach only

yields a running time of Õ(n/k).
To avoid the pitfalls of a naïve implementation, we describe an

approach that directly exploits the k-machine model. On the one
hand, our goal is to reduce the total amount of communication

while, on the other hand, we need to ensures that the incurred

message complexity is balanced for the available machines. This

motivates us to treat vertices differently depending on how many

tokens they hold. We say that a vertex u has low-load in iteration

r if, conceptually, the machine that hosts u considers � k tokens
to be held at u. Otherwise, we say that u has high-load in iteration

r . Note that, throughout the course of our algorithm, the value of
tokens[v] depends on the topology of the input graph and hence
a vertex can change its status w.r.t. being a high-load or low-load

vertex.

In our algorithm (Algorithm 1), each machine M stores an array

tokens[u], which has an entry for each vertex u hosted at M . Ini-

tially, we generate Θ(logn) tokens for each vertex which we use
as the initialization value of tokens. Then, we mimic the (parallel)

random walk steps of [10] by performing Θ(log(n)/ϵ) iterations
where, in each iteration, each machineM first considers the tokens

stored for its low-load vertices. For each such token held at one of

its vertices u,M uniformly at random selects a neighboring vertex

v and keeps track of how many tokens have chosen v in a separate

array α[v]. In particular,M also increments the same entry α[v] if
v is chosen as the destination for some token of a distinct low-load

vertexw atM . Then,M sends a message 〈α[v], dest:v〉 for each v
where α[v] is nonzero, which is subdelivered to the destination
machine using random routing (cf. Lemma 3.2). This ensures that

all the messages are delivered in Õ(n/k2) rounds.
We now describe how high-load vertices are processed, each

of which can hold up to O(n logn) tokens. To avoid potentially
sending a large number of messages for a single high-load vertex

u, machine M considers the index set I of machines that host at
least one neighbor of u. Then, for each token of u, machine M
samples an index from I and keeps track of these counts in an array
β , which has an entry for each machine in I . Finally,M generates

one message of type 〈β[j], src:u〉, for each entry j where β[j] > 0
and sends this count message directly to the respective destination

machine. We show that these messages can be delivered in Õ(n/k2)
rounds by proving that, with high probability, each machine holds

Õ(n/k2) high-load vertices in any given iteration of the algorithm.

Lemma 3.1. Every machineMi sends at most Õ(n/k)messages in

any iteration r with high probability.

A key ingredient in the analysis of the algorithm is the following

simple lemma, which quantifies how fast some specific routing can

be done in the k-machine model.

Lemma 3.2. Consider a complete network of k machines, where

each link can carry one message of O(polylogn) bits at each round.

If eachmachine is source ofO(x)messages whose destinations are dis-

tributed independently and uniformly at random, or each machine is
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Algorithm1Computing the PageRankwith reset probability ϵ > 0.
Code for machineMi .

1: Let Vi denote the vertices hosted by machineMi

2: Initalize array tokens[u] ← �c logn
, for u ∈ Vi , where c > 0
is a suitable constant � tokens[u] represents the current
number of tokens at vertex u

3: for Θ(log(n)/ϵ) iterations do
4: for u ∈ Vi do
5: sample t from distribution Binomial(tokens[u], ϵ)
6: tokens[u] ← tokens[u] − t � Terminate each token

with probability ϵ

7:

8: Initialize array α[v] ← 0, for each v ∈ V � Process the

low-load vertices

9: for each vertex u ∈ Vi where tokens[u] < k do

10: let Nu ⊆ V be the set of neighbors of vertex u
11: while tokens[u] > 0 do
12: sample v uniformly at random from Nu
13: α[v] ← α[v] + 1
14: tokens[u] ← tokens[u] − 1

15: for each v ∈ Vi where α[v] > 0 do
16: send message 〈α[v], dest: v〉 to the machine hosting

vertex v using random routing

17:

18: for each vertex u ∈ Vi where tokens[u] � k do � Process

the high-load vertices

19: let I ⊆ [k] be the index set of the machines that host a
neighbor of u

20: initialize array β[j] ← 0, for each j ∈ I
21: while tokens[u] > 0 do
22: let nj,u be number of neighbors of u hosted at ma-

chineMj and let du be u’s degree

23: sample index j from distribution
(
n1,u
du
, . . . ,

nk,u
du

)
24: β[j] ← β[j] + 1
25: tokens[u] ← tokens[u] − 1

26: for each j ∈ I where β[j] > 0 do
27: send message 〈β[j], src: u〉 to machineMj

28:

29: for each received message of type 〈cw , dest:w〉 do

30: tokens[w] ← tokens[w] + cw

31: for each received message of type 〈cv , src: v〉 do
32: while cv > 0 do
33: let Nv ⊆ V be the set of neighbors ofv hosted atMi

34: samplew uniformly at random from Nv
35: tokens[w] ← tokens[w] + 1

36: cv ← cv − 1

destination of O(x) messages whose sources are distributed indepen-

dently and uniformly at random, then all the messages can be routed

in O((x logx)/k) rounds w.h.p.

Lemma 3.3. Consider any iteration r of Algorithm 1. Then, with

high probability, all messages generated at iteration r can be deliv-

ered in Õ(n/k2) rounds.

From Lemma 3.3 we conclude that all messages generated in a

single iteration of Algorithm 1 can be delivered in Õ(n/k2) rounds
with high probability. A union bound implies the following result.

Theorem 3.4. Algorithm 1 computes a δ -approximation of the

PageRank vector of an n-node graph in the k-machine model with

high probability in Õ(n/k2) rounds, for any constant δ > 0.

3.2 An Almost Optimal Algorithm for Triangle

Enumeration

In this section we present a randomized algorithm that enumerates

all the triangles of an input graph G = (V ,E), and that terminates

in Õ(m/k5/3+n/k4/3) rounds w.h.p. This bound does not match the

(existential) Ω̃(m/k5/3) lower bound provided in Section 2.4 only
for very sparse graphs.

Our algorithm is a generalization of the algorithm TriPartition of

Dolev et al. for the congested clique model [11], with some crucial

differences explained next. The key idea, which in its generality

can be traced back to [2], is to partition the set V of nodes of G

in k1/3 subsets of n/k1/3 nodes each, and to have each of the k
machines to examine the edges between pairs of subsets in one of

the (k1/3)3 = k possible triplets of subsets (repetitions are allowed).
The algorithm is as follows. Each node picks independently and

uniformly at random one color from a set C of k1/3 distinct colors
through a hash function h : V → C initially known by all the

machines. This gives rise to a color-based partition of the vertex set

V into k1/3 subsets of Õ(n/k1/3) nodes each, w.h.p. A deterministic

assignment of triplets of colors, hard-coded into the algorithm,

logically assigns each of the k possible triplets of such subsets to
one distinct machine. Each machine then collects all the edges

between pairs of subsets in its triplet. This is accomplished in two

steps: (1) For each of the edges it holds, each machine designates

one random machine (among the k machines) as the edge proxy for
that edge, and sends all its edges to the respective edge proxies.

The designation of an edge itself is done by the following proxy

assignment rule (this is necessary to avoid congestion at any one

machine): A machine that has a node v whose degree is at least

2k logn requests all other machines to designate the respective edge
proxies for each of the incident edges of node v . If two machines
request each other to designate the same edge (since their endpoints

are hosted by the respective machines), then such a tie is broken

randomly. (2) In the second step, all the machines collect their

required edges from the respective proxies: since each edge proxy

machine knows the hash function h as well as the deterministic
assignment of triplets, it can send each edge to the machines where

it is needed. Then, each machine simply enumerates all the triangles

in its local subgraph.

We now argue that the above algorithm correctly enumerates

all the triangles of a graph G, and analyze its round complexity. A
key step in the analysis of the complexity is to bound from above

the number of edges assigned to each machine. Observe that the

number of edges between pairs of subsets of one triplet is no larger

than the number of edges in the subgraph of G induced by the

nodes of one triplet; in turn, because of the random color-based

partition of the vertices made by the algorithm, the latter quantity

is asymptotically equivalent to the number of edges in the subgraph
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of G induced by a set of (in this case, Õ(n/k1/3)) randomly-chosen

nodes of a graph. Thus, we shall concentrate on the latter quantity

(which is of interest in its own right). To this end, we will use the

following concentration result due to Rödl and Ruciński [34].

Proposition 3.5 ([34, Proposition 1]). Let, for a graph G =
(V ,E), m < ηn2, and let R be a random subset of V of size |R | = t
such that t ⩾ 1/3η. Let e(G[R]) denote the number of edges in the
subgraph induced by R. Then, for some c > 0,

Pr

[
e(G[R]) > 3ηt2

]
< t · e−ct

We are now ready to analyze the algorithm.

Theorem 3.6. There is a distributed algorithm for the k-machine
model that enumerates all the triangles of an n-node,m-edge graph
in Õ(m/k5/3 + n/k4/3) rounds with high probability.

4 CONCLUSIONS
We presented a general technique for proving lower bounds on the

round complexity of distributed computations in a general message-

passing model for large-scale computation, and showed its appli-

cation for two prominent graph problems, PageRank and triangle

enumeration. We also presented near-optimal algorithms for these

problems, which can be efficiently implemented in practice.

Our lower bound technique works by relating the size of the out-

put to the number of communication rounds needed, and could be

useful in showing lower bounds for other problems where the out-

put size is large (significantly more than the number of machines),

such as sorting, matrix multiplication, shortest paths, matching,

clustering, and densest subgraph.
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