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Abstract—The amount of data moved over dedicated and
non-dedicated network links increases much faster than the
increase in the network capacity, but the current solutions fail to
guarantee even the promised achievable transfer throughputs. In
this paper, we propose a novel dynamic throughput optimization
model based on mathematical modeling with offline knowledge
discovery/analysis and adaptive online decision making. In offline
analysis, we mine historical transfer logs to perform knowledge
discovery about the transfer characteristics. Online phase uses
the discovered knowledge from the offline analysis along with
real-time investigation of the network condition to optimize the
protocol parameters. As real-time investigation is expensive and
provides partial knowledge about the current network status,
our model uses historical knowledge about the network and data
to reduce the real-time investigation overhead while ensuring
near optimal throughput for each transfer. Our novel approach
is tested over different networks with different datasets and
outperformed its closest competitor by 1.7x and the default case
by 5x. It also achieved up to 93% accuracy compared with the
optimal achievable throughput possible on those networks.

I. INTRODUCTION

Applications in a variety of spaces — scientific, industrial,
and personal — now generate more data than ever before.
Large scientific experiments, such as high-energy physics
simulations [1], [2], climate modeling [3], [4], environmental
and coastal hazard prediction [5], [6], genomics [7], [8], and
astronomic surveys [9], [10] generate data volumes reaching
several Petabytes per year. Data collected from remote sen-
sors and satellites, dynamic data-driven applications, digital
libraries and preservations are also producing extremely large
datasets for real-time or offline processing [11], [12]. With the
emergence of social media, video over IP, and more recently
the trend for Internet of Things (IoT), we see a similar trend
in the commercial applications as well, and it is estimated
that, in 2017, more IP traffic will traverse global networks
than all prior “Internet years” combined. The global IP traffic
is expected to reach an annual rate of 1.4 zettabytes, which
corresponds to nearly 1 billion DVDs of data transfer per day
for the entire year [13].
As data becomes more abundant and data resources become

more heterogeneous, accessing, sharing and disseminating
these data sets become a bigger challenge. Managed file
transfer (MFT) services such as Globus [14], PhEDEx [15],
Mover.IO [16], and B2SHARE [17] have allowed users to
easily move their data, but these services still rely on the

users providing specific details to control this process, and
they suffer from inefficient utilization of the available network
bandwidth and far-from-optimal end-to-end data transfer rates.
End-to-end data transfer performance can be significantly
improved by tuning the application-layer transfer protocol
parameters (such as pipelining, parallelism, and concurrency
levels). Sub-optimal choice of these parameters can lead
to under-utilization of the network or may introduce link
congestion, queuing delays, packet loss, and end-system over-
utilization. It is hard for the end users to decide on optimal
levels of these parameters statically, since static setting of these
parameters might prove sub-optimal due to the dynamic nature
of the network which is very common in a shared environment.
In this paper, we propose a novel two-phase dynamic

transfer throughput optimization model for big data based
on mathematical modeling with offline knowledge discov-
ery/analysis and adaptive online decision making. During the
offline analysis phase, we mine historical transfer logs to per-
form knowledge discovery about the transfer characteristics.
During the online phase, we use the discovered knowledge
from the offline analysis along with real-time investigation
of the network condition to optimize the protocol param-
eters. As real-time investigation is expensive and provides
partial knowledge about the current network status, our model
uses historical knowledge about the network and data to
reduce the real-time investigation overhead while ensuring
near optimal throughput for each transfer. We have tested our
network and data agnostic solution over different networks
and observed up to 93% accuracy compared with the optimal
achievable throughput possible on those networks. Extensive
experimentation and comparison with best known existing
solutions in this area revealed that our model outperforms
existing solutions in terms of accuracy, convergence speed,
and achieved end-to-end data transfer throughput.
In summary, the contributions of this paper include: (1) it

performs end-to-end big data transfer optimization completely
at the application-layer, without any need to chance the exist-
ing infrastructure nor to the low-level networking stack; (2) it
combines offline knowledge discovery with adaptive real-time
sampling to achieve close-to-optimal end-to-end data transfer
throughput with very low sampling overhead; (3) it constructs
all possible throughput surfaces in the historical transfer logs
using cubic spline interpolation, and creates a probabilistic



confidence region with Gaussian distribution to encompass
each surface; (4) in real time, it applies adaptive sampling
over the pre-computed throughput surfaces to provide faster
convergence towards maximally achievable throughput; (5) it
outperforms state-of-the-art solutions in this area in terms of
accuracy, convergence speed, and achieved throughput.
The rest of the paper is organized as follows: Section II

presents the problem formulation; Section III discusses our
proposed model; Section IV presents the evaluation of our
model; Section V describes the related work in this field; and
Section VI concludes the paper with a discussion on the future
work.

II. PROBLEM FORMULATION

Application level data transfer protocol parameters (i.e.,
concurrency, parallelism, and pipelining) can have different
impacts on transfer throughput of files with different sizes and
the number of files in the dataset. Concurrency (cc) controls
the number of server processes which can transfer different
files concurrently. It can accelerate the transfer throughput
when a large number of files needs to be transferred. Paral-
lelism ( p) is the number of data connections that each server
process can open to transfer the different portions of the same
file in parallel. It can be a good option for large or medium
files. Therefore, the number of parallel data streams is (cc×p).
Pipelining ( pp) is useful for small file transfers. It eliminates
the delay imposed by the acknowledgment of the previous file
before starting the next file transfer. For high latency wide-area
networks, this delay might prove highly sub-optimal.
Given a source endpoint es and destination endpoint ed with

a link bandwidth b and round trip time rtt; a dataset with a
total size fall, average file size favg ,and number of files n;
and set of protocol parameters θ = {cc, p, pp}, the throughput
th optimization problem can be defined as:

argmax
{cc,p,pp}

∫ tf

ts

th(es, ed, b, rtt, favg, n, cc, p, pp, lctd, lext) (1)

where ts and tf are the transfer start and end times
respectively. As we are optimizing throughput function in
a shared environment, other concurrent transfers can affect
the behavior of achievable throughput. We can account the
incoming and outgoing transfers happening from the source
and destination nodes. Our historical logs contain information
of such transfers. We define the load from those contending
transfers as lctd. There might exist other transfers with little-
known information. We define the load from those external
transfers as lext.

We have made some assumptions when defining our model,
which are expressed below.
Assumption 1: Competing Transfers can achieve aggregate

throughput, T =
∑N

i=1 thi, where N is the number of TCP
streams for all competing transfers, and thi is the throughput
of individual transfer i.
Assumption 2: After explaining the effect of known com-

peting transfers, the fluctuation on transfer behavior depends
on the intensity of the external load lext.

Assumption 3: Maximum achievable throughput can be
bounded by the end-to-end link bandwidth, disk read speed
at the source, or disk write speed at the destination. Given
disk read speed vread, disk write speed vwrite, and the link
bandwidth b, the maximally achievable end-to-end throughput
thmax would be:

thmax ! min{b, vwrite, vread} (2)

Assumption 4: Our model is for application-level optimiza-
tion of the network data transfer protocols and it is agnostic
of the underlying file systems. Due to the use of concurrency
and parallelism, it would provide superior performance when
parallel file systems are used at the end nodes. Performance
degradation due to hardware misconfiguration, storage access
delay, and intermediate network device bottlenecks could limit
the achievable throughput. Eliminating such bottlenecks might
increase the limit of achievable throughput.

III. PROPOSED MODEL

Our model consists of two phases: (i) offline knowledge
discovery (ii) online adaptive sampling. The offline analysis
module is an additive model. That means when new logs are
generated for a certain period of time, we do not need to
combine them with previous logs and perform analysis on the
entire log (old log + new log) from scratch. Users do not
need to perform offline analysis during each transfer. Data
transfer logs can be collected for a certain period of time and
then the additive offline analysis can be performed on those
new logs only. For services like Globus, historical logs can be
analyzed by a dedicated server and results can be shared by
the users. When a user starts data transfer process, the system
initiates online adaptive sampling. Adaptive sampling module
queries the results of the offline analysis module which can
be answered in constant time. The adaptive sampling guided
by offline analysis provides faster convergence towards near-
optimal throughput.

A. Offline Analysis
Offline analysis collects useful information from the histor-

ical logs so that those information can be used by the online
module to converge faster. Offline analysis consists of five
phases: (1) clustering logs in hierarchy; (2) surface construc-
tion; (3) finding maximal parameter setting; (4) accounting
for known contending transfers; and (5)identifying suitable
sampling regions.
1) Clustering Logs: Historical data transfer logs contain in-

formation about the verity of transfers performed by the users.
Therefore, a natural approach would be cluster the logs based
on different matrices. Assuming that we have a historical log,
L of nlog log entries, We can define our clustering problem
as (L,m), where m is the number of target clusters. The
clusters of the historical logs are C = {C1, ..., Cm}, where
{n1, ..., nm} denote the sizes of the corresponding clusters.
We consider a pairwise distance function, d(x , x ′) where
x, x′ ∈ L. We have tested clustering algorithm for different
pair-wise distance functions. For clustering, we have tested two
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well-known approaches: (1) K-means++ [18]; (2) Hierarchical
Agglomerative Clustering (HAC) with Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) [19]. K-means clus-
tering algorithm suffers from initial centroid selection, and
wrong initialization could lead to wrong clustering decision.
However, K-means++ provides a theoretical guarantee to find a
solution that is O(log m) competitive to the optimal K-means
solution.
2) Surface Construction: Achievable throughput for a given

cluster Ci can be modeled as a polynomial surface which
depends on the protocol tuning parameters. We have tried three
models to see how accurate those can capture the throughput
behavior. The models are: (1) quadratic regression; (2) cubic
regression; and (3) piecewise cubic interpolation.
Quadratic regression under-fits the historical log severely.

One of the good side of this modeling is that it provides a
bitonic surface which is easy to explore.
Cubic regression model also suffers from under-fitting the

cluster data from historical logs. One way to resolve this
under-fitting problem is by introducing piece-wise polynomials
between the data samples with a guarantee of smoothness up
to second derivatives.
We model throughput with cubic spline surface interpolation

[20]. Before introducing the interpolation method, we should
explain the relationship among the parameters briefly. Concur-
rency and pipelining are responsible for a total number of data
streams during the transfer, whereas, pipelining is responsible
for removing the delay imposed by small files. Due to their
difference in characteristic, we model them separately. At
first, we construct a 2-dimension cubic spline interpolation for
th = g(pp). Given a group of discrete points in 2-dimension
space {(ppi, thi)}, i = 0, ..., N , the cubic spline interpolation
is to construct the interpolant thi = g(ppi) by using piecewise
cubic polynomial gi(pp) to connect between the consecutive
pair of points (ppi, thi) and (ppi+1, thi+1). The coefficients of
cubic polynomials are constrained to guarantee the smoothness
of the reconstructed curve. This is implemented by controlling
the second derivatives since each piecewise relaxed cubic
polynomial gi has zero second derivative at the endpoints. Now
we can define each cubic polynomial piece as:

gi(pp) = ci,0 + ci,1pp+ ci,2pp
2 + ci,3pp

3, ∀pp ∈ [ppi, ppi+1].
(3)

Periodic boundaries can be assumed as g(ppi+1) = g(ppi).
Coefficients ci,j , where j = 1, 2, 3, of piece-wise polynomial
gi(pp) contains 4(N − 1) unknowns. We can have:

gi(ppi) = thi, i = 1, ..., N (4)

Hence, the N continuity constraints of g(pp) are as:

gi−1(ppi) = thi = gi(ppi), i = 2, ..., N. (5)

We can get (N − 2) constraints from Equation (5) as well.
We can impose additional continuity constraints up to second
derivatives.

d2gi−1

d2pp
(ppi) =

d2gi
d2pp

(ppi), i = 2, ..., N (6)

We can get 2(N − 2) constraints from Equation (6). The
boundary condition for relaxed spline could be written as:

d2g

d2pp
(pp1) =

d2g

d2pp
(ppn) = 0 (7)

So we have N + (N − 2) + 2(N − 2) + 2 = 4(N − 1)
constraints in hand. The coefficients can be computed by
solving the system of linear equations.
Throughput is also dependent on concurrency and par-

allelism. The example above can be extended to generate
throughput surface with two independent variables - cc and p.
Figure 1 shows the resulting throughput surfaces for different
kinds of datasets. As we can see that throughput surface of
small dataset is more complicated than medium or large files.
Data transfer requests within the same cluster Ci with

the same protocol parameter values might have a deviation
from one another due to measurement errors and many other
network uncertainties such as different packet route in the
network layer and minor queuing delay. We define those data
points with the same protocol parameter entries as ω. To model
this deviation, we have used a Gaussian confidence region
around each constructed surface. The probability density func-
tion of a Gaussian distribution is:

p(ω;µ,σ) =
1√
2πσ2

e
−
(ω − µ)2

2σ2 , (8)

µ =
1

N

N∑

i=1

thi, (9)

δ =

√√√√ 1

N

N∑

i=1

(thi − µ)2, (10)

where µ is the mean and σ is the standard deviation of the
data distribution. Figure 2(a) shows the data model for the
Gaussian distribution.
3) Finding Maximal Parameters: Very high protocol pa-

rameter values might overburden the system. For this reason,
many systems set upper bound on those parameters. Therefore,
the parameter search space has a bounded integer domain.
Assuming β is the upper bound of the parameters, cubic spline
surface functions can be expressed as fi : Ψ3 ⇒ R+, where
Ψ = {1, 2, ..,β}. To find the surface maxima, we need to
generate all local maxima of F = {f1, ..., fp}. This is achieved
by performing the second partial derivative test on each fk
[20]. The main idea is presented below.
First, we calculate the Hessian matrix of fk that can be

defined as Hk. Then we obtain the coordinates of all local
maxima in fk by calculating the corresponding {p, pp, cc}’s
such that Hk(p, pp, cc) is negative definite. Hence, the set of
local maxima of fk is obtained. Finally, the surface maxima
is generated by taking the maximum among all local maxima
sets of F .
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Figure 1: Piece-wise cubic interpolation surface construction.

(a) (b)

Figure 2: (a) Distribution of throughput values under similar
external loads; b) Accuracy of different surface construction
methods.

4) Accounting for Unknown Contending Transfers: Under-
lying TCP protocol tries to provide a fair share of bandwidth to
all data streams concurrently transferring data. Assume we are
analyzing a data transfer log entry tp, any contending transfer
in source or destination can have an impact on transfer request
tp. Known contending transfers are the ones present in the
historical log.
In a shared environment, there could be many transfers those

are not explicitly logged, however, those unknown transfers
could have an impact on the achievable throughput as well. We
can define the impact of those uncharted transfers as external
load intensity, Is, and model it with a simple heuristics:

Is =
bw − thout

bw
(11)

5) Identifying Suitable Sampling Regions: Identifying the
suitable sampling region is a crucial phase that helps online
adaptive sampling module to converge faster. However, not
all the regions on a surface are interesting. Many parameter
coordinates of a surface are suboptimal. We are interested
in regions which have a better possibility of achieving high
throughput. The regions containing distinguishable character-
istics of the surfaces and containing the local maxima of those
surfaces are more compelling. Exploring those regions could
lead to a near-optimal solution much faster. Assume the cluster
Ci contains η number of the surfaces that can be written as

S = f1, ...fη . Now, we can extract the neighborhood with a
predefined radius rd that contains maxima for all the surfaces
in S. Assume the set Rm contains all those neighborhood of
maxima. We are also interested in regions where surfaces are
clearly distinguishable. The goal is to find the regions where
surfaces are maximally distant from one another. This problem
can be formulated as a max-min problem. Selection can be
done by taking the maximum of all pair shortest distance
between the surfaces. To achieve that we perform uniform
sampling u = {u1, ..., uγ} from surface coordinate (p, cc, pp)
for surfaces in S. Therefore, u could be written as:

u = {u1, ..., uγ} = {(pi, cci, ppi)}γi=1 (12)

We define ∆min
ui

as the minimum distance between any two
pair of surfaces that can be expressed as:

∀uk ∈ u, ∆min
uk

= min
∀i,j∈{1,...,η}

|fi(uk)−fj(uk)| where i ̸= j

(13)
After sorting the list in descending order we choose, λ (1 <

λ < k), number of the initial samples from the sorted list.
Assume the set of points we get after solving the Equation
(13) is Rc. We define suitable sampling region as :

Rs = Rm ∪Rc (14)

During online analysis, we will use the region in Rs to perform
the sample transfers.

B. Adaptive Sampling Module
This module is initiated when a user starts a data transfer

request. Adaptive sampling is dependent on online measure-
ments of network characteristics. It is essential to assess the
dynamic nature of the network that is helpful to find the opti-
mal parameter settings. A sample transfer could be performed
to see how much throughput it can achieve. However, a single
sample transfer could be error prone and might not provide
clear direction towards the optimal solution. Our algorithm
adapts as it performs sample transfers by taking guidance from
offline surface information. This approach can provide faster
convergence. An overview of the module is presented in Algo-
rithm (1). Online module queries the offline analysis module
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Algorithm 1: Online Sampling
// Source, EPs, Destination, EPd, Round

trip time, rtt, Bandwidth, bw
input : Data arguments, data args =

{Dataset, avg file size, num files}, network
arguments, net args = {EPs, EPd, rtt, bw},
transfer node arguments, node args =
{num nodes, cores,memory,NIC speed}

output: Optimal transfer rate, thopt

1 procedure AdaptiveSampling(Fs, Rs, Is)
2 Ds ← GetSamples(Dataset)
3 es,median ← Median(Is)
4 fs,median ← Fs[es,median]
5 θs,median, thhist ← GetOptimalParam(fs,median)
6 thcur ← DataTransfer(Ds,1,ps,median)
7 Log.append(net args, Ds,i,ps,median,thcur)
8 Ds.remove(Ds,1)
9 for Ds,i in Ds do

10 if thcur ̸= thhist.confidence bound then
11 fs,cur ← FindClosestSurface(thcur)
12 ps,cur , thhist ←

GetOptimalParam(fs,curr)
13 thcur ← DataTransfer(Ds,i,ps,cur)
14 Log.append(net args, Ds,i,ps,cur ,thcur)
15 end
16 end
17 Fs, Rs, Is ← QueryDB(data args,net args)
18 F ′

s ← Sort(Fs,Is)
// Set of surfaces, Fs, Sampling region,

Rs,k, Load intensity, Is
19 AdaptiveSampling(F

′
s , Rs,k, Is)

with network and dataset characteristics. Offline module finds
the closest cluster and returns the throughput surfaces along
with associated external load intensity information and suitable
sampling region for each surface.
The online module sorts the surfaces in descending order

based on external load intensity value (Lines 17-18). Adaptive
sampling module takes the dataset that is needed to be trans-
ferred and starts performing sample transfers from the dataset.
To perform the first sample transfer, the algorithm chooses the
surface with median load intensity, fmedian, and performs the
transfer with:

θs,median = {p, cc, pp} = argmax(fs,median) (15)

which is already precomputed during offline analysis and
can be found in the sampling region. Achieved throughput
value for the transfer is recorded (Lines 2-6). If the achieved
throughput is inside the surface confidence bound at point
θs,median, then the algorithm continues to transfer rest of the
data set chunk by chunk. However, if the achieved throughput
is outside the confidence bound, that means the current surface
is not representing the external load of the network. If achieved
throughput is higher than the surface maxima, that means
current network load is lighter than the load associated with
the surface. Therefore, the algorithm searches the surfaces with
lower load intensity tags and find the closest one and perform
second sample transfer with parameters of newly found surface

Table I: System specification of our experimental environment

XSEDE DIDCLAB

Stampede Gordon WS-10 Evenstar

Cores 16 per node 16 per node 8 4
Memory 32GB perHost 64GB perHost 10 GB 4 GB
Bandwidth 10 Gbps 1 Gbps
RTT 40 ms 0.2 ms
TCP Buffer size 32 MB 32 MB 10 MB 10 MB
Disk Bandwidth 1200 MB/s 1200 MB/s 90 MB/s 90 MB/s

maxima. In this way, the algorithm can get rid of half the
surfaces at each transfer. At the point of convergence, our
algorithm takes the rest of the dataset and starts the transfer
process. Changing parameters in real-time is expensive. For
example, if a cc value changes from 2 to 4, this algorithm has
to open two more server processes and initialize resources.
These new processes have to go through TCP’s slow start
phase as well. Therefore, the algorithm tries to minimize the
initial sampling transfers by the adaptive approach. For very
large-scale transfers, when data transfer happens for a long
period of time, external traffic could change during the transfer.
If the algorithm detects such deviation, it uses most recently
achieved throughput value to choose the suitable surface and
changes the transfer parameters.

IV. EVALUATION

In the evaluation of our model, we used GridFTP [14]
data transfer logs generated over a six-week period of time.
GridFTP is one of the most widely used data transfer protocols
in scientific computing, and it is used to transfer 100s of
Petabytes of data every year. As the networking environment,
we used XSEDE, a collection of high-performance computing
resources connected with high-speed WAN and our DIDCLAB
testbed. On XSEDE, we performed data transfers between
Stampede at Texas Advanced Computing Center (TACC) and
Gordon cluster at San Diego Supercomputing Center (SDSC).
Table I shows the system and network specifications of our
experimental environment.
We compared our results with the state-of-the art solutions

in this area, such as - (1) Static models: Globus (GO) [21]
and Static ANN (SP) [22]; (2) Heuristic models: Single
Chunk (SC) [23]; (3) Dynamic models: HARP [24] and
ANN+OT [22]; and (4) Mathematical models: Nelder-Mead
Tuner (NMT) [25]. Globus uses different static parameter set-
tings for different types of file sizes. SC also makes parameter
decision based on dataset characteristics and network matrices.
It asks the user to provide an upper limit for concurrency
value. SC does not exceed that limit. HARP uses heuristics
to perform a sample transfer. Then the model performs online
optimization to get suitable parameters and starts transferring
the rest of the dataset. Online optimization is expensive and
wasteful as it needs to be performed each time, even for similar
transfer requests. ANN+OT learns the throughput for each
transfer request from the historical logs. When a new transfer
request comes, model asks the machine learning module for
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Figure 3: Achievable throughput (Gbps) in our experiments performed in various environments for different file sizes.

suitable parameters to perform first sample transfer. Then it
uses recent transfer history to model the current load and
tune the parameters accordingly. The model only relies on
historical data and always tends to choose the local maxima
from historical log rather than the global one. Nelder-Mead
Tuner implements a direct search optimization which does not
consider any historical analysis, rather tries to reach optimal
point using reflection and expansion operation. We tested those
models three different networks: (1) between two XSEDE
nodes; (2) between two DIDCLab nodes; and (3) between
DIDCLab and XSEDE nodes.

We tested our model with data transfer requests those are
completely different from the historical logs used in the model.
To ensure that we computed the list of all unique transfers and
split the list as 70% for training the model and 30% for test
purpose. We also evaluated our model on both peak and off-
peak hours to measure performance under different external
load conditions. Achievable throughput is highly dependent
on the average file size of the dataset.

In order to evaluate the accuracy of our model for different
types of average file sizes, we partitioned transfer requests into
three groups - small, medium and large. Then we compared
average achievable throughput so that we can evaluate the
model in a more fine-grained way. Figure 3 shows the com-
parison of our proposed Adaptive Sampling Module (ASM)
with the other state-of-the-art solutions mentioned above. In
all three networks and for all datasets, ASM outperforms all
other models. The second best performing model in all of
these experiments is HARP [24]. In the XSEDE to XSEDE
experiments (Figure 3(a-c)) ASM outperforms HARP by 29%
for small datasets, 40% for medium datasets, and 23% for
large datasets. Adaptive sampling solves the slow convergence
problem with the more accurate pre-constructed representation
of throughput surfaces. Our model also gets rid off all the sur-
face regions those proved suboptimal for different background
traffic. Moreover, it has a fast online module with adaptive
sampling that can converge faster and reduces the suboptimal
convergence time. Moreover, our model obtains more impres-
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sive performance during peak hours. It outperforms HARP by
38%, 55%, and 39% for small, medium, and large datasets
respectively. Peak hour periods are challenging to model, and
the result shows that our offline analysis is resilient enough to
achieve better results in such network environment, with the
help of adaptive sampling module.
Figure 3(d-f) shows the performance of different models

in our DIDCLAB testbed. Again, our model (ASM) outper-
forms all the existing models. It achieves 100% performance
improvement over HARP during small file transfers during
off-peak hours. It outperforms HARP by 41% during medium
dataset transfers. However, for large files, the performance
improvement is only 13% and during peak hours HARP actu-
ally does slightly better than our model. HARP’s performance
basically depends on its regression accuracy in this case.
In Figure 3 (g-i), we report the performance of these models

between DIDCLAB to XSEDE network. This is a quite busy
Internet connection which makes it more challenging. In this
network too our model performed better than all the mentioned
models. For small dataset, our model outperforms its closest
competitor ANN+OT by 38%. It outperforms HARP by 22%
during large dataset transfers. Our online module needs almost
constant time to agree on the parameters. Among the existing
models that we have tested so far, only HARP uses the online
optimization which could be expensive, however, rest of the
models can perform transfers in constant time.
Adaptive Sampling Module(ASM) performs online sam-

pling and uses the network information to query the offline
analysis for optimal parameters along with the achievable
throughput, Tpredict. The optimal parameters are used for the
next sample transfer. Then we measure the actual throughput
achieved, Tachieved. As our model converges Tachieved grad-
ually, it gets closer to the Tpredict. To measure the accuracy
of the model we used the following metric:

Accuracy =
|Tachieved − Tpredict|

Tpredict
× 100 (16)

Figure 4 shows a comparison of the accuracy of throughput
prediction models. HARP can reach up to 85% with 3 sam-
ple transfers along with high online computation overhead.

ANN+OT can reach 87.32% accuracy. Our model achieves
almost 93% accuracy with three sample transfers for any types
of dataset and then it saturates. It shows that our offline cubic
spline interpolation can model the network more accurately
and adaptive sampling can ensure faster convergence towards
the optimal solution.

V. RELATED WORK

Earlier work on application level tuning of transfer pa-
rameters mostly proposed static or non-scalable solutions to
the problem with some predefined values for some generic
cases [14], [26]–[28]. The main problem with such solutions
is that they do not consider the dynamic nature of the network
links and the background traffic in the intermediate nodes.
Yin et al. [29] proposed a full second order model with

at least three real-time sample transfers to find optimal par-
allelism level. The relationship between parallel streams and
throughput along with other parameters are more complex
than second order polynomials. Moreover, it does not provide
concurrency and pipelining. Yildirim et al. [30] proposed
PCP algorithm which clusters the data based on file size and
performs sample transfers for each cluster. Sampling overhead
could be very high in this model as it does not consider any
historical knowledge for optimization.
Engin et al. [24] proposed HARP which uses heuristics to

provide initial transfer parameters to collect data about sample
transfers. After that model performs the optimization on the
fly where it has to perform cosine similarity over the whole
dataset which might prove expensive. Even if the optimization
and transfer task can be parallelized, it could be wasteful as the
same optimization needs to be performed for similar transfers
every time a similar transfer request is made.
Prasanna et al. [25] proposed direct search optimization

that tune parameters on the fly based on measured throughput
for each transferred chunk. However, it is hard to prove
the convergence and sometimes hard to predict the rate of
convergence. Some cases, it requires 16-20 epochs to converge
which could lead to under-utilization. Liu et al. [31] explored
Globus historical logs consisting of millions of transfers to
analyze the effects of tunable parameters on the transfer
characteristics.
Different from the existing work, we address the following

issues in this paper: (i) Lower order regression model can
underfit the data when higher order polynomials can intro-
duce overfitting, in addition, to compute cost and sampling
overhead. For small to moderate size of data transfer requests,
slow convergence could lead to severe under-utilization. (ii)
Model free dynamic approaches suffer from convergence issue.
And convergence time depends on the location of initial search
point. (iii) Searching parameters during the transfer could
introduce many overheads. Opening a TCP connection in the
middle of the transfer introduces a delay due to slow start
phase. When initial parameters are far away from optimal so-
lution slow convergence could lead to under-utilization of the
network bandwidth which could hurt the overall bandwidth.
(iv) Optimization based on historical log should not be done
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during the transfer, offline analysis can reduce the real-time
computing overhead.

VI. CONCLUSION

In this study, we have explored a novel big data trans-
fer throughput optimization model that relies upon offline
mathematical modeling and online adaptive sampling. Existing
literature contains different types of throughput optimization
models that range from static parameter based systems to
dynamic probing based solutions. Our model eliminates online
optimization cost by performing the offline analysis which
can be done periodically. It also provides accurate modeling
of throughput which helps the online phase to reach near
optimal solution very quickly. For large scale transfers when
external background traffic can change during transfer, our
model can detect the harsh changes and can act accordingly.
Adaptive sampling module can converge faster than existing
solutions. The overall model is resilient to harsh network
traffic changes. We performed extensive experimentations and
compared our results with best known existing solutions. Our
model outperforms its closest competitor by 1.7x and the
default case by 5x in terms of the achieved throughput. It also
converges faster, and achieves up to 93% accuracy compared
with the optimal achievable throughput possible on the tested
networks.
As future work, we are planning to increase the achievable

throughput further by reducing the impact of TCP slow start
phase. Another interesting path is to reduce the overhead intro-
duced by real-time parameter changes. We are also planning
to investigate other application-layer protocol parameter sets
that can be optimized to achieve even better performance.
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