FastHLA: Energy-Efficient Mobile Data Transfer
Optimization Based on Historical Log Analysis

Kemal Guner! , MD S Q Zulkar Nine! , Tevfik Kosar! , M. Fatih Bulut?

! University at Buffalo (SUNY)
(kemalgne, mdsqzulk, tkosar)@buffalo.edu

ABSTRACT

Mobile data traffic will exceed PC Internet traffic by 2020.
As the number of smartphone users and the amount of data
transferred per smartphone grow exponentially, limited bat-
tery power is becoming an increasingly critical problem for
mobile devices which depend on the network I/O. Despite the
growing body of research in power management techniques
for the mobile devices at the hardware layer as well as the
lower layers of the networking stack, there has been little
work focusing on saving energy at the application layer for
the mobile systems during network I/O. In this paper, we pro-
pose a novel technique, called FastHLA, that can achieve sig-
nificant energy savings at the application layer during mobile
network I/O without sacrificing the performance. FastHLA
is based on historical log analysis and real-time dynamic
tuning of mobile data transfers to achieve the optimization
goal. FastHLA can increase the data transfer throughout by
up to 10X and decrease the energy consumption by up to 5X
compared to state-of-the-art HT'TP/2.0 transfers.

1 INTRODUCTION

It is estimated that mobile data traffic will exceed PC Internet
traffic the first time in the history, reaching 370 Exabytes
per year, by 2020 [47]. A regular smartphone consumes be-
tween 300 — 1200 milliwatts power [11] depending on the
type of applications it is running, and most of the energy in
smartphone applications is spent for networked I/O. During
an active data transfer, the cellular and WiFi components
of a smartphone consume more power than its CPU, RAM,
and even LCD+graphics card at the highest brightness level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

MobiWac’18, Montreal, QC, Canada

© 2018 ACM. 978-1-4503-5962-7/18/10...$15.00

DOI: 10.1145/3265863.3265871

2 IBM Thomas J. Watson Research Center
mfbulut@us.ibm.com

[11, 40]. Although the mobile data traffic and the amount of
energy spent for it increase at a very fast pace, the battery
capacities of smartphones do not increase at the same level
to meet the demand.

Rapid battery drain is one of the most critical problems for
smartphones and mobile computing, and many techniques
have been proposed in the literature to overcome this at
different layers. At the physical layer, techniques were pro-
posed to choose appropriate modulation, coding, and trans-
mission power control schemes to improve energy efficiency
of the mobile device [15, 18, 43, 45]. At the media access
control (MAC) layer, several new energy-efficient MAC pro-
tocol designs were proposed [10, 32, 52, 55]. At the network
layer, low-power and scalable routing algorithms were devel-
oped [14, 44, 48, 54]. At the transport layer, traffic shaping
techniques [4] and new transport protocols [4, 13, 33, 59]
were proposed to exploit application-specific information
and reduce power utilization.

Although there has been a growing body of research in
power management techniques for the lower layers of the
mobile networking stack, there has been little work focusing
on saving network I/O (data transfer) energy at the applica-
tion layer. The most notable work in this area are: tuning
the client playback buffer size during media streaming in
order to minimize the total energy spent [8]; modeling the
parallel communication problem with two proposed energy
optimization problems [16]; using lossless compression tech-
niques to minimize the amount of data transferred as well
as the energy consumed on wireless devices [53]; and joint
optimization of the application layer, data link layer, and
physical layer of the protocol stack using an application-
oriented objective function in order to improve multimedia
quality and power consumption at the same time [28]. We
claim that significant amount of network I/O energy savings
can be obtained at the application layer with no or minimal
performance penalty. Although lower-layer network stack
approaches are an important part of the solution, application-
layer power management is another key to optimize network

I/O energy efficiency in mobile computing, as a complemen-
tary approach to the optimizations at the lower layers of the
networking stack.

In this paper, we propose a novel technique, called FastHLA,
that can achieve significant energy savings at the applica-
tion layer during mobile network I/O without sacrificing
the performance. FastHLA is based on historical log analy-
sis and real-time dynamic tuning of mobile data transfers
to achieve the optimization goal. FastHLA can increase the
data transfer throughput by up to 10X and decrease the en-
ergy consumption by up to 5X compared to state-of-the-art
HTTP/2.0 transfers. The improvement is even larger com-
pared to baseline HTTP/1.1 transfers.

The rest of this paper is organized as follows: Section II
presents background information on energy-aware tuning
of application-layer data transfer protocol parameters and
discusses the related work in this area; Section III provides
the methodology of our analysis; Section IV introduces our
novel FastHLA model and compares it to the competing
approaches; and Section V concludes the paper.

2 BACKGROUND

The work on power-aware networking focuses on saving en-
ergy at the networking devices. Gupta et al. [24] were among
the earliest researchers to advocate conserving energy in net-
works. They suggested different techniques such as putting
idle sub-components (i.e. line cards, etc.) to sleep [23], which
were later extended by other researchers. S. Nedevshi et
al. [37] proposed adapting the rate at which switches for-
ward packets depending on the traffic load. Other related
research in power-aware networking has focused on archi-
tectures with programmable switches [22] and switching
layers that can incorporate different policies [26]. Barford
et al. proposed power-aware network protocols for energy-
efficiency in network design and routing [12].

Most of the work on mobile device energy savings focus on
putting the devices to sleep during idle times [32, 42, 49, 50].
A recent study by Dogar et al. [21] takes this approach to
another step, and puts the device into sleep even during data
transfer by exploiting the high-bandwidth wireless interface.
They combine small gaps between packets into meaning-
ful sleep intervals, thereby allowing the NIC as well as the
device to doze off. Another track of study in this area fo-
cuses on switching among multiple radio interfaces in an
attempt to reduce the overall power consumption of the mo-
bile device [7, 17, 38]. These techniques are orthogonal to
our application-layer protocol tuning approach and could
be used together to achieve higher energy efficiency in the
mobile systems. The closest work to ours in the literature
is the work by Bertozzi et al. [9], in which they investigate
the energy trade-off in mobile networking as a function of
the TCP receive buffer size and show that the TCP buffering

mechanisms can be exploited to significantly increase energy
efficiency of the transport layer with minimum performance
overheads.

In this work, we focus on the tuning of two application-
layer protocol parameters: (1) concurrency, which refers to
sending multiple files simultaneously through the network
using different data channels at the same time [30, 31, 35];
and (2) parallelism, which sends different chunks of the
same file using different data channels (i.e., TCP streams) at
the same time and achieves high throughput by mimicking
the behavior of individual streams and getting a higher share
of the available bandwidth [25, 34, 46]. When used wisely,
these parameters have a potential to improve the end-to-end
data transfer performance at a great extent, but improper
use of these parameters can also hurt the performance of
the data transfers due to increased load at the end-systems
and congested links in the network. For this reason, it is
crucial to find the best combination for these parameters
with the least intrusion and overhead to the system resource
utilization and power consumption.

In this context, several highly-accurate predictive mod-
els [29, 57, 58] were developed which would require as few
as three sampling points to provide very accurate predictions
for the parallel stream number giving the highest transfer
throughput for the wired networks. Yildirim et al. analyzed
the combined effect of parallelism and concurrency on end-
to-end data transfer throughput [56]. Engin et al.[6] and
Nine et al.[39] developed cutting-edge algorithms that con-
sider both historical data analysis and dynamic tuning of
the protocol parameters. Alan et al. analyzed the effects of
parallelism and concurrency on end-to-end data transfer
throughput versus total energy consumption in wide-area
wired networks in the context of GridFTP data transfers [5].

3 METHODOLOGY

For the power measurements, we used a single-phase portable
Yokogawa WT210 power meter [20], which provides highly
accurate and fine granular power values (can measure DC
and AC signals from 0.5 Hz to 100 kHz with an accuracy
of 99.8%) Prior to initiating any data transfer, we examined
the base power state of each tested mobile device. To mea-
sure the base power state, we established a setting when the
mobile device is in the “on” state with the screen is also on
(always at the same brightness level), any communication
interface other than the one being tested (i.e., Wifi or 4G
LTE) is disabled, and a minimum number of necessary ap-
plications is running in the background. This setup ensured
that the base power of the tested mobile device is both low
and in a balanced state throughput the experiments.

We used four different mobile devices in the experiments
(as specifications presented in Table 1). We tested both WiFi
and 4G LTE connections in progress of data transfers on

Producer Google Samsung

Samsung Samsung

Model Nexus S
OS | Android 4.1.1 (API 16)

Galaxy Nexus N3 (L700)
Android 4.3 (API 18)

Galaxy S4
Android 5.0.1 (API 21)

Galaxy S5
Android 5.0.1 (API 21)

CPU 1.0 GHz Cortex-A8 Dual-core 1.2 GHz | Quad-core 1.9 GHz Krait 300 | Quad-core 2.5 GHz Krait 400
Wifi 802.11 b/g/n 802.11 a/b/g/n 802.11 a/b/g/n/ac 802.11 a/b/g/n/ac
Storage 16 GB 32 GB 16 GB 16 GB
Memory 512 MB 1GB 2GB 2GB
Table 1: Specifications of the mobile devices used in the experiments.

Dataset Name Avg. File Size Min-Max

HTML 112 KB 56 KB - 155 KB

IMAGE 2.7 MB 2MB -3.2MB

VIDEO-small 152 MB 140 MB - 167 MB

VIDEO-medium 3 GB 2.86 GB - 3.1 GB

VIDEO-large 10GB 9.7 GB - 10.2 GB

R 2
Experimental Setup

Figure 1: Network map of the experimental testbed
and the setup of the power measurement system.

end-systems. To reduce the effect of number of active users
and the effect of peak/off-peak hours during the transfer
of datasets, we adopted a strategy of using different time
frames for each of the same experiment settings, and take
the average throughput and energy consumption values. We
conducted all experiments at the same location and with
the same distance and interference for objective analysis
of the end-system devices. We run initial tests for all four
mobile devices at different times of the day to obtain robust
base power for each. With the help of these values, the total
energy consumption during data transfers is calculated as
follows:

E, =E, +E4 (1)

Table 2: Characteristics of the dataset used in the ex-
periments for WiFi and 4G/LTE connections.

Eq= / " Prax(t) - Po(1)) - dt)

where,

e E,: Total energy consumption of data transfer

e E;: Dynamic energy consumption of data transfer

e E},: Base energy consumption of data transfer

® Pp,.x: Total power consumption

e Py: Base power consumption before initiating the test
e t;qrs: Data transfer start time

e t,,4: Data transfer end time

Dynamic energy consumption E; in Equation 2 is estab-
lished by taking integral of subtract values of base power of
device from total instantaneous power measured by power
meter per second. All the energy consumption results pre-
sented in the paper refer to dynamic energy consumption
as stated in Equation 2. Since we aim to analyze the effect
of application-layer parameters on energy consumption, we
ignored the energy consumed when the device is idle.

We chose HTTP (Hypertext Transport Protocol) as the
application-layer transfer protocol to test the impact of the
parameters of interest on the end-to-end data transfer through-
put as well as the energy consumption of the mobile client.
The main reason for this choice is that HTTP is the de-facto
transport protocol for Web services ranging from file shar-
ing to media streaming, and the studies analyzing the Inter-
net traffic [19, 27, 41] show that HT TP accounts for 75% of
global mobile Internet traffic. We analyzed the data trans-
fer throughput of HTTP data transfers and the power con-
sumption during which we run tests with different levels
of concurrency (cc), and parallelism (p). We also measured
the instantaneous power consumption and total energy con-
sumption of each individual request among different web

servers and mobile clients. The experiments were conducted
on Amazon Elastic Compute Cloud (AWS EC2) [51] instances,
Chameleon Cloud [36], and Data Intensive Distributed Com-
puting Laboratory (DIDCLAB). The network map of the ex-
perimental testbed and the setup of the power measurement
system are illustrated in Figure 1.

In the experiments, we used five different types of files in
order to analyze the effect of each individual parameter on
transfer throughput and energy consumption. The details
and characteristics of these files are presented in Table 2. In
order to increase the robustness of the obtained throughput
and energy consumption values for each experimental set-
ting, we run each test within the range of five to ten times,
and the average values of throughput and energy consump-
tion were used. As a result of iteration of each individual
experiment among four different mobile clients and three
different web servers with different bandwidth (BW) and
round-trip-time (RTT), we transferred varying size of nearly
1.8 Million individual files. Due to the space limitations of
the paper, we had to limit the number of graphs we can
present. The detailed analysis of the application-layer pa-
rameter effects on mobile data transfer performance and
energy consumption are provided and discussed in the next
section.

4 PROPOSED MODEL

Dynamic nature of the real-time background traffic on net-
work links has a profound impact on the data transfer perfor-
mance, and makes it very challenging to predict the optimal
parameter combination to achieve the highest throughput
possible. Historical data transfer logs can provide useful in-
formation about the data transfer pattern on a given link and
the achievable throughput behavior. We define optimization
based on this approach as Historical Log Analysis (HLA).
However, the only historical analysis is not enough to keep
up with the dynamic network conditions. We also need the
current network status to decide and dynamically tune the
parameter settings. We define this approach as Online Net-
work Probing (ONP). An ideal solution might be combining
both approaches to find the best parameter settings for the
transfers. HLA model is an offline analysis model that takes
historical transfer logs as input and finds optimal parameter
settings for the requested data transfer. However, we have to
take into account several design challenges explained below.

Challenge 1. Mobile devices are not suitable for compute-
intensive historical analysis. Historical analysis needs to be
done outside the mobile device.

Challenge 2. Historical analysis introduces a new cost on
both computation and energy consumption. We also have to
consider the frequency of the historical analysis as each full

iteration of the analysis will introduce more compute and
power cost.

Challenge 3. The benefit of figuring out the optimal param-
eter setting has to outweigh a transfer without any opti-
mization. Assuming C is the cost function, we can strictly
constrain C as follows -

C(HLA) + C(Tapt) < C(Tno—opt) (3)

Here, Top; is the transfer with optimized parameters and
Tro-opt s the transfer without any optimization.

Challenge 4. Mobile devices have limited memory, therefore,
we should allocate a fixed memory size to store the logs. Due
to the fixed memory size, it is possible that the new logs can
overwrite the old historical logs.

Challenge 5. We also need to make sure that the commu-
nication between the historical analysis server and source
device is minimal. Too much communication can take toll
on the data transfer throughput.

To address these challenges, we have introduced a dy-
namic framework called FastHLA as presented in the next
subsection.

4.1 Fast Historical Log Analysis (FastHLA)

Conceptually, FastHLA outsources the analysis of historical
data transfer logs to an edge server or to the cloud. The
historical analysis will introduce additional computation
and energy consumption. Even if we outsource the task it
is still consuming computational resources and power on
the edge server or in the cloud. Challenge 3 might seem
counter-intuitive at the beginning, however, we have seen
that a transfer with sub-optimal parameter choice achieves
low throughput which leads to longer transfer time and high
power consumption. We designed FastHLA in a way that it
does not need to be run for every transfer. Therefore, the
cost of FastHLA can be amortized over many subsequent
transfers. To generalize the model even farther we can run
FastHLA for many mobile devices in the cloud to amortize
the FastHLA cost over many mobile devices.

An overview of the FastHLA model is provided in Figure 2.
We introduced a light-weight transfer broker that receives
a transfer request and performs transfer with best possible
parameters. Network condition does not change significantly
over a short period of time, however, when it changes the
previous optimal choice of parameters might become sub-
optimal. Therefore, running FastHLA once in the beginning
is no better than statically setting the transfer parameters
(an approach used in many current solutions). Therefore,
we need a strategy to minimize the frequency of running
FastHLA. To resolve this issue, we introduced a caching
mechanism for previous optimal parameters and a Learning

Source

s mm n e mm n = s omm o omm s omm o o= s e

Transfer broker
app

Send updated model

‘New params

Send logs
+

request

Learning module

Update model

)| .

Data over the link 2
Destination

'\[.]'"'»[

Periodically call

Sendlogs |

Remote/ Edge server

Figure 2: Overview of the FastHLA model.

Module (LM) in the mobile device. The parameter cache
is a dictionary structure that maps network condition to
parameter value list. On the other hand, the LM can take
user request and network condition as input and provide
best known parameters. The training of the LM is performed
as a part of FastHLA outside the mobile device. Each time
the FastHLA runs, it updates the local Learning Module.
A trained LM in the mobile device can provide predicted
optimal parameters in almost constant time. Transfer broker
first looks into the cache for the parameter settings. In case
of a cache miss, it asks parameters from the LM and performs
the transfer using those parameters. It is crucial to keep LM
up-to-date. It can be done by accepting periodic updates
from FastHLA. However, there might be a highly unlikely
case where the network condition is unknown to the LM
itself and the parameters provided by LM are sub-optimal. In
that case, an immediate update request will be issued only
if there is a significant drop in data transfer performance.
However, the chance of such miss significantly reduces after
each FastHLA update, because the training is an additive
process with proper generalization method. Therefore, LM
gets more and more precise after each FastHLA update.

To address memory issue explained in Challenge 4, the
transfer broker periodically sends historical transfer logs to
the remote server where HLA is performed, so that old histor-
ical logs become available to HLA before being overwritten
by the new logs. The communication overhead explained in
Challenge 5 are the periodic update requests and periodic log
transfers. We do not need to communicate with HLA server
during the transfer except during the highly unlikely case
explained above where both cache and LM fails to provide
optimal parameters. To reduce the communication overhead
during the transfer, we decided not to include the Online

Network Probing into our model. We can use the most recent
logs to assess the network condition.

The model consists of five steps - (1) historical transfer
log collection and preprocessing; (2) clustering similar logs;
(3) optimization; (4) learning optimal parameters; and (5)
scheduling mixed sized data. The details of these steps are
explained below.

Step 1 - Historical log collection and preprocessing:
We collect historical logs for the previous data transfers.
Historical log contains detailed information about the data,
network characteristics, application level parameters, mobile
device information, and external traffic status. Data infor-
mation contains file size (f's) and number of files (nf;jes).
Network characteristics contain round trip time (¢,;;), tcp
buffer size (bs;cp), and bandwidth (bw). Application level
parameters contain concurrency (cc), parallelism (p) and I/O
block size (b;,). Resource usage information contains CPU
utilization (picpy), memory utilization (fmem), NIC card uti-
lization (u,ic), and power consumption (pw). Mobile device
information contains the model, operating system, processor,
memory, and network interface (WiFi/radio) specifics.
Historical logs might contain information about the trans-
fers which were aborted or failed; or sometimes, due to a
system error, logs might contain unreasonable information
such as achieved throughput greater than the bandwidth.
During preprocessing phase we remove those logs. Standard
outlier detection model is used to remove those outliers.

Step 2 — Clustering similar logs: Application level param-
eters have different impact on different types of transfers.
Categorize logs into groups based on their similarity could
provide us more structured view of the log information. Af-
ter analyzing the logs we come to the conclusion that some

parameters have direct precedence over other parameters.
We use Hierarchical Agglomerative Clustering which is the
most suitable clustering technique for such cases.

Step 3 — Optimization: This is the most important part of
the analysis. We first modeled both throughput and energy
function based on historical log. Then we performed mathe-
matical optimization to find the best parameter settings. The
details of the optimization are presented in Section 4.2.

Step 4 - Learning optimal parameters: As we decided
to do historical log analysis on the edge servers or in the
cloud, there should be an efficient way to transfer the ac-
quired knowledge from the analysis server to the mobile
devices. The simple solution is sending the optimal results
gained for each transfer to the mobile device. But, this is
not a scalable solution as this approach is too specific to the
individual transfers. A mobile device cannot generalize the
knowledge for even similar transfers. Moreover, it will take a
considerable amount of memory to store those individual re-
sults. Another solution would be the use of machine learning
techniques, which can be used to learn the knowledge from
the optimization step, and can have the power to predict
parameters for the unknown transfers.

Machine learning techniques come with two distinct steps —
(1) learning and (2) prediction. These two steps can be decou-
pled. As all the historical logs and optimization results are
stored in HLA servers, it is reasonable to do learning step
in the HLA server. Then the trained model is transferred to
the mobile device. Another reason is to choose the number
of parameters (also known as weights, connections) in the
learning module, which is fixed. The number of connections
and weights do not increase as the historical log increases,
only the values of the weights are updated as the model
learns. Therefore, HLA server always sends a fixed sized
update (e.g., updated values of the weights) to the mobile
device. It simultaneously optimizes the memory and com-
munication overhead between the server and the device. In
our model we have used off the shelf non-linear machine
learning techniques, such as - Artificial Neural Networks
(ANN) and Support Vector Machines (SVM). As we have lim-
ited feature space (number of meta-data in the log), we do
not need any deep learning techniques capable of extracting
complex pattern from high number of features.

Step 5 — Scheduling mixed sized data: We observed that
the files with different sizes can have different optimal pa-
rameter settings. Therefore, a dataset containing different
sized files should not be transferred with the same param-
eter settings. A more fine-tuned solution is to cluster the
files based on similarity and use optimal parameter settings
for each cluster. However, each optimal parameter setting
is optimized for that specific cluster and agnostic towards

other clusters’ parameters. Transferring these clusters con-
currently can over-provision the network and introduce
packet loss. Therefore, we scale down the parameter values
according to the the cluster size and some known heuristics.
An overview is provided in Algorithm 1.

Algorithm 1: Mixed Data Scheduling
input :Data arguments, data_args =
{Dataset, avg_file_size,num_files}
output:Optimal parameter settings, Op;

1 procedure Scheduling(Fs, R, I5)

2 C « cluster(Dataset)

3 for ¢; in C do

4 | 6; < get_optimal_params (c;)
5 end

6 if sum (0;) > user_limit then

7 ‘ Oopr < (0; X user_limit)/sum(0;)
8 end

4.2 Optimization

Application level parameters, such as concurrency (cc), par-
allelism (p) and I/O block size (bs) can be tuned properly to
achieve both high throughput and low energy consumptions.
We define throughput (th) and energy consumption (E) as:

th = fin(p, cc, bs) (4)

E = fe(p,cc) (5)
Appropriate modeling of th and E is crucial to find the
optimal parameter settings. Historical log contains samples
of the parameter space, therefore, can not provide overall
view of the whole parameter space. We need an interpolation
technique to predict the missing parameters. Then we can op-
timize these functions to get optimal parameters. We follow
two steps - (1) interpolation of unknown parameters, and (2)
finding the optimal parameters. These steps are explained
below.

Step 1 - Interpolation of unknown parameters: We ob-
served that the throughput and energy consumption follow
a cubic pattern. Therefore, we modeled both throughput and
energy consumption as piece-wise cubic interpolation. Cu-
bic interpolation fills the achievable throughput and energy
consumption of the unknown parameters. These piece-wise
cubic functions are stitched with a guarantee of smoothness
up to second derivative. As I/O block size is different from
concurrency and parallelism, we modeled it separately.

To model the throughput, we construct a 2-dimension
cubic spline interpolation for th = f(bs). Piece-wise cubic
interpolation can be constructed using interpolant th; =
f(bs;) and connecting them by maintaining smoothness up

to second derivative. We can define each cubic polynomial
piece as generic cubic function:

fi(bs) = xi,o+x,~,1bs+xi’2bsz+x,~,3b33, Vbs € [bs;, bsi+1]. (6)

Boundaries can be constrained as f(bs;+1) = f(bs;). We
can have:

filbs;) =th;, i=1,..,N (7)

Therefore, the N continuity constraints of f(bs) are as:

fic1(bsy) = th; = fi(bs;),

The following constraint confirms smoothness up to sec-
ond derivatives.

i=2,..N. (8)

d’fis d*fi .
T2bs (bsi) = %(bsi), i=2,..,N ©)
The boundary condition for spline could be written as:
d*f d*f
T 0s1) = < (bsn) (10)

The coefficients can be computed by solving the system of
linear equations.

Throughput is also dependent on concurrency and par-
allelism. The example above can be extended to generate
throughput surface with two independent variables - cc and
p. Similarly, we modeled energy as a function of concurrency,
parallelism and I/O block size.

Step 2 - Find optimal parameters: Energy efficient trans-
fer aims to reduce the energy consumption without com-
promising the transfer performance. This objective function
tries to optimize both throughput and power consumption
at the same time. This objective function does not guaran-
tee both maximally achievable throughput with minimum
power consumption, however, it ensures that every unit of
power can be spent to achieve highest possible throughput
under the energy efficiency constraint. The objective func-
tion here is to maximize achievable throughput over power
consumption.

ir
maximize / th/E (11)
t

We take into account all the boundary constraints for the
parameters and other necessary constraints. Due to the space
limitation we are not including those here. Then we used
non-linear optimizer to find the optimal parameters.

4.3 Evaluation of FastHLA Model

Historical log analysis (HLA) data transfer experiments are
conducted in the same experimental testbed described in
Section 3. We trained and tested our model (FastHLA) on the
real data transfer logs and compared the performance and
power consumption FastHLA with energy-agnostic wget [3]

and curl [1] clients as well as two versions of de-facto appli-
cation layer transfer protocol of HTTP, which are HTTP/1.1
and HTTP/2 [2]. While HTTP/1.1 is a textual protocol, the
newly introduced HTTP/2 is a binary protocol that supports
multiplexing, header compressions and lets the server to
push responses.

To evaluate our model, we used HTML, image and video
datasets (as described in Section 3) along with a combined
dataset that contains a mix of three datasets. We compared
FastHLA with other models using these datasets so that
we can get a fine-grained analysis of performance. Figure 3
shows both energy and throughput comparison of differ-
ent existing approaches along with our model. We observe
that FastHLA outperforms all other tested solutions in ev-
ery data category. For image, video, HTML, and mixed data
sets, we see 2X, 4X, 10X and 4X throughput improvement
over the closest competitor HTTP/2. HTTP/2 uses multiplex-
ing to transfer multiple streams over a single connection
to remove head-of-line blocking. However, single connec-
tion can achieve very poor results in long RTT WAN links.
HTTP/1.1 uses multiple connections to request multiple files,
however, there is no way to dynamically set those number of
connections (parallelism). On the other hand, we have used
historical analysis to decide an optimal level of parallelism,
concurrency and I/O block size.

Figure 3(b) shows the energy consumption of different
models. As we can see standard applications like wget or curl
are not optimized for power consumption and draw a huge
energy compare to HTTP/2. On the other hand, FastHLA im-
proves power consumption 5X and 2x for HTML and video
files respectively compared to HTTP/2. We have observed
that high transfer throughput can shorten the data transfer
time. That means CPU has to work for a shorter period of
time and CPU consumes most of the power during the trans-
fer. That explains why FastHLA consumes less power com-
pared to other approaches. However, the energy consump-
tion is similar for image and mixed data. Even if the power
consumption is similar for image and video, FastHLA can
provide more achievable throughput compared to HTTP/2.
We use throughput efficiency, th/E to measure the energy
efficiency of the models (as shown in Figure 3(c)). FastHLA
improves throughput efficiency 2.5 for both video and im-
age data.

We have used three different learning modules to see the
efficiency of those models. Among them ANN and SVM can
reach up to 94% and 92% accuracy respectively (as shown
in Figure 4). However, KNN can achieve up to 86% accuracy.
As K-Nearest Neighbor takes into account k closest logs to
decide on the parameters, it is not feasible to transfer all
the optimal results to mobile due to memory issues. That
is why we decided not to use KNN in our model. However,
the Neural Network and SVM both can learn efficiently the

Achieved throughput of different models

Energy Consumption of different models

Throughput efficiency of different models

— 450
Mixed

200 | === Video
=3 Image
s HTML

400
350 [

150 | 300 |

250
200 |
150 |
100 |
%,

100 |

Throughput (Mbps)

50

Energy (Joule per 100 MB)

(a) Achieved Throughput

(b) Energy Consumption

" Mixed Mixed
=== Video] o 44| ===3 Video
=3 Image 3 =3 Image
s HTML 2 e HTML
2 12F
e}
S 1wof
>
2
o 8
£
T 6}
=1
g
=) 4r
3
o
s 2Ff
=
B N N T W
Q % % A
vt B, T, %
“y -0 (M

(c) Throughput Efficiency

Figure 3: Achievable throughput and corresponding energy consumption of different optimization objectives and

the accuracy of the learning module.

Learning model accuracy

96 [

94 |

92

2
e

203959!

920

R
CRRRRL

S
S050598
o20¢

S
<

88

Accuracy (%)
55

86

84 |

82

80

< s, s
W %, W

Figure 4: Accuracy of different learning modules.

optimal parameters. We can use coefficient of determination,
R? to see how well the prediction of learning module matches
the target. It can be expressed as:

R =1- (i =97/) (fi — 9 (12)
where y; is the actual optimal throughput and ¢ is the
mean of y;. The predicted throughput is defined as f;. R? is
a good statistical indicator that can point out the strongly
actual and prediction values are related. In case of perfect
matches between all known targets and the predictions R?
value will be 1. However, we can say a model can predict with
good generalization if R? value is close to 1. We computed this
for both ANN and SVM as RIZANN = 0.92 and R?WM =0.87
respectively.

5 CONCLUSION & FUTURE WORK

In this paper, we proposed a novel historical-data analysis
based model, called FastHLA, that can achieve significant en-
ergy savings at the application layer during mobile network
I/0O without sacrificing the performance. Our analysis shows
that FastHLA model can achieve significant energy savings
using only application-layer solutions at the mobile systems

during data transfer with no performance penalty. We also
show that, in many cases, our FastHLA model can increase
the performance and save energy simultaneously.

According to our experiments, by intelligently tuning the
concurrency and parallelism levels during data transfers, our
FastHLA model can increase the data transfer throughput
by up to 10X, and decrease the energy consumption by up
to 5X compared to state-of-the-art HTTP/2.0 transfers. The
improvement is even larger compared to base HTTP/1.1
transfers and client tools such as wget and curl.

As a future work, we are planning to develop service-level-
agreement (SLA) based transfer tuning algorithms to balance
the performance vs energy trade-off during mobile network
I/O according to the preferences of the mobile users. While
keeping the quality of service (i.e., transfer throughput) at
the desired level, these algorithms will try to keep the energy
consumption at the minimum possible level.

ACKNOWLEDGEMENTS

This project is in part sponsored by the National Science
Foundation (NSF) under award numbers OAC-1724898 and
OAC-1842054, and by IBM Research under award number
OCR-W1771224. We also would like to thank Chameleon
Cloud and AWS for letting us use their resources for some
of the experiments presented in this paper.

REFERENCES

1] curl. http://curlhaxx.se/.

2] Okhttp http/2 client for android. http://square.github.io/okhttp/.

3] wget. https://www.gnu.org/software/wget/.

4] S. A. Akella, R. K. Balan, and N. Bansal. Protocols for low-power. 2001.

5] I Alan, E. Arslan, and T. Kosar. Power-aware data scheduling algo-
rithms. In Proceedings of IEEE/ACM (SC15), November 2015.

[6] E. Arslan, K. Guner, and T. Kosar. Harp: Predictive transfer optimiza-

tion based on historical analysis and real-time probing. In Proceedings

of IEEE/ACM conference SC’16, pages 288-299.

[
[
[
[
[

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(23]

[24]

[25]

[26]
[27]

(28]

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. En-
ergy consumption in mobile phones: a measurement study and impli-
cations for network applications. In IMC’09.

D. Bertozzi, L. Benini, and B. Ricco. Power aware network interface
management for streaming multimedia. In IEEE Wireless Communica-
tions and Networking Conference, WCNC2002.

D. Bertozzi, A. Raghunathan, L. Benini, and S. Ravi. Transport pro-
tocol optimization for energy efficient wireless embedded systems.
In Proceedings of the conference on Design, Automation and Test in
Europe-Volume 1, page 10706. IEEE Computer Society, 2003.

V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. Macaw: a media
access protocol for wireless lan’s. ACM SIGCOMM Computer Commu-
nication Review, 24(4):212-225, 1994.

A. Carroll and G. Heiser. An analysis of power consumption in a
smartphone. In USENIX annual technical conference, 2010.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright.
Power awareness in network design and routing. In In Proceedings of
IEEE INFOCOM, April, 2008.

S. Chandra and A. Vahdat. Application-specific network management
for energy-aware streaming of popular multimedia formats. In USENLX
Annual Technical Conference, General Track, pages 329-342, 2002.
J.-H. Chang and L. Tassiulas. Energy conserving routing in wireless
ad-hoc networks. In INFOCOM 2000, volume 1, pages 22-31, 2000.

E. Cianca, M. Ruggieri, and R. Prasad. Improving tcp/ip performance
over cdma wireless links: A physical layer approach. In Personal,
Indoor and Mobile Radio Communications, 2001.

M. Conti, B. Crispo, D. Diodati, J. K. Nurminen, C. M. Pinotti, and
T. Teemaa. Leveraging parallel communications for minimizing en-
ergy consumption on smartphones. IEEE Transactions on Parallel and
Distributed Systems, 26(10):2778-2790, Oct 2015.

L. M. Correia, D. Zeller, O. Blume, D. Ferling, Y. Jading, I. Gédor,
G. Auer, and L. Van Der Perre. Challenges and enabling technologies
for energy aware mobile radio networks. Communications Magazine,
IEEF, 48(11):66-72, 2010.

S. Cui, A. J. Goldsmith, and A. Bahai. Energy-efficiency of mimo and
cooperative mimo techniques in sensor networks. IEEE Journal on
selected areas in communications, 22(6):1089-1098, 2004.

J. Czyz, M. Allman,]. Zhang, S. IekelJohnson, E. Osterweil, and M. Bai-
ley. Measuring ipv6 adoption. SIGCOMM Comput. Commun. Rev.,
44(4):87-98, Aug. 2014.

K. M. Dixit. Overview of the spec benchmarks., 1993.

F. R. Dogar and P. Steenkiste. Catnap: Exploiting high bandwidth
wireless interfaces to save energy for mobile devices. In Proc. Int. Conf.
Mobile Systems, Applications and Services (MobiSys), 2010.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Towards
a next generation data center architecture: Scalability and commoditi-
zation. In In ACM PRESTO, pages 57AR62, 2008.

M. Gupta and S. Singh. Energy conservation with low power modes
in ethernet lan environments. In IEEE INFOCOM (MiniSymposium)
2007.

M. Gupta and S. Singh. Greening of the internet. In ACM SIGCOMM,
pages 19AR26, 2003.

T. J. Hacker, B. D. Noble, and B. D. Atley. Adaptive data block sched-
uling for parallel streams. In Proceedings of HPDC 05, pages 265-275.
ACM/IEEE, July 2005.

D. A. Joseph, A. Tavakoli, and L. Stoica. A policy-aware switching
layer for data centers. In SIGCOMM CCR 38(4):51AR62, 2008.

A. Kellerman. Daily spatial mobilities: Physical and virtual. Routledge,
2016.

S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and W. Kellerer. Application-
driven cross-layer optimization for video streaming over wireless
networks. IEEE Communications Magazine, 44(1):122-130, 2006.

[29]

[30]
[31]
[32]
(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

J. Kim, E. Yildirim, and T. Kosar. A highly-accurate and low-overhead
prediction model for transfer throughput optimization. In Proc. of
DISCS Workshop, November 2012.

T. Kosar and M. Balman. A new paradigm: Data-aware scheduling in
grid computing. Future Generation Computing Systems, 25(4):406-413.
T. Kosar and M. Livny. Stork: Making data placement a first class
citizen in the grid. In Proceedings of ICDCS 04, pages 342-349.

R. Krashinsky and H. Balakrishnan. Minimizing energy for wireless
web access with bounded slowdown. Wireless Networks.

R. Kravets and P. Krishnan. Application-driven power management
for mobile communication. Wireless Networks, 6(4):263-277, 2000.

J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bresnahan, and
S. Tuecke. Applied techniques for high bandwidth data transfers
across wide area networks. In International Conference on Computing
in High Energy and Nuclear Physics, April 2001.

W. Liu, B. Tieman, R. Kettimuthu, and I. Foster. A data transfer frame-
work for large-scale science experiments. In Proc. 3rd International
Workshop on Data Intensive Distributed Computing (DIDC °10) in con-
Junction with (HPDC ’10), June 2010.

J. Mambretti, J. Chen, and F. Yeh. Next generation clouds, the
chameleon cloud testbed, and software defined networking (sdn). In
Cloud Computing Research and Innovation (ICCCRI), 2015 International
Conference on, pages 73-79. IEEE, 2015.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wether-
all. Reducing network energy consumption via rate-adaptation and
sleeping. In Proceedings Of NSDI, April 2008.

A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Y. Zhao, and
H. Zheng. Energy and performance of smartphone radio bundling
in outdoor environments. In Proceedings of the 24th International
Conference on World Wide Web, pages 809-819, 2015.

M. S. Q. Z. Nine, K. Guner, Z. Huang, X. Wang, J. Xu, and T. Kosar. Big
data transfer optimization based on offline knowledge discovery and
adaptive sampling. In Big Data 2017, pages 465-472.

A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof.
In Proceedings of the 7th ACM european conference on Computer Systems,
pages 29-42. ACM, 2012.

P. Richter, N. Chatzis, G. Smaragdakis, A. Feldmann, and W. Willinger.
Distilling the internet’s application mix from packet-sampled traffic.
In Passive and Active Measurement, pages 179-192.

A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan. Bartendr: a practical
approach to energy-aware cellular data scheduling. In Proceedings of
the sixteenth annual international conference on Mobile computing and
networking, pages 85-96. ACM, 2010.

C. Schurgers, O. Aberthorne, and M. Srivastava. Modulation scaling
for energy aware communication systems. In Proceedings of the 2001
international symposium on Low power electronics and design, pages
96-99. ACM, 2001.

K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-
efficient forwarding strategies for geographic routing in lossy wireless
sensor networks. In Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 108-121. ACM, 2004.

S. Singh and C. S. Raghavendra. PamasASpower aware multi-access
protocol with signalling for ad hoc networks. ACM SIGCOMM Com-
puter Communication Review, 28(3):5-26, 1998.

H. Sivakumar, S. Bailey, and R. L. Grossman. Psockets: The case
for application-level network striping fpr data intensive applications
using high speed wide area networks. In SC°2000.

C. Systems. Visual networking index: Forecast and methodology,
2015-2020, June 2016.

(48]

[49]

(50]

(51]

(52]

(53]

(54]

(55]

[56]

(57]

(58]

(59]

C.-K. Toh. Maximum battery life routing to support ubiquitous mo-
bile computing in wireless ad hoc networks. IEEE communications
Magazine, 39(6):138-147, 2001.

N. Vallina-Rodriguez and J. Crowcroft. Erdos: achieving energy sav-
ings in mobile os. In Proceedings of the sixth international workshop on
MobiArch, pages 37-42. ACM, 2011.

N. Vallina-Rodriguez and J. Crowcroft. Energy management tech-
niques in modern mobile handsets. Communications Surveys & Tutori-
als, IEEE, 15(1):179-198, 2013.

J. Varia and S. Mathew. Overview of amazon web services. Amazon
Web Services, 2014.

A. Woo and D. E. Culler. A transmission control scheme for media ac-
cess in sensor networks. In Proceedings of the 7th annual international
conference on Mobile computing and networking, pages 221-235, 2001.
R. Xu, Z. Li, C. Wang, and P. Ni. Impact of data compression on energy
consumption of wireless-networked handheld devices. In Distributed
Computing Systems, 2003. Proceedings. 23rd International Conference
on, pages 302-311. IEEE, 2003.

Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy
conservation for ad hoc routing. In Proceedings of the 7th annual
international conference on Mobile computing and networking, pages
70-84. ACM, 2001.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol
for wireless sensor networks. In INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1567-1576. IEEE, 2002.

E. Yildirim, E. Arslan, J. Kim, and T. Kosar. Application-level opti-
mization of big data transfers through pipelining, parallelism and
concurrency. To appear in IEEE Transactions on Cloud Computing
(TCC), 18(1):41-59, 2015.

E. Yildirim, D. Yin, and T. Kosar. Prediction of optimal parallelism
level in wide area data transfers. IEEE Transactions on Parallel and
Distributed Systems, 22(12), 2011.

D. Yin, E. Yildirim, and T. Kosar. A data throughput prediction and
optimization service for widely distributed many-task computing.
IEEE Transactions on Parallel and Distributed Systems, 22(6), 2011.

M. Zorzi and R. R. Rao. Is tcp energy efficient? In Mobile Multimedia
Communications, 1999.(MoMuC’99) 1999 IEEE International Workshop
on, pages 198-201. IEEE, 1999.

