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Abstract The problem of minimizing the rank of a symmetric positive semidefi-
nite matrix subject to constraints can be cast equivalently as a semidefinite program
with complementarity constraints (SDCMPCC). The formulation requires two posi-
tive semidefinite matrices to be complementary. This is a continuous and nonconvex
reformulation of the rank minimization problem. We investigate calmness of locally
optimal solutions to the SDCMPCC formulation and hence show that any locally opti-
mal solution is a KKT point. We develop a penalty formulation of the problem. We
present calmness results for locally optimal solutions to the penalty formulation. We
also develop a proximal alternating linearized minimization (PALM) scheme for the
penalty formulation, and investigate the incorporation of a momentum term into the
algorithm. Computational results are presented.
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1 Introduction to the rank minimization problem

Recently rank constrained optimization problems have received increasing interest
because of their wide application in many fields including statistics, communication
and signal processing [10,41]. In this paper we mainly consider one genre of the
problems whose objective is to minimize the rank of a matrix subject to a given set of
constraints. We consider the slightly more general form below:

minimize
X ∈Rm×n

rank(X) + ψ(X)

subject to X ∈ C (1)

where R
m×n is the space of size m by n matrices, ψ(X) is a Lipschitz continuous

function, and C is the feasible region for X; C is not necessarily convex.
The class of problems has been considered computationally challenging because

of its nonconvex nature. The rank function is also highly discontinuous, which makes
rank minimization problems hard to solve. Methods using nonconvex optimization to
solve rank minimization problems include [17,23,42,43]. In contrast to the method in
this paper, these references work with an explicit low rank factorization of the matrix
of interest. Other methods based on a low-rank factorization include the thresholding
methods [5,6,45,46]. Our approach works with a nonconvex nonlinear optimization
problem that is an exact reformulation of the rank minimization problem.

The exact reformulation of the rank minimization problem is a mathematical pro-
gram with semidefinite cone complementarity constraints (SDCMPCC). Similar to
the LPCC formulation for the �0 minimization problem [4,11], the advantage of the
SDCMPCC formulation is that it can be expressed as a smooth nonlinear program,
thus it can be solved by general nonlinear programming algorithms. The purpose of
this paper is to investigate whether nonlinear semidefinite programming algorithms
can be applied to solve the SDCMPCC formulation and examine the quality of solu-
tion returned by the nonlinear algorithms. We’re faced with two challenges. The first
one is the nonconvexity of the SDCMPCC formulation, which means that we can only
assure that the solutions we find are locally optimal. The second is that most nonlinear
algorithms use KKT conditions as their termination criteria. Since a general SDCM-
PCC formulation is not well-posed because of the complementarity constraints, i.e,
KKT stationarity may not hold at local optima, there might be some difficulties with
the convergence of these algorithms. We show in Theorem 2 that any locally optimal
point for the SDCMPCC formulation of the rank minimization problem does indeed
satisfy the KKT conditions.

When ψ(X) ≡ 0, a popular approach to choosing X is to use the nuclear norm
approximation [5,10,27,30], a convex approximation of the original rank minimiza-
tion problem. The nuclear norm of a matrix X ∈ R

m×n is defined as the sum of its
singular values σ :

||X ||∗ =
∑

σi = trace
(√

XT X
)
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In the approximated problem, the objective is to find amatrix with the minimal nuclear
norm

minimize
X ∈Rm×n

||X ||∗
subject to X ∈ C (2)

The nuclear norm is convex and continuous. Many algorithms have been developed
previously to find the optimal solution to the nuclear norm minimization problem,
including interior point methods [27], singular value thresholding [5], Augmented
Lagrangian method [25], proximal gradient method [26], subspace selection method
[15], reweighting methods [32], and so on. These methods have been shown to be effi-
cient and robust in solving large scale nuclear norm minimization problems in some
applications. Previous works provided some explanation for the good performance
for convex approximation by showing that nuclear norm minimization and rank mini-
mization is equivalent under certain assumptions. Recht et al. [38] presented a version
of the restricted isometry property for a rank minimization problem. Under such a
property the solution to the original rank minimization problem can be exactly recov-
ered by solving the nuclear norm minimization problem. However, these properties
are too strong and hard to validate, and the equivalence result cannot be extended to
the general case. Zhang et al. [51] gave a counterexample in which the nuclear norm
fails to find the matrix with the minimal rank.

In this paper, we focus on the case of symmetric matrices X . Let Sn denote the set
of symmetric n × n matrices, and S

n+ denote the cone of n × n symmetric positive
semidefinite matrices. The set C is taken to be the intersection of Sn+ with another con-
vex set, taken to be an affine manifold in our computational testing. Unless otherwise
stated, the norms we use are the Euclidean 2-norm for vectors and the Frobenius norm
for matrices.

To improve the performance of the nuclear norm minimization scheme in the case
of symmetric positive semidefinite matrices, a reweighted nuclear norm heuristic was
put forward byMohan et al. [31]. In each iteration of the heuristic a reweighted nuclear
norm minimization problem is solved, which takes the form:

minimize
X ∈Sn

〈W, X〉
subject to X ∈ C ∩ S

n+
(3)

where W is a positive semidefinite matrix, with W based upon the result of the last
iteration. As with the standard nuclear norm minimization, the method only applies
to problems with special structure. The lack of theoretical guarantee for these convex
approximations in general problems motivates us to turn to the exact formulation of
the rank function. In our computational testing, we compare the results obtained with
our approach to those obtained through optimizing the nuclear norm.

We now summarize the contents of the paper. Throughout, we work with the set of
symmetric positive semidefinitematricesSn+. The equivalent continuous reformulation
of (1) is presented in Sect. 2. We show that any local minimizer for the continuous
reformulation satisfies appropriate KKT conditions in Sect. 3 when C is given by the
intersection of Sn+ and the set of solutions to a collection of continuous inequalities.
A penalty approach is described in Sect. 4 in the case when C is the intersection of
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S
n+ and an affine manifold. An alternating approach to solve the penalty formulation

is presented in Sect. 5, with test results on Euclidean distance matrix completion
problems given in Sect. 6.

2 Semidefinite cone complementarity formulation for rank minimization
problems

Amathematical programwith semidefinite cone complementarity constraints (SDCM-
PCC) is a special case of a mathematical program with complementarity constraints
(MPCC). In SDCMPCC problems the constraints include complementarity between
matrices rather than vectors. The general SDCMPCC program takes the following
form:

minimize
x ∈Rq

f (x)

subject to g(x) ≤ 0
h(x) = 0
S
n+ 	 G(x) ⊥ H(x) ∈ S

n+

(4)

where f : Rq → R, h : Rq → R
p, g : Rq → R

m , G : Rq → S
n and H : Rq → S

n .
The requirement G(x) ⊥ H(x) for G(x), H(x) ∈ S

n+ is that the Frobenius inner
product of G(x) and H(x) is equal to 0, where the Frobenius inner product of two
matrices A ∈ R

m×n and B ∈ R
m×n is defined as

〈A, B〉 = trace
(
AT B

)
.

We define
c(x) := 〈G(x), H(x)〉. (5)

It is shown in Bai et al. [2] that (4) can be reformulated as a convex conic com-
pletely positive optimization problem. However, the cone in the completely positive
formulation does not have a polynomial-time separation oracle.

An SDCMPCC can be written as a nonlinear semidefinite program. Nonlinear
semidefinite programming recently received much attention because of its wide appli-
cability. Yamashita and Yabe [48] surveyed numerical methods for solving nonlinear
SDP programs, includingAugmented Lagrangianmethods [18], sequential SDPmeth-
ods and primal-dual interior point methods. However, there is still much room for
research in both theory and practice with solution methods, especially when the size
of problem becomes large.

An SDCMPCC is a special case of a nonlinear SDP program. It is hard to solve in
general. In addition to the difficulties in general nonlinear semidefinite programming,
the complementarity constraints pose challenges to finding the local optimal solutions
since theKKT conditionmay not hold at local optima. Previouswork showed that opti-
mality conditions inMPCC, such asM-stationary, C-Stationary and Strong Stationary,
can be generalized into the class of SDCMPCC. Ding et al. [8] discussed various kinds
of first order optimality conditions of an SDCMPCC and their relationship with each
other.
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An exact reformulation of the rank minimization problem using semidefinite cone
constraints is due to Li and Qi [22]. Li and Qi proposed an augmented Lagrangian
method for solving the SDCMPCC formulation of the nearest low-rank correlation
matrix problem. We work with a special case of (1), in which the matrix variable
X ∈ R

n×n is restricted to be symmetric and positive semidefinite. The special case
takes the form:

minimize
X ∈Sn

rank(X) + ψ(X)

subject to X ∈ C̃
X � 0

(6)

By introducing an auxilliary variable U ∈ R
n×n , we can model Problem (6) as a

mathematical program with semidefinite cone complementarity constraints:

minimize
X,U ∈Sn

n − 〈I, U 〉 + ψ(X)

subject to X ∈ C̃
0 
 X ⊥ U � 0
0 
 I − U
X � 0
U � 0

(7)

The equivalence between Problems (6) and (7) can be verified by a proper assignment
of U for given feasible X. Suppose X has the eigenvalue decomposition:

X = PTΣP (8)

Let P0 be the matrix composed of columns in P corresponding to zero eigenvalues.
We can set:

U = P0 P
T
0 (9)

It is obvious that

rank(X) = n − 〈I,U 〉 (10)

It follows that:

Opt (6) ≥ Opt (7)

The opposite direction of the above inequality can be easily validated by the comple-
mentarity constraints. If there exists any feasible matrix pair (X,U ) with the trace of
U greater than n − Opt (6), the complementarity constraints would be violated: since
all the eigenvalues of U are no larger than 1, the rank of U is at least as large as its
trace, so the rank of X would be smaller than the optimal value of (6).
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The complementarity formulation can be extended to cases where the matrix vari-
able X ∈ R

m×n is neither positive semidefinite nor symmetric. One way to deal with
nonsymmetric X is to introduce an auxilliary variable Z:

Z =
[
G XT

X B

]
� 0

Liu et al. [27] has shown that for any matrix X , we can find matrix G and B such that
Z � 0 and rank(Z) = rank(X). The objective is to minimize the rank of matrix Z
instead of X .

A drawback of the above extension is that it might introduce too many variables.
An alternative way is to modify the complementarity constraint. If m > n, the rank
of matrix X must be bounded by n and equals the rank of matrix XT X ∈ S

n+. XT X is
both symmetric and positive semidefinite and we impose the following constraint:

〈U, XT X〉 = 0

whereU ∈ S
n×n . The objective is minimize the rank of XT X instead, or equivalently

to minimize n − 〈I,U 〉.

3 Constraint qualification of the SDCMPCC formulation

SDCMPCC problems are generally hard to solve and there have been discussions on
potential methods to solve them [47,52], including relaxation and penalty methods.
The original SDCMPCC formulation and all its variations fall into the genre of non-
linear semidefinite programming. Most existing algorithms use the KKT conditions as
criteria for checking local optimality, and they terminate at KKT stationary points. The
validity of KKT conditions at local optima can be guaranteed by constraint qualifica-
tion. However, as pointed out in [8], common constraint qualifications such as LICQ
and Robinson CQ are violated for SDCMPCC. The question arises as to whether any
constraint qualification holds at the SDCMPCC formulation of a rank minimization
problem. In this section we’ll show that a constraint qualification called calmness
holds at any local optimum of the SDCMPCC formulation. In this section, we assume
only that C is given by the intersection of a closed convex cone and the set of solutions
to a collection of continuous inequalities.

3.1 Introduction of calmness

Calmness was first defined by Clarke [7]. If calmness holds then a first order KKT nec-
essary conditionholds at a localminimizer. Thus, calmness plays the role of a constraint
qualification, although it involves both the objective function and the constraints. It has
been discussed in the context of conic optimization problems in [16,49,50], in addition
to Ding et al. [8]. Here, we give the definition from [7], adapted to our setting.
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Definition 1 Let K ⊆ R
n be a convex cone. Let f : R

q → R, h : R
q → R

p,
g : Rq → R

m , and G : Rq → R
n be continuous functions. A feasible point x̄ to the

conic optimization problem

minx∈Rq f (x)
subject to g(x) ≤ 0

h(x) = 0
G(x) ∈ K

is Clarke calm if there exist positive ε and μ such that

f (x) − f (x̄) + μ||(r, s, P)|| ≥ 0

whenever ||(r, s, P)|| ≤ ε, ||x − x̄ || ≤ ε, and x satisfies the following conditions:

h(x) + r = 0, g(x) + s ≤ 0, G(x) + P ∈ K .

The idea of calmness is that when there is a small perturbation in the constraints,
the improvement in the objective value in a neighborhood of x̄ must be bounded by
some constant times the magnitude of perturbation.

Theorem 1 [8] If calmness holds at a local minimizer x̄ of (4) then the following first
order necessary KKT conditions hold at x̄:

there exist multipliers λh ∈ R
p, λg ∈ R

m, ΩG ∈ S
n+, ΩH ∈ S

n+, and λc ∈ R

such that the subdifferentials of the constraints and objective function of (4)
satisfy

0 ∈ ∂ f (x̄) + ∂〈h, λh〉(x̄) + ∂〈g, λg〉(x̄)
+ ∂〈G,ΩG〉(x̄) + ∂〈H,ΩH 〉(x̄) + λc∂c(x̄),

λg ≥ 0, 〈g(x̄), λg〉 = 0, ΩG ∈ S
n+, ΩH ∈ S

n+,

〈ΩG ,G(x̄)〉 = 0, 〈ΩH , H(x̄)〉 = 0.

In the framework of general nonlinear programming, previous results [28] show that
the Mangasarian–Fromowitz constraint qualification (MFCQ) and the constant-rank
constraint qualification (CRCQ) imply local calmness. When all the constraints are
linear, CRCQ will hold. However, in the case of SDCMPCC, calmness may not hold
at locally optimal points. Linear semidefinite programming programs are a special
case of SDCMPCC: take H(x) identically equal to the zero matrix. Even in this
case, calmness may not hold. For linear SDP, the optimality conditions in Theorem 1
correspond to primal and dual feasibility together with complementary slackness, so
for example any linear SDP which has a duality gap or where dual attainment fails
will not satisfy calmness. Consider the example below, where we show explicitly that
calmness does not hold:
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minimize
x1,x2

x2

s.t G(x) =
⎡

⎣
x2 + 1 0 0

0 x1 x2
0 x2 0

⎤

⎦ � 0
(11)

It is trivial to see that any point (x1, 0) with x1 ≥ 0 is a global optimal point to the
problem. However:

Proposition 1 Calmness does not hold at any point (x1, 0) with x1 ≥ 0.

Proof Wewill omit the case when x1 > 0 and only show the proof for the case x1 = 0.
Take

x1 = δ and x2 = −δ2

As δ → 0, we can find a matrix:

M =
⎡

⎣
1 − δ2 0 0

0 δ −δ2

0 −δ2 δ3

⎤

⎦ � 0

in the semidefinite cone and

||G(δ,−δ2) − M || = δ3.

However, the objective value at (δ,−δ2) is −δ2. Thus we have:

f (x1, x2) − f (0, 0)

||G(δ,−δ2) − M || = −δ2

||G(δ,−δ2) − M || ≤ −δ2

δ3
→ −∞

as δ → 0. It follows that calmness does not hold at the point (0, 0) since μ is
unbounded. ��

3.2 Calmness of SDCMPCC formulation

In this part, we would like to show that in Problem (7), calmness holds for each pair
(X,U ) with X feasible and U given by (9). The variable x in (4) is equal to the pair
(X,U ) from (7), so G(x) = X and H(x) = U . We assume

C = S
n+ ∩ {X : gi (X) ≤ 0, i = 1, . . . ,m1}

for continuous functions gi (X); these functions are incorporated into g(x) in the
formulation (4). Before presenting the propositions, we introduce the rank constrained
problem for any positive integer k:

minX∈Sn+ ψ(X)

subject to X ∈ C (RC(k))
rank(X) ≤ k.
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Proposition 2 Let X be a local minimizer of (RC(k)) for some choice of k and let U
be given by (9). Then (X,U ) is a local optimal solution in Problem (7). Conversely,
if (X,U ) is a local optimal solution to (7) then U is given by (9) and X is a local
minimizer of (RC(k)) with k = rank(X).

Proof The proposition follows from the fact that rank(X ′) ≥ rank(X) for all X ′ close
enough to X .

Proposition 3 For any local minimizer X of (RC(k)) for some choice of k with U
given by (9), let (X̂ , Û ) be a feasible point to the optimization problem below:

minimize
X̂ ,Û ∈Sn

n − 〈I, Û 〉 + ψ(X)

subject to X̂ + p ∈ C̃
|〈X̂ , Û 〉| ≤ q
λmin(I − Û ) ≥ −r
λmin(X̂) ≥ −h1
λmin(Û ) ≥ −h2

(12)

where p, q, r , h1 and h2 are perturbations to the constraints and λmin(M) denotes
the minimum eigenvalue of matrix M. Assume X has at least one positive eigenvalue.
For ||(p, q, r, h1, h2)||, ||X − X̂ ||, and ||U − Û || all sufficiently small, we have

〈I,U 〉 − 〈I, Û 〉 ≥ −2q

λ̃
− (n − rank(X))

(
r + (1 + r)

2

λ̃
h1

)

− h2

(
4

λ̃
||X ||∗ − rank(X)

)
(13)

where ||X ||∗ is the nuclear norm of X and λ̃ is the smallest positive eigenvalue of X.

Proof The general scheme is to determine a lower bound for 〈I,U 〉 and an upper
bound for 〈I, Û 〉. A lower bound of 〈I,U 〉 can be easily found by exploiting the
complementarity constraints and its value is n − rank(X). To find an upper bound of
〈I, Û 〉, the approach we take is to fix X̂ in Problem (12) and estimate a lower bound
for the objective value of the following problem:

minimize
Ũ ∈Sn

n − 〈I, Ũ 〉
subject to −〈X̂ , Ũ 〉 ≤ q, y1

〈X̂ , Ũ 〉 ≤ q, y2
I − Ũ � −r I, Ω1

Ũ � −h2 I, Ω2

(14)

where y1, y2, Ω1 and Ω2 are the Lagrangian multipliers for the corresponding con-
straints. It is obvious that (X̂ , Û ) must be feasible to Problem (14). We find an upper
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bound for (I, Û ) by finding a feasible solution to the dual problem of Problem (14),
which is:

maximize
y1,y2∈R,Ω1,Ω2 ∈Sn

n + q y1 + q y2 − (1 + r) trace(Ω1) − h2 trace(Ω2)

subject to −y1 X̂ + y2 X̂ − Ω1 + Ω2 = −I
y1, y2 ≤ 0
Ω1, Ω2 � 0

(15)

We can find a lower bound on the dual objective value by looking at a tightened version,
which is established by diagonalizing X̂ by linear transformation and restricting the
non-diagonal term of Ω1 and Ω2 to be 0. Let { fi }, {gi } be the entries on the diagonal
of Ω1 and Ω2 after the transformation respectively, and {λ̂i } be the eigenvalues of X̂ .
The tightened problem is:

maximize
y1,y2∈R, f, g ∈Rn

n + q y1 + q y2 − (1 + r)
∑

i fi − h2
∑

i gi

subject to −y1 λ̂i + y2 λ̂i − fi + gi = −1, ∀i = 1 . . . n
y1, y2 ≤ 0
fi , gi ≥ 0, ∀i = 1 . . . n

(16)

By proper assignment of the value of y1, y2, f, g, we can construct a feasible solution
to the tightened problem and give a lower bound for the optimal objective of the
dual problem. Let {λi } be the set of eigenvalues of X , with λ̃ the smallest positive
eigenvalue, and set:

y1 = 0 and y2 = −2

λ̃

For f and g:

– if λ̂i < λ̃
2 , take fi = 1 + y2λ̂i , gi = 0.

– if λ̂i ≥ λ̃
2 , take fi = 0 and gi = 2

λ̃
λ̂i − 1.

It is trivial to see that the above assignmentwill yield a feasible solution to Problem (16)
and hence a lower bound for the dual objective is:

n − 2q

λ̃
−

∑

λ̂i<
λ̃
2

(1 + r)(1 + y2λ̂i ) − h2
∑

λ̂i≥ λ̃
2

(
2

λ̃
λ̂i − 1

)
(17)

Byweakduality the primal objective valuemust be greater or equal to the dual objective
value, thus:

n − 〈I, Û 〉 ≥ n − 2q

λ̃
−

∑

λ̂i<
λ̃
2

(1 + r)(1 + y2λ̂i ) − h2
∑

λ̂i≥ λ̃
2

(
2

λ̃
λ̂i − 1

)
.

Since we can write
n − 〈I,U 〉 = n −

∑

λi=0

1,
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it follows that for ||U − Û || sufficiently small we have

(n − 〈I, Û 〉) − (n − 〈I,U 〉) ≥ n − 2q
λ̃

− ∑

λ̂i<
λ̃
2

(1 + r)(1 + y2λ̂i )

−h2
∑

λ̂i≥ λ̃
2

(
2
λ̃
λ̂i − 1

)
−

(
n − ∑

λi=0
1

)

= − 2q
λ̃

− ∑

λ̂i<
λ̃
2

(r + (1 + r)y2λ̂i )

− h2
∑

λ̂i≥ λ̃
2

(
2
λ̃
λ̂i − 1

)
.

(18)

For λ̂i < λ̃
2 , by the constraints λ̂i ≥ −h1 and setting y2 = − 2

λ̃
, we have:

r + (1 + r)y2λ̂i ≤ r + (1 + r)
2h1
λ̃

.

For λ̂i ≥ λ̃
2 , recall the definition for nuclear norm and we have:

∑

λ̂i≥ λ̃
2

λ̂i ≤ 2||X ||∗

for ||X − X̂ || sufficiently small. Since there are exactly n − rank(X) eigenvalues in X̂
that converge to 0, we can simplify the above inequality (18) and have:

(n − 〈I, Û 〉) − (n − 〈I,U 〉) ≥ − 2q
λ̃

− (n − rank(X))
(
r + (1 + r) 2h1

λ̃

)

− h2
(
4
λ̃

||X ||∗ − rank(X)
)

.
(19)

Thus we can prove the inequality. ��
There is one case that is not covered by Proposition 3, namely that X = 0. This is

also calm, as we show in the next lemma.

Lemma 1 Assume X = 0 is feasible in (7), with U given by (9). Let (X̂ , Û ) be a
feasible point to (12). We have

(n − 〈I, Û 〉) − (n − 〈I,U 〉) ≥ −nr.

Proof Note that 〈I,U 〉 = n, since X = 0 and U satisfies (9). In addition, each
eigenvalue of Û is no larger than 1 + r , so the result follows. ��
Proposition 4 Calmness holds at each (X,U ) provided (i) X is a local minimizer
of (RC(k)) for some choice of k and (ii) U is given by (9).
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Proof This follows directly fromProposition 3, Lemma 1, and the Lipschitz continuity
assumption on ψ(X). ��

It follows that any local minimizer of the SDCMPCC formulation of the rank mini-
mization problem is a KKT point. Note that no assumptions are necessary regarding C.
Theorem 2 The KKT condition of Theorem 1 holds at each local optimum of Prob-
lem (7).

Proof This is a direct result from Theorem 1 and Propositions 2 and 4. ��
The above results show that, similar to the exact complementarity formulation

of �0 minimization, there are many KKT stationary points in the exact SDCMPCC
formulation of rank minimization, so it is possible that an algorithm will terminate at
some stationary point thatmight be far fromaglobal optimum.Aswehave shown in the
complementarity formulation for �0 minimization problem [11], a possible approach
to overcome this difficulty is to relax the complementarity constraints. In the following
sections we investigate whether this approach works for the SDCMPCC formulation.

4 A penalty scheme for SDCMPCC formulation

In this section and the following sections, we present a penalty scheme for the original
SDCMPCC formulation. The penalty formulation has the form:

minimize
X,U ∈Sn

n − 〈I, U 〉 + ψ(X) + ρ〈X, U 〉 =: fρ(X,U )

subject to X ∈ C̃
0 
 I − U
X � 0
U � 0

(20)

We denote the problem as SDCPNLP(ρ). We discuss properties of the formulation
in this section, with an algorithm described in Sect. 5 and computational results given
in Sect. 6. First, we note that it follows from standard results that a sequence of global
minimizers to (20) converges to a global optimizer of (7); see Luenberger [29] for
example.

From now on, we assume

C̃ = {X ∈ S
n : 〈Ai , X〉 = bi , i = 1, . . . ,m2},

where each Ai ∈ S
n , so C̃ is an affine manifold.

4.1 Constraint qualification of penalty formulation

Thepenalty formulation for theRankMinimization problem is a nonlinear semidefinite
program. As with the exact SDCMPCC formulation, we would like to investigate
whether algorithms for general nonlinear semidefinite programming problems can
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be applied to solve the penalty formulation. As far as we know, most algorithms
in nonlinear semidefinite programming use first order KKT stationary conditions as
the criteria for termination. The KKT stationary condition at a local optimum of the
penalty formulation is:

0 
 U ⊥ − I + Ψ + ρX + Y � 0
0 
 X ⊥ ∑

λi Ai + ρU � 0
0 
 Y ⊥ I −U � 0

(21)

for X ∈ C̃, where λ ∈ R
m2 are the dual multipliers corresponding to the linear

constraintsY ∈ S
n+ are the dualmultipliers corresponding to the constraints I−U � 0,

and Ψ is a subgradient of ψ(X). Unfortunately, the counterexample below shows that
the KKT conditions do not hold in the penalty problem (20) in general:

minimize
X,U ∈S3,x ∈R

3 − 〈I, U 〉 + ρ 〈X,U 〉

subject to X =
⎡

⎣
3 + x 0 0
0 1 − x x

2
0 x

2 0

⎤

⎦

0 
 I − U
X � 0
U � 0

(22)

Every feasible solution requires x = 0. It is obvious that if ρ = 0.5 then the optimal
solution to the above problem is:

x̄ = 0, X̄ =
⎡

⎣
3 0 0
0 1 0
0 0 0

⎤

⎦ and Ū =
⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦

and the optimal objective value is 1.5.However, there does not exist anyKKTmultiplier
at this point. We can show explicitly that calmness is violated at the current point. If
we allow λmin(X) ≥ −h1 and λmax(U ) ≤ 1 + h1, then we can take

x = √
h1, X =

⎡

⎣
3 + √

h1 0 0
0 1 − √

h1
√
h1/2

0
√
h1/2 0

⎤

⎦

and U =
⎡

⎣
0 0 0
0 1 −h1
0 −h1 1

⎤

⎦ .

It is obvious that (x, X,U ) → (x̄, X̄ , Ū ) as h1 → 0. The resulting objective value at
(x, X,U ) is 1.5 − 0.5

√
h1 − 0.5h1.51 . Thus, for small h1, the difference in objective

function value is O(
√
h1), while the perturbation in the constraints is only O(h1), so

calmness does not hold.
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Lack of constraint qualification indicates that algorithms such as the Augmented
Lagrangian method may not converge in general if applied to the penalty formulation.
However, if we enforce a Slater constraint qualification on the feasible region of X , we
show below that calmness will hold in the penalty problem (20) at local optimal points.

Proposition 5 Calmness holds at the local optima of the penalty formulation (20) if
C contains a positive definite matrix.

Proof Since the Slater condition holds for the feasible regions of both X and U , for
each pair (Xl ,Ul) in the perturbed problem we can find (X̃l , Ũl) in C̃ ∩ Sn+ with the
distance between (Xl ,Ul) and (X̃l , Ũl) bounded by some constant times themagnitude
of perturbation.

In particular, let (X̂ , Û ) be a strictly feasible solution to (20) with minimum eigen-
value δ > 0. Let the minimum eigenvalue of (Xl ,Ul) be −ε < 0. We construct

(X̃l , Ũl) = (Xl ,Ul) + ε

δ + ε

(
(X̂ , Û ) − (Xl ,Ul)

)
∈ Sn+.

Note that for ε << δ, we have

fρ(X̃l , Ũl) − fρ(Xl ,Ul) = O(ε),

exploiting the Lipschitz continuity ofΨ (X). As (Xl ,Ul) converges to (X̄ , Ū ), we also
have (X̃l , Ũl) → (X̄ , Ū ), so by the local optimality of (X̄ , Ū ) we can give a bound
on the optimal value of the perturbed problem and the statement holds. ��

It follows that the KKT conditions will hold at local minimizers for the penalty
formulation.

Proposition 6 The first order KKT condition holds at local optimal solutions for the
penalty formulation (20) if the Slater conditionholds for the feasible region C̃∩Sn+ of X.

4.2 Local optimality condition of penalty formulation

4.2.1 Property of KKT stationary points of penalty formulation

The KKT condition in the penalty formulation works in a similar way with some
thresholding methods [5,6,45,46]. The objective function not only counts the number
of zero eigenvalues, but also the number of eigenvalues below a certain threshold, as
illustrated in the following proposition.

Proposition 7 Let (X̄ , Ū ) be a local optimal solution to the penalty formulation. Let
σi be an eigenvalue of Ū and vi be a corresponding eigenvector of norm one. It follows
that:

– If σi = 1, then vTi (Ψ + ρ X̄)vi ≤ 1.
– If σi = 0, then vTi (Ψ + ρ X̄)vi ≥ 1.
– if 0 < σi < 1, then vTi (Ψ + ρ X̄)vi = 1
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Proof If σi = 1, since vi is an eigenvector of U, by the complementarity in the KKT
condition it follows that:

vTi (− I + Ψ + ρX + Y )vi = 0.

As vTi Yvi ≥ 0, we have vTi (Ψ + ρ X̄)vi ≤ 1.
If σi = 0, then vi is an eigenvector of I − U with eigenvalue 1. By the comple-

mentarity of I −U and Y we have vTi Yvi = 0 and

vTi (− I + Ψ + ρ X̄ + Y )vi = − 1 + vTi (Ψ + ρ X̄)vi ≥ 0.

The above inequality is satisfied if and only if vTi (Ψ + ρ X̄)vi ≥ 1.
If 0 < σi < 1, then vi is an eigenvector of I−U corresponding to an eigenvalue in

(0, 1). The complementarity in KKT condition implies that vTi Yvi = 0 = vTi (−I +
Ψ + ρ X̄ + Y )vi . It follows that vTi (Ψ + ρ X̄)vi = 1. ��

Using the proposition above, we can show the equivalence between the stationary
points of the SDCMPCC formulation and the penalty formulation.

Proposition 8 If (X̄ , Ū ) is a stationary point of the SDCMPCC formulation with
corresponding subgradient Ψ then it is a stationary point of the penalty formulation
if the penalty parameter ρ is sufficiently large.

Proof Choose ρ so that the minimum positive eigenvalue ofΨ +ρ X̄ is strictly greater
than 1. By setting λ = 0 and with a proper assignment of Y we can see that first order
optimality condition (21) holds at (X̄ , Ū ) for such a choice of ρ, thus (X̄ , Ū ) is a KKT
stationary point for the penalty formulation. ��

4.2.2 Local convergence of KKT stationary points

We would like to investigate whether local convergence results can be established for
the penalty formulation, that is, whether the limit points of KKT stationary points
of the penalty scheme are KKT stationary points of the SDCMPCC formulation.
Unfortunately, local convergence does not hold for the penalty formulation, although
the limit points are feasible in the original SDCMPCC formulation.

Proposition 9 Let (Xk,Uk) be a KKT stationary point of the penalty scheme with
subgradient Ψk and penalty parameter {ρk}. As ρk → ∞, any limit point (X̄ , Ū ) of
the sequence {(Xk,Uk)} is a feasible solution to the original problem.

Proof The proposition can be verified by contradiction. Note that the norm of Ψk is
bounded since ψ(X) is Lipschitz continuous. If the Frobenius inner product of X̄ and
Ū is greater than 0, then when k is large enough we have:

〈Uk,−Ik + Ψk + ρk Xk + Yk〉 ≥ − 〈Uk, I 〉 + 〈Uk, Ψk〉 + ρk〈Xk,Uk〉 > 0

which violates the complementarity in the KKT conditions of the penalty formulation.
��
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We can show that a limit point may not be a KKT stationary point. Consider the
following problem:

minimize
X,U ∈S

3+
n − 〈I,U 〉

subject to X11 = 1, 0 
 U 
 I and 〈U, X〉 = 0
(23)

The penalty formulation takes the form:

minimize
X,U ∈S

2+
n − 〈I,U 〉 + ρk〈X,U 〉

subject to X11 = 1, 0 
 U 
 I
(24)

Let Xk and Uk take the value:

Xk =
[
1 0
0 2

ρk

]
, Uk =

[
0 0
0 0

]
,

so (Xk,Uk) is a KKT stationary point for the penalty formulation. However, the limit
point:

X̄ =
[
1 0
0 0

]
, Uk =

[
0 0
0 0

]
,

is not a KKT stationary point for the original SDCMPCC formulation.

5 Proximal alternating linearized minization

The proximal alternating linearized minimization (PALM) algorithm of Bolte et al. [3]
is used to solve a wide class of nonconvex and nonsmooth problems of the form

minimizex∈Rn ,y∈Rm Φ(x, y) := f (x) + g(y) + H(x, y) (25)

where f (x), g(y) and H(x, y) satisfy smoothness and continuity assumptions:

– f : Rn → (−∞,+∞] and g : Rm → (−∞,+∞] are proper and lower semi-
continuous functions.

– H: Rn × R
m → R is a C1 function.

No convexity assumptions are made. Iterates are updated using a proximal map with
respect to a function σ and weight parameter t :

proxσ
t (x̂) = argminx∈Rd

{
σ(x) + t

2
||x − x̂ ||2

}
. (26)

When σ is a convex function, the objective is strongly convex and the map returns a
unique solution. The PALM algorithm is given in Procedure 1.

It was shown in [3] that it converges to a stationary point of Φ(x, y) under the
following assumptions on the functions:
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input : Initialize with any (x0, y0) ∈ R
n × R

m . Given Lipschitz constants L1(y) and L2(x) for the
partial gradients of H(x, y) with respect to x and y.

output: Solution to (25).

For k = 1, 2, . . . generate a sequence {xk , yk } as follows:
– Take γ1 > 1, set ck = γ1L1(y

k ) and compute: xk+1 ∈ prox f
ck (x

k − 1
ck

∇x H(xk , yk )).

– Take γ2 > 1, set dk = γ2L2(x
k ) and compute: yk+1 ∈ proxgdk

(yk − 1
dk

∇y H(xk , yk )).

Procedure 1: PALM algorithm

– infRm×Rn Φ > −∞, infRn f > −∞ and infRm g > −∞.
– The partial gradient ∇x H(x, y) is globally Lipschitz with moduli L1(y), so:

||∇x H(x1, y) − ∇x H(x2, y)|| ≤ L1(y)||x1 − x2||, ∀x1, x2 ∈ R
n .

Similarly, the partial gradient∇y H(x, y) is globally Lipschitz with moduli L2(x).
– For i = 1, 2, there exists λ−

i , λ+
i such that:

– inf{L1(yk) : k ∈ N} ≥ λ−
1 and inf{L2(xk) : k ∈ N} ≥ λ−

2
– sup{L1(yk) : k ∈ N} ≤ λ+

1 and sup{L2(xk) : k ∈ N} ≤ λ+
2 .

– ∇H is continuous on bounded subsets of Rn × R
m , i.e, for each bounded subset

B1 × B2 of Rn × R
m there exists M > 0 such that for all (xi , yi ) ∈ B1 × B2,

i = 1, 2:

||(∇x H(x1, y1) − ∇x H(x2, y2),∇y H(x1, y1) − ∇y H(x2, y2), )||
≤ M ||(x1 − x2, y1 − y2)||. (27)

The PALM method can be applied to the penalty formulation of SDCMPCC for-
mulation of rank minimization (20) with the following assignment of the functions:

f (X) = 1

2
ρX ||X ||2F + ψ(X) + I(X ∈ C)

g(U ) = n − 〈I, U 〉 + I(U ∈ {0 
 U 
 I })
H(X, U ) = ρ〈X, U 〉,

where I(.) is an indicator function taking the value 0 or +∞, as appropriate. Note
that we have added a regularization term ||X ||2F to the objective function. When the
feasible region for X is bounded, the assumptions required for the convergence of the
PALM procedure hold for the penalty formulation of SDCMPCC.

Proposition 10 The function Φ(X,U ) = f (X) + g(U ) + H(X,U ) is bounded
below for X ∈ S

n and U ∈ S
n if ψ(X) is bounded below.

Proof Since the eigenvalues ofU are bounded by 1, and the Frobenius norm of X and
U must be nonnegative, the statement is obvious. ��
Proposition 11 If the feasible region of X is bounded then H(X,U ) is globally Lip-
schitiz.
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Proof The gradient of H(X,U ) is:

(∇X H(X,U ),∇U H(X,U )) := ρ(U, X)

The statement results directly from the boundedness of the feasible region of X andU .
��

Proposition 12 ∇H(X,U ) = ρ(U, X) is continuous on bounded subsets of Sn ×S
n.

The proximal subproblems in Procedure 1 are both convex quadratic semidefinite
programs. The update toUk+1 has a closed form expression based on the eigenvalues
and eigenvectors ofUk − (ρ/dk)Xk . Rather than solving the update problem for Xk+1

directly using, for example, CVX [13], we found it more effective to solve the dual
problem usingNewton’smethod, with a conjugate gradient approach to approximately
solve the direction-finding subproblem. This approach was motivated by work of Qi
and Sun [37] on finding nearest correlation matrices. The structure of the Hessian for
our problem is such that the conjugate gradient approach is superior to a direct factor-
ization approach, with matrix-vector products relatively easy to calculate compared
to formulating and factorizing the Hessian. The updates to X and U are discussed in
Sects. 5.2 and 5.3, respectively. First, we discuss accelerating the PALM method.

5.1 Adding momentum terms to the PALM method

One downside for proximal gradient type methods are their slow convergence rates.
Nesterov [33,34] proposed accelerating gradient methods for convex programming
by adding a momentum term. The accelerated algorithm has a quadratic convergence
rate, compared with sublinear convergence rate of the normal gradient method. Recent
accelerated proximal gradient methods include [39,44].

Bolte et al. [3] showed that the PALM proximal gradient method can be applied
to nonconvex programs under certain assumptions and the method will converge to a
local optimum. The question arises as to whether there exists an accelerated version in
nonconvexprogramming.Ghadimi et al. [12] presented an accelerated gradientmethod
for nonconvex nonlinear and stochastic programming, with quadratic convergence to
a limit point satisfying the first order KKT condition.

There are various ways to set up the momentum term [21,24]. Here we adopted the
following strategy while updating xk and yk :

xk+1 ∈ prox f
ck

(
xk − 1

ck
∇x H(xk, yk) + βk(xk − xk−1)

)
. (28)

yk+1 ∈ proxgdk

(
yk − 1

dk
∇y H(xk, yk) + βk(yk − yk−1)

)
, (29)

where βk = k−2
k+1 (borrowing from [34,35], a ratio that gives the best theoretical rate

of convergence for smooth convex optimization). We refer to this as the Fast PALM
method. The momentum term incorporates the previous step into the current direction,
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in order to try to prevent the zigzagging seen in classical subgradient approaches. The
proximal term ‖x − x̂‖2 for the x-update (or ‖y − ŷ‖2 for the y-update) measures
proximity to the current iterate adjusted by both a term for the gradient of the link-
ing function H(x, y) (as in the usual PALM approach) and also a momentum term
corresponding to the previous update to the iterate.

5.2 Updating X

Assume C = {X ∈ S
n : A(X) = b, X � 0} and the Slater condition holds for C.

The proximal point X of X̃ , or prox f
ck (X̃) can be calculated as the optimal solution to

the problem:
minimize

X ∈Sn
ρX ||X ||2F + ψ(X) + ck ||X − X̃ ||2F

subject to A(X) = b
X � 0

(30)

The objective can be replaced by:

∥∥∥∥X − ck
ck + ρX

X̃

∥∥∥∥
2

F
+ 1

ρX
ψ(X).

With the Fast PALM method, we use

X̃ = Xk − ρ

ck
Uk + βk(Xk − Xk−1).

Weobserved that the structure of the subproblem to get the proximal point is very simi-
lar to the nearest correlation matrix problemwhenψ(X) ≡ 0. Qi and Sun [37] showed
that for the nearest correlation matrix problem, a semismooth Newton’s method is
numerically very efficient compared to other existing methods, and it achieves a
quadratic convergence rate if the Hessian at the optimal solution is positive definite.
Provided Slater’s condition holds for the feasible region of the subproblem and its
dual program, strong duality holds and instead of solving the primal program, we can
solve the dual program which has the following form:

minyθ(y) := 1

2
||(G + A∗y)+||2F − bT y

where (M)+ denotes the projection of the symmetric matrix M ∈ S
n onto the cone of

positive semidefinite matrices Sn+, and

G = ck
ck + ρX

X̃ .

One advantage of the dual program over the primal program is that the dual program is
unconstrained. Newton’s method can be applied to get the solution y∗ which satisfies
the first order optimality condition:
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F(y) := A(G + A∗y)+ = b. (31)

Note that ∇θ(y) = F(y) − b. The algorithm is given in Procedure 2.

input : Given y0, η ∈ (0, 1), ρ, σ . Initialize k = 0.
output: Solution to (31).

For each k = 0, 1, 2, · · · generate a sequence yk+1 as follows:
– Select Vk ∈ ∂F(yk ) and apply the conjugate gradient method [14] to find an approximate

solution dk to:
∇θ(yk ) + Vkd = 0

such that:
||∇θ(yk ) + Vkd

k || ≤ ηk ||∇θ(yk )||.
– Line Search. Choose the smallest nonnegative integer mk such that:

θ(yk + ρmdk ) − θ(yk ) ≤ σρm∇θ(yk )T dk .

– Set tk := ρmk and yk+1 := yk + tkd
k .

Procedure 2: Newton’s method to solve (31)

In each iteration, one key step is to construct the Hessian matrix Vk . Given the
eigenvalue decomposition

G + A∗y = PΛPT ,

let α, β, γ be the sets of indices corresponding to positive, zero and negative eigen-
values λi respectively. Set:

My =
⎡

⎣
Eαα Eαβ (τi j )i∈α, j∈β

Eβα 0 0
(τ j i )i∈α, j∈β 0 0

⎤

⎦

where all the entries in Eαα , Eαβ and Eβα take value 1 and

τi j := λi

λi − λ j
, i ∈ α, j ∈ γ

The operator Vy : Rm → R
m is defined as:

Vyh = A
(
P(My ◦ (PT (A∗h)P)) PT

)
,

where ◦ denotes the Hadamard product. Qi and Sun [37] showed

Proposition 13 The operator Vy is positive semidefinite, with 〈h, Vyh〉 ≥ 0 for any
h ∈ R

m.

Since positive definiteness of Vy is required for the conjugate gradient method, a
perturbation term is added in the linear system:

(Vy + ε I )dk + ∇θ(yk) = 0.
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After getting the dual optimal solution y∗, the primal optimal solution X∗ can be
recovered by:

X∗ = (G + A∗y∗)+.

5.3 Updating U

The subproblem to update U is:

minimize
U ∈Sn

n − 〈I, U 〉 + dk
2 ||U − Ũ ||2F

subject to 0 
 U 
 I,

with

Ũ = Uk − ρ

dk
Xk + βk(Uk −Uk−1)

with the Fast PALM method. The objective is equivalent to minimizing ||U − (Ũ +
1
dk
I )||2F . An analytical solution can be found for this problem. Given the eigenvalue

decomposition of Ũ + 1
dk
I :

Ũ + 1

dk
I =

n∑

i=1

σ Ũ
i viv

T
i ,

the optimal solution U∗ is:

U∗ =
n∑

i=1

σU∗
i viv

T
i

where the eigenvalue σU∗
i takes the value:

σU∗
i =

⎧
⎪⎨

⎪⎩

0 if σ Ũ
i < 0

σ Ũ
i if 0 ≤ σ Ũ

i ≤ 1

1 if σ Ũ
i > 1

Note also that

U∗ = I −
n∑

i=1

(1 − σU∗
i ) viv

T
i .

It may be more efficient to work with this representation if there are many more
eigenvalues at least equal to one as opposed to less than zero.
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6 Test problems

Our experiments included tests on coordinate recovery problems [1,9,19,20,36,40].
Several of the cited references work with semidefinite programming approaches to
these problems, including optimizing a nuclear norm. In these problems, the distances
between items inR3 are given and it is necessary to recover the positions of the items.
Given an incomplete Euclidean distance matrix D = (d2i j ), where:

d2i j = dist(xi , x j )
2 = (xi − x j )

T (xi − x j ),

we want to recover the coordinate xi , i = 1, . . . , n. Since the coordinate is in 3-
dimensional space, xi , i = 1, . . . , n is a 1 × 3 vector. Let X = (x1, x2, . . . , xn)T ∈
R
n×3. The problem turns into recovering the matrix X . One way to solve the problem

is to lift X by introducing B = XXT and we would like to find B that satisfies

Bii + Bj j − 2Bi j = d2i j , ∀(i, j) ∈ Ω

whereΩ is set of pairs of points whose distance has been observed. Since X is of rank
3, the rank of the symmetric psd matrix B is 3, and so we seek to minimize the rank
of B in the objective. We did not impose the double-centering condition eT Be = 0 in
our formulation, where e denotes the vector of ones.

We generated 20 instances and in each instance we randomly sampled 150 entries
from a 50 × 50 distance matrix. We applied the PALM method and the Fast PALM
method to solve the problem. For each case,we limit themaximumnumber of iterations
to 200. Figures 1 and 2 each show the results on 10 of the instances. As can be seen,
the Fast PALM approach dramatically speeds up the algorithm. The computational
tests were conducted using Matlab R2013b running in Windows 10 on an Intel Core
i7-4719HQ CPU @2.50GHz with 16GB of RAM.

We compared the rank of the solutions returned by the fast PALM method for (20)
with the solution returned by the convex nuclear norm approximation to (6). Note
that when we calculate the rank of the resulting X in both the convex approximation
and the penalty formulation, we count the number of eigenvalues above the threshold
0.01. Figure 3 shows that when 150 distances are sampled, the solutions returned
by the penalty formulation have notably lower rank when compared with the convex
approximation. There was only one instance where the penalty formulation failed to
find a solution with rank 3; in contrast, the lowest rank solution found by the nuclear
norm approach had rank 5, and that was only for one instance.

We also experimented with various numbers of sampling distances from 150 to 195.
For each number, we randomly sampled that number of distances, then compared the
average rank returned by the penalty formulation and the convex approximation. Figure
4 shows that the penalty formulation is more likely to recover a low rank matrix when
the number of sampled distances is the same. The nuclear norm approach appears to
need about 200 sampleddistances in order to obtain a solutionwith rank3 inmost cases.
There has been some research on maximizing the nuclear norm of symmetric matrices
to approximately minimize rank [19]. However, for our (very sparse) instances we
obtained similar ranks either minimizing or maximizing the nuclear norm.
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Fig. 1 Computational Results for 10 distance recovery instances. The objective value for the two methods
at each iteration is plotted. If the algorithm terminates before the iteration limit, the objective value after
termination is 0 in the figure

For the 20 cases where 150 distances are sampled, the average time for CVX is
0.6590 s, while for the penalty formulation the average time for the fast PALMmethod
is 10.21 s. Although the fast PALMmethod cannot beat CVX in terms of speed, it can
solve the problem in a reasonable amount of time and produces a lower rank solution
for our test instances.

It would be of interest to apply our approach to the problem of finding a nearest
low-rank correlation matrix [22]. Natural formulations for this problem satisfy the
Slater condition, which cannot be guaranteed with our formulation of the Euclidean
distance matrix problem.

7 Conclusions

The SDCMPCC approach gives an equivalent nonlinear programming formulation for
the combinatorial optimization problemofminimizing the rankof a symmetric positive
semidefinite matrix subject to convex constraints. The disadvantage of the SDCMPCC
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Fig. 2 Computational results of case 11–20

approach lies in the nonconvex complementarity constraint, a type of constraint for
which constraint qualificationsmight not hold.We showed that the calmness constraint
qualification holds for the SDCMPCC formulation of the rank minimization problem,
provided the convex constraints satisfy an appropriate condition. We developed a
penalty formulation for the problemwhich satisfies calmness under the same condition
on the convex constraint. The penalty formulation could be solved effectively using
an alternating direction approach, accelerated through the use of a momentum term.
For our test problems, our formulation outperformed a nuclear norm approach, in that
it was able to recover a low rank matrix using fewer samples than the nuclear norm
approach.

There are alternative nonlinear approaches to rank minimization problems, and it
would be interesting to explore the relationships between themethods. The formulation
we’ve presented is to minimize the rank; the approach could be extended to handle
problems with upper bounds on the rank of the matrix, through the use of a constraint
on the trace of the additional variable U . Also of interest would be the extension of
the approach to the nonsymmetric case.
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Fig. 3 Rank of solutions when 150 distances are sampled for 20 instances with 150× 150 distance matrix

Fig. 4 Average rank of solutions for the 20 instances, as the number of sampled distances increases from
150 to 195
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