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Abstract— Cardiovascular Magnetic Resonance (CMR)
images involves a great amount of uncertainties. Such
uncertainties may originate from either intrinsic measurement
limitations or heterogeneities among patients. Without properly
considering these uncertainties, image analysis may provide
inaccurate estimations of cardiac functions, and ultimately lead
to false diagnosis and inappropriate treatment strategy. In this
work, a stochastic image segmentation algorithm is developed to
separate cardiac chambers from the background of CMR
images. To account for noise and uncertainties in pixel values, a
generalized polynomial chaos (gPC) expansion is integrated with
a level set function to dynamically evolve boundaries of cardiac
chambers. Two consecutive steps are developed: a deferministic
segmentation to identify an immediate neighborhood of
boundary, of which pixel values are used to calibrate the gPC
model; and a stochastic segmentation applied to the
neighborhood region to evolve boundaries of cardiac chambers
in a stochastic manner. The proposed method can provide a
probabilistic description of the segmented heart boundary,
which will greatly improve the reliability of image analysis, and
potentially enhanced cardiac function evaluation.

1. INTRODUCTION

Heart diseases cause more than 18 million deaths every
year in the world [1]. Precise diagnosis of cardiovascular
diseases and accurate evaluation of cardiac functions are
essential for reducing cardiac mortality and improving cardiac
care. Cardiovascular magnetic resonance (CMR) imaging has
become an important technique in clinical cardiology practice
because of its unique capability for non-invasive imaging of
cardiac chambers and vessels [2]. CMR image analysis aims
to provide detailed information on cardiac function, type and
severity of heart disease, which can normally be inferred from
such as the cardiac volume and ejection fraction. This requires
to segment cardiac chambers from CMR images. However,
due to the heterogeneities and variabilities among patients,
CMR images involve uncertainty, and stochastic segmentation
remains an open problem.

Uncertainty can significantly affect the accuracy of CMR
image segmentation. The main idea of image segmentation is
to identify the boundary of cardiac chambers and separate
them from the background. Fig. 1 shows a typical image,
where the blood pools in both right and left ventricles appear
bright and their surrounding structures appear dark. CMR
images (see image in Fig. 1) are stored as a multidimensional
matrix, in which each element is defined as a pixel value [2,
3]. Image segmentation is to delineate the cardiac chambers by
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clustering pixel values. It should be noted that images can be
corrupted by noise and uncertainty resulting from either
measurement limitations or heterogeneities among patients.

Any uncertainty in pixel values may result in different
segmentation results, e.g., the boundary of left ventricle (LV)
in Fig. 1, is blurry due to non-compact myocardium. Different
image segmentation techniques to find LV boundary will lead
to different heart models. Without properly considering these
uncertainties (e.g., non-compact myocardium), image analysis
may provide inaccurate estimations of cardiac parameters, and
ultimately lead to false diagnosis and inappropriate treatment
strategy. Uncertainty quantification in CMR images analysis
has been studied in the literature [2]. Previous works describe
pixel values as probability distributions, which results in the
notion of stochastic images [4, 5, 6]. However, most of the
works require the calibration of a segmentation model. The
performance of such a model greatly rely on the density of data
used for calibration. In this work, we propose to quantify and
propagate uncertainty in each CMR image using a generalized
polynomial chaos (gPC) expansion [7].

Our method integrates a gPC
model with the active contour
without edges method [8] to
differentiate cardiac chambers
from the background of images.
The key idea is to evolve the
boundary of cardiac chambers
with a probabilistic description,
which can be represented using a
gPC approximation. This is then
combined with level set function
in the active contour without
edges method. Rather than a fixed boundary, this combination
can offer a probabilistic description of the boundary, thus the
segmentation result is more reliable.

region

Fig. 1. CMR short axis
view of heart

The rest of the paper is organized as follows: Section II
gives a brief review of active contour without edges method
and details the research methodology, i.e., generalized
polynomial chaos (gPC) expansion-based stochastic image
segmentation. Experimental results and discussion are given in
Section III, which is followed by Conclusions in Section I'V.

II.STOCHASTIC IMAGE SEGMENTATION

A. Active Contours without Edges

The active contours method evolves a curve to estimate the
boundary in an image U, and identifies objects from image’s
background. Define the curve as C, subjected to constraints of
a given image in an open bounded domain Q of R?, which
approximates the boundary ¢, i.e., C =¢, CcQ, and pcQ. To
solve C, active contours [8, 9] finds a best estimate of C by
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minimizing an energy function as:
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, where w1, o, A1 and 4, are parameters, m; and m, are the mean
values of pixel values inside and outside C, respectively. x and
y define the coordinates of a pixel value in Q.

The optimization in (1) is solved with a level set function
[8, 9], where C is replaced by an unknown level set function
Z. Instead of manipulating C, the optimization in (1) is to find
a geometric locus of a zero level set function Z. In this way,
optimization in (1) is rewritten as:
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, where H, means a Heaviside function w.r.t. Z, and J. is a
regularized Dirac J-function calculated with the derivative of
H, [8]. The minimization of (2) is solved by updating m, m>
and Z alternatingly.

For a fixed Z, values of m; and m, are means of pixel values
inside and outside the zero level set function Z. For fixed m;
and m» values, a gradient descent method can be formulated
for Zw.r.t. an artiﬁcial time t as:
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, where ¢ is the outward normal to the boundary 0Q. Then, the
optimization of (3) can be solved by recursive iterations [9].
To preserve the regularity of Z, a level set regularization term
can be used [10], which ensures the stability. The minimum
of (3) is solved by optimizing the energy function as:
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The optimization (6) can be solved by a semi-implicit gradient
descent algorithm [8, 9].

B. Generalized Polynomial Chaos Expansion

In this work, pixel values are described as random variables
to account for uncertainties in a CMR image. The generalized
polynomial chaos (gPC) expansion [6] is used to approximate
pixel values with a finite second order moment as:

U(w) =2 u;®; () ()
i=1

, where U is pixel values of a CMR image, = {&,..., &, }isa
set of independent, identically distributed random variables
from Wiener-Askey frame with a prior known probability
density functions (PDFs) defined by random events w. The
®;(¢) are multi-dimensional orthogonal basis functions of &. u;
denotes the gPC coefficients. To reduce computational cost,
(7) is truncated into a finite number of terms as:

p
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, where p is the total number of terms used to represent a prior

known distribution of pixel values of a CMR image U.

For simplicity, suppose that the evolving level set function
Z at each artificial time instant ¢ is defined as:

Z, = fUy,t,Z) ©)
, where f'is an operator representing the image segmentation
algorithm, i.e., (6), Up is a grayscale image to be segmented,
and Z, defines an initial level set function.

To form a stochastic image segmentation algorithm, pixels
values are approximated with (8). To quantify the effect of
uncertainty on the evolution of the zero level set function Z, a
gPC approximation of Z at each time interval # is defined as:

P
Z(@) = &P;(E() (10)
i=0
, where (; are the gPC coefficients used to describe Z at time
t. P is the total number of terms used to approximate Z, and is
defined in (11) below. It is a function of polynomial degree p
and the total number of random variables ¢ = {&,...,é0}.

P=((p+n)/(pn)-1 amn
Substituting the gPC expansions of the level set function Z
in (10) into the segmentation model, (9) is rewritten as:
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, where {{o,} are the gPC coefficients of an initially level set
function. Using the Galerkin projection, the gPC coefficients
in (10) are calculated by projecting (12) onto each of the
polynomial chaos basis functions ®(¢) as:

(Z,(0),@,(8)) = (f U(@),1,Zo(@)), D;(£)) (13)
, where ‘<',">’ denotes an inner product between two vectors
defined as follows:

(v12) = [wwno(©)de (14)

, where the integration is calculated over a domain generated
by & @(¢) is a weighting function and is selected w.r.t. the
polynomial basis functions used to represent & so as the result
in (14) is either 0 or 1. Polynomial basis functions are selected
to satisfy the orthogonality in the Wiener-Askey scheme [6].

Once the gPC coefficients in (8) are available, it is possible
to calculate the gPC coefficients of Z at any time ¢ with (12)
to (14). The mean and variance of the level set function Z can

(12)



be easily computed with gPC coefficients [6, 7]. This enables
a quick calculation of statistical moments of Z,. For example,
the variance of the zero level set function values Z provides
probability distributions along the segmentation boundary.

C. Stochastic Level Set Function based Segmentation

Suppose pixel values are described by random variables &,
the stochastic level set function based segmentation is derived
by replacing all variables in (6) with their corresponding gPC
approximates. For stochastic image segmentation, the level
set function Z can be formulated following the steps described
in the previous section as a function of random variables £ and
polynomial basis function ®@;(¢&). Substituting (8) and (10) into
(6), the stochastic segmentation algorithm is formed as:
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, where Z(¢) is estimated with (10), m1(Z(&)) and ma(Z(¢)) are
mean values inside and outside the geometric locus of a zero
let set function, i.e., mean value of gPC estimations in (10).
0:(Z()) is the derivative of a stochastic Heaviside function.
As seen in (15), Z is a function of random variables ¢ that
are used to represent pixel values with a gPC model in (8).
The mean of pixel values of segmented regions, i.e., cardiac
chambers m;(Z(¢)) and background ma(Z(¢)), are stochastic
quantities calculated with (8). It is worth mentioning that only
the mean values from the gPC models are used in this work.
The key idea in this work is the efficient approximation of
pixel values with a gPC model. The PDF of pixel values can
be calibrated with part of imaging data. However, this is less
efficient since each image has different pixel values resulting
from heterogeneity in patients. To calibrate the PDF of pixel
values in each CMR image, a two-step image segmentation is
developed: (i) a deterministic segmentation using the active
contour method to identify the boundary of cardiac regions,
and (ii) a stochastic segmentation applied to the immediate
neighborhood along the boundary.
Left ventricle

Fig. 2. Schematic of immediate neighborhood along the boundary

As seen in Fig. 2-a, two curves (in red) in the circled region
represents the immediate neighborhood of the left ventricle.
This is generated as follows: (i) Set a value N. as shown in
Fig. 2-b that is a number of pixels in the neighborhood of each
pixel along the boundary (blue line) estimated with the
deterministic segmentation; (if) Connect pixels around the
boundary to build an immediate neighborhood (enclosed area

with red lines). The mean and variance of pixel values in the
immediate neighborhood are used to calibrate a gPC model in
(8). In this way, the gPC model is adjusted for each individual
neighborhood in an image. For the calibration purpose, it is
assumed for simplicity that pixel values in the neighborhood
depend on only one random variable, i.e., £. Thus, the mean
and variance of pixel values are calibrated as:
minJ =3 (4, -0,)" + D (9, ~0,,)’ (16)
K=l i=1
, Where the decision variables x are the means and variances
of pixel values in the neighborhood, 9:; and $,; are the mean
and variance that are estimated with a gPC model. The terms
v1,;and vy, are the mean and variance of the pixel values that
are numerically calculated with pixels found to be inside the
neighborhood estimated with the deterministic segmentation.
To summarize, the proposed two-step image segmentation
involves initialization, model calibration, and segmentation.
It should be noted that the stochastic formation of (15) and the
calibration of (16) can be solved with a Monte Carlo (MC)
simulations-based techniques. However, based on our studies
[11] that compared gPC vs. MC, the computational effort with
MC is significantly higher.

I11. RESULTS AND DISCUSSION

A. Uncertainty quantification and gPC model calibration

The accuracy of stochastic image segmentation depends on
the gPC model of pixel values. This relies on the polynomial
basis functions and the number of terms used in (8). The basis
function should be appropriately selected with the statistical
distribution of pixel values in neighborhoods while ensuring
the orthogonality. Fig. 3 shows segmentation results using the
deterministic algorithm and the PDFs of pixel values in
neighborhoods generated when N, is 1.
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Fig. 3. Illustration of segmentation and PDF profiles of pixel values

Image-b

As seen in Fig. 3, the green lines describe the boundary that
separates the cardiac regions from the image background. The
boundary corresponds to pixels where Z=0. It should be noted
that segmentation algorithms segment left and right ventricles
from the background simultaneously. Since the left ventricle
appears as a circular region, a special mathematical treatment
to estimate shape information, i.e., center point and radius of
a circle, is used to discern left ventricle from right ventricle.
However, details are not discussed in this work for brevity.



For clarification, the PDF profile of the pixel values in the
neighborhood regions of left ventricles is approximated using
a binning algorithm (See Fig. 3 ¢ & d). As shown in Fig. 3-c
and 3-d, pixel values in each neighborhood of left ventricle
have different distributions that are not standard distributions
in the Wiener-Askey scheme. To quantify the PDFs,
meanwhile, ensure the orthogonality and reduce the number
of terms used in (8), the Gram-Schmidt polynomials [12] are
used as basis functions to capture stochasticity in pixel values.

B. Stochastic image segmentation

In this work, parameters used for segmentation in (15) are
chosen as: pi=u=1, ,1=1,=1, and time-step Ar=0.1. Fig. 4
shows three different case scenarios. Results obtained with
the stochastic segmentation (green line) are compared to the
deterministic method (red line).

Fig. 4. Comparison of segmentation results

To illustrate the efficiency, the stochastic segmentation is
applied to an image as shown in Fig. 4 a-1. The contrast of
pixel values between cardiac chambers and background is
very high, which results in a clear boundary. Results obtained
with both methods are in a good agreement. For a second case
study, both algorithms are applied to an image that has blurry
boundaries resulting from such as non-compact myocardium
as shown in Fig. 4 b-1. The cardiac regions can be properly
detected in Fig. 4 b-2. However, boundaries obtained with the
stochastic algorithm is slightly different from the
deterministic method. This is because the variability in the
pixel values along and on the boundaries can contribute to the
optimization in (15) due to the calibration step in (16). To
minimize the cost, the last two terms will penalize the
regularity of boundary and enclosed area, which results in a
better segmentation. This effect is farther confirmed in a third
case study, where the gPC model of pixel values is applied to
an image in Fig. 4 c-1, instead of the neighborhood. The gPC
model in this case study is calibrated with neighborhoods of
all cardiac chambers. Compared to the deterministic method,
the stochastic method provides a better segmentation because
of model calibration. For example, the stochastic method can
eliminate artifacts that are not cardiac chambers as seen in
Fig. 4 c-2. It should be noted that only the mean of a zero level
set function Z is shown in the above-mentioned case studies
for brevity. As discussed in Section II, the higher order gPC
coefficients in (10) can provide a probabilistic measure of

segmentation. This is very useful to evaluate the confidence
interval along the boundary of segmentation. For example, the
average of variances calculated with the higher order gPC
coefficients of Z for two insets in Fig. 4 c-1 are 0.03 and 0.1,
respectively. This provides segmentation variability along the
boundary, and can be refereed to the PDF profiles estimated
with (10) to evaluate the segmentation reliability.

IV. CONCLUSIONS

In this work, an automated stochastic image segmentation
algorithm is developed to segment cardiac chambers from the
background of CMR images. A generalized polynomial chaos
(gPC) expansion is combined with a level set function to
evolve the boundary in a stochastic way. The current design
takes into account uncertainty in pixel values, quantifies and
propagates it onto image segmentation steps. The method here
does not require prior information of the heart, since the gPC
model calibration is based on a pre-processing procedure, i.c.,
deterministic segmentation and an extension method to build
an immediate neighborhood in each image. Using pixel values
inside the neighborhood, the gPC model calibration can be
applied to cardiac chambers. The probabilistic descriptions of
heart boundary enable reliable and robust segmentation.
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