
 

 

 

Abstract— Cardiovascular Magnetic Resonance (CMR) 

images involves a great amount of uncertainties. Such 

uncertainties may originate from either intrinsic measurement 

limitations or heterogeneities among patients. Without properly 

considering these uncertainties, image analysis may provide 

inaccurate estimations of cardiac functions, and ultimately lead 

to false diagnosis and inappropriate treatment strategy. In this 

work, a stochastic image segmentation algorithm is developed to 

separate cardiac chambers from the background of CMR 

images. To account for noise and uncertainties in pixel values, a 

generalized polynomial chaos (gPC) expansion is integrated with 

a level set function to dynamically evolve boundaries of cardiac 

chambers. Two consecutive steps are developed: a deterministic 

segmentation to identify an immediate neighborhood of 

boundary, of which pixel values are used to calibrate the gPC 

model; and a stochastic segmentation applied to the 

neighborhood region to evolve boundaries of cardiac chambers 

in a stochastic manner. The proposed method can provide a 

probabilistic description of the segmented heart boundary, 

which will greatly improve the reliability of image analysis, and 

potentially enhanced cardiac function evaluation. 

I. INTRODUCTION 

Heart diseases cause more than 18 million deaths every 
year in the world [1]. Precise diagnosis of cardiovascular 
diseases and accurate evaluation of cardiac functions are 
essential for reducing cardiac mortality and improving cardiac 
care. Cardiovascular magnetic resonance (CMR) imaging has 
become an important technique in clinical cardiology practice 
because of its unique capability for non-invasive imaging of 
cardiac chambers and vessels [2]. CMR image analysis aims 
to provide detailed information on cardiac function, type and 
severity of heart disease, which can normally be inferred from 
such as the cardiac volume and ejection fraction. This requires 
to segment cardiac chambers from CMR images. However, 
due to the heterogeneities and variabilities among patients, 
CMR images involve uncertainty, and stochastic segmentation 
remains an open problem. 

Uncertainty can significantly affect the accuracy of CMR 
image segmentation. The main idea of image segmentation is 
to identify the boundary of cardiac chambers and separate 
them from the background. Fig. 1 shows a typical image, 
where the blood pools in both right and left ventricles appear 
bright and their surrounding structures appear dark. CMR 
images (see image in Fig. 1) are stored as a multidimensional 
matrix, in which each element is defined as a pixel value [2, 
3]. Image segmentation is to delineate the cardiac chambers by 

clustering pixel values. It should be noted that images can be 
corrupted by noise and uncertainty resulting from either 
measurement limitations or heterogeneities among patients. 

Any uncertainty in pixel values may result in different 
segmentation results, e.g., the boundary of left ventricle (LV) 
in Fig. 1, is blurry due to non-compact myocardium. Different 
image segmentation techniques to find LV boundary will lead 
to different heart models. Without properly considering these 
uncertainties (e.g., non-compact myocardium), image analysis 
may provide inaccurate estimations of cardiac parameters, and 
ultimately lead to false diagnosis and inappropriate treatment 
strategy. Uncertainty quantification in CMR images analysis 
has been studied in the literature [2]. Previous works describe 
pixel values as probability distributions, which results in the 
notion of stochastic images [4, 5, 6]. However, most of the 
works require the calibration of a segmentation model. The 
performance of such a model greatly rely on the density of data 
used for calibration. In this work, we propose to quantify and 
propagate uncertainty in each CMR image using a generalized 
polynomial chaos (gPC) expansion [7]. 

Our method integrates a gPC 
model with the active contour 
without edges method [8] to 
differentiate cardiac chambers 
from the background of images. 
The key idea is to evolve the 
boundary of cardiac chambers 
with a probabilistic description, 
which can be represented using a 
gPC approximation. This is then 
combined with level set function 
in the active contour without 
edges method. Rather than a fixed boundary, this combination 
can offer a probabilistic description of the boundary, thus the 
segmentation result is more reliable. 

The rest of the paper is organized as follows: Section II 
gives a brief review of active contour without edges method 
and details the research methodology, i.e., generalized 
polynomial chaos (gPC) expansion-based stochastic image 
segmentation. Experimental results and discussion are given in 
Section III, which is followed by Conclusions in Section IV. 

II.STOCHASTIC IMAGE SEGMENTATION 

A. Active Contours without Edges 

The active contours method evolves a curve to estimate the 

boundary in an image U0, and identifies objects from image’s 

background. Define the curve as C, subjected to constraints of 

a given image in an open bounded domain Ω of R2, which 

approximates the boundary φ, i.e., C ≈φ, C⊂Ω, and φ⊂Ω. To 

solve C, active contours [8, 9] finds a best estimate of C by 
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minimizing an energy function as: 
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, where μ1, μ2, λ1 and λ2 are parameters, m1 and m2 are the mean 

values of pixel values inside and outside C, respectively. x and 

y define the coordinates of a pixel value in Ω. 

The optimization in (1) is solved with a level set function 

[8, 9], where C is replaced by an unknown level set function 

Ζ. Instead of manipulating C, the optimization in (1) is to find 

a geometric locus of a zero level set function Ζ. In this way, 

optimization in (1) is rewritten as: 
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, where Hε means a Heaviside function w.r.t. Ζ, and δε is a 

regularized Dirac δ-function calculated with the derivative of 

Hε [8]. The minimization of (2) is solved by updating m1, m2 

and Ζ alternatingly. 

For a fixed Ζ, values of m1 and m2 are means of pixel values 

inside and outside the zero level set function Ζ. For fixed m1 

and m2 values, a gradient descent method can be formulated 

for Ζ w.r.t. an artificial time t as: 
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, where ē is the outward normal to the boundary ∂Ω. Then, the 

optimization of (3) can be solved by recursive iterations [9]. 

To preserve the regularity of Ζ, a level set regularization term 

can be used [10], which ensures the stability. The minimum 

of (3) is solved by optimizing the energy function as: 
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The optimization (6) can be solved by a semi-implicit gradient 

descent algorithm [8, 9]. 

B. Generalized Polynomial Chaos Expansion 

In this work, pixel values are described as random variables 

to account for uncertainties in a CMR image. The generalized 

polynomial chaos (gPC) expansion [6] is used to approximate 

pixel values with a finite second order moment as: 
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, where U is pixel values of a CMR image, ξ = {ξ1,…, ξn }is a 

set of independent, identically distributed random variables 

from Wiener-Askey frame with a prior known probability 

density functions (PDFs) defined by random events ω. The 

Φi(ξ) are multi-dimensional orthogonal basis functions of ξ. ui 

denotes the gPC coefficients. To reduce computational cost, 

(7) is truncated into a finite number of terms as: 
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, where p is the total number of terms used to represent a prior 

known distribution of pixel values of a CMR image U. 

For simplicity, suppose that the evolving level set function 

Ζ at each artificial time instant t is defined as: 

),,( 00 = tUft  (9) 

, where f is an operator representing the image segmentation 

algorithm, i.e., (6), U0 is a grayscale image to be segmented, 

and Ζ0 defines an initial level set function. 

To form a stochastic image segmentation algorithm, pixels 

values are approximated with (8). To quantify the effect of 

uncertainty on the evolution of the zero level set function Ζ, a 

gPC approximation of Ζ at each time interval t is defined as: 

))(()(
0

 ξi

P

i

it  
=

 (10) 

, where ζi are the gPC coefficients used to describe Ζ at time 

t. P is the total number of terms used to approximate Ζ, and is 

defined in (11) below. It is a function of polynomial degree p 

and the total number of random variables ξ = {ξ1,…,ξn}. 
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Substituting the gPC expansions of the level set function Ζ 

in (10) into the segmentation model, (9) is rewritten as: 
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, where {ζ0,i} are the gPC coefficients of an initially level set 

function. Using the Galerkin projection, the gPC coefficients 

in (10) are calculated by projecting (12) onto each of the 

polynomial chaos basis functions Φi(ξ) as: 
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, where ‘<ˑ,ˑ>’ denotes an inner product between two vectors 

defined as follows: 

 d)(, 2121 =  (14) 

, where the integration is calculated over a domain generated 

by ξ. ϖ(ξ) is a weighting function and is selected w.r.t. the 

polynomial basis functions used to represent ξ so as the result 

in (14) is either 0 or 1. Polynomial basis functions are selected 

to satisfy the orthogonality in the Wiener-Askey scheme [6]. 

Once the gPC coefficients in (8) are available, it is possible 

to calculate the gPC coefficients of Ζ at any time t with (12) 

to (14). The mean and variance of the level set function Ζ can 



 

 

 

be easily computed with gPC coefficients [6, 7]. This enables 

a quick calculation of statistical moments of Zt. For example, 

the variance of the zero level set function values Ζ provides 

probability distributions along the segmentation boundary. 

C. Stochastic Level Set Function based Segmentation 

Suppose pixel values are described by random variables ξ, 

the stochastic level set function based segmentation is derived 

by replacing all variables in (6) with their corresponding gPC 

approximates. For stochastic image segmentation, the level 

set function Ζ can be formulated following the steps described 

in the previous section as a function of random variables ξ and 

polynomial basis function Φi(ξ). Substituting (8) and (10) into 

(6), the stochastic segmentation algorithm is formed as: 
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, where Ζ(ξ) is estimated with (10), m1(Ζ(ξ)) and m2(Ζ(ξ)) are 

mean values inside and outside the geometric locus of a zero 

let set function, i.e., mean value of gPC estimations in (10). 

δε(Ζ(ξ)) is the derivative of a stochastic Heaviside function. 

As seen in (15), Ζ is a function of random variables ξ that 

are used to represent pixel values with a gPC model in (8). 

The mean of pixel values of segmented regions, i.e., cardiac 

chambers m1(Ζ(ξ)) and background m2(Ζ(ξ)), are stochastic 

quantities calculated with (8). It is worth mentioning that only 

the mean values from the gPC models are used in this work. 

The key idea in this work is the efficient approximation of 

pixel values with a gPC model. The PDF of pixel values can 

be calibrated with part of imaging data. However, this is less 

efficient since each image has different pixel values resulting 

from heterogeneity in patients. To calibrate the PDF of pixel 

values in each CMR image, a two-step image segmentation is 

developed: (i) a deterministic segmentation using the active 

contour method to identify the boundary of cardiac regions, 

and (ii) a stochastic segmentation applied to the immediate 

neighborhood along the boundary. 

 
As seen in Fig. 2-a, two curves (in red) in the circled region 

represents the immediate neighborhood of the left ventricle. 

This is generated as follows: (i) Set a value Ne as shown in 

Fig. 2-b that is a number of pixels in the neighborhood of each 

pixel along the boundary (blue line) estimated with the 

deterministic segmentation; (ii) Connect pixels around the 

boundary to build an immediate neighborhood (enclosed area 

with red lines). The mean and variance of pixel values in the 

immediate neighborhood are used to calibrate a gPC model in 

(8). In this way, the gPC model is adjusted for each individual 

neighborhood in an image. For the calibration purpose, it is 

assumed for simplicity that pixel values in the neighborhood 

depend on only one random variable, i.e., ξ1. Thus, the mean 

and variance of pixel values are calibrated as: 
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, where the decision variables κ are the means and variances 

of pixel values in the neighborhood, ϑ1,i and ϑ2,i are the mean 

and variance that are estimated with a gPC model. The terms 

υ1,i and υ2,i are the mean and variance of the pixel values that 

are numerically calculated with pixels found to be inside the 

neighborhood estimated with the deterministic segmentation. 

To summarize, the proposed two-step image segmentation 

involves initialization, model calibration, and segmentation. 

It should be noted that the stochastic formation of (15) and the 

calibration of (16) can be solved with a Monte Carlo (MC) 

simulations-based techniques. However, based on our studies 

[11] that compared gPC vs. MC, the computational effort with 

MC is significantly higher. 

III. RESULTS AND DISCUSSION 

A. Uncertainty quantification and gPC model calibration 

The accuracy of stochastic image segmentation depends on 

the gPC model of pixel values. This relies on the polynomial 

basis functions and the number of terms used in (8). The basis 

function should be appropriately selected with the statistical 

distribution of pixel values in neighborhoods while ensuring 

the orthogonality. Fig. 3 shows segmentation results using the 

deterministic algorithm and the PDFs of pixel values in 

neighborhoods generated when Ne is 1. 

 
As seen in Fig. 3, the green lines describe the boundary that 

separates the cardiac regions from the image background. The 

boundary corresponds to pixels where Ζ≈0. It should be noted 

that segmentation algorithms segment left and right ventricles 

from the background simultaneously. Since the left ventricle 

appears as a circular region, a special mathematical treatment 

to estimate shape information, i.e., center point and radius of 

a circle, is used to discern left ventricle from right ventricle. 

However, details are not discussed in this work for brevity. 

Fig. 2. Schematic of immediate neighborhood along the boundary 
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For clarification, the PDF profile of the pixel values in the 

neighborhood regions of left ventricles is approximated using 

a binning algorithm (See Fig. 3 c & d). As shown in Fig. 3-c 

and 3-d, pixel values in each neighborhood of left ventricle 

have different distributions that are not standard distributions 

in the Wiener-Askey scheme. To quantify the PDFs, 

meanwhile, ensure the orthogonality and reduce the number 

of terms used in (8), the Gram-Schmidt polynomials [12] are 

used as basis functions to capture stochasticity in pixel values. 

B. Stochastic image segmentation 

In this work, parameters used for segmentation in (15) are 

chosen as: μ1=μ2=1, λ1=λ2=1, and time-step Δt=0.1. Fig. 4 

shows three different case scenarios. Results obtained with 

the stochastic segmentation (green line) are compared to the 

deterministic method (red line). 

 
To illustrate the efficiency, the stochastic segmentation is 

applied to an image as shown in Fig. 4 a-1. The contrast of 

pixel values between cardiac chambers and background is 

very high, which results in a clear boundary. Results obtained 

with both methods are in a good agreement. For a second case 

study, both algorithms are applied to an image that has blurry 

boundaries resulting from such as non-compact myocardium 

as shown in Fig. 4 b-1. The cardiac regions can be properly 

detected in Fig. 4 b-2. However, boundaries obtained with the 

stochastic algorithm is slightly different from the 

deterministic method. This is because the variability in the 

pixel values along and on the boundaries can contribute to the 

optimization in (15) due to the calibration step in (16). To 

minimize the cost, the last two terms will penalize the 

regularity of boundary and enclosed area, which results in a 

better segmentation. This effect is farther confirmed in a third 

case study, where the gPC model of pixel values is applied to 

an image in Fig. 4 c-1, instead of the neighborhood. The gPC 

model in this case study is calibrated with neighborhoods of 

all cardiac chambers. Compared to the deterministic method, 

the stochastic method provides a better segmentation because 

of model calibration. For example, the stochastic method can 

eliminate artifacts that are not cardiac chambers as seen in 

Fig. 4 c-2. It should be noted that only the mean of a zero level 

set function Ζ is shown in the above-mentioned case studies 

for brevity. As discussed in Section II, the higher order gPC 

coefficients in (10) can provide a probabilistic measure of 

segmentation. This is very useful to evaluate the confidence 

interval along the boundary of segmentation. For example, the 

average of variances calculated with the higher order gPC 

coefficients of Z for two insets in Fig. 4 c-1 are 0.03 and 0.1, 

respectively. This provides segmentation variability along the 

boundary, and can be refereed to the PDF profiles estimated 

with (10) to evaluate the segmentation reliability. 

IV. CONCLUSIONS 

In this work, an automated stochastic image segmentation 

algorithm is developed to segment cardiac chambers from the 

background of CMR images. A generalized polynomial chaos 

(gPC) expansion is combined with a level set function to 

evolve the boundary in a stochastic way. The current design 

takes into account uncertainty in pixel values, quantifies and 

propagates it onto image segmentation steps. The method here 

does not require prior information of the heart, since the gPC 

model calibration is based on a pre-processing procedure, i.e., 

deterministic segmentation and an extension method to build 

an immediate neighborhood in each image. Using pixel values 

inside the neighborhood, the gPC model calibration can be 

applied to cardiac chambers. The probabilistic descriptions of 

heart boundary enable reliable and robust segmentation. 
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