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Repurposing ribosomes for synthetic biology
Yi Liu"*®, Do Soon Kim*® and Michael C Jewett'*°

The translation system is the cell’s factory for protein
biosynthesis, stitching together hundreds to thousands of
amino acids into proteins, which are required for the structure,
function, and regulation of living systems. The extraordinary
synthetic capability of this system, which includes the ribosome
and its associated factors required for polymerization, has
driven extensive efforts to harness it for societal use in areas as
diverse as energy, materials, and medicine. A powerful
example is recombinant protein production, which has
impacted the lives of patients through the synthesis of
biopharmaceuticals such as insulin. In nature, however, only
limited sets of monomers are utilized, thereby resulting in
limited sets of biopolymers (i.e., proteins). Expanding nature’s
repertoire of ribosomal monomers could yield new classes of
enzymes, therapeutics, materials, and chemicals with diverse,
genetically encoded chemistry. Here, we discuss recent
progress towards engineering ribosomes both in vivo and in
vitro. These fundamental and technical breakthroughs open
doors for advanced applications in biotechnology and
synthetic biology.
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Introduction

The translation apparatus is the cell’s factory for protein
biosynthesis, stitching together L-a-amino acid substrates
into sequence-defined polymers (i.e., proteins) according
to a defined genetic template. With protein synthesis
rates of up to 20 amino acids per second at an accuracy
0f 99.99% [1,2], the extraordinary catalytic capacity of the
translation apparatus has attracted extensive efforts to
repurpose it for novel functions [3-6]. Previous
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pioneering works have shown site-specific incorporation
of more than 150 non-canonical amino acids (ncAAs) into
proteins using an engineered translation apparatus to
generate biological insights and new applications [3-5].
As a result of these impressive efforts, expanding the
genetic code has emerged as a major opportunity in
synthetic and chemical biology [7-10].

Unfortunately, expanding the range of genetically
encoded chemistry into proteins presents a complex
and formidable challenge for several reasons [3]. First,
the components of engineered orthogonal translation
systems that specifically utilize ncAAs suffer poor enzy-
matic efficiencies relative to native translational machin-
ery [3]. Second, the focus of most engineering efforts
remains on evolving orthogonal translation system com-
ponents by targeting only a small number of individual
parts, rather than coordinately tuning and optimizing all
biological components involved in the complex system of
protein biosynthesis [11°°]. Third, certain biological con-
straints — especially that of the ribosome, the protein
polymerase core of the translation apparatus — limit the
scope of ncAA diversity. Because ribosome function is
necessary for life, cell viability restricts the changes that
can be made to ribosomes for expanding the range of
substrates beyond those found in nature.

This review focuses on recent developments in repurpos-
ing the translation system for novel functions, with a focus
on engineering the bacterial Escherichia coli ribosome
(Figure 1). We first describe the state-of-the-art in the
ribosome’s ability to process ncAAs. Next, we highlight
recent progress towards engineering ribosomes both 77
vivo and in vitro. We end with a discussion of current
challenges in the field and provide commentary on future
opportunities.

Repurposing ribosomes

The E. coli 70S ribosome is a ~2.4 MDa macromolecular
machine made up of two subunits, the 50S large subunit,
comprised of 33 ribosomal proteins (r-proteins), 23S ribo-
somal RNA (rRNA), and 5S rRNA, and the 30S small
subunit, comprised of 21 r-proteins and 16S rRNA [12].
The 16S rRNA of the 30S subunit accommodates ribo-
somal monomers, aminoacyl-transfer RNAs (aminoacyl-
tRNAs), and decodes mRNA. The 23S rRNA of the 50S
subunit primarily makes up the peptidyl transferase cen-
ter, which catalyzes the polymerization of amino acids
into proteins via peptide bonds, and the nascent peptide
exit tunnel, through which newly synthesized proteins
leave the ribosome. Previous works have shown the
possibility of using natural ribosomes to site-specifically
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Engineering the translation apparatus to manufacture sequence-defined polymers. Expanding the repertoire of ribosome substrates and functions
has the potential to not only create novel biopolymers, but also open new areas of research in materials science and synthetic biology.

incorporate  ncAAs into polypeptides, including
a,a-disubstituted amino acids, D-amino acids, B-amino
acids, N-alkyl amino acids, and N-methyl amino acids
[13-16,17°,18-20,21°,22°]. Since sequence defines struc-
ture and structure defines function, expanding the reper-
toire of ribosome substrates and functions has the poten-
tial to create polymers with even greater functional
breadth. For example, the ribosome has been shown to
be capable of producing polymers with non-peptide back-
bones such as polyesters. Over forty years ago, Fahren-
stock and colleagues first demonstrated that the ribosome
polymerizes phenyllactic acid in a template-directed
manner [23]. More recently, Suga and colleagues synthe-
sized polyesters up to ~10 units long containing up to
three different side chains by genetic code reprogram-
ming [24°,25].

Despite these advances, engineering the translation
machinery can be hampered by low efficiencies of the
ribosome to accept non-proteinogenic building blocks.
The structural, physiochemical, and dynamic properties
of the ribosome have been evolutionarily optimized to
translate native proteins from the 20 canonical amino
acids. To address this concern, the ribosome can be
manipulated through directed evolution to accommodate
non-canonical monomers, although there are relatively
few examples. Hecht and colleagues evolved the peptidyl
transferase center to enable exotic monomer incorpo-
ration, such as D-amino acids [26,27°] and B-amino acids
[18,19]. More recently, Czekster and colleagues gener-
ated additional ribosome mutations to show, for the first
time, the ability to incorporate these exotic monomers in
aliving cell [28°]. Even with site-directed evolution of the
ribosome, efficiencies can be low. How might the effi-
ciencies and utilities of engineered ribosomes be
improved? There are some recent indications that modi-
fying non-ribosomal factors involved in translation can

also lead to improved non-canonical monomer incorpo-
ration. For example, Suga and colleagues recently showed
that modifying the concentrations of translation factors (e.
g., Initiation Factor 2, Elongation Factor Tu, and Elon-
gation Factor G) and using tightly binding elongator
tRNAs can enhance multi-site incorporation of D-amino
acids for the synthesis of novel macrocyclic peptides
[21°]. Similarly, Huang ¢ @/. demonstrated that multiple
D-amino acid incorporation could be enabled by using
Elongation Factor P to resolve peptidyl transferase stal-
ling (biorxiv.org/content/early/2017/04/10/125930).

Although the ribosome can feasibly accept non-canonical
building blocks and be tolerant of modifications that
enable increased promiscuity, constraints imposed by
living cells have hindered efforts to engineer ribosomes
effectively. In particular, dominant growth defects caused
by mutations in the ribosome can preclude identification
of mutants that confer desired functions [29,30]. This has
motivated the need to develop new technology platforms
for engineering ribosomes both 7z vive and iz vitro, which
we describe next.

Engineering ribosomes in vivo

Expanding the decoding and catalytic capabilities of the
ribosome is often at the expense of diminishing its
endogenous function in protein synthesis. To bypass this
limitation, recent developments in cells have focused on
the creation of specialized ribosome systems. The con-
cept is to create an independent, or or#kogonal, translation
system within the cell while wild-type ribosomes con-
tinue to synthesize genome-encoded proteins to ensure
cell viability and productivity. The orthogonal ribosome
is thus excluded from the production of endogenous
polypeptides and, ideally, exclusively translates specific,
targeted mRNAC(s). Therefore, the orthogonal translation
apparatus can be engineered to carry out new functions,
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even if such modifications may negatively affect the
operation of the orthogonal ribosome in normal transla-
tion. The principle of orthogonality is achieved through
the bacterial small ribosomal subunit. Recognition of the
start codon in bacteria relies on complementary interac-
tions between the purine-rich Shine-Dalgarno (SD)
region, which precedes the initiator codons of bacterial
open reading frames, and the pyrimidine-rich ‘anti-SD’
(aSD) sequence at the 3’-end of the 16S rRNA in the 30S
subunit [31]. Thus, by modifying the SD sequence of an
mRNA and the corresponding aSD sequence in 16S
rRNA, it is possible to create specialized ribosomes capa-
ble of translating only a specific kind of engineered
mRNAs, while simultancously excluding translation of
endogenous cellular mRNAs (Figure 2a). Initially, the
concept of orthogonal ribosomes was pioneered by Hui
and deBoer [32-34], and then was extended and improved
in several ways by Chin and colleagues. Rackham and
Chin, for example, generated random mutagenesis librar-
ies of possible 16S rRNA and mRNA pairs with comple-
mentary SD/aSD sequences, then selected for pairs that
can robustly and exclusively translate orthogonal message
without crosstalk with native translation processes [35°°].
Chubiz and Rao developed a computational model to

Figure 2

rationally design orthogonal SD/aSD sequences in order
to explore a larger mutational space, with similar results as
they discovered several orthogonal 16S and mRNA pairs
without toxicity effects on the host strain [36].

Leveraging these advances, orthogonal 30S subunits have
been engineered to preferentially bind to the amber
suppressor tRNA over RF-1 to improve ncAA incorpo-
ration efficiency [37], select for opal suppressor tRNA
over RF-2 [38], decode quadruplet codons towards
genetic code expansion [39°°], and enable orthogonal
transcription-translation networks [40]. These innova-
tions have enabled the creation of engineered ribosomes
with altered substrate preferences /7 vivo. However, until
two years ago, such techniques have been limited to the
30S small subunit because 50S large subunits freely
exchange between pools of native and orthogonal 30S
subunits. This has previously constrained the engineering
potential of the large subunit, which includes functionally
important domains such as the peptidyl transferase center
and the exit tunnel.

Recently, the covalent linking of the core ribosomal RNA
of the large and small subunits of the orthogonal ribosome
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Approaches to orthogonal ribosomes. (a) 30S orthogonality. 30S subunits (0-30S), with the anti-Shine-Dalgarno (aSD) sequence of its 16S rRNA
modified to bind only to RNA messages (0-mRNA) with the complementary Shine-Dalgarno (SD) sequence, translate proteins (o-protein)
orthogonal and parallel to the native translation process (gray). However, the 50S subunit is allowed to freely associate between native 30S and
0-308. (b) A fully orthogonal 70S. 50S and 30S subunits are connected by an RNA tether, preventing free association of native and orthogonal

species.
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has enabled the first completely orthogonal ribosome-
mRNA system where mRNA decoding, catalysis of poly-
peptide synthesis, and protein excretion can all be opti-
mized for new substrates and functions [41°°,42°43].
Orelle and colleagues described the first successful con-
struction of a ribosome with covalently tethered subunits,
termed Ribo-T, capable of carrying out protein synthesis
(Figure 2b) [41°°]. Specifically, they engineered a ribo-
some whose core 16S and 23S rRNAs form a single
chimeric molecule with a covalent connection between
the 23S rRNA termini within the loop of helix 101 (H101)
and the apex loop of the 16S rRNA helix 44 (h44). Not
only could this hybrid rRNA support the assembly of a
functional ribosome in a cell, but surprisingly Ribo-T
could also maintain bacterial growth even in the absence
of wild-type ribosomes. Orelle and colleagues also used
Ribo-T to create a fully orthogonal ribosome-mRNA
system [41°°]. They demonstrated its evolvability by
selecting otherwise dominantly lethal rRNA mutations
in the peptidyl transferase center that facilitated the
translation of problematic protein sequences. Fried and
colleagues also demonstrated a linked ribosome design
capable of sequestering dominant lethal mutations in a
fully orthogonal ribosome using a different set of linkers,
or ‘staples’ [42°]. Collectively, these findings uncover new
directions in biomolecular engineering and synthetic
biology. Looking forward, tethered ribosomes can be
used for exploring poorly understood functions of the
ribosome (e.g., antibiotic resistance mechanisms),
enabling orthogonal genetic systems, and engineering
ribosomes with altered chemical properties. Future chal-
lenges include resource re-allocation of the cell’s transla-
tional capacity and shared ribosomal protein pool, as well
as optimizing the expression levels of tethered ribosomes
in the background of high concentrations of endogenous
ribosomes.

Engineering ribosomes in vitro

As a complement to engineering ribosomes i vivo, in
vitro approaches offer potential advantages to precisely
control the reaction environment in a manner that may
allow for the isolation of certain mutant ribosomes not
possible in cells, such as those in non-physiological pH,
temperature, and redox levels. I» vitro translation sys-
tems, both reconstituted from purified parts or from crude
cell lysates, have shown promise for applications stem-
ming from recent advances that alleviate possible ribo-
somal limitations and increase yields [44-47]). In vitro
reconstitution of E. co/i ribosomes from their individual
components was first achieved over 40 years ago [48,49].
Despite relatively efficient reconstitution with natural
components, the use of 7z vitro transcribed rRNA, which
lack naturally occurring post-transcriptional modifica-
tions, is less efficient than 7z vivo transcribed versions
[50,51]. This is a particular concern for the E. co/i 50S
subunit, where peptidyl transferase activity from recon-
stituted 50S subunits using 7z vitro transcribed 23S rRNA

is diminished ~10,000-fold relative to those with natu-
rally derived 23S rRNA. Low reconstitution efficiencies
from iz vitro transcribed rRNA have represented one of
the most significant bottlenecks to iz vitro ribosome
engineering.

Several efforts are underway to move beyond previous
limitations. One method is to leverage purified translation
systems, such as the PURE system with no endogenous
ribosomes, to build new ribosomes in ways similar to
strategies used in cells [52-54]. In a key milestone this
year, Li and colleagues showed that ribosomal proteins
generated 7z vitro could be used alongside iz vitro tran-
scribed rRNA to build a functional small ribosomal sub-
unit [54]. In another approach, Jewett ez @/. developed an
integrated synthesis, assembly, and translation method,
termed i1SAT, that enabled efficient one-step co-activa-
tion of rRNA transcription, assembly of transcribed rRNA
with native ribosomal proteins into E. co/i ribosomes, and
ribosomal synthesis of functional proteins in a ribosome-
free S150 extract [55] (Figure 3). Notably, iSAT mimics
co-transcription of rRNA and ribosome assembly as it
occurs in cells.

The 1SAT system’s utility was improved over the past
four years, where the activity of iSAT was increased by
more than three orders of magnitude through optimiza-
tion of extract preparation methods, rRNA transcription
turning, substrate limitation alleviations, and the use of
macromolecular crowding and reducing agents [55-58]. In
one instance, Fritz and Jewett increased transcriptional
efficiency through 3'-modifications in rRNA gene
sequences, optimized plasmid and polymerase concen-
trations, and demonstrated the use of a 'T'7-transcribed
rRNA operon for stoichiometrically balanced rRNA syn-
thesis and native rRNA processing [56]. These modifica-
tions produced a 45-fold improvement in iSAT protein
synthesis activity. In another advancement, Liu and
colleagues determined substrate depletion and toxic
byproduct accumulation to be causes of reaction termi-
nation in iSAT, and alleviated these constraints using a
semi-continuous reaction format [57]. Another study
demonstrated that macromolecular crowding and reduc-
ing agents (6%, w/v, Ficoll 400, and 2 mm D'TBA) yielded
approximately a five-fold increase in overall iSAT protein
synthesis activity [58]. By utilizing a fluorescent RNA
aptamer, fluorescent reporter proteins, and ribosome sed-
imentation analysis, Fritz and colleagues showed that
crowding agents increased iSAT yields by enhancing
translation while reducing agents increase rRNA tran-
scription and ribosome assembly [58]. These efforts
demonstrated that iSAT ribosomes possess ~70% of
the protein synthesis activity compared to /7 vivo-assem-
bled E. c¢o/i ribosomes, which surpasses an important
benchmark: iSAT ribosomes are now capable of
translating >8,000 peptide bonds per ribosome —
enough peptide bonds for the translation of a complete
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Integrated synthesis, assembly, and translation (iISAT) method for ribosome construction in vitro. In cell-free, ribosome-free S150 extract, reporter
mRNA and rRNA are transcribed by RNA polymerase (RNA Pol) and the rRNA assembled into ribosomal subunits with added total r-proteins of
the 70S (TP70). iISAT-assembled ribosomes then translate the reporter, here superfolder green fluorescent protein (sfGFP), as a measure of

ribosome activity.

set of ribosomal proteins [55]. The iSAT system can also
be encapsulated inside giant liposomes in a cell-like
compartment which could facilitate / vitro evolution
[59].

A key feature of the iISA'T" system is the ability to generate
ribosomal variants by simply changing the DNA input,
which allows for the facile construction of modified ribo-
somes with mutations in any desired domain. For exam-
ple, ribosomes highly resistant to the lincosamide antibi-
otic clindamycin were readily constructed via targeted
mutations in rRNA sequences [55], showcasing the ability
of the iSAT system to generate functional modified
ribosomes. Other approaches have shown the ability to
evolve ribosomes 772 vitro. T'o select mutants of 23S rRNA,
which contain the peptidyl transferase center, Cochella
and Green developed a hybrid iz vive/in vitro approach
[29]. Their strategy involved, first, 7 vivo assembly of
tagged ribosomal mutants with variant 23S rRNAs
(mutant rRNAs that are co-expressed with native rRNAs),
second, isolation of tagged ribosomes by affinity purifica-
tion, and third, 7z vitro selection of ribosome mutants
using ribosome display. Employing this approach, the
authors isolated functionally competent 23S rRNAs that
were resistant to clindamycin and were not viable i vivo
[29]. While this hybrid strategy enables iz vitro selection
of mutant ribosomes based on functional properties that
cannot be accessed iz vivo, it suffers from limited diver-
sity resulting from the need to transform a mutant library
of 23S rRNA genes into cells, as well as the challenge of
separating mutant ribosome pools from native ones. This
provides a robust opportunity to use iSAT for evolving
modified ribosomes with altered substrate preferences.

Beyond modifying the active site of the ribosome for
altered catalytic function, mutations elsewhere could
allow the ribosome to use orthogonal tRNAs (Figure 4).

In pioneering work, Terasaka and colleagues demon-
strated that the universally conserved 3'-terminal CCA
sequence in tRNA molecules could be changed to CGA
or GGA without loss of function, provided that three

Figure 4
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Adapting the ribosome to unique tRNA pools. 50S subunits (0-50S)
are modified in the 23S rRNA to bind only to orthogonal tRNA (o-
tRNA) with a complementary sequence at the 3’ tail. This can result in
two species of protein translated from one RNA message. The 30S
subunit freely associates between the two 50S species.
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residues of the ribosomal peptidyl transferase center (P
site G2251 and G2252, and A site G2553) were altered to
retain base pairing with the tRNA terminus [60°°]. To do
this, they first generated synthetic tRNAs [61] bearing
mutations at the 3’ end at either one or two sites (C74G
and/or C75G), and found that 3’-CGA-tRNA and 3-GGA-
tRNAs were not compatible with wild-type ribosomes
and thereby orthogonal. Ribosomes with 50S subunits
possessing complementary single (G2252C), double
(G2251C and G2253C), and triple (G2251C, G2252C,
and G2253C) mutations in the 23S rRNA were purified
and their activity coupled with and without orthogonal
tRNAs were assessed for translation using a flexible iz
vitro translation (FI'T) system of purified parts [60°°,62].
The authors found that the double mutant ribosome
paired with 3’-CGA-tRNA was able to synthesize a sepa-
rate species of peptide bearing an ncAA from a single
mRNA, while wild-type ribosomes translated a peptide
without an ncAA. This advancement suggests the possi-
bility of establishing orthogonal coding channels for the
biosynthesis of novel synthetic polymers capable of incor-
porating multiple ncAAs without crosstalk with canonical
amino acids and the native translation system.

Conclusions

The construction of engineered ribosomes is poised to
enable new opportunities to manufacture synthetic
sequence-defined polymers that span vast structural
and functional diversity, yet remain unattainable through
existing methods in synthetic or biological chemistry.
Despite these opportunities, many challenges remain.
First, the fundamental constraints on the chemistry that
the ribosome’s RNA-based active site can carry out are
unknown. By creating machines of translation that move
beyond nature’s processes and standard monomers,
future work could elucidate a new understanding of
the science of protein synthesis through construction.
Second, the resolution of the crystal structure of the
bacterial ribosome has provided newfound insights into
the functional operation and mechanism of translation.
Yet, repurposing ribosomes with new substrate prefer-
ences will require computational tools, as well as predic-
tive models, to guide any fundamental redesign of the
translation apparatus for new chemical activities. This is
especially challenging given the size and structural com-
plexity of the ribosome. Third, the ribosome is only one
component of the translation apparatus and building
wholly orthogonal translation systems with high specific-
ity and activity for unique non-canonical substrates is
complex, especially given its milieu of moving parts. New
approaches for systematically engineering multiple com-
ponents of the translation machinery (e.g., ribosomes,
tRNAs, aminoacyl-tRNA synthetases, and elongation
factors) concurrently as a cohesive unit, rather than in
isolation, will provide synergistic opportunitics to
enhance multi-site incorporation of ncAAs into proteins.

Overcoming these challenges will have both short and
long term benefits. In the short term, ribosome repurpos-
ing will deepen our understanding of translation, expand
the genetic code in a unique and transformative way, and
reveal how evolution has guided the structure and func-
tion of the ribosome. In the long term, engineering the
translation apparatus will expand the range of genetically
encoded chemistry in proteins and biopolymers, forging a
broad range of innovative technologies that have the
potential to transform synthetic biology.
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