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Synthetic biology offers opportunities for experiential educational activities at the intersection of the life sciences,
engineering, and design. However, implementation of hands-on biology activities in classrooms is challenging be-
cause of the need for specialized equipment and expertise to grow living cells. We present BioBits™ Bright, a shelf-
stable, just-add-water synthetic biology education kit with easy visual outputs enabled by expression of fluorescent
proteins in freeze-dried, cell-free reactions. We introduce activities and supporting curricula for teaching the central
dogma, tunable protein expression, and design-build-test cycles and report data generated by K-12 teachers and
students. We also develop inexpensive incubators and imagers, resulting in a comprehensive kit costing <US$100
per 30-person classroom. The user-friendly resources of this kit promise to enhance biology education both inside
and outside the classroom.

INTRODUCTION nology, engineering, the arts, and mathematics) education and pri-

Synthetic biology aims to program biological systems to carry out
useful functions. As a field, synthetic biology has made meaningful
progress toward biomanufacturing of medicines (1, 2), sustainable
chemicals (3, 4), and advanced fuels (5), as well as cellular diagnos-
tics and therapies (6-9). At the core of these advances is the ability
to control and tune the processes of transcription and translation,
offering a point of entry for teaching fundamental biology topics
through cutting-edge biological technologies. Synthetic biology also
offers rich educational opportunities, as it requires students to con-
front real-world, interdisciplinary problems at the intersection of di-
verse disciplines including chemistry, biology, engineering, computer
science, design, policy, and ethics. Such cross-cutting educational ac-
tivities align closely with the objectives of K-12 STEAM (science, tech-

orities identified by the National Academy of Engineering to enable
students to apply, adapt, and connect fundamental principles across
multiple disciplines (10).

Synthetic biology-based educational efforts such as the BioBuilder
Educational Foundation (11-14) and the International Genetically
Engineered Machines competition (15, 16) have made great strides
toward incorporating synthetic biology into high school and university
education. These programs have resulted in student-reported academic
gains, high student engagement, and increased self-identification as
biological engineers (17-19). However, efforts to incorporate a hands-
on molecular or synthetic biology curriculum have been limited by
(i) the number of robust systems that can be converted into teaching
materials; (ii) the need for expensive, specialized equipment to store,
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grow, and transport cells; and (iii) biosafety considerations that limit
the ability to work with cells outside of a laboratory setting (20).
Addressing these limitations would help expand educational oppor-
tunities for students in classrooms, as well as inform and promote
public engagement in synthetic biology.

Freeze-dried, cell-free (FD-CF) systems represent an emerging tech-
nology with exciting potential as a chassis for educational tools. FD-
CF systems harness an ensemble of catalytic components [for example,
RNA polymerases, ribosomes, aminoacyl-transfer RNA (tRNA) syn-
thetases, translation initiation, and elongation factors, etc.] from cell
lysates to synthesize proteins in vitro (21). Hence, FD-CF reactions
do not use intact organisms; thus, they circumvent many of the bio-
safety and biocontainment regulations that exist for living cells. Further,

A

FD-CF systems are stable at room temperature for more than 1 year (22)
and can be run simply by adding water and DNA template to a freeze-
dried pellet of reagents, eliminating the need for specialized equip-
ment or expertise to run reactions. Finally, FD-CF systems are
robust, with demonstrated utility for point-of-use biosynthesis of
sophisticated diagnostics, protein therapeutics, vaccines, small mole-
cules, and molecular biology reagents (22-29). If FD-CF technology
could be used to develop safe, portable, and easy-to-use educational
tools, it would significantly lower the barrier to entry for teaching
synthetic biology.

Here, we describe BioBits™ Bright, a portable, just-add-water edu-
cational kit and accompanying hands-on laboratory modules designed
for use outside of the laboratory by untrained operators (Fig. 1). To
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Fig. 1. BioBits™ Bright: A portable, cell-free synthesized fluorescent protein library for teaching the central dogma of molecular biology and synthetic biology.
(A) We describe here the development of an educational kit containing two laboratory modules using FD-CF reactions and a library of in vitro-synthesized fluorescent
proteins. (B) In module |, students investigate how biological systems can be engineered by adding varying amounts of DNA template to FD-CF reactions. Titrating the
amount of DNA template results in varying levels of fluorescent protein production, which are visible to the naked eye and under a blue or black light. (C) In module II,
users design their own in vitro program using DNA encoding the fluorescent protein library and any of the DNA template concentrations investigated in module I. This
module offers the opportunity to go through a user-directed design-build-test (DBT) cycle. All reagents used in these activities (freeze-dried reactions and plasmids) can
be stored and transported without refrigeration, making them highly portable for use outside of the laboratory.
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facilitate kit construction, we developed a library of fluorescent
proteins that express at high yields (>600 ug ml™") in FD-CF reactions.
We report data for each module from workshops with Chicago K-12
students and teachers to demonstrate robustness and ease of use. Lab-
oratory modules are designed to (i) synergize with fundamental biol-
ogy education, as evidenced by the supporting curriculum developed
by Chicago middle and high school teachers (curricula S1 to S5); (ii) be
run independently or in sequence; and (iii) be adapted for use with
students at various educational levels. Notably, to make BioBits™
Bright laboratory activities accessible to resource-limited classrooms,
we have also developed low-cost incubators and imagers. Separately,
we describe BioBits™ Explorer [see companion article by Huang et al.
(30)], a next-generation BioBits™ kit developed to illustrate an even
wider range of biological concepts (for example, enzymatic catalysis
and genetic circuits). We anticipate that the availability of our
BioBits™ kits and the data reported here will encourage teaching and
broaden participation in the field of synthetic biology.

RESULTS

High-yielding in vitro expression of a diverse fluorescent
protein library

Based on the success of colorimetric chemistry kits, we sought to
create synthetic biology classroom modules for BioBits™ Bright with
simple, visual readouts. We reasoned that the ability to link a visual
output to abstract concepts such as the central dogma of molecular
biology would increase student engagement and understanding. Fluo-
rescent proteins are routinely used as reporters in synthetic biology
and represent an attractive readout for an educational kit for two main
reasons. First, a wide variety of fluorescent protein variants have been
discovered or engineered (31-36), which produce an array of colors
visible to the naked eye. Second, these variants are well studied and

Table 1. Diverse fluorescent protein library enables educational kit
development. A 13-member fluorescent protein library was designed to
include red, orange, yellow, green, teal, and blue fluorescent protein
variants, which were cloned into the in vitro expression vector pJL1. PDB
accession numbers are provided if the protein (or a closely related variant)
has been crystallized.

Protein Color Excitation Emission PDB entry
(nm) (nm)

mCherry Red 587 610 2H5Q

mREPT Iied H 584 H 607 2VAD .......

eforRed ........ Iied H 587 H 61 0 2VAD .......

dTomat;) ...... Ofénge H 554 H 581 H -

mOrang;e ...... Ofénge H 548 H ;‘;62 H

Ypet Yéllow H 517 H 530

sGFp G}een H 485 H 528

mTFP1 éyan H 462 H 492

Cypet Cyan H 435 H 477

Aquam;riur{é (Eyan H 420 H 474

mTagBl;i?E """" élue H 599 H 454

mKaIan"1“a.1' """"" élue H 585 H 456

BFP2 I;Iue H 583 H 448
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documented in freely available databases such as the Protein Data
Bank (PDB) (Table 1), making them ideal instructional tools.

To build BioBits™ Bright, we initially designed a diverse 13-member
fluorescent protein library based on existing fluorescent protein
variants (Table 1) and cloned this library into the pJL1 cell-free expres-
sion vector. As an open-source kit, we have made these constructs
available through Addgene (constructs 102629 to 102640, 106285,
and 106320). The library was chosen to include red, orange, yellow,
green, cyan, and blue fluorescent proteins. The selected library mem-
bers represent a diversity of amino acid sequences, with sequence ho-
mology to our standard cell-free protein synthesis (CFPS) reporter,
a superfolder green fluorescent protein (sfGFP) variant (37), ranging
from 90 to 22% (fig. S1). Because of this diversity, and because many
of the library members were evolved in the laboratory from naturally
occurring fluorescent proteins, the fluorescent protein library could
be used to teach evolution, a required subject according to Next Gen-
eration Science Standards (NGSS) for K-12 education (38, 39). Plasmids
encoding each of the selected library members were used as templates
in 5 ul FD-CF reactions lasting 20 hours at 30°C. Yields and full-
length expression of all 13 fluorescent proteins were assessed using
C-leucine incorporation.

We observed that all proteins expressed with high soluble yields
(between 160 and >1100 ug ml™") (Fig. 2A) with exclusively full-length
products observed on a Coomassie-stained SDS-PAGE gel (fig. S2)
and by autoradiogram (Fig. 2B). In particular, six fluorescent protein con-
structs (mCherry, mRFP1, dTomato, mOrange, YPet, and sfGFP) ex-
pressed at yields of >600 ug ml™' and generated distinct colors and
fluorescence visible to the naked eye (Fig. 2C). These results make
these six proteins ideal candidates for educational tools, especially in
resource-limited classrooms or other nonlaboratory settings. While
expression is optimal at 30°C, the six-member library expresses with
similar yields (~60% or higher) in reactions incubated at 21°C (room
temperature) for 40 hours (fig. S3). These results indicate that pre-
cise temperature control is not required for CFPS, demonstrating
that these reactions can be run without an incubator, water bath, or
other specialized equipment. Notably, these proteins represent a di-
versity of amino acid sequences to facilitate evolution curriculum,
with between 24 and 89% amino acid sequence homology to sfGFP
(fig. S1). For these reasons, these six proteins were selected to form
the core set of reagents for BioBits™ Bright, which we next used to
develop two educational modules.

Module I: Tunable in vitro expression of fluorescent proteins
The first laboratory module demonstrates the ability to control protein
synthesis titers by varying the amount of DNA template present in
FD-CF reactions, essentially limiting the in vitro transcription and trans-
lation reaction for one of its essential substrates. This activity teach-
es students fundamental biology and synthetic biology concepts such
as (i) information flow in the central dogma of molecular biology
and (ii) how synthetic biologists can engineer biological systems in
predictable ways. Freeze-dried DNA templates encoding mCherry,
mRFP1, dTomato, mOrange, and YPet were rehydrated, added
to FD-CF reactions in varying amounts (25, 10, 5, 2.5, or 0 ng of
DNA), and incubated at 30°C for 20 hours. The sixth library member,
sfGFP, exhibited protein synthesis rates between 2 and 10 times faster
than the other library members. This relatively high rate of protein
synthesis is expected because sfGFP was evolved to exhibit en-
hanced folding and rapid fluorescence (40); however, after 20 hours,
we were unable to observe discrete variations in protein synthesis
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Fig. 2. High-yielding cell-free production of fluorescent protein library enables
development of BioBits™ Bright. A 13-member fluorescent protein library was
designed to include red, orange, yellow, green, cyan, and blue fluorescent protein
variants and cloned into the cell-free expression vector pJL1. (A) Following CFPS for
20 hours at 30°C, soluble yields of the fluorescent protein library were measured via
14C-leucine incorporation. Values represent averages, and error bars represent SDs
of n > 3 biological replicates. (B) Soluble fractions were analyzed by SDS-PAGE and
14C autoradiogram. All library members expressed with exclusively full-length
products observable by autoradiogram. (C) Images of FD-CF reactions expressing
the fluorescent protein library under white light (top) and blue light (bottom).

with varying amounts of DNA template (fig. S4). This is not ideal
for a typical classroom setting, where teachers will not see students
for 24 to 48 hours after reactions are set up. For this reason, stGFP
was excluded from this module.

FD-CF reactions primed with varying concentrations of the five
selected DNA templates were assembled by a graduate student (ex-
pert) and compared to those assembled by Chicago middle and high
school students and teachers. In all cases, we observed that reducing
the concentration of DNA template led to a concomitant decrease
in total protein expression, even in reactions assembled by users who
were running the BioBits™ Bright laboratory for the first time (Fig. 3A).
Visible differences in color and fluorescence showing these trends were
observable in all samples under both white and blue light (Fig. 3B).
The ability to easily perceive variations in reaction color with the
naked eye makes it possible to qualitatively assess protein synthesis

Stark et al., Sci. Adv. 2018; 4 : eaat5107 1 August 2018

yields from this module without a spectrophotometer. Through its
easy, visual outputs, this laboratory module helps students understand
how proteins are synthesized, as well as some of the key biochemical
factors that affect this process (for example, DNA as the instructions
that guide protein synthesis). As an extension of the activity presented
here, students could investigate factors other than DNA concentra-
tion that affect protein synthesis, such as ion concentration, amino acid
concentration, or energy substrate concentration, among others (41).
As examples of these activities, we worked with Chicago public high
school teachers to develop a set of inquiry-based curricula for this
module with emphasis on student-driven experimental design to satisfy
NGSS requirements for high school biology (curricula S1 and S2).

Module II: Design, build, and test an in vitro
biological program
The second laboratory module engages participants in a design,
build, test (DBT) cycle wherein they create their own in vitro pro-
gram with DNA. This laboratory recapitulates the idea of controlla-
ble protein expression from module I, introduces the DBT cycle as a
key synthetic biology and engineering concept, and could pair with
a brief research project to introduce students to the broader field of
synthetic biology (for example, curriculum S3). Specifically, partici-
pants were given a 96-well PCR plate containing 5 pl FD-CF reactions
and separately freeze-dried plasmid templates. Programs could be
constructed by rehydrating FD-CF reactions with any of the six-
member fluorescent protein library members at any of the concen-
trations tested in the first laboratory module (0 to 25 ng of total
template DNA). Participants designed, built, and tested their in vitro
programs by carrying out protein synthesis for 20 hours at 30°C.
We ran this activity with students of varying ages, ranging from
preschool-aged students to high school teachers, and observed a num-
ber of successful designs (Fig. 4). This module’s educational merit is
twofold. First, this activity engages students in the engineering pro-
cess, helping them go beyond simple pipetting and reagent handling
for a self-directed, independent learning experience. Second, this
module bridges the gap between science and art, offering an oppor-
tunity for incorporation of emerging interdisciplinary STEAM ide-
ologies into biology curriculum, which have reported improved
educational outcomes (42). One participant described this labora-
tory as a “biological Lite Brite,” highlighting the design component
of this module and the potential for students’ creative innovation with-
in this laboratory activity. Of note, sample curricula for high school
math (curriculum S4) and middle school science classes (curriculum S5)
were developed in partnership with Chicago area teachers, emphasiz-
ing the laboratory’s cross-cutting nature and the value of this activity at
various educational levels.

Portable, low-cost imagers and incubators for taking
BioBits™ beyond the laboratory

Recognizing that a vast majority of classrooms will not have laboratory-
grade fluorescent imagers or incubators to run FD-CF reactions, we
developed affordable and portable versions to make the BioBits™
Bright laboratory activities accessible to resource-limited classrooms.
Specifically, we developed two compact, battery-powered imagers
for visualizing FD-CF reactions producing fluorescent proteins. One
imager is designed to accommodate eight-strip PCR tubes for imaging
DNA titration experiments, while the second is designed for imag-
ing 96-well plates containing in vitro biological programs. Both sys-
tems faithfully image the fluorescent protein library and have the
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Fig. 3. Controllable in vitro expression of diverse fluorescent proteins. FD-CF reactions were rehydrated with 25, 10, 5, 2.5, or 0 ng of template DNA encoding mCherry,
mRFP1, dTomato, mOrange, or YPet and run for 20 hours at 30°C. (A) Results from experiments run by graduate students (experts), high school students, or middle and
high school teachers are shown. In all cases, we observed a concomitant decrease in protein synthesis as the amount of DNA template was decreased. Values represent
averages, and error bars represent average errors of n > 2 biological replicates. (B) The variation in protein expression was marked enough to be observed qualitatively
with the naked eye under both white light and blue light. Images are representative examples of experiments prepared by high school students.

same key components: a single 450-nm light-emitting diode (LED)
light, colored acrylic plates to filter out the inherent color of the
LED for fluorescence visualization (fig. S5), and a laser-cut casing to
house the system (Fig. 5, A and B). The initial prototypes for the 8-well
and 96-well imagers cost about US$15 and US$32, respectively, to
build (table S1). We also developed two versions of a USB (universal

Stark et al., Sci. Adv. 2018; 4 : eaat5107 1 August 2018

serial bus)-powered incubator: one in which temperature is con-
trolled by a switch calibrated to two temperature settings, 30° or 37°C
(Fig. 5C), and one with a dial to enable any temperature setting be-
tween 30° and 37°C (folder S1). Both versions perform similarly and
can be built in schools with fabrication workshops for less than
US$20 (table S1).
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Fig. 4. Design and execution of in vitro programs. Participants were asked to
design, build, and test their own in vitro program with DNA in a 96-well PCR plate.
Designs could include the mCherry, mRFP1, dTomato, mOrange, YPet, or sfGFP
plasmids at concentrations between 0 and 25 ng (same template concentrations
tested in module ), denoted with corresponding colors and opacity in the pictured de-
signs (legend, bottom left). Successful designs included (A) a rainbow, (B) a periodic
table, (C) a wildkit (the Evanston Township High School mascot), and (D) a game of
Connect Four®. These biological programs were designed, built, and tested by un-
trained operators, demonstrating the potential of this laboratory for use in a class-
room setting.

Connect Four®

We tested the expression of our six-member fluorescent protein
library at 30°C in our portable incubator and observed at least 50% of
protein yields achieved using a thermocycler, with fluorescence easily
observable in our handheld eight-well imager (Fig. 5C). As an example
of cross-cutting STEAM education integrating engineering, fabrica-
tion, electronics, and synthetic biology, the BioBits™ Bright computer-
aided design (CAD) files (folder S1) can be used with the open-source
FreeCAD software and accompanying circuit diagrams (folder S1)
to enable students to manufacture their own portable imager or
incubator for use in subsequent experiments.

Stark et al., Sci. Adv. 2018; 4 : eaat5107 1 August 2018
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Fig. 5. Portable, low-cost equipment for teaching outside of the laboratory.
(A) The eight-well imager is handheld and battery-operated for easy use (top) and
can be used to image the six-member fluorescent library (bottom). We show FD-CF
reactions expressing, from left to right, mCherry, mRFP1, dTomato, mOrange, YPet,
and sfGFP. (B) The 96-well imager is also battery-powered and has a removable lid
for easy use (left). In vitro biological programs can be imaged using our custom
96-well imager with similar performance as a laboratory imager (right). (C) The por-
table incubator accommodates up to 96 standard PCR tubes and has a removable,
insulating lid for maintaining reaction temperature at its two set points, 30° and
37°C (left). Fluorescent protein yields using our incubator set at 30°C are at least
50% of those achieved using a laboratory incubator (top right) and produce fluo-
rescence that is visible in our handheld eight-well imager (bottom right). Values rep-
resent averages, and error bars represent average errors of n = 2 biological replicates.

With the portable imagers and incubators at hand, we were able to
demonstrate that FD-CF reactions can be run in a “laboratory-free”
environment, using our portable incubator, imager, and disposable
exact-volume transfer pipettes (VWR 89497-718) to rehydrate the
reaction. Reactions run in the laboratory (with laboratory pipettes,
incubators, and imagers) are comparable to those run with our kit
components and are visually consistent across different experiments
and different operators (fig. S6).

DISCUSSION
We present here the BioBits™ Bright educational kit and an accompa-
nying collection of resources and data for teaching synthetic biology
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outside of the laboratory. To develop the fluorescent reagents, we
assembled a fluorescent protein library that expresses at high yields in
FD-CF reactions. We further demonstrated that both DNA templates
encoding this library and cell-free reactions could be freeze-dried
and reconstituted by just adding water, providing the necessary re-
agents for portable educational tools. Furthermore, we developed
two laboratory modules designed to teach students about synthetic
biology and successfully tested these modules with Chicago K-12
teachers and students. For both laboratory modules, we report data
generated by both teachers and students, demonstrating the utility
of these resources for use by untrained operators without sophisti-
cated laboratory equipment.

In the first laboratory module, participants investigate how pro-
tein expression in FD-CF can be tuned by adding varying amounts
of DNA template. This activity can be used to introduce the central
dogma of molecular biology or the idea of tunable protein expression
(for example, curricula S1 and S2). This module also reinforces basic
biology concepts by demonstrating how variations in gene/protein
sequence can affect protein function, since differences in protein se-
quence result in distinct protein properties (visible differences in pro-
tein color and fluorescence).

For more advanced groups, differences in protein synthesis rates
and final titers can be measured and quantified to investigate how
protein synthesis can be modeled as an enzymatic reaction and how
kinetics can be controlled by changing the amount of substrate (DNA
template). Alternatively, students can carry out the same investiga-
tion using sample kinetic data we collected from student-assembled
reactions (data S1). Long-term independent science projects can also
be conceived by incorporating complementary biochemistry and
molecular biology experiments, such as one project we recently de-
signed with a high school synthetic biology after-school club. In this
example, students used FD-CF reactions to synthesize the human
leptin hormone as a potential treatment for obesity and quantified
the amount produced using a commercial enzyme-linked immuno-
sorbent assay (ELISA) (43).

In the second laboratory module, participants design, build, and
test their own in vitro program with DNA. This laboratory demon-
strates how in vitro biological systems can be engineered to produce
outputs of interest. This module primes students for discussion of
synthetic biology and potential application areas (for example, thera-
peutic protein production, sustainable chemical production, and cel-
lular/organismal engineering) and the ethics involved in the field (for
example, curriculum S3). In addition, by engaging participants in a
self-directed DBT cycle, this module offers a straightforward way to
incorporate engineering principles into biology curriculum. Finally,
the simple framework of this module encourages creative innovation
through STEAM principles. The potential for such opportunities are
highlighted by the complementary design activity (curriculum S5)
and math curriculum piece we have developed (curriculum S4), as
well as the availability of FreeCAD and our open-source design files
to enable students to build their own portable fluorescence imagers
and incubators (folder S1).

Importantly, BioBits™ Bright makes even more educational re-
sources possible, perhaps through the formation of an open-source
community. For example, next-generation iterations of these kits
could incorporate antibiotic ribosome inhibitors for tuning protein
expression, offering opportunities for educators to discuss health-
related themes in class. In addition, coexpression of two or more
fluorescent proteins or incorporation of synthetic genetic circuits (44)
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to control fluorescent protein expression would introduce stu-
dents to more complex examples of biological regulation. Further,
engagement of students through different sensory outputs could
improve student engagement and understanding, which will em-
power them to make informed decisions about cutting-edge syn-
thetic biology topics [for example, clustered regularly interspaced
short palindromic repeats (CRISPR)-Cas9 genome editing] (45).
We have addressed some of these needs through the development
of a next-generation kit: BioBits™ Explorer (see companion article).
The Explorer kit expands the toolbox of educational materials for
teaching synthetic biology and provides additional opportunities
for student-driven, independent synthetic biology investigations.
Beyond this, future work could expand the parallels between engi-
neering, biology, and design, such as through the integration of a
novel phone application and LED display to aid the design of in vitro
biological programs in module II of the BioBits™ Bright kit (46). We
also plan to launch a website where students can share their data
and biological program designs with other users of these kits from
around the world.

In sum, BioBits™ Bright represents a comprehensive set of edu-
cational resources for synthetic biology akin to the “chemistry set”
that brought chemistry education to the masses and inspired genera-
tions of scientists. We have purposely designed our kit to be economi-
cally accessible, priced at less than US$100 per 30-person classroom
(table S2). This is made possible by our in-house freeze-dried reac-
tions, which are two orders of magnitude more affordable than ex-
isting commercial cell-free kits, at just ~US$0.01 per microliter of
reaction volume (table S3) compared to ~US$1 per microliter (Promega
L110; NEB E6800S). Our custom imagers and incubators are included
in BioBits™ Bright, making reaction analysis accessible for resource-
limited classrooms. Because of the highly portable, cost-effective, and
user-friendly nature of the reagents and laboratory activities, the
BioBits™ Bright and Explorer kits have utility both inside and outside
of a formal classroom or laboratory setting. In sum, these resources
promise to increase access to cell-free technologies, enhance basic bi-
ology education, and increase participation and teaching in the field
of synthetic biology.

MATERIALS AND METHODS

Bacterial strains and plasmids

Escherichia coli NEB 5-alpha (New England BioLabs) was used in
plasmid cloning transformations and for plasmid preparation. E. coli
BL21 Star (DE3) (Thermo Fisher Scientific) was used for prepara-
tion of CFPS extracts. Gibson assembly was used for seamless con-
struction of plasmids used in this study (table S4). For cloning, the
pJL1 vector (Addgene, 69496) was digested using restriction enzymes
Nde I and Sal I-HF (NEB). Each gene was amplified via polymerase
chain reaction (PCR) using Phusion High-Fidelity DNA polymerase
(NEB) with forward and reverse primers designed with the NEBuilder
Assembly Tool (nebuilder.neb.com) and purchased from IDT (In-
tegrated DNA Technologies). PCR products were gel-extracted using
the EZNA Gel Extraction Kit (Omega Bio-Tek), mixed with Gibson
assembly reagents, and incubated at 50°C for 1 hour. Plasmid DNA
from the Gibson assembly reactions was transformed into E. coli NEB
5-alpha cells, and circularized constructs were selected on LB agar
supplemented with kanamycin (50 ug ml™*; Sigma-Aldrich). Sequence-
verified clones were purified using the EZNA Plasmid Midi Kit (Omega
Bio-Tek) for use in FD-CF reactions.
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CFPS extract preparation

CFPS extract was prepared by sonication, as previously reported (47).
Briefly, E. coli BL21 Star (DE3) (Thermo Fisher Scientific) was grown
in 2x YTPG media at 37°C. T7 polymerase expression was induced at
an ODgo (optical density at 600 nm) of 0.6 to 0.8 with 1 mM isopropyl-
B-p-1-thiogalactopyranoside. Cells were grown at 30°C to a final
ODgp of 3.0, at which point cells were pelleted by centrifugation at
5000g for 15 min at 4°C. Cell pellets were then washed three times
with cold S30 buffer [10 mM tris-acetate (pH 8.2), 14 mM magne-
sium acetate, and 60 mM potassium acetate] and pelleted at 5000g
for 10 min at 4°C. After the final wash, cells were pelleted at 7000g
for 10 min at 4°C, weighed, flash-frozen in liquid nitrogen, and stored
at —80°C. For lysis, cell pellets were suspended in 1 ml of S30 buffer
per 1 g of wet cell mass, and cells were transferred into 1.5-ml micro-
centrifuge tubes and placed in an ice-water bath to minimize heat
damage during sonication. The cells were lysed using a Q125 Sonicator
(Qsonica) with a 3.175-mm-diameter probe at 20 kHz and 50% am-
plitude. The input energy was monitored, with 640 J used to lyse 1 ml
of suspended cells. The lysate was then centrifuged once at 12,000g
at 4°C for 10 min. Cell extract was aliquoted, flash-frozen on liquid
nitrogen, and stored at —80°C. Alternatively, for classroom settings
where it is not practical to generate or obtain FD-CF reactions, simi-
lar cell-free systems are available commercially from companies such
as Promega (L1130).

Cell-free protein synthesis

FD-CF reactions were carried out in PCR tubes or plates (5 ul reac-
tions). The CFPS reaction mixture consisted of the following compo-
nents: 1.2 mM adenosine 5'-triphosphate; 0.85 mM each of guanosine
5'-triphosphate, uridine 5'-triphosphate, and cytidine 5'-triphosphate;
1-5-formyl-5,6,7,8-tetrahydrofolic acid (34.0 ug ml™; folinic acid);
E. coli tRNA mixture (170.0 ug ml™"); 130 mM potassium glutamate;
10 mM ammonijum glutamate; 8 mM magnesium glutamate; 2 mM
each of 20 amino acids; 0.4 mM nicotinamide adenine dinucleotide;
0.27 mM coenzyme A; 1.5 mM spermidine; 1 mM putrescine; 4 mM
sodium oxalate; 33 mM phosphoenolpyruvate; 57 mM HEPES; plas-
mid (13.3 ug ml™Y; unless otherwise noted); and 27% (v/v) of cell
extract (48). For quantification of fluorescent protein yields via radio-
active leucine incorporation, 10 uM 1-"*C-leucine (11.1 gigabecquerel
mmol ™, PerkinElmer) was added to the CFPS mixture.

Lyophilization of cell-free reactions

FD-CF reactions were prepared according to the recipe above, but
without plasmid added. CFPS reactions and plasmids were separately
lyophilized using a VirTis BenchTop Pro lyophilizer (SP Scientific)
at 100 mtorr and —80°C overnight or until fully freeze-dried. Following
lyophilization, plasmids were rehydrated with nuclease-free water
(Ambion) and added to FD-CF reaction pellets at a final concentra-
tion of 13.3 ug mL™", unless otherwise noted. CFPS reactions were
carried out at 30°C for 20 hours after rehydration, unless otherwise
noted. In a classroom setting, reactions can be incubated in our portable
incubator at 30°C or in a 30°C water bath in an insulated container
(Styrofoam, plastic cooler, etc.) for 20 hours. Alternatively, reactions
can be run in a room temperature water bath or on a tabletop for
40 hours.

Quantification of in vitro-synthesized protein
Active full-length protein synthesis was measured continuously via
fluorescence using the CFX96 Touch Real-Time PCR Detection
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System (Bio-Rad). If fluorescence saturated the real-time PCR de-
tector, then endpoint fluorescence was measured in 96-well half-area
black plates (CoStar 3694; Corning Incorporated) using a Synergy2
plate reader (BioTek). Excitation (ex) and emission (em) wavelengths
used to measure fluorescence of each protein construct were as fol-
lows: mCherry, eforRed, mRFP1, and dTomato: ex, 560 to 590 nm;
em, 610 to 650 nm; mOrange: ex, 515 to 535 nm; em, 560 to 580 nm;
YPet, sfGFP, mTFP1, CyPet, Aquamarine, mTagBFP2, mKalamal,
and eBFP2: ex, 450 to 490; em, 510 to 530 nm. Following CFPS, re-
actions were centrifuged at 20,000¢ for 10 min to remove insoluble
or aggregated protein products before further analysis. To quantify
the amount of protein synthesized, two approaches were used. For
assessing yields of the full 13-member library, reaction samples
were analyzed directly by incorporation of '*C-leucine into trichlo-
roacetic acid-precipitable radioactivity using a liquid scintillation
counter, as described previously (49). These reactions were also
run on a Coomassie-stained SDS-PAGE gel and exposed by auto-
radiography. Autoradiographs were imaged with Typhoon 7000
(GE Healthcare Life Sciences). Following selection of the smaller
six-member library, standard curves were generated for mCherry,
mRFP1, dTomato, mOrange, and YPet constructs via serial dilution
of CFPS reactions containing **C-leucine and correlating protein
yields with measured fluorescence (fig. S7). Fluorescence units of
sfGFP were converted to concentrations using a standard curve, as
previously described (50).

For quantification without a spectrophotometer, reactions can be
semiquantitatively analyzed via imaging using one of our portable,
low-cost imagers and subsequent fluorescence analysis in Image], a
free image-processing program (imagej.nih.gov/ij). Images of FD-CF
reactions were taken with a digital single-lens reflex (DSLR) camera
and arranged in Adobe Illustrator. Protein production can also be
qualitatively assessed with the naked eye under white light or blue
or black light using our portable blue light imagers (Fig. 5) or others
[for example, Bio-Rad ultraviolet (UV) pen lights #1660530EDU,
Walmart black light bulb with fixture #552707607, Home Science
Tools portable UV black light #OP-BLKLITE, and miniPCR blue-
Box transilluminator #QP-1700-01].

Construction of portable imagers and incubators

To design our portable laboratory equipment, we used the open-
source three-dimensional CAD modeling software FreeCAD. Open-
source tutorials for FreeCAD are also available on their website
(freecadweb.org). Designed acrylic or wood components were laser-
cut to desired specifications (folder S1) and assembled using adhesive
(SCIGRIP Weld-On 16 for acrylics or Gorilla Wood Glue for wood
components). Individual acrylic or wood parts were gently pressed
together by hand for about a minute and left to cure overnight.
Electronic components were soldered, and heat shrink was applied
as necessary. Once the incubator circuit was assembled (folder S1),
it was mounted onto the incubator with 0.25-inch screws through
laser-cut and/or predrilled pilot holes.

After the incubator was assembled, the set temperature was cali-
brated. For the switch version of the incubator, various resistors or re-
sistor combinations were tested to achieve the two desired temperature
set points (30° and 37°C). For the dial version of the incubator, the
potentiometer position was adjusted to reach the desired set points.
In both cases, the temperature was monitored using an Arduino and,
once determined, the set positions were labeled and temperatures
were verified through additional temperature monitoring.
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Statistical analysis
Statistical parameters including the definitions and values of 1, SDs,
and/or SEs are reported in the figures and corresponding figure legends.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaat5107/DC1

Fig. S1. Diversity of the fluorescent protein library facilitates evolution curriculum.

Fig. S2. Fluorescent protein library expresses with soluble, full-length products observed by
SDS-PAGE and autoradiogram.

Fig. S3. FD-CF reactions tolerate a range of incubation temperatures.

Fig. S4. DNA template is not limiting for in vitro sfGFP synthesis due to relatively high initial
rates of protein synthesis.

Fig. S5. Orange and yellow filters enable imaging of diverse fluorescent proteins in portable
imagers.

Fig. S6. FD-CF reactions can be run in a laboratory-free environment using low-cost, portable
imagers and incubators.

Fig. S7. Standard curves for converting fluorescence to protein concentrations.

Table S1. Cost analysis of portable imagers and incubators.

Table S2. Cost analysis for BioBits™ Bright.

Table S3. Cost analysis of FD-CF reactions.

Table S4. Plasmids used in this study.

Curriculum S1. Let it glow!

Curriculum S2. What factors affect CFPS yields?

Curriculum S3. Synthetic biology: Looking to nature to engineer new designs.

Curriculum S4. How fast is it really?

Curriculum S5. Super power protein!

Data S1. This file contains example student-generated fluorescence data from the tunable
protein expression laboratory activity (Fig. 3) and includes time-course data for modeling
protein synthesis as an enzymatic reaction with varying amounts of substrate (DNA template).
Folder S1. This folder contains FreeCAD files and circuit diagrams to enable user construction
of portable imagers and incubators.
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