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ABSTRACT

Energy is often themost constrained resource in networks of battery-

powered devices, and as devices become smaller, they spend a larger

fraction of their energy on communication (transceiver usage) not

computation. As an imperfect proxy for true energy usage, we

define energy complexity to be the number of time slots a device

transmits/listens; idle time and computation are free.

In this paper we investigate the energy complexity of funda-

mental communication primitives such as Broadcast in multi-hop

radio networks. We consider models with collision detection (CD)

and without (No-CD), as well as both randomized and determin-

istic algorithms. Some take-away messages from this work are as

follows.

Time lower bounds imply energy lower bounds.

The energy complexity of Broadcast in a multi-hop network

is connected to the time complexity of LeaderElection in a

single-hop (clique) network. Many existing lower bounds on

time complexity immediately transfer to energy complex-

ity. For example, in the CD and No-CD models, Broadcast

requires Ω(logn) and Ω(log2 n) energy, respectively, w.h.p.
Energy- and time-efficient broadcasting.

It requires Ω(D) time to solve Broadcast even allowing un-

limited energy budget, where D is the diameter of the net-

work. The complexity measures of energy and time are in

conflict, and it is an open problem whether both can be mini-

mized simultaneously. We show that it is possible to achieve

near optimality in time complexity with only poly logn en-

ergy cost. For any constant ϵ > 0, Broadcast can be solved

in O(D1+ϵ logO (1/ϵ ) n) time with O(logO (1/ϵ ) n) energy.
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1 INTRODUCTION

In many networks of small wireless devices the scarcest resource is

energy, and themajority of energy is often spent on radio transceiver

usageÐsending and receiving packetsÐ not on computation. See,

e.g., [35, Fig. 2], [6, Tab. 1], and [37, ğ3]. Rather than account for the

energy profile of every mode of operation, we assume for simplicity

that devices spend one unit of energy to send/listen and nothing

for computation. It is not uncommon to use transceiver usage as a

proxy for total energy [10, 19, 22].

1.1 The Model

The network is a connected undirected graph G = (V ,E) with
devices associated with vertices. Each vertex knows nothing about

the topology of G, except for some general parameters such as the

number of vertices n = |V |, the maximum degree ∆ = maxv deg(v),
and the diameter D = maxu,v dist(u,v). Each of ∆ and D can be

upper bounded by n if it is unknown.

Time is partitioned into discrete slots, and all vertices agree on

time slot zero, i.e., they simultaneously start at the same time. In

each time slot, each device can choose to either (i) send a message,

(ii) listen, or (iii) remain idle, where (i) and (ii) cost one unit of

energy and (iii) is free. We allow unbounded message size and local

computation power. A device is not allowed to simultaneously send

and listen; and a sender does not know whether its message has

been successfully delivered to its neighbors.

If a device chooses to send a message or remain idle, it gets no

feedback from the environment. If a device chooses to listen and

exactly one neighbor sends a messagem, it receivesm. The other

cases depend on how the model handles collisions.

No-CD: If zero or at least two neighbors transmit, a listener

hears a signal λS , indicating silence.

CD: If zero neighbors transmit, a listener hears λS ; if at least

two neighbors transmit, a listener hears λN , indicating noise.
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LOCAL: Every listener hears every message transmitted by any

neighbor. There are no collisions.1

All the models come in randomized and deterministic variants.

In the deterministic setting, vertices are assigned distinct IDs in

{1, . . . ,N } and can use them to break symmetry. Unless otherwise

stated, by default the maximum allowed failure probability for a

randomized algorithm is f = 1/poly(n). Randomized algorithms

can generate private random bits to break symmetry, e.g., they can

assign themselves O(logn)-bit IDs, which are distinct w.h.p.

Energy Metrics. The energy cost Ev of a vertex v is defined as

the number of time slots v transmits/listens; the energy complexity

of an algorithm is maxv ∈V Ev . Thus, we aim to optimize the worst

case energy cost per device, and not the total energy expenditure

of all devices.

In this paper we assume that (i) transmitting and listening incur

the same energy cost, and (ii) whether or not a message is received,

the cost of listening is the same. While some works [3, 8, 17, 24]

assume that only transmitting costs energy, a number of other

papers consider the model where both transmitting and listening

cost the same amount of energy [7, 10, 21, 25, 28].

The validity of these assumptions depends on the underlying

wireless network technology. To cite a specific example, for a sender

node called Mica2, the current consumption of transmitting ranges

from 3.7mA (transmission power at -20dBm) to 21.5mA (at +10dBm);

the current consumption for listening is always 7mA, regardless

of whether a message is received (see [36]). That is, the costs of

transmitting and listening are roughly of the same order. In fact, in

networking and system research, “idle listeningž (i.e., the device is

in listening mode, but no message is received) has been identified

as a major cause of energy loss [1, Section 9.1]. There are a number

of papers on reducing idle listening [38, 40].

1.2 Our Contribution

In this paper we consider fundamental problems in arbitrary multi-

hop network topologies, primarily Broadcast. At time zero there is

a distinguished source device s ∈ V holding a messagem. By the end

of the computation all vertices should knowm. We establish lower

and upper bounds on Broadcast in all collision-detection models,

both randomized and deterministic. Some of the more interesting

findings are as follows.

Time lower bounds on LeaderElection in single-hop networks

extend to energy lower bounds on Broadcast in multihop networks.

As a consequence, we get energy lower bounds on Broadcast of

Ω(logn) and Ω(log∆ logn) in CD and No-CD, respectively. These

lower bounds reflect the difficulty of local contention resolution,

not on broadcasting per se. We give a more robust energy lower

bound of Ω(logD) = Ω(logn) that reflects the difficulty of getting

a message across a long path. It applies to any collision-detection

model, even LOCAL.

Evenwith an infinite energy budget we needΩ(D) time.We show

that it is possible to achieve near optimality in both energy and

1Lower bounds in the LOCAL model are robust since they capture the difficulty of
synchronization, not on the subtleties of any particular collision-detection model. This
model bears the same name as Linial’s LOCAL model [29, 34] and is very similar to it.
In the traditional LOCAL model vertices do not have to choose between transmitting
and listening, and there is no cost associated with communication.

time simultaneously. For any ϵ > 0, there is a Broadcast algorithm

taking O(D1+ϵ logO (1/ϵ ) n) time and O(logO (1/ϵ ) n) energy.
Given sufficient (slightly super-linear) time, regardless of the

diameterD, the energy lower bounds can almost be achieved. For ex-

ample, we give an algorithm forNo-CD using timeO(n log∆ log2 n)
and energy O(log∆ log2 n).

1.3 Related Work

Single-hop Networks. In theory research, previous work on en-

ergy complexity has focused on fundamental problems in single-

hop (clique) networks like LeaderElection (i.e., choose exactly one

device as the leader) and ApproximateCounting (approximating the

number of devices n to within a constant factor) [7, 10, 19ś23, 31].

In the study of single-hop networks, it is typical to assume that n

is unknown.

Nakano and Olariu [31] showed that in No-CD, n initially iden-

tical devices can assign themselves distinct IDs in {1, . . . ,n} with
O(log logn) energy per device. Bender, Kopelowitz, Pettie, and

Young [7] gave a randomized method for circuit-simulation in

the CD model, which led to algorithms for LeaderElection and

ApproximateCounting using O (log(log∗ n)) energy and no(1) time,

w.h.p. An earlier algorithm of Kardas et al. [23] solves the problem

inO (logϵ n) time usingO(log log logn) energy, but only in expecta-

tion. Chang et al. [10] proved that for these problems,Θ(log(log∗ n))
and Θ(log∗ n) energy are optimal in CD and No-CD, respectively,

for poly(n)-time algorithms. They also give tradeoffs between time

and energy, e.g., in No-CD, with O
(
log2+ϵ n

)
time we can use just

O
(
ϵ−1 log log logn

)
energy, w.h.p. For deterministic LeaderElection

protocols, Θ(logN ) is optimal in CD and No-CD [10, 21], but if

senders can also detect collisions, the energy complexity drops to

Θ(log logN ) [10].

Multi-hop Networks. Energy efficiency of multi-hop networks

have also been studied in theory research. Berenbrink et al. [8]

studied broadcasting and gossiping algorithms, and they measured

energy cost by the total number of messages transmitted. They pre-

sented a Broadcast algorithm that takes O
(
D log(n/D) + log2 n

)
time with expected O

(
log2 n/log(n/D)

)
transmissions per vertex.

Gasieniec et al. [17] considered the following problem in a known

graph topology. Given a graph with a distinguished source vertex,

design a transmission schedule to minimize broadcasting time, sub-

ject to the requirement that each device only transmits at most k

times. For k = 1, they showed that D+Ω(
√
n − D) time is necessary

and that D +O(
√
n logn) is sufficient. The lower bound extends to

D + Ω((n − D)1/(2k )), and the upper bound to O
(
n1/(k−2) log2 n

)
.

Some papers in the literature consider optimization problems

related to energy efficiency. Kirousis et al. [24] studied the following

problem. Given stations in d-dimensions, d ∈ {1, 2, 3}, pick trans-

mission radii to satisfy some network properties (e.g., the network

should be connected and have small diameter). The objective is

to minimize the sum of the broadcasting energies. A related prob-

lem is the minimum energy broadcast routing problem (MEBR) [4].

Given coordinates of stations and a distinguished source, come up

with transmission power and transmission schedule to broadcast a

message. The goal is to minimize total power of all transmitters. A
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6-approximation algorithm via MST heuristic has been shown by

Ambühl [3].

Broadcasting Protocols. Broadcast is a well-studied problem in

multi-hop networks. The seminal decay algorithm of Bar-Yehuda

et al. [5] solves Broadcast in No-CD in O
(
D logn + log2 n

)
time.

This bound was later improved to O
(
D log n

D + log
2 n

)
[12, 26].

The log2 n term is known to be necessary [2], and the D log n
D term

is known to be optimal [27] for a restricted class of algorithms that

forbid “spontaneous transmissionž (i.e., vertices that have yet to

learn the message are forbidden from transmitting).

Haeupler and Wajc [18] recently gave a broadcast algorithm in

the No-CD model that runs in O
(
D

logn log logn
logD

+ logO (1) n
)
time,

demonstrating that spontaneous transmissions are useful. Czumaj

and Davies [11] improved this to O
(
D

logn
logD

+ logO (1) n
)
and gave

a LeaderElection algorithm of the same complexity, improving [15].

See [16] for an O(D + log6 n)-time Broadcast algorithm in the CD

model.

1.4 Organization and Technical Overview

In Section 2 we show two simple lower bounds. We prove that

even for a simple network topologyÐa pathÐand the strongest

modelÐrandomized LOCALÐthe Broadcast problem still requires

Ω(logn) energy. We then present a generic reduction showing that

the energy complexity of Broadcast in a multi-hop network is at

least the time complexity of LeaderElection in a single-hop network,

with the other aspects of the model being the same (CD or No-CD,

deterministic or randomized). The take-away message from these

lower bounds is that the cost of Broadcast arises from two causes:

(i) the cost of synchronization, for propagating messages along long

paths (when D is large), and (ii) the cost of contention-resolution

in a vertex’s 2-hop neighborhood (when ∆ is large).

In Section 3 we introduce the basic tool SR-comm used by all our

algorithms. In Section 4 we show a simple randomized algorithm

in No-CD based on iterative clustering. For graphs of unbounded

degree, our algorithm takes O(n log3 n) time and O(log3 n) energy
in No-CD, which is actually the product of our two lower bounds.

In Section 5, we present an algorithm in nearly diameter time.

2 LOWER BOUNDS

We prove two lower bounds on the energy-complexity of Broadcast.

Theorem 1. Consider a path graph P = (v1, . . . ,vn ), where each
vertex vi does not know its position i . Suppose that v1 attempts to

broadcast a messagem. For any randomized LOCAL Broadcast algo-

rithm A, with probability 1/2, at least one vertex spends log13 n − 1
energy before receiving the messagem.

Proof. We may assume, without loss of generality, that the

algorithm A works as follows. Every vertex begins in exactly the

same state, except forv1, which knows themessagem. Each vertexv

locally generates a string rv of random bits, and afterward, behaves

deterministically.2 At anymoment in time, each vertexvl maintains

an interval [α , β] such that vl knows rvj if and only if j ∈ [α , β].
2For example, if the algorithm A assumes that vertices have distinctO (logn)-bit IDs,
these can be generated without communication, with probability 1 − 1/poly(n).

Whenever vl transmits a message, it transmits every useful piece

of information it knows, namely the concatenation of rvα , . . . , rvβ .

After each wakeup, a vertex decides the time of its next wakeup

and mode (transmit or listen) based on all the information it has

learned so far. It is easy to see that any algorithm in this model

can be simulated with the same round- and energy-complexity if

vertices only communicate the rvj -strings they know.

Let I be an interval of the path (v1, . . . ,vn ) not including v1.

Intuitively, the event Ei [I ] holds if there is some device in I that,

after its ith wakeup, knows of no information outside I . This defi-

nition has two undesirable properties. First, it necessarily depends

on the behavior of (i.e., random bits generated by) vertices outside

I . Second, even if we could make it independent of the random bits

outside I , the event may still depend subtly on where the path I

is embedded within (v2, . . . ,vn ). The actual event Ei [I ] assumes

“worst casež embedding of I and “best casež behavior of vertices

outside I . Therefore, Ei [I ] depends only on the strings of random

bits generated by I -vertices. In particular:

Ei [I ] : ∃(v⋆ ∈ I ) ∀(embedding of I in (v2, . . . ,vn ))
∀(rvj | vj < I ) ∀(vk < I ) :
After its ith wakeup, v⋆ does not know rvk .

Observe that because of the quantification over all random strings

outside I and the embedding of I in (v2, . . . ,vn ), we are consider-
ing a large class of potential executions of A, which necessarily

includes the actual execution. If Ei [I ] occurs, we write v⋆[I ] to
denote the leftmost vertex v⋆ ∈ I , satisfying the statement of Ei [l].

The lower bound is by induction, with an induction hypothesis

that is probabilistic. In particular, we assume, for each interval I of

length (13)i , that
Pr(Ei [I ]) ≥ 1/2.

The assumption is valid in the base case i = 0, since Pr(E0[I ]) =
1 when I contains a single node that has yet to wakeup. Let I

be an interval of length (13)i+1 partitioned into 13 subintervals

I1, . . . , I13 of length (13)i . We apply the inductive hypothesis to

each subinterval and conclude that Pr(Ei [Ij ]) ≥ 1/2. Moreover,

since these events are independent (they depend on disjoint sets of

random strings),

Pr
©­«
13∑
j=1

1{Ei [Ij ]} ≥ 5
ª®¬
≥ Pr(Binom(13, 12 ) ≥ 5) > 5/6.

Suppose that the number of subintervals Ij satisfying Ei [Ij ] is, in
fact, at least 5, and let J1, . . . , J5 be the first 5 such subintervals. At

this point in the proof J1, . . . , J5 have no distinguishing character-

istics. Because of this, the times of the ith wakeups for the vertices

v⋆[J1], . . . ,v⋆[J5] are independent and identically distributed ran-

dom variables. Among these 5 vertices, suppose the one whose ith

wakeup is earliest is some v⋆ ∈ {v⋆[J2],v⋆[J3],v⋆[J4]}. After this
wakeup, v⋆ could not have learned any random string outside I .

Every such string must have been communicated through either

v⋆[J1] or v⋆[J5], and each of these vertices has only been awake at

most i − 1 times. Thus, assuming J1, . . . , J5 exist, with probability

3/5 there is a vertex v⋆ that wakes up i times and knows of no

information outside I . Since J1, . . . , J5 exist with probability 5/6,
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the probability that such a v⋆ exists is at least (5/6)(3/5) = 1/2,
which concludes the induction. �

Next, we prove Broadcast lower bounds for the No-CD and CD

models, which hold even in constant diameter graphs. There are

some very subtle issues about the randomized No-CD lower bound,

see the end of the section for discussion.

Theorem 2. Broadcast is subject to the following energy lower

bounds, where the failure probability is fixed at f = 1/poly(n) for ran-
domized algorithms. (i) deterministic No-CD: Ω(∆); (ii) randomized

No-CD: Ω(log∆ logn); (iii) randomized CD: Ω(logn).

Proof. Consider the LeaderElection problem in a single-hop

network, where the number of vertices is unknown, but is guaran-

teed to be upper bounded by n′. The goal of LeaderElection is to

have a time slot τ where exactly one vertex transmits, and all re-

maining vertices listen. In the single-hop network model, we allow

all vertices to send and listen simultaneously, i.e., we are in the full

duplex model. We also make a distinction between randomized and

deterministic models.

Randomized Model. Each vertex is anonymous, i.e., they do

not have IDs.We allow all vertices to have shared randomness,

but each vertex still has its own private randomness. The

maximum allowed failure probability is f ′. Let Tr (n′, f ′)
be the time complexity for LeaderElection this model. It is

known that Tr (n′, f ′) = Ω(log logn′ + log 1
f ′ ) for CD [33,

39],3 and also Tr (n′, f ′) = Ω(logn′ log 1
f ′ ) for No-CD [14].

Deterministic Model. Each vertex has a distinct ID in [n′].
The algorithm is not allowed to fail for any possible assign-

ment of distinct IDs. LetTd (n′) be the deterministic time com-

plexity. It is known that Td (n′) = Ω(n′) [19, Theorem 1.6].

There is a very subtle issue regarding the Ω(log logn′ + log 1
f ′ )

lower bound; see the end of this section for discussion.

Let Gk be the bipartite graph K2,k with two parts {s, t} and
{v1, . . . ,vk }, where the vertex s is attempting to broadcast a mes-

sage. Let A be any Broadcast algorithm that applies to the graphs

Gk , for all 1 ≤ k ≤ ∆. IfA is randomized and has failure probability

at most f , then we claim that A uses at least Tr (∆, f )/2 energy. If
A is deterministic, then we claim that it A uses at least Td (∆)/2
energy. These two claims imply the statement of the lemma (with

f = 1/poly(n)).

A Generic Reduction. These claims are proved by the follow-

ing generic reduction. Let A be any Broadcast algorithm on Gk ,

for all 1 ≤ k ≤ ∆, that takes E energy. We transform it into a

LeaderElection algorithm A ′ in the aforementioned single-hop

network model with n′ = ∆ that takes 2E time.

For the algorithm A to solve Broadcast, the vertex t has to

receive a message from s , and so there must be one time slot τ⋆

where exactly one vertex in {v1, . . . ,vk } transmits and t listens.

We call the vertices in the corresponding single-hop network

{v ′1, . . . ,v
′
k
}. Intuitively, each vertex v ′i in the single-hop network

simulates vi in the multi-hop network, and we treat {s, t} as the
communication channel. Each v ′i uses its private random bits to

simulate the private random bits of vi .

3The randomizedCD Ω(log 1
f ′ ) lower bound, which applies even for k = 2, is folklore.

Assumptions about A. Without loss of generality, we make the

following assumptions aboutA. If we are in the randomized model,

we let the two vertices s and t announce all their local random bits

in the first two rounds of A.

If we are in the deterministic model, we assume that the IDs of

the vertices in {v1, . . . ,vk } are chosen from the range {1, . . . ,∆},
and we let the two vertices s and t announce their IDs in the first

two rounds of A.

Simulation of Time Slot τ ofA. We show how to simulate a time

slot τ of A in the single-hop network model. The simulation of

the first two special rounds are straightforward, as follows. In the

randomized model, we use the shared randomness in the single-hop

network to simulate the random bits of s and t . In the deterministic

model, we simply set ID(s) = n′+1 = ∆+1 and ID(t) = n′+2 = ∆+2.

In what follows, we assume τ > 2. If at least one of s and t listens

at time slot τ in A, the simulation costs 1 round; otherwise, the

simulation skips this round. Thus, the total amount of time for the

simulation is at most 2E.

During the simulation, we maintain an inductive hypothesis

that each vertex v ′i (in the single-hop network, right before they

simulate the time slot τ ofA) already knows the entire history and

information of the three vertices vi , s , and t during all time slots

{1, . . . ,τ − 1} in A in the multi-hop network.

The inductive hypothesis, together with the above assumption,

implies that v ′i is able to perfectly predict the actions of the three

vertices vi , s , and t at time τ in A in the multi-hop network.

If both s and t do not listen at time τ in A, then nothing needs

to be done in the simulation. The reason is that at time τ in A, the

channel feedback must be silence for everyone.

If at least one of s and t listens at time τ inA, we use one round in

the single-hop network to simulate the time slot τ inA. Specifically,

for each vertexv ′i , all we need to do is to letv
′
i calculate the channel

feedback of vi , s , and t at time τ in A.

Note that v ′i already knows the channel feedback of vi (at time

τ in A) since it knows the actions of s and t . To let v ′i learn the

channel feedback of s and t (at time τ in A), we simply let each

v ′i ∈ {v
′
1, . . . ,v

′
k
} do what vi does at time τ in A, and then the

channel feedback in the single-hop network that each v ′i receives
is the same as the channel feedback received by s and t in the

multi-hop network model. �

Theorem 2 complements Theorem 1 by showing anotherΩ(logn)
energy lower bound (by setting f = 1/poly(n)) in CD, even when

D = O(1). On graphs with unbounded degree, Theorem 2 implies

Ω(log2 n) energy lower bounds in No-CD, and Ω(n) lower bounds
in deterministic No-CD.

Remark. Our Ω(log∆ logn) lower bound relies on the existence

of an Ω(logn′ log 1/f ′) lower bound for the LeaderElection prob-

lem in single-hop networks, wherewe setn′ = ∆ and f ′ = 1/poly(n).
The known lower bound [14] for this result only applies to uniform

algorithms. There is another lower bound [33] that works for all

algorithms but requires f ′ = 1/n′ = 1/∆. If we use [14], then the

Ω(log∆ logn) lower bound only applies to uniform algorithms. If

we use [33], then we get an Ω(log2 ∆) lower bound that applies to

all algorithms.

Session 1C: Wireless Networks PODC’18, July 23-27, 2018, Egham, United Kingdom

98



Next, we discuss an issue about applying the lower bound of [14]

in the proof of Theorem 2. First of all, we are only interested in the

regime of f ′ = 1/poly(n), and so we assume f ′ < 1/n2 < 1/∆2.

Recall that we consider a single-hop network with at most n′ = ∆

vertices.

The randomized No-CD Ω(logn′ log 1
f ′ ) lower bound of [14]

only applies to uniform algorithms in the sense that for each round

τ , there is a sending probability pτ such that each vertex sends with

probability pτ using fresh randomness independently at round τ .

Notice that in theNo-CDmodel the channel feedback for all vertices

must be silence all the time before the first successful transmission.

We show that this lower bound can still be applied in our setting.

The only issue that we need to deal with is that we allow shared

randomness. Let A be any algorithm (with shared randomness)

that solves LeaderElection with failure probability f ′, and letA[r ]
be the algorithm with respect to a string r that serves as the shared

randomness. Then A[r ] must be uniform.

In what follows, we show that there exists a string r⋆ such that

the failure probability of A[r⋆] is at most n′ f ′ <
√
f ′, and so the

Ω(logn′ log 1
f ′ ) lower bound of [14] also applies toA. We say that

a string r is good for a number k ∈ [n′] if the failure probability of

A[r ] is at most n′ f ′ when we run A[r ] on a single-hop network

with k vertices. It suffices to show that there is a string r⋆ that is

good for all k ∈ [n′]. Suppose that such r⋆ does not exist. Then

there exists a number k⋆ ∈ [n′] such that with probability at least

1/n′ a uniformly random string r is not good for k⋆. This implies

that for an execution of A on a single-hop network of k⋆ vertices,

the failure probability is higher than (1/n′)(n′ f ′) = f ′, which is a

contradiction.

3 BASIC BUILDING BLOCKS

Given two disjoint vertex sets S and R, the task SR-comm is defined

as follows. Each vertex u ∈ S attempts to transmit a messagemu ,

and each vertex in R attempts to receive one message. An SR-comm

algorithm guarantees that for every v ∈ R with N (v) ∩ S , ∅, with
probability 1 − f , v receives a messagemu from at least one vertex

u ∈ N (v) ∩ S .

Lemma 3. In the randomized No-CD model, SR-comm can be

solvedwith high probability, i.e., f = 1/poly(n), in timeO(log∆ logn)
and energy O(log∆ logn).

Proof. Use theO(log∆ log 1/f )-time algorithm of [5], which is

also known as decay. �

For the randomized CD model, we present a generic transforma-

tion which turns an algorithm A for LeaderElection in single-hop

networks (satisfying some additional requirements) to an algorithm

A ′ that solves SR-comm.

Requirements forA. We require that in an execution ofA, within

time T (n′, f ) there is a successful communication with probability

1− f . The algorithmA is executed on a single-hop network, where

the number of vertices is unknown, but is guaranteed to be at

most n′. The vertices in the single-hop network are allowed to

simultaneously send and listen. Since we do not measure the energy

ofA, we simply assume that all vertices (including senders) always

listen to the channel.

We assume that algorithm A is uniform in the following sense.

For each time slot t , there is an integer kt ∈ {0, 1, . . . , ⌈logn′⌉}
such that each vertex transmits with the same probability p = 2−kt

independently at the time slot t . The number kt depends solely

on the history (i.e., channel feedback) of the algorithm execution

before time t . Since all vertices always listen to the channel, they

have the same history.

The Generic Transformation. We show how to obtain a random-

ized algorithm A ′ that solves SR-comm in time T (∆, f ) · ⌈log∆⌉
with energy cost 2 · T (∆, f ), but in a multi-hop network, where

vertices cannot simultaneously send and listen.

The algorithm A ′ consists of T (∆, f ) epochs, each of which

consists of ⌈log∆⌉ time slots.

The protocol for vertices in S is as follows. In each epoch, each

vertex v ∈ S transmits at the ith time slot of this epoch with

probability 2−i in such a way that the total number of transmissions

of v during an epoch is at most 2. This can be achieved since 1 +
1
2 +

1
4 +

1
8 + . . . = 2.

Each vertex u ∈ R, in parallel, simulates the algorithm A exe-

cuted on a single-hop network of size |N (u)∩S |, as follows. We sim-

ulate the ith time slot of A during the ith epoch. In the simulation,

u serves as the communication channel. By inductive hypothesis,

we assume that before the ith epoch, u already knows the history

of the execution up to time i − 1, and so u has enough information

to calculate the number ki . During the ith epoch, u only listens

at the ki th slot. Notice that the channel feedback that u receives

simulates the ith time slot of the execution of A on a single-hop

network of size |N (u) ∩ S |, as each vertex in N (u) ∩ S transmits

with probability 2−ki at the ki th slot of an epoch.

Recall that in an execution of A, with probability 1 − f , there is

some successful communication by timeT (|N (u)∩S |, f ) ≤ T (∆, f ).
Thus, for each u ∈ R, with probability 1 − f , there must be one

epoch where exactly one vertex in N (u) ∩ S is transmitting, and

so the vertex u ∈ R receives a message. Based on this generic

transformation, we obtain Lemma 4.

Lemma 4. In the randomized CD model, SR-comm can be solved

with energyO(log log∆ + log 1/f ) and runtimeO(log∆(log log∆ +
log 1/f )). For the special case where each v ∈ S is adjacent to at most

one vertex in R, the energy cost isO(log log∆) +X , where X is a ran-

dom variable drawn from an exponential distribution Exponential(λ),
for some λ = O(1).

Proof. Apply the generic transformation to the uniform leader

election protocol of [32]. The runtime of the algorithm of [32] is

actually O(log logn′ + log 1/f ), for every f . That is, the runtime is

can be written as O(log logn′) + X , where X is a random variable

drawn from an exponential distribution Exponential(λ), for some

λ = O(1). This already implies the energy cost of each u ∈ R is

O(log logn′) + X , since each u ∈ R can simply terminates after

its simulation is done. However, in general, we cannot obtain this

improvement for vertices in S , since a vertex v ∈ S can be adjacent

to many R-vertices.

For the special case where each v ∈ S is adjacent to at most

one vertex u ∈ R, the vertex v is only involved in the simulation

associated with u. In this case, we are able to show that the energy

cost of O(log logn′) + X can be achieved for all vertices. Consider
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the following modifications to the above generic transformation.

In the first round, all vertices in R speak, and all vertices in S listen.

This allows each vertex in S to check whether it is adjacent to a

vertex in R. Those vertices in S that are not adjacent to a vertex in

R terminate after the first round. For each epoch i , we allocate an

additional time slot at the end of the ith epoch to let each vertex

u ∈ R inform all its neighbors in S whether or not the simulation

associated withu has finished (i.e.,u has already received a message

from a vertex in u ∈ N (v) ∩ S). If it is done, then all vertices in

S ∩ N+(v) terminate. �

Remark 5. In Lemma 4, if a vertex v satisfies either (i) v ∈ S and

N (v) ∩ R = ∅, or (ii) v ∈ R and N (v) ∩ S = ∅, then the energy cost

of v can be lowered to O(1) in the CD model. Due to the ability of

a vertex to distinguish between noise and silence, in O(1) time, each

v ∈ S can check whether N (v) ∩R = ∅, and similarly each v ∈ R can

check whether N (v) ∩ S = ∅ in O(1) time. We will make use of this

observation to reduce the energy cost of algorithms in the CD model.

4 BASIC ENERGY-EFFICIENT RANDOMIZED

ALGORITHMS

In this sectionwe show thatBroadcast can be solved usingO(log3 n)
energy in randomized No-CD.

Layers of Vertices. A labelingL : V (G) 7→ {0, . . . ,n−1} is said to
be good if it has the following property. Each vertexv withL(v) > 0

must have a neighbor u such that L(u) = L(v) − 1. A vertex v is

called a layer-i vertex if L(v) = i . The intuition underlying the

definition of a good labeling is that it represents a clustering of

vertices. If we let each layer-i vertex select a layer-(i−1) neighbor as
its parent, then we obtain a partition ofV (G) into |L−1(0)| clusters.
Each cluster C is a rooted tree T , where the root r is the unique

layer-0 vertex in the cluster C . However, it is possible that a vertex

has multiple choices of its parent, so the clustering resulting from

a good labeling is, in general, not unique.

We say that two layer-0 vertices u and v are L-adjacent if there
exists a path P = (u,u1, . . . ,ua , vb , . . . ,v1,v) such that L(ui ) = i

for all i ∈ [a] and L(vj ) = j for all j ∈ [b]. The graph GL is on

vertex set L−1(0) and edge set {{u,v} | u and v are L-adjacent}.
In the following lemma we show that Broadcast can be solved

energy-efficiently if we already have a good labeling L⋆ with small

number of layer-0 vertices.

Lemma 6. Let L⋆ be a good labeling of G. Each vertex knows its

L⋆-label and two integers d,L ≥ 1 such that (i) d is an upper bound

on the diameter of GL⋆ , and (ii) L is an upper bound on the number

of layers. Then Broadcast can be solved by a randomized algorithm

with high probability in time T = Tn,d,L using energy E = En,d,L .

LOCAL : T = O(Ld) E = O(d)
CD : T = O(Ld logn log∆) E = O(d + logn)

No-CD : T = O(Ld logn log∆) E = O(d logn log∆)

Proof. Let v be the vertex that attempts to broadcast some mes-

sagem. The goal of the Broadcast problem is to relay the message

m to all vertices in the graph. This can be solved by first (1) do

Up-cast to relay the message from v to some layer-0 vertex; (2)

repeat (Down-cast, All-cast, Up-cast) for d times to let all layer-0

vertices receive the messagem; and then (3) doDown-cast to ensure

that all vertices in the graph have the messagem.

• Down-cast. For i = 0, . . . ,L − 2, do SR-comm with S being

the set of layer-i vertices that hold the message m, and R

being the set of all layer-(i+1) vertices that have not received
the messagem. Each vertex in S attempts to broadcast the

messagem.

• All-cast.Do SR-commwith S being the set of all vertices that

hold the messagem, and R being the set of all vertices that

have not received the messagem. Each vertex in S attempts

to broadcast the messagem.

• Up-cast. For i = L − 1, . . . , 1, do SR-comm with S being the

set of layer-i vertices that hold the messagem, and R being

the set of all layer-(i − 1) vertices that have not received

the messagem. Each vertex in S attempts to broadcast the

messagem.

We use SR-comm with f = 1/poly(n). Thus, the Broadcast

problem can be solved in O(Ld) ·T ′(n,∆) time and O(d) · E ′(n,∆)
energy, where T ′(n,∆) and E ′(n,∆) are the runtime and the en-

ergy cost of SR-comm; see Lemmas 3 and 4. By the observations

made in Remark 5, the energy cost can be further reduced to

O(d + E ′(n,∆)) = O(d + logn). In the above algorithm, each vertex

v is involved in O(d) invocations of SR-comm, and all but O(1) of
them satisfy either (i) v ∈ S and N (v) ∩ R = ∅, or (ii) v ∈ R and

N (v) ∩ S = ∅. �

In what follows, we show that a good labeling L⋆ with small

number of layer-0 vertices can be computed efficiently. Our strategy

is to begin with the trivial all-0 good labeling, and then in each

iteration use the current good labeling L to obtain a new good

labeling L′ such that (i) each layer-0 vertex remains layer-0 with

some probability (to be determined), and (ii) no new layer-0 vertex

is created.

Computing a New Labeling L′ from L. Let p ∈ (0, 1) and s ≥ 1

be two parameters to be chosen later. The algorithm for computing

L′ is as follows: (1) initially, set L′(v) = ⊥ for all vertices, but each

layer-0 vertex v sets L′(v) = 0 independently with probability

p; (2) repeat (Down-cast, All-cast, Up-cast) s times, and then do

Down-cast; (3) any vertex v that has yet to obtain a new L′ label
(i.e., L′(v) = ⊥) retains its old label, setting L′(v) = L(v).
• Down-cast. For i = 0, . . . ,n − 2, do SR-comm with S being

the set of layer-i vertices of L such that its L′ label is not
⊥, and R being the set of all layer-(i + 1) vertices of L such

that its L′ label is ⊥. Each vertex in S attempts to broadcast

its L′ label. Each vertex in R that receives the messagem

sets its L′ label to bem + 1.

• All-cast. Do SR-comm with S being the set of all vertices

such that its L′ label is not ⊥, and R being the set of all

vertices such that its L′ label is ⊥. Each vertex in S attempts

to broadcast its L′ label. Each vertex in R that receives the

messagem sets its L′ label to bem + 1.

• Up-cast. For i = n − 1, . . . , 1, do SR-comm with S being the

set of layer-i vertices of L such that its L′ label is not ⊥,
and R being the set of all layer-(i − 1) vertices of L such that

its L′ label is ⊥. Each vertex in S attempts to broadcast its
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L′ label. Each vertex in R that receives the messagem sets

its L′ label to bem + 1.

We use SR-comm with f = 1/poly(n). It is straightforward to

verify that the algorithm indeed computes a good labelingL′, w.h.p.
The algorithm takesO(ns) ·T ′(n,∆) time andO(s) · E ′(n,∆) energy,
where T ′(n,∆) and E ′(n,∆) are the runtime and the energy cost of

SR-comm; see Lemmas 3 and 4. In the CD model, the energy cost

is O(s + logn); see Remark 5.

We show that each layer-0 vertex inL remains layer-0 inL′with
probability at most p + (1 − p)min{s+1,w }

+ 1/poly(n), wherew =
|L−1(0)|. Assuming all invocations of SR-comm succeed, which

happens with probability 1 − 1/poly(n), there are two ways for a

layer-0 vertex v in L to remain layer-0 in L′.
• The vertex v sets L′(v) = 0 at Step (1), and this occurs with

probability p.

• All vertices u within distance s to v (inGL ) have L′(u) = ⊥
at Step (1), and this occurs with probability at most (1 −
p)min{s+1,w } .

We are in a position to prove the main theorems of this section.

Theorem 7. The Broadcast problem can be solved by a random-

ized algorithm with high probability in the following runtime T =

T (n,∆) and energy cost E = E(n,∆).

LOCAL : T = O(n logn) E = O(logn)
CD : T = O(n log∆ log2 n) E = O(log2 n)

No-CD : T = O(n log∆ log2 n) E = O(log∆ log2 n)

Proof. Set p = 1/2 and s = 1. As long as the number of layer-0

vertices in L is greater than 1, each layer-0 vertex in L remains

layer-0 in L′ with probability at most p + (1 − p)min{s+1,w }
+

1/poly(n) ≤ 1/2 + 1/4 + 1/poly(n) = 3/4 + 1/poly(n). Thus, after
O(logn) iterations of computing a new labeling from an old labeling,

we obtain a good labeling L⋆ such that the number of layer-0

vertices is exactly 1, with high probability. Applying Lemma 6 (with

L = n and d = 0) gives the theorem. �

Recall that the energy cost for computing L′ from L is O(s +
logn) (instead of O(s logn)) in the CD model. Using this fact, the

energy cost can be improved in the CDmodel without affecting the

time too much. This result is omitted from this extended abstract.

Refer to the full version of the paper [9].

5 ENERGY-EFFICIENT BROADCAST WITH

NEARLY OPTIMAL TIME

In this section, we show that it is possible to achieve near diameter

time O(D1+ϵpoly(logn)) while keeping relatively low energy com-

plexity O(poly(logn)). Throughout this section we are working in

the No-CD model for simplicity. A couple log factors can be saved

by adapting our algorithm to the CD model.

Our algorithm is based on a subroutine Partition(β), described

by Miller, Peng, and Xu [30] and further analyzed by Haeupler

and Wajc [18]. The goal of Partition(β) is to produce the following

random clustering. Each vertex v picks δv ∼ Exponential(β), β ∈
(0, 1), and assignsv to the cluster ofu that minimizes dist(u,v)−δu .
This algorithm is as follows [18].

Partition(β). Every vertex v picks a value δv ∼ Exponential(β).
Let v’s start time be startv ← max{1, 2 logn

β
− ⌈δv ⌉}. There are

2 logn
β

epochs numbered 1 through
2 logn
β

. At the beginning of

epoch t , if v is not yet in any cluster and startv = t , v becomes

the cluster center of its own cluster. During the epoch, we execute

SR-comm with failure probability f = 1/poly(n), where S is the set

of all clustered vertices and R the set of all as-yet unclustered ver-

tices. Any vertex v ∈ R receiving a message (we call this “merging

requestž) from u ∈ S joins the cluster of u.

The algorithm Partition(β) can be implemented in No-CD, and

it takes O( log
3 n
β
) time and O( log

3 n
β
) energy.

The cluster graph is defined as the graph resulting from con-

tracting each cluster to a vertex. Our strategy for solving Broadcast

is to iteratively apply the clustering algorithm Partition(β) to the

cluster graph until it has diameter poly(logn).
Lemma 8 presents some useful properties of Partition(β). In

Lemma 9 we prove that the diameter of the cluster graph shrinks

by a factor of O(β) with high probability.

Lemma 8 ([18, 30]). The algorithm Partition(β) partitions the

vertices into clusters with the following properties.

(1) The probability of any edge {u,v} having its endpoints in

different clusters is at most 2β .

(2) Letu be any vertex. The probability that vertices inNd (u)∪{u}
are in at least t distinct clusters is at most

(
1 − e−(2d+1)β

)t−1
.

As a special case, for d = 1 (i.e., if we only care about u and

its neighbors) this probability is at most
(
1 − e−3β

)t−1
.

Proof. The two properties are due to [18, Corollary 3.7] and [18,

Corollary 3.8], respectively. �

Lemma 9 (Concentration bound on diameter). Suppose that

the diameter of the graphG is D =
α log2 n

β 4 , for some number α . Then

the diameter of the cluster graph resulting from Partition(β) is at

most 3βD, with probability 1 − n−Ω(α ).

Proof. Let k = 2 · 2 logn
β

be twice the number of epochs, and so

the maximum diameter of any cluster is at most k . Consider any two

verticesu andv such that dist(u,v) > 3βD = 3β · α log2 n
β 4 =

3α log2 n
β 3 .

Let P = (w1,w2, . . . ,wℓ ,wℓ+1) be a shortest path from u = w1

to v = wℓ+1 of length ℓ. Define Xi to be the indicator random

variable thatwi andwi+1 are contained in different clusters. Then

X =
∑ℓ
i=1 Xi is an upper bound on the distance between the cluster

of u and the cluster of v in the cluster graph.

If |i − j | > k =
4 logn
β

, then Xi and X j are independent. Thus,

we can color {Xi }i=1, ..., ℓ by χ =
4 logn
β

colors in such a way that

variables of the same color are independent. By [13, Theorem 3.2],

we have the following inequality: Pr[X ≥ E[X ]+t] ≤ exp(−2t2/(χ ·
ℓ)). By linearity of expectation and Lemma 8(1), E[X ] ≤ 2βℓ. Thus,

by setting t = βℓ, we have

Pr[X ≥ 3βℓ] ≤ exp(−Ω(β3ℓ/logn)) = n−Ω(α ).
The lemma follows by a union bound over all O(n2) possible pairs
{u,v}. Notice that if dist(u,v) ≤ 3βD, then the distance between
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the cluster of u and the cluster of v in the cluster graph is already

at most 3βD. �

5.1 Outline of the Algorithm

We fix the parameter β = 1

log1/ϵ n
. Our randomized No-CD algo-

rithm for Broadcast consists of two phases. The first phase is to

iteratively run Partition(β) on the current cluster graph log1/(3β ) D
times. The second phase is to apply Lemma 6 to the last clustering

to solve Broadcast.

Throughout the procedure, the cluster graph is implemented as a

good labeling, and each layer-0 vertex is responsible for simulating

a cluster. The communication between clusters can be done using

Down-cast, All-cast, Up-cast in a way similar to that in Section 4.

Details of the First Phase. After performing Partition(β) to get

a new clustering, we will later see that the maximum number of

layers in any cluster is multiplied by at most
4 logn
β
+ 1 <

5 logn
β
=

5 log1+
1
ϵ n. Recall that there are in total

2 logn
β

epochs. In each epoch,

when we merge a cluster C into another cluster C ′, the number of

layers inC is increased by at most two times the number of layers in

C ′. See Section 5.4 for implementation details of merging clusters.

Using the above number, throughout the first phase, the maxi-

mum number of layers of the underlying good labeling is at most

D =
(
5 logn

β

) log1/(3β ) D
= D

(
log

5 logn
β

log 1
3β

)
= D1+ϵ (1+O (1/log logn))

.

By Property 2 of Lemma 8, with high probability, for each vertex u,

the number of distinct clusters that vertices in N+(u) = N (u) ∪ {u}
belong to is at most

C = O
(
log1/3β n

)
= O

(
log

log1/ϵ n n
)
= O

(
ϵ logn

log logn

)
.

We will later see that, based on the implementation of the cluster

structure in Section 5.2, we can simulate one round of Partition(β)

on the cluster graph using O(DC log3 n) rounds and O(C log3 n)
energy in the underlying graph G. The simulation of Partition(β)

on the cluster graph is given in Section 5.3. The maintenance of

good labeling underlying the clustering is described in Section 5.4.

To summarize, the performance for the first phase is:

Time: log1/(3β ) D ·O(log3+1/ϵ n) ·O(DC log3 n),

Energy: log1/(3β ) D ·O(log3+1/ϵ n) ·O(C log3 n).

Details of the Second Phase. Consider the cluster graph resulting

from the first phase, and let L⋆ be the underlying good labeling.

Recall that D is the maximum number of layers of L⋆. In view of

Lemma 9, after the first phase, the diameter of the cluster graph

is less than O( log
2 n

β 4 ) = O(log2+4/ϵ n). Notice that the diameter of

the cluster graph must be greater than or equal to the diameter

of GL⋆ . We apply Lemma 6 with d = O(log2+4/ϵ n) and L = D =
D1+ϵ (1+O (1/log logn)), to solve Broadcast with the following cost:

Time: O(D1+ϵ (1+O (1/log logn)) log4+4/ϵ n),

Energy: O(log4+4/ϵ n).

By doing a variable change ϵ ′ = ϵ(1 +O(1/log logn)), we have the
following theorem.

Theorem 10. For any ϵ ∈ (0, 1), there is a randomized No-CD

algorithm that, w.h.p., solves Broadcast in time O(D1+ϵ logO (
1
ϵ ) n)

using energy O(logO ( 1ϵ ) n).

5.2 Cluster Structure

We assume that each vertexv has a unique number ID(v), and has a
good labeling L(v). Recall that a good labeling, in general, does not

give rise to a unique clustering. To fix a specific clustering, consider

the following modifications. We define the cluster id of a cluster C

by ID(r ), where r is the unique layer-0 vertex inC . We assume that

each vertex v ∈ C knows the cluster id CID(v) = ID(r ). We assume

the cluster center r has generated a sufficiently long random string

R(r ), and each vertex v ∈ C knows R(v) def= R(r ). We call this the

shared random string of the cluster C .

Suppose that all vertices agree on the two parameters C and D
meeting the following conditions. For each vertex u, the vertices

in N+(u) belong to at most C distinct clusters. The number D is

an upper bound on the number of layers of the good labeling. We

claim that the following two tasks can be done with O(C log3 n)
time and O(C log3 n) energy.
• Downward transmission. Let i ≥ 0 and V ′ be a subset of

layer-i vertices that have some messages to send. The goal is

to have each layer-(i+1) vertex with at least oneV ′-neighbor
in the same cluster receive a message from any such neighbor,

with high probability.

• Upward transmission. Let i > 0 andV ′ be a subset of layer-i
vertices that have some messages to send. The goal is to have

each layer-(i − 1) vertex with at least oneV ′-neighbor in the

same cluster receive a message from any such neighbor, with

high probability.

Lemma 11. In the No-CD model, both Downward transmission

and Upward transmission can be solved by a randomized algorithm

that takes O(C log3 n) time and O(C log3 n) energy.

Proof. We only present the proof for Downward transmission,

since Upward transmission can be solved analogously. The algo-

rithm is as follows. Repeat the following procedure for O(C logn)
iterations. Each layer-i vertexv ∈ V ′ joins the set S with probability
1
C , using the shared random string R(v). Thus, for any two layer-i

vertices u,v ∈ V ′ in a cluster C , we must have either u,v ∈ S or

u,v < S . Run SR-comm with S being the above set, and R being

the set of all layer-(i + 1) vertices. This algorithm takesO(C log3 n)
time and O(C log3 n) energy.

Now we prove the correctness of this algorithm. Consider any

layer-(i + 1) vertex v in clusterC , let u1, . . . ,ux be all layer-i neigh-

bors of v in C that are transmitting, and let ux+1, . . . ,uk be all

layer-i neighbors of v not in C that are transmitting. The ver-

tices u1, . . . ,uk are contained in at most C distinct clusters. Within

O(C logn) iterations, with high probability, there is an iteration

where (i)u1, . . . ,ux ∈ S , and (ii)ux+1, . . . ,uk < S . Thus,v is able to

receive a message from a neighbor inC in this iteration. We assume

any message contains the cluster id, so that v can check whether a

message it receives comes from a neighbor in C. �
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5.3 Simulating Algorithms on the Cluster Graph

In view of the definition of SR-comm, we define the CD⋆ model as

follows. This model is basically the same as CD, but for the case

where at least two neighbors are transmitting, the listener receives

any one of these messages instead of receiving noise. The choice

of the message that the listener receives can be arbitrary. Observe

that Partition(β) works in CD⋆.

Consider one round of CD⋆ on the cluster graph (the graph

resulting from contracting each cluster into a vertex). Let S be

the set of all clusters that are transmitting, and let R be the set of

all clusters that are listening. This round can be simulated in the

underlying graph G by the following three operations: (i) Down-

cast allows the layer-0 vertex representing each cluster C ∈ S
to broadcast a message to the entire cluster; (ii) All-cast allows

messages to be transmitted between the clusters; (iii)Up-cast allows

the layer-0 center of each clusterC ∈ R to obtain one message sent

to the cluster, if any. Recall that the number of layers is at most D.

• Down-cast. For eachC ∈ S, the center r ofC generates some

messagem, and the goal is to let all vertices in C knowm.

This can be done by transmitting the message layer by layer.

The algorithm is as follows. For i = 0, . . . ,D− 2, suppose all
layer-i vertices have received the message, and then execute

Downward transmission to let all layer-(i + 1) vertices to
receive the message. This operation takesO(DC log3 n) time

and O(C log3 n) energy.
• All-cast. Let S be the set of all vertices that belong to a cluster

inS, and let R be the set of all vertices that belong to a cluster

in R. Each v ∈ S has a message to transmit, and the goal is

to let each u ∈ R such that N (u) ∩ S , ∅ to receive some

message. This can be solved in a way similar to Lemma 11,

and takes O(C log3 n) time and O(C log3 n) energy.
• Up-cast. For each C ∈ R, some vertices in a cluster C hold a

message, and the goal is to let the center know any one of

them, if at least one exists. The algorithm is similar to Down-

cast. For i = D − 1, . . . , 1, run Upward transmission to let

layer-(i − 1) vertices receive messages from layer-i vertices.

This takes O(DC log3 n) time and O(C log3 n) energy.

Lemma 12. In the No-CD model, we can simulate any CD⋆ algo-

rithm on the cluster graph, where each round of the CD⋆ algorithm

is simulated in O(DC log3 n) time using O(C log3 n) energy.

5.4 Maintaining a Good Labeling

In this section, we show the details of maintaining the good labeling

L as well as other information, such as the cluster id CID(v) and
shared random string R(v), while some clusters are being merged.

LetW denote the set of all vertices that successfully received

“merging requestsž at some time during an execution of Partition(β)

(more precisely, at an All-cast operation in Section 5.3). We assume

that the merging request sent from a vertex v in a cluster C ′ con-
tains the following information: ID(v), CID(v), R(v), and L(v). For
each u ∈ W , let ϕ(u) be the vertex in a neighboring cluster that

successfully sent the merging request to u.

If a cluster C satisfies C ∩W , ∅, then it needs to accept one

merging request, and merges itself to a neighboring cluster. More

specifically, this is done as follows. First, within the cluster C , we

select one leader vertexv⋆ ∈ C∩W , and then we re-root the cluster

C at v⋆, and assign a new good labeling L′ to all C-nodes.

For example, suppose that the accepted merging request is sent

from the vertex ϕ(v⋆) = u⋆ ∈ C ′. Then we need to mergeC intoC ′.
If the vertex label ofu⋆ is 18, then we need to set the new label ofv⋆

as 19. The rest of the vertices inC will receive labels 20, 21, . . .. This

can be done via Up-cast and Down-cast in Section 5.3 on the old

labeling L. That is, this task can be accomplished in O(DC log3 n)
time using O(C log3 n) energy. The algorithm is as follows.

Step 1: Electing v⋆. Perform an Up-cast to let the cluster cen-

ter of C elect a vertex v⋆ ∈ C ∩W , and then perform a

Down-cast to let all vertices in C know the decision.

Step 2: Update Labeling L′. Initially, all vertices v ∈ C have

L′(v) = ⊥, except that L′(v⋆) is initialized as the layer

number of ϕ(v⋆) plus 1. The L′-label of all remaining ver-

tices in C can be assigned using Up-cast and Down-cast as

follows.

• Perform an Up-cast. The message of v⋆ is its L′-label.
Each vertexv that receives a messagem setsL′(v) =m+1,
and it will transmit the message m + 1 during the next

Upward transmission.

• Perform aDown-cast. For each vertexv that has obtained a

L′-label, its message is itsL′-label (and it will not reset its
L′-label). Each vertex v that has not obtained a L′-label
sets L′(v) =m + 1, wherem is the message it receives.

After the Down-cast in Step 2, everyone in C is guaranteed

to receive a vertex label. Information about cluster id and shared

random string can also be transmitted through this procedure.

Suppose that in this epoch of Partition(β), the clustersC1, . . . ,Ck
are merged into a clusterC ′. Before merging, we let L be maximum

number of layers in a clusterC1, . . . ,Ck , and let L
′ be the number of

layers ofC ′. Then, the number of layers in the new cluster resulting

from merging C1, . . . ,Ck into C ′ is at most L′ + (2L − 1).
Since Partition(β) has (2 logn)/β epochs, the maximum number

of layers in any cluster is multiplied by at most 1+ (4 logn)/β after

Partition(β).

6 CONCLUSION AND OMITTED RESULTS

Energy complexity is a natural and attractive concept in wireless

radio networks. In this work we presented (to our best knowledge)

the first algorithm that solved Broadcast in poly logn energy. Sev-

eral results were omitted from this extended abstract. We briefly

summarize these below. Refer to the full version [9] for details.

Simulation of LOCAL Algorithms. With a preprocessing step,

one can simulate any LOCAL algorithm in No-CD by scheduling

all transmissions to avoid collisions. Specifically, we show that any

algorithmA for the LOCAL model taking timeT and energy E can

be simulated in randomized No-CD using O(∆2T + ∆ log∆ logn)
time andO(∆(E+ log∆ logn)) energy. In particular, when ∆ = O(1),
the Broadcast problem can be solved by a randomized No-CD algo-

rithm inO(n logn) timewith energy costO(logn), which shows that
the LOCAL lower bound on path graphs of Theorem 1 is matched

by a No-CD algorithm on bounded-degree graphs.
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Improved Randomized Algorithms for the CD Model. The energy

complexity for the randomized CD model in Section 4 can be fur-

ther improved to nearly match the lower bound, up to a small

O(log log∆/log log log∆) factor. Specifically, we demonstrate a CD

algorithm that takesO
(
logn(log log∆+(1/ξ ))

log log log∆

)
energy andO

(
∆n1+ξ

)
time, for any ξ = ω(log logn/logn).

Time and Energy Optimal Algorithm for Path Graphs. We design

a Broadcast algorithm for path graphs that hasO(n)worst case run-
time withO(logn) expected energy cost. This shows that optimality

in time and energy can be simultaneously achieved.

Deterministic Algorithms. We have a deterministic algorithm

for the CD model, also based on iterative clustering. Its energy

complexity isO(log3 N logn) but the runtime isO(nN 2 logn logN ).

Open Problems. Assuming energy usage is paramount, can one

design Broadcast algorithms meeting our lower bounds: Ω(logn)
in CD and Ω(log∆ logn) in No-CD? Can we get the best of both

worlds: near optimality in time and energy? Specifically, is there a

small constant c for which O(D logc n) time and O(logc n) energy
suffice to solve Broadcast? Can we simultaneously achieve O(n)
time and O(logn) per-vertex energy on arbitrary graphs?
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