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ABSTRACT

Energy is often the most constrained resource in networks of battery-
powered devices, and as devices become smaller, they spend a larger
fraction of their energy on communication (transceiver usage) not
computation. As an imperfect proxy for true energy usage, we
define energy complexity to be the number of time slots a device
transmits/listens; idle time and computation are free.

In this paper we investigate the energy complexity of funda-
mental communication primitives such as Broadcast in multi-hop
radio networks. We consider models with collision detection (CD)
and without (No-CD), as well as both randomized and determin-
istic algorithms. Some take-away messages from this work are as
follows.

Time lower bounds imply energy lower bounds.
The energy complexity of Broadcast in a multi-hop network
is connected to the time complexity of LeaderElection in a
single-hop (clique) network. Many existing lower bounds on
time complexity immediately transfer to energy complex-
ity. For example, in the CD and No-CD models, Broadcast
requires Q(log n) and Q(log? n) energy, respectively, w.h.p.

Energy- and time-efficient broadcasting.
It requires Q(D) time to solve Broadcast even allowing un-
limited energy budget, where D is the diameter of the net-
work. The complexity measures of energy and time are in
conflict, and it is an open problem whether both can be mini-
mized simultaneously. We show that it is possible to achieve
near optimality in time complexity with only poly log n en-
ergy cost. For any constant € > 0, Broadcast can be solved
in O(D*€ logo(l/e) n) time with O(logo(l/e) n) energy.
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1 INTRODUCTION

In many networks of small wireless devices the scarcest resource is
energy, and the majority of energy is often spent on radio transceiver
usage—sending and receiving packets— not on computation. See,
e.g., [35, Fig. 2], [6, Tab. 1], and [37, §3]. Rather than account for the
energy profile of every mode of operation, we assume for simplicity
that devices spend one unit of energy to send/listen and nothing
for computation. It is not uncommon to use transceiver usage as a
proxy for total energy [10, 19, 22].

1.1 The Model

The network is a connected undirected graph G = (V,E) with
devices associated with vertices. Each vertex knows nothing about
the topology of G, except for some general parameters such as the
number of vertices n = |V|, the maximum degree A = max,, deg(v),
and the diameter D = maxy, o, dist(u, v). Each of A and D can be
upper bounded by n if it is unknown.

Time is partitioned into discrete slots, and all vertices agree on
time slot zero, i.e., they simultaneously start at the same time. In
each time slot, each device can choose to either (i) send a message,
(ii) listen, or (iii) remain idle, where (i) and (ii) cost one unit of
energy and (iii) is free. We allow unbounded message size and local
computation power. A device is not allowed to simultaneously send
and listen; and a sender does not know whether its message has
been successfully delivered to its neighbors.

If a device chooses to send a message or remain idle, it gets no
feedback from the environment. If a device chooses to listen and
exactly one neighbor sends a message m, it receives m. The other
cases depend on how the model handles collisions.

No-CD: If zero or at least two neighbors transmit, a listener
hears a signal Ag, indicating silence.

CD: If zero neighbors transmit, a listener hears Ag; if at least
two neighbors transmit, a listener hears A, indicating noise.
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LOCAL: Every listener hears every message transmitted by any
neighbor. There are no collisions.!

All the models come in randomized and deterministic variants.
In the deterministic setting, vertices are assigned distinct IDs in
{1,..., N} and can use them to break symmetry. Unless otherwise
stated, by default the maximum allowed failure probability for a
randomized algorithm is f = 1/poly(n). Randomized algorithms
can generate private random bits to break symmetry, e.g., they can
assign themselves O(log n)-bit IDs, which are distinct w.h.p.

Energy Metrics. The energy cost E, of a vertex v is defined as
the number of time slots v transmits/listens; the energy complexity
of an algorithm is max,cy Ey. Thus, we aim to optimize the worst
case energy cost per device, and not the total energy expenditure
of all devices.

In this paper we assume that (i) transmitting and listening incur
the same energy cost, and (ii) whether or not a message is received,
the cost of listening is the same. While some works [3, 8, 17, 24]
assume that only transmitting costs energy, a number of other
papers consider the model where both transmitting and listening
cost the same amount of energy [7, 10, 21, 25, 28].

The validity of these assumptions depends on the underlying
wireless network technology. To cite a specific example, for a sender
node called Mica2, the current consumption of transmitting ranges
from 3.7mA (transmission power at -20dBm) to 21.5mA (at +10dBm);
the current consumption for listening is always 7mA, regardless
of whether a message is received (see [36]). That is, the costs of
transmitting and listening are roughly of the same order. In fact, in
networking and system research, “idle listening” (i.e., the device is
in listening mode, but no message is received) has been identified
as a major cause of energy loss [1, Section 9.1]. There are a number
of papers on reducing idle listening [38, 40].

1.2 Our Contribution

In this paper we consider fundamental problems in arbitrary multi-
hop network topologies, primarily Broadcast. At time zero there is
a distinguished source device s € V holding a message m. By the end
of the computation all vertices should know m. We establish lower
and upper bounds on Broadcast in all collision-detection models,
both randomized and deterministic. Some of the more interesting
findings are as follows.

Time lower bounds on LeaderElection in single-hop networks
extend to energy lower bounds on Broadcast in multihop networks.
As a consequence, we get energy lower bounds on Broadcast of
Q(log n) and Q(log Alogn) in CD and No-CD, respectively. These
lower bounds reflect the difficulty of local contention resolution,
not on broadcasting per se. We give a more robust energy lower
bound of Q(log D) = Q(log n) that reflects the difficulty of getting
a message across a long path. It applies to any collision-detection
model, even LOCAL.

Even with an infinite energy budget we need Q(D) time. We show
that it is possible to achieve near optimality in both energy and

Lower bounds in the LOCAL model are robust since they capture the difficulty of
synchronization, not on the subtleties of any particular collision-detection model. This
model bears the same name as Linial’s LOCAL model [29, 34] and is very similar to it.
In the traditional LOCAL model vertices do not have to choose between transmitting
and listening, and there is no cost associated with communication.
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time simultaneously. For any € > 0, there is a Broadcast algorithm
taking O(D'*€ log®(1/€) n) time and O(log®"/€) ) energy.

Given sufficient (slightly super-linear) time, regardless of the
diameter D, the energy lower bounds can almost be achieved. For ex-
ample, we give an algorithm for No-CD using time O(n log A log? n)
and energy O(log Alog? n).

1.3 Related Work

Single-hop Networks. In theory research, previous work on en-
ergy complexity has focused on fundamental problems in single-
hop (clique) networks like LeaderElection (i.e., choose exactly one
device as the leader) and ApproximateCounting (approximating the
number of devices n to within a constant factor) [7, 10, 19-23, 31].
In the study of single-hop networks, it is typical to assume that n
is unknown.

Nakano and Olariu [31] showed that in No-CD, n initially iden-
tical devices can assign themselves distinct IDs in {1, ..., n} with
O(loglogn) energy per device. Bender, Kopelowitz, Pettie, and
Young [7] gave a randomized method for circuit-simulation in
the CD model, which led to algorithms for LeaderElection and
ApproximateCounting using O (log(log* n)) energy and n°®) time,
w.h.p. An earlier algorithm of Kardas et al. [23] solves the problem
in O (log€ n) time using O(log log log n) energy, but only in expecta-
tion. Chang et al. [10] proved that for these problems, ©(log(log™ n))
and O(log™ n) energy are optimal in CD and No-CD, respectively,
for poly(n)-time algorithms. They also give tradeoffs between time

and energy, e.g., in No-CD, with O (log2+€ n) time we can use just

O (e log log log n) energy, w.h.p. For deterministic LeaderElection
protocols, O(log N) is optimal in CD and No-CD [10, 21], but if
senders can also detect collisions, the energy complexity drops to
O(loglog N) [10].

Multi-hop Networks. Energy efficiency of multi-hop networks
have also been studied in theory research. Berenbrink et al. [8]
studied broadcasting and gossiping algorithms, and they measured
energy cost by the total number of messages transmitted. They pre-

sented a Broadcast algorithm that takes O (D log(n/D) + log? n)

time with expected O (log2 n/log(n /D)) transmissions per vertex.

Gasieniec et al. [17] considered the following problem in a known
graph topology. Given a graph with a distinguished source vertex,
design a transmission schedule to minimize broadcasting time, sub-
ject to the requirement that each device only transmits at most k
times. For k = 1, they showed that D+ Q(Vn — D) time is necessary
and that D + O(+y/nlog n) is sufficient. The lower bound extends to
D + Q((n — D)%) and the upper bound to O (nl/(k_z) log? n)
Some papers in the literature consider optimization problems
related to energy efficiency. Kirousis et al. [24] studied the following
problem. Given stations in d-dimensions, d € {1, 2, 3}, pick trans-
mission radii to satisfy some network properties (e.g., the network
should be connected and have small diameter). The objective is
to minimize the sum of the broadcasting energies. A related prob-
lem is the minimum energy broadcast routing problem (MEBR) [4].
Given coordinates of stations and a distinguished source, come up
with transmission power and transmission schedule to broadcast a
message. The goal is to minimize total power of all transmitters. A
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6-approximation algorithm via MST heuristic has been shown by
Ambiihl [3].

Broadcasting Protocols. Broadcast is a well-studied problem in
multi-hop networks. The seminal decay algorithm of Bar-Yehuda

et al. [5] solves Broadcast in No-CD in O (D log nn + log? n) time.

This bound was later improved to O (D log 35 + log? n) [12, 26].

The log? n term is known to be necessary [2], and the D log 5 term
is known to be optimal [27] for a restricted class of algorithms that
forbid “spontaneous transmission” (i.e., vertices that have yet to
learn the message are forbidden from transmitting).

Haeupler and Wajc [18] recently gave a broadcast algorithm in

the No-CD model that runs in O (Dk)gr;;:#

demonstrating that spontaneous transmissions are useful. Czumaj

and Davies [11] improved this to O (D llggg o)

a LeaderElection algorithm of the same complexity, improving [15].
See [16] for an O(D + log® n)-time Broadcast algorithm in the CD
model.

+ Iogo(l) n) time,

+ log n) and gave

1.4 Organization and Technical Overview

In Section 2 we show two simple lower bounds. We prove that
even for a simple network topology—a path—and the strongest
model—randomized LOCAL—the Broadcast problem still requires
Q(log n) energy. We then present a generic reduction showing that
the energy complexity of Broadcast in a multi-hop network is at
least the time complexity of LeaderElection in a single-hop network,
with the other aspects of the model being the same (CD or No-CD,
deterministic or randomized). The take-away message from these
lower bounds is that the cost of Broadcast arises from two causes:
(i) the cost of synchronization, for propagating messages along long
paths (when D is large), and (ii) the cost of contention-resolution
in a vertex’s 2-hop neighborhood (when A is large).

In Section 3 we introduce the basic tool SR-comm used by all our
algorithms. In Section 4 we show a simple randomized algorithm
in No-CD based on iterative clustering. For graphs of unbounded
degree, our algorithm takes O(nlog® n) time and O(log® n) energy
in No-CD, which is actually the product of our two lower bounds.
In Section 5, we present an algorithm in nearly diameter time.

2 LOWER BOUNDS
We prove two lower bounds on the energy-complexity of Broadcast.

THEOREM 1. Consider a path graph P = (vy, . ..,vn), where each
vertex v; does not know its position i. Suppose that vy attempts to
broadcast a message m. For any randomized LOCAL Broadcast algo-
rithm A, with probability 1/2, at least one vertex spendslog;sn — 1
energy before receiving the message m.

Proor. We may assume, without loss of generality, that the
algorithm A works as follows. Every vertex begins in exactly the
same state, except for v1, which knows the message m. Each vertex v
locally generates a string r, of random bits, and afterward, behaves
deterministically.? At any moment in time, each vertex v; maintains
an interval [, ] such that v; knows r; if and only if j € [a, §].

For example, if the algorithm A assumes that vertices have distinct O(log n)-bit IDs,
these can be generated without communication, with probability 1 — 1/poly(n).
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Whenever v; transmits a message, it transmits every useful piece
of information it knows, namely the concatenation of r,_, ..., 7o 5
After each wakeup, a vertex decides the time of its next wakeup
and mode (transmit or listen) based on all the information it has
learned so far. It is easy to see that any algorithm in this model
can be simulated with the same round- and energy-complexity if
vertices only communicate the r;,-strings they know.

Let I be an interval of the path (vy,...,v,) not including v;.
Intuitively, the event &;[I] holds if there is some device in I that,
after its ith wakeup, knows of no information outside I. This defi-
nition has two undesirable properties. First, it necessarily depends
on the behavior of (i.e., random bits generated by) vertices outside
I. Second, even if we could make it independent of the random bits
outside I, the event may still depend subtly on where the path I
is embedded within (vs, ..., v,). The actual event &;[I] assumes
“worst case” embedding of I and “best case” behavior of vertices
outside I. Therefore, &;[I] depends only on the strings of random
bits generated by I-vertices. In particular:

&i[Il : 3(v™ € 1) Y(embedding of I in (va, . . .,vp))

Y(ro; |vj ¢ ) V(vg ¢ 1) :
After its ith wakeup, v* does not know ry, .

Observe that because of the quantification over all random strings
outside I and the embedding of I in (vs, .. ., v, ), we are consider-
ing a large class of potential executions of A, which necessarily
includes the actual execution. If &;[I] occurs, we write v*[I] to
denote the leftmost vertex v* € I, satisfying the statement of &;[I].

The lower bound is by induction, with an induction hypothesis
that is probabilistic. In particular, we assume, for each interval I of
length (13)’, that

Pr(&;[1]) = 1/2.

The assumption is valid in the base case i = 0, since Pr(&g[I]) =
1 when I contains a single node that has yet to wakeup. Let I
be an interval of length (13)'*! partitioned into 13 subintervals
I, ..., I13 of length (13)!. We apply the inductive hypothesis to
each subinterval and conclude that Pr(&;[I;]) > 1/2. Moreover,
since these events are independent (they depend on disjoint sets of
random strings),

13
Pr| > 1(g,111) = 5| > Pr(Binom(13, }) > 5) > 5/6.
j=1

Suppose that the number of subintervals I; satisfying &;[I;] is, in
fact, at least 5, and let Ji, ..., J5 be the first 5 such subintervals. At
this point in the proof Ji, ..., J5 have no distinguishing character-
istics. Because of this, the times of the ith wakeups for the vertices
v*[J1],...,0*[Js] are independent and identically distributed ran-
dom variables. Among these 5 vertices, suppose the one whose ith
wakeup is earliest is some v* € {v*[J2], v*[ 5], v*[J4]}. After this
wakeup, v* could not have learned any random string outside I.
Every such string must have been communicated through either
v*[J1] or v*[J5], and each of these vertices has only been awake at
most i — 1 times. Thus, assuming Ji, ..., J5 exist, with probability
3/5 there is a vertex v* that wakes up i times and knows of no
information outside I. Since Ji, ..., J5 exist with probability 5/6,
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the probability that such a v* exists is at least (5/6)(3/5) = 1/2,
which concludes the induction. O

Next, we prove Broadcast lower bounds for the No-CD and CD
models, which hold even in constant diameter graphs. There are
some very subtle issues about the randomized No-CD lower bound,
see the end of the section for discussion.

THEOREM 2. Broadcast is subject to the following energy lower
bounds, where the failure probability is fixed at f = 1/poly(n) for ran-
domized algorithms. (i) deterministic No-CD: Q(A); (ii) randomized
No-CD: Q(log Alog n); (iii) randomized CD: Q(log n).

Proor. Consider the LeaderElection problem in a single-hop
network, where the number of vertices is unknown, but is guaran-
teed to be upper bounded by n’. The goal of LeaderElection is to
have a time slot 7 where exactly one vertex transmits, and all re-
maining vertices listen. In the single-hop network model, we allow
all vertices to send and listen simultaneously, i.e., we are in the full
duplex model. We also make a distinction between randomized and
deterministic models.

Randomized Model. Each vertex is anonymous, i.e., they do
not have IDs. We allow all vertices to have shared randomness,
but each vertex still has its own private randomness. The
maximum allowed failure probability is f”. Let Tr(n’, f”)
be the time complexity for LeaderElection this model. It is
known that T, (n’, f’) = Q(loglogn’ + log %,) for CD [33,
39],3 and also T, (n’, f’) = Q(log n’ log ]%,) for No-CD [14].

Deterministic Model. Each vertex has a distinct ID in [n/].
The algorithm is not allowed to fail for any possible assign-

ment of distinct IDs. Let T(n’) be the deterministic time com-

plexity. It is known that Ty(n”) = Q(n’) [19, Theorem 1.6].
There is a very subtle issue regarding the Q(loglogn’ + log J%)
lower bound; see the end of this section for discussion.

Let Gy be the bipartite graph K ;. with two parts {s,t} and
{v1, ..., v}, where the vertex s is attempting to broadcast a mes-
sage. Let A be any Broadcast algorithm that applies to the graphs
Gy, forall1 < k < A.If A is randomized and has failure probability
at most f, then we claim that A uses at least T,(A, f)/2 energy. If
A is deterministic, then we claim that it A uses at least Tz(A)/2
energy. These two claims imply the statement of the lemma (with

f = 1/poly(n)).

A Generic Reduction. These claims are proved by the follow-
ing generic reduction. Let A be any Broadcast algorithm on Gy,
for all 1 < k < A, that takes E energy. We transform it into a
LeaderElection algorithm A’ in the aforementioned single-hop
network model with n” = A that takes 2E time.

For the algorithm A to solve Broadcast, the vertex t has to
receive a message from s, and so there must be one time slot 7*
where exactly one vertex in {vy, ..., v} transmits and ¢ listens.

We call the vertices in the corresponding single-hop network
{v]...,v.}. Intuitively, each vertex v; in the single-hop network
simulates v; in the multi-hop network, and we treat {s, ¢} as the
communication channel. Each v] uses its private random bits to
simulate the private random bits of v;.

3The randomized CD Q(log %) lower bound, which applies even for k = 2, is folklore.
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Assumptions about A. Without loss of generality, we make the
following assumptions about A. If we are in the randomized model,
we let the two vertices s and t announce all their local random bits
in the first two rounds of A.

If we are in the deterministic model, we assume that the IDs of
the vertices in {v1, ..., v} } are chosen from the range {1,...,A},
and we let the two vertices s and t announce their IDs in the first
two rounds of ‘A.

Simulation of Time Slot T of A. We show how to simulate a time
slot 7 of A in the single-hop network model. The simulation of
the first two special rounds are straightforward, as follows. In the
randomized model, we use the shared randomness in the single-hop
network to simulate the random bits of s and ¢. In the deterministic
model, we simply set ID(s) = n’+1 = A+1and ID(¢) = n’+2 = A+2.

In what follows, we assume 7 > 2. If at least one of s and ¢ listens
at time slot 7 in A, the simulation costs 1 round; otherwise, the
simulation skips this round. Thus, the total amount of time for the
simulation is at most 2E.

During the simulation, we maintain an inductive hypothesis
that each vertex v; (in the single-hop network, right before they
simulate the time slot 7 of A) already knows the entire history and
information of the three vertices v;, s, and ¢ during all time slots
{1,...,7 — 1} in A in the multi-hop network.

The inductive hypothesis, together with the above assumption,
implies that v} is able to perfectly predict the actions of the three
vertices vj, s, and t at time 7 in A in the multi-hop network.

If both s and ¢ do not listen at time 7 in A, then nothing needs
to be done in the simulation. The reason is that at time 7 in A, the
channel feedback must be silence for everyone.

If at least one of s and ¢ listens at time 7 in A, we use one round in
the single-hop network to simulate the time slot 7 in (A. Specifically,
for each vertex vl{ , all we need to do is to let v; calculate the channel
feedback of vj, s, and t at time 7 in A.

Note that v] already knows the channel feedback of v; (at time
7 in (A) since it knows the actions of s and ¢. To let v; learn the
channel feedback of s and ¢ (at time 7z in A), we simply let each
vlf € {v;, ...,v,} do what v; does at time 7 in A, and then the
channel feedback in the single-hop network that each v; receives
is the same as the channel feedback received by s and ¢ in the
multi-hop network model. O

Theorem 2 complements Theorem 1 by showing another Q(log n)
energy lower bound (by setting f = 1/poly(n)) in CD, even when
D = O(1). On graphs with unbounded degree, Theorem 2 implies
Q(log2 n) energy lower bounds in No-CD, and Q(n) lower bounds
in deterministic No-CD.

Remark. Our Q(log A log n) lower bound relies on the existence
of an Q(logn’log 1/ f”) lower bound for the LeaderElection prob-
lem in single-hop networks, where we setn” = Aand f” = 1/poly(n).
The known lower bound [14] for this result only applies to uniform
algorithms. There is another lower bound [33] that works for all
algorithms but requires f’ = 1/n’ = 1/A. If we use [14], then the
Q(log Alog n) lower bound only applies to uniform algorithms. If
we use [33], then we get an Q(log? A) lower bound that applies to
all algorithms.
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Next, we discuss an issue about applying the lower bound of [14]
in the proof of Theorem 2. First of all, we are only interested in the
regime of f’ = 1/poly(n), and so we assume f’ < 1/n® < 1/A%.
Recall that we consider a single-hop network with at most n’ = A
vertices.

The randomized No-CD Q(logn’ log J%) lower bound of [14]

only applies to uniform algorithms in the sense that for each round
7, there is a sending probability p; such that each vertex sends with
probability p; using fresh randomness independently at round .
Notice that in the No-CD model the channel feedback for all vertices
must be silence all the time before the first successful transmission.

We show that this lower bound can still be applied in our setting.
The only issue that we need to deal with is that we allow shared
randomness. Let A be any algorithm (with shared randomness)
that solves LeaderElection with failure probability f”, and let A[r]
be the algorithm with respect to a string r that serves as the shared
randomness. Then A[r] must be uniform.

In what follows, we show that there exists a string r* such that
the failure probability of A[r*] is at most n’ f* < /f’, and so the
Q(logn’ log %,) lower bound of [14] also applies to A. We say that
a string r is good for a number k € [n’] if the failure probability of
Alr] is at most n’ f” when we run A[r] on a single-hop network
with k vertices. It suffices to show that there is a string r* that is
good for all k € [n’]. Suppose that such r* does not exist. Then
there exists a number k* € [n’] such that with probability at least
1/n’ a uniformly random string r is not good for k*. This implies
that for an execution of A on a single-hop network of k* vertices,
the failure probability is higher than (1/n”)(n’ f’) = f’, which is a
contradiction.

3 BASIC BUILDING BLOCKS

Given two disjoint vertex sets S and R, the task SR-comm is defined
as follows. Each vertex u € S attempts to transmit a message my,,
and each vertex in R attempts to receive one message. An SR-comm
algorithm guarantees that for every v € R with N(v) N S # 0, with
probability 1 — f, v receives a message m,, from at least one vertex
u e N@)NS.

LEMMA 3. In the randomized No-CD model, SR-comm can be
solved with high probability, i.e., f = 1/poly(n), in time O(log A log n)
and energy O(log Alog n).

Proor. Use the O(log Alog 1/ f)-time algorithm of [5], which is
also known as decay. o

For the randomized CD model, we present a generic transforma-
tion which turns an algorithm (A for LeaderElection in single-hop
networks (satisfying some additional requirements) to an algorithm
A’ that solves SR-comm.

Requirements for A. We require that in an execution of A, within
time T(n’, f) there is a successful communication with probability
1— f. The algorithm A is executed on a single-hop network, where
the number of vertices is unknown, but is guaranteed to be at
most n’. The vertices in the single-hop network are allowed to
simultaneously send and listen. Since we do not measure the energy
of A, we simply assume that all vertices (including senders) always
listen to the channel.
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We assume that algorithm A is uniform in the following sense.
For each time slot ¢, there is an integer k; € {0,1,...,[logn’]}
such that each vertex transmits with the same probability p = 2 ke
independently at the time slot ¢. The number k; depends solely
on the history (i.e., channel feedback) of the algorithm execution
before time t. Since all vertices always listen to the channel, they
have the same history.

The Generic Transformation. We show how to obtain a random-
ized algorithm A’ that solves SR-comm in time T(A, f) - [log A]
with energy cost 2 - T(A, f), but in a multi-hop network, where
vertices cannot simultaneously send and listen.

The algorithm A’ consists of T(A, f) epochs, each of which
consists of [log A] time slots.

The protocol for vertices in S is as follows. In each epoch, each
vertex v € S transmits at the ith time slot of this epoch with
probability 27 in such a way that the total number of transmissions
of v during an epoch is at most 2. This can be achieved since 1 +
JHi+E+... =2

Each vertex u € R, in parallel, simulates the algorithm A exe-
cuted on a single-hop network of size [N(u) N S|, as follows. We sim-
ulate the ith time slot of A during the ith epoch. In the simulation,
u serves as the communication channel. By inductive hypothesis,
we assume that before the ith epoch, u already knows the history
of the execution up to time i — 1, and so u has enough information
to calculate the number k;. During the ith epoch, u only listens
at the k;th slot. Notice that the channel feedback that u receives
simulates the ith time slot of the execution of A on a single-hop
network of size |[N(u) N S|, as each vertex in N(u) N S transmits
with probability 27 at the k;th slot of an epoch.

Recall that in an execution of A, with probability 1 — f, there is
some successful communication by time T(|N(u) N S|, f) < T(A, f).
Thus, for each u € R, with probability 1 — f, there must be one
epoch where exactly one vertex in N(u) N S is transmitting, and
so the vertex u € R receives a message. Based on this generic
transformation, we obtain Lemma 4.

LEMMA 4. In the randomized CD model, SR-comm can be solved
with energy O(loglog A +log 1/ f) and runtime O(log A(loglog A +
log 1/ f)). For the special case where eachv € S is adjacent to at most
one vertex in R, the energy cost is O(loglog A) + X, where X is a ran-
dom variable drawn from an exponential distribution Exponential(1),
for some A = O(1).

Proor. Apply the generic transformation to the uniform leader
election protocol of [32]. The runtime of the algorithm of [32] is
actually O(loglogn’ + log 1/ f), for every f. That is, the runtime is
can be written as O(log logn’) + X, where X is a random variable
drawn from an exponential distribution Exponential(1), for some
A = O(1). This already implies the energy cost of each u € R is
O(loglogn’) + X, since each u € R can simply terminates after
its simulation is done. However, in general, we cannot obtain this
improvement for vertices in S, since a vertex v € S can be adjacent
to many R-vertices.

For the special case where each v € S is adjacent to at most
one vertex u € R, the vertex v is only involved in the simulation
associated with u. In this case, we are able to show that the energy
cost of O(loglog n’) + X can be achieved for all vertices. Consider
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the following modifications to the above generic transformation.
In the first round, all vertices in R speak, and all vertices in S listen.
This allows each vertex in S to check whether it is adjacent to a
vertex in R. Those vertices in S that are not adjacent to a vertex in
R terminate after the first round. For each epoch i, we allocate an
additional time slot at the end of the ith epoch to let each vertex
u € R inform all its neighbors in S whether or not the simulation
associated with u has finished (i.e., u has already received a message
from a vertex in u € N(v) N S). If it is done, then all vertices in
SN N*(v) terminate. O

REMARK 5. In Lemma 4, if a vertex v satisfies either (i) v € S and
N@)NR =0, or(ii)v e Rand N(v) NS = 0, then the energy cost
of v can be lowered to O(1) in the CD model. Due to the ability of
a vertex to distinguish between noise and silence, in O(1) time, each
v € S can check whether N(v) N R = 0, and similarly eachv € R can
check whether N(v) NS = 0 in O(1) time. We will make use of this
observation to reduce the energy cost of algorithms in the CD model.

4 BASIC ENERGY-EFFICIENT RANDOMIZED
ALGORITHMS

In this section we show that Broadcast can be solved using O(log> n)
energy in randomized No-CD.

Layers of Vertices. Alabeling L : V(G) — {0,...,n—1}is said to
be good if it has the following property. Each vertex v with L(v) > 0
must have a neighbor u such that L(u) = L(v) — 1. A vertex v is
called a layer-i vertex if L(v) = i. The intuition underlying the
definition of a good labeling is that it represents a clustering of
vertices. If we let each layer-i vertex select a layer-(i—1) neighbor as
its parent, then we obtain a partition of V(G) into | £71(0)| clusters.
Each cluster C is a rooted tree T, where the root r is the unique
layer-0 vertex in the cluster C. However, it is possible that a vertex
has multiple choices of its parent, so the clustering resulting from
a good labeling is, in general, not unique.

We say that two layer-0 vertices u and v are L-adjacent if there
exists a path P = (w,u1,...,uq, Up, . ..,v1,0) such that L(u;) =i
for all i € [a] and L(v;) = j for all j € [b]. The graph G is on
vertex set £71(0) and edge set {{u, v} | u and v are L-adjacent}.

In the following lemma we show that Broadcast can be solved
energy-efficiently if we already have a good labeling £* with small
number of layer-0 vertices.

LEMMA 6. Let L* be a good labeling of G. Each vertex knows its
L*-label and two integers d, L > 1 such that (i) d is an upper bound
on the diameter of G g, and (ii) L is an upper bound on the number
of layers. Then Broadcast can be solved by a randomized algorithm
with high probability in timeT = T, g4 1 using energyE=E, 4.

LOCAL: T = O(Ld) E = 0(d)
CD: T =0(LdlognlogA) E =0(d+logn)
No-CD: T =0(LdlognlogA) E = 0(dlognlogA)

PROOF. Let v be the vertex that attempts to broadcast some mes-
sage m. The goal of the Broadcast problem is to relay the message
m to all vertices in the graph. This can be solved by first (1) do
Up-cast to relay the message from v to some layer-0 vertex; (2)
repeat (Down-cast, All-cast, Up-cast) for d times to let all layer-0
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vertices receive the message m; and then (3) do Down-cast to ensure
that all vertices in the graph have the message m.

e Down-cast. Fori =0,...,L — 2, do SR-comm with S being
the set of layer-i vertices that hold the message m, and R
being the set of all layer-(i+1) vertices that have not received
the message m. Each vertex in S attempts to broadcast the
message m.

o All-cast. Do SR-comm with S being the set of all vertices that
hold the message m, and R being the set of all vertices that
have not received the message m. Each vertex in S attempts
to broadcast the message m.

e Up-cast. Fori =L —-1,...,1,do SR-comm with S being the
set of layer-i vertices that hold the message m, and R being
the set of all layer-(i — 1) vertices that have not received
the message m. Each vertex in S attempts to broadcast the
message m.

We use SR-comm with f = 1/poly(n). Thus, the Broadcast
problem can be solved in O(Ld) - T'(n, A) time and O(d) - E’(n, A)
energy, where T’(n, A) and E’(n, A) are the runtime and the en-
ergy cost of SR-comm; see Lemmas 3 and 4. By the observations
made in Remark 5, the energy cost can be further reduced to
O(d + E’(n, A)) = O(d + log n). In the above algorithm, each vertex
v is involved in O(d) invocations of SR-comm, and all but O(1) of
them satisfy either (i) v € Sand N(v) "R = 0, or (ii) v € R and
N@)ns=40. O

In what follows, we show that a good labeling £* with small
number of layer-0 vertices can be computed efficiently. Our strategy
is to begin with the trivial all-0 good labeling, and then in each
iteration use the current good labeling £ to obtain a new good
labeling £’ such that (i) each layer-0 vertex remains layer-0 with
some probability (to be determined), and (ii) no new layer-0 vertex
is created.

Computing a New Labeling L from L. Letp € (0,1) and s > 1
be two parameters to be chosen later. The algorithm for computing
L’ is as follows: (1) initially, set £’(v) = L for all vertices, but each
layer-0 vertex v sets £'(v) = 0 independently with probability
p; (2) repeat (Down-cast, All-cast, Up-cast) s times, and then do
Down-cast; (3) any vertex v that has yet to obtain a new £’ label
(i.e., L'(v) = L) retains its old label, setting £L’(v) = L(v).

e Down-cast. Fori =0,...,n -2, do SR-comm with S being
the set of layer-i vertices of £ such that its £’ label is not
1, and R being the set of all layer-(i + 1) vertices of £ such
that its £’ label is L. Each vertex in S attempts to broadcast
its £’ label. Each vertex in R that receives the message m
sets its £’ label to be m + 1.

o All-cast. Do SR-comm with S being the set of all vertices
such that its £’ label is not L, and R being the set of all
vertices such that its £’ label is L. Each vertex in S attempts
to broadcast its £’ label. Each vertex in R that receives the
message m sets its £’ label to be m + 1.

e Up-cast. Fori=n—-1,...,1, do SR-comm with S being the
set of layer-i vertices of £ such that its £’ label is not L,
and R being the set of all layer-(i — 1) vertices of £ such that
its £’ label is L. Each vertex in S attempts to broadcast its
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L’ label. Each vertex in R that receives the message m sets
its £’ label to be m + 1.

We use SR-comm with f = 1/poly(n). It is straightforward to
verify that the algorithm indeed computes a good labeling £/, w.h.p.
The algorithm takes O(ns) - T’(n, A) time and O(s) - E’(n, A) energy,
where T’(n, A) and E’(n, A) are the runtime and the energy cost of
SR-comm; see Lemmas 3 and 4. In the CD model, the energy cost
is O(s + log n); see Remark 5.

We show that each layer-0 vertex in £ remains layer-0 in £’ with
probability at most p + (1 — p)™n{s*LW} 4 1 /50ly(n), where w =
|£71(0)|. Assuming all invocations of SR-comm succeed, which
happens with probability 1 — 1/poly(n), there are two ways for a
layer-0 vertex v in £ to remain layer-0 in £’.

e The vertex v sets £’(v) = 0 at Step (1), and this occurs with
probability p.
o All vertices u within distance s to v (in G ) have £L'(u) = L

at Step (1), and this occurs with probability at most (1 —
p)min{s+l,w}‘

We are in a position to prove the main theorems of this section.

THEOREM 7. The Broadcast problem can be solved by a random-
ized algorithm with high probability in the following runtime T =
T(n,A) and energy cost E = E(n, A).

LOCAL : T = O(nlogn) E = O(logn)
CD: T=0(nlogAlog’n) E=0(log?n)
No-CD: T =O(nlogAlog’n) E = O(logAlog®n)

PROOF. Set p = 1/2 and s = 1. As long as the number of layer-0
vertices in £ is greater than 1, each layer-0 vertex in £ remains
layer-0 in £’ with probability at most p + (1 — p)min{”l’w} +
1/poly(n) < 1/2 + 1/4 + 1/poly(n) = 3/4 + 1/poly(n). Thus, after
O(log n) iterations of computing a new labeling from an old labeling,
we obtain a good labeling £* such that the number of layer-0
vertices is exactly 1, with high probability. Applying Lemma 6 (with
L = nand d = 0) gives the theorem. ]

Recall that the energy cost for computing £’ from £ is O(s +
log n) (instead of O(s log n)) in the CD model. Using this fact, the
energy cost can be improved in the CD model without affecting the
time too much. This result is omitted from this extended abstract.
Refer to the full version of the paper [9].

5 ENERGY-EFFICIENT BROADCAST WITH
NEARLY OPTIMAL TIME

In this section, we show that it is possible to achieve near diameter
time O(D!*€poly(log n)) while keeping relatively low energy com-
plexity O(poly(log n)). Throughout this section we are working in
the No-CD model for simplicity. A couple log factors can be saved
by adapting our algorithm to the CD model.

Our algorithm is based on a subroutine Partition(f5), described
by Miller, Peng, and Xu [30] and further analyzed by Haeupler
and Wajc [18]. The goal of Partition(f) is to produce the following
random clustering. Each vertex v picks &, ~ Exponential(f), § €
(0, 1), and assigns v to the cluster of u that minimizes dist(u, v) — .
This algorithm is as follows [18].
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Partition(f). Every vertex v picks a value §,, ~ Exponential(f).

Let v’s start time be start, «— max{1, ZIOﬂgn — [8u1}. There are

2logn 2logn

epochs numbered 1 through . At the beginning of

epoch t, if v is not yet in any cluster and start, = t, v becomes
the cluster center of its own cluster. During the epoch, we execute
SR-comm with failure probability f = 1/poly(n), where S is the set
of all clustered vertices and R the set of all as-yet unclustered ver-
tices. Any vertex v € R receiving a message (we call this “merging
request”) from u € S joins the cluster of u.

The algorithm Partition(f) can be implemented in No-CD, and

it takes O(%) time and O(lo‘%3 ) energy.

The cluster graph is defined as the graph resulting from con-
tracting each cluster to a vertex. Our strategy for solving Broadcast
is to iteratively apply the clustering algorithm Partition(f) to the
cluster graph until it has diameter poly(log n).

Lemma 8 presents some useful properties of Partition(f). In
Lemma 9 we prove that the diameter of the cluster graph shrinks

by a factor of O(f) with high probability.

LEMMA 8 ([18, 30]). The algorithm Partition(f) partitions the
vertices into clusters with the following properties.
(1) The probability of any edge {u,v} having its endpoints in
different clusters is at most 23.
(2) Letu be any vertex. The probability that vertices in N (w)u{u}

-1
are in at least t distinct clusters is at most (1 — ¢~ (2d+1)f .

As a special case, ford = 1 (i.e., if we only care about u and
t-1
its neighbors) this probability is at most (l - e‘3ﬁ) .

Proor. The two properties are due to [18, Corollary 3.7] and [18,
Corollary 3.8], respectively. O

LEMMA 9 (CONCENTRATION BOUND ON DIAMETER). Suppose that

2
the diameter of the graph G isD = & 1;% " for some number a. Then
the diameter of the cluster graph resulting from Partition(f) is at

most 34D, with probability 1 — n~(@)

PROOF. Letk =2- 2logn

the maximum diameter of any cluster is at most k. Consider any two
vertices u and v such that dist(u, v) > 3D = 38-Z 1;%2 L 30[1;#.
Let P = (wi,wa,...,wWp, wpyq) be a shortest path from u = wy
to v = wpyq of length £. Define X; to be the indicator random
variable that w; and w;+1 are contained in different clusters. Then
X = Zf’:l X is an upper bound on the distance between the cluster
of u and the cluster of v in the cluster graph.

Ifli—j|l > k= 41(7;", then X; and X; are independent. Thus,

be twice the number of epochs, and so

4logn

we can color {X;};=1, . ¢ by y = colors in such a way that
variables of the same color are independent. By [13, Theorem 3.2],
we have the following inequality: Pr[X > E[X]+t] < exp(~2t?/(y-
{)). By linearity of expectation and Lemma 8(1), E[X] < 2¢. Thus,

by setting t = B¢, we have
Pr[X > 3p(] < exp(—Q(ﬂ3€/log n)) = n~ @),

The lemma follows by a union bound over all O(n?) possible pairs
{u, v}. Notice that if dist(u, v) < 38D, then the distance between
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the cluster of u and the cluster of v in the cluster graph is already
at most 34D. O

5.1 Outline of the Algorithm

We fix the parameter f = —1—. Our randomized No-CD algo-

log"/€ n

rithm for Broadcast consistsgof two phases. The first phase is to
iteratively run Partition(f) on the current cluster graph log, ;35) D
times. The second phase is to apply Lemma 6 to the last clustering
to solve Broadcast.

Throughout the procedure, the cluster graph is implemented as a
good labeling, and each layer-0 vertex is responsible for simulating
a cluster. The communication between clusters can be done using
Down-cast, All-cast, Up-cast in a way similar to that in Section 4.

Details of the First Phase. After performing Partition(f) to get
a new clustering, we will later see that the maximum number of

layers in any cluster is multiplied by at most 41(;5 n > k;),g n -

epochs. In each epoch,

+1<

1
5log!*e n.Recall that there are in total Zlogn

when we merge a cluster C into another cluster C’, the number of
layers in C is increased by at most two times the number of layers in
C’. See Section 5.4 for implementation details of merging clusters.
Using the above number, throughout the first phase, the maxi-
mum number of layers of the underlying good labeling is at most

og 5logn

log 55 ) — pl+e(1+0(1/loglogn))

I
D= (M)logl/(Sﬂ)D = D(
By Property 2 of Lemma 8, with high probability, for each vertex u,
the number of distinct clusters that vertices in N*(u) = N(u) U {u}
belong to is at most

C=0 (logl/gﬁ n) =0 (lOglogl/E n n) =0 (15;1)%) '

We will later see that, based on the implementation of the cluster
structure in Section 5.2, we can simulate one round of Partition(f)
on the cluster graph using O(DC log® n) rounds and O(C log> n)
energy in the underlying graph G. The simulation of Partition(f)
on the cluster graph is given in Section 5.3. The maintenance of
good labeling underlying the clustering is described in Section 5.4.
To summarize, the performance for the first phase is:

Time: log /(34D - O(log3+1/€ n) - O(DC log® n),

Energy: log; /(34D - O(log>* /€ n) - O(Clog® n).

Details of the Second Phase. Consider the cluster graph resulting
from the first phase, and let £* be the underlying good labeling.
Recall that D is the maximum number of layers of £*. In view of
Lemma 9, after the first phase, the diameter of the cluster graph

2

is less than O(k’/gg—4n) = O(log2+4/5 n). Notice that the diameter of
the cluster graph must be greater than or equal to the diameter
of G p«. We apply Lemma 6 with d = O(log®**/¢ n)and L = D =

pi+e(1+0(1/loglogn)) 't solve Broadcast with the following cost:

Time: O(D1+e(1+O(l/log10g n)) 10g4+4/e n),

Energy: O(log4+4/ €n).

102

PODC’18, July 23-27, 2018, Egham, United Kingdom

By doing a variable change €’ = €(1 + O(1/log log nn)), we have the
following theorem.

THEOREM 10. For any e € (0, 1), there is a randomized No-CD
algorithm that, w.h.p., solves Broadcast in time O(D*€ logo(é) n)
using energy O(logo(%) n).

5.2 Cluster Structure

We assume that each vertex v has a unique number ID(v), and has a
good labeling £L(v). Recall that a good labeling, in general, does not
give rise to a unique clustering. To fix a specific clustering, consider
the following modifications. We define the cluster id of a cluster C
by ID(r), where r is the unique layer-0 vertex in C. We assume that
each vertex v € C knows the cluster id CID(v) = ID(r). We assume
the cluster center r has generated a sufficiently long random string

R(r), and each vertex v € C knows R(v) def R(r). We call this the
shared random string of the cluster C.

Suppose that all vertices agree on the two parameters C and D
meeting the following conditions. For each vertex u, the vertices
in N*(u) belong to at most C distinct clusters. The number D is
an upper bound on the number of layers of the good labeling. We
claim that the following two tasks can be done with O(C log® n)
time and O(C log® n) energy.

e Downward transmission. Let i > 0 and V' be a subset of
layer-i vertices that have some messages to send. The goal is
to have each layer-(i+1) vertex with at least one V’-neighbor
in the same cluster receive a message from any such neighbor,
with high probability.

e Upward transmission. Let i > 0 and V’ be a subset of layer-i
vertices that have some messages to send. The goal is to have
each layer-(i — 1) vertex with at least one V’-neighbor in the
same cluster receive a message from any such neighbor, with
high probability.

LEMMA 11. In the No-CD model, both Downward transmission
and Upward transmission can be solved by a randomized algorithm
that takes O(C log® n) time and O(C log® n) energy.

Proor. We only present the proof for Downward transmission,
since Upward transmission can be solved analogously. The algo-
rithm is as follows. Repeat the following procedure for O(C log n)
iterations. Each layer-i vertex v € V’ joins the set S with probability
%, using the shared random string R(v). Thus, for any two layer-i
vertices u,v € V’ in a cluster C, we must have either u,v € S or
u,v ¢ S. Run SR-comm with S being the above set, and R being
the set of all layer-(i + 1) vertices. This algorithm takes O(C log® n)
time and O(C log® n) energy.

Now we prove the correctness of this algorithm. Consider any
layer-(i + 1) vertex v in cluster C, let uy, . . ., ux be all layer-i neigh-
bors of v in C that are transmitting, and let ux41,...,u be all
layer-i neighbors of v not in C that are transmitting. The ver-
tices uy, . . . , uj are contained in at most C distinct clusters. Within
O(C log n) iterations, with high probability, there is an iteration
where (i) ug, ..., ux € S, and (ii) ux+1, . . ., ug ¢ S. Thus, v is able to
receive a message from a neighbor in C in this iteration. We assume
any message contains the cluster id, so that v can check whether a
message it receives comes from a neighbor in C. O
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5.3 Simulating Algorithms on the Cluster Graph

In view of the definition of SR-comm, we define the CD* model as
follows. This model is basically the same as CD, but for the case
where at least two neighbors are transmitting, the listener receives
any one of these messages instead of receiving noise. The choice
of the message that the listener receives can be arbitrary. Observe
that Partition() works in CD*.

Consider one round of CD* on the cluster graph (the graph
resulting from contracting each cluster into a vertex). Let S be
the set of all clusters that are transmitting, and let R be the set of
all clusters that are listening. This round can be simulated in the
underlying graph G by the following three operations: (i) Down-
cast allows the layer-0 vertex representing each cluster C € S
to broadcast a message to the entire cluster; (i) All-cast allows
messages to be transmitted between the clusters; (iii) Up-cast allows
the layer-0 center of each cluster C € R to obtain one message sent
to the cluster, if any. Recall that the number of layers is at most D.

e Down-cast. For each C € 8, the center r of C generates some
message m, and the goal is to let all vertices in C know m.
This can be done by transmitting the message layer by layer.
The algorithm is as follows. For i = 0, ..., D — 2, suppose all
layer-i vertices have received the message, and then execute
Downward transmission to let all layer-(i + 1) vertices to
receive the message. This operation takes O(DC log® n) time
and O(C log® n) energy.

o All-cast. Let S be the set of all vertices that belong to a cluster
in S, and let R be the set of all vertices that belong to a cluster
in R. Each v € S has a message to transmit, and the goal is
to let each u € R such that N(u) N S # 0 to receive some
message. This can be solved in a way similar to Lemma 11,
and takes O(C log® n) time and O(C log® n) energy.

e Up-cast. For each C € R, some vertices in a cluster C hold a
message, and the goal is to let the center know any one of
them, if at least one exists. The algorithm is similar to Down-
cast. Fori = O —1,...,1, run Upward transmission to let
layer-(i — 1) vertices receive messages from layer-i vertices.
This takes O(DC log® n) time and O(C log® n) energy.

LEMMA 12. In the No-CD model, we can simulate any CD* algo-
rithm on the cluster graph, where each round of the CD* algorithm
is simulated in O(DC log® n) time using O(C log® n) energy.

5.4 Maintaining a Good Labeling

In this section, we show the details of maintaining the good labeling
L as well as other information, such as the cluster id CID(v) and
shared random string R(v), while some clusters are being merged.

Let W denote the set of all vertices that successfully received
“merging requests” at some time during an execution of Partition(S)
(more precisely, at an All-cast operation in Section 5.3). We assume
that the merging request sent from a vertex v in a cluster C’ con-
tains the following information: ID(v), CID(v), R(v), and £L(v). For
each u € W, let ¢(u) be the vertex in a neighboring cluster that
successfully sent the merging request to u.

If a cluster C satisfies C N W # 0, then it needs to accept one
merging request, and merges itself to a neighboring cluster. More
specifically, this is done as follows. First, within the cluster C, we
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select one leader vertex v* € CNW, and then we re-root the cluster
C at v*, and assign a new good labeling £’ to all C-nodes.

For example, suppose that the accepted merging request is sent
from the vertex ¢(v*) = u* € C’. Then we need to merge C into C’.
If the vertex label of u™* is 18, then we need to set the new label of v*
as 19. The rest of the vertices in C will receive labels 20, 21, . . .. This
can be done via Up-cast and Down-cast in Section 5.3 on the old
labeling £. That is, this task can be accomplished in O(DC log® n)
time using O(C log® n) energy. The algorithm is as follows.

Step 1: Electing v*. Perform an Up-cast to let the cluster cen-
ter of C elect a vertex v* € C N W, and then perform a
Down-cast to let all vertices in C know the decision.

Step 2: Update Labeling £’. Initially, all vertices v € C have
L’(v) = 1, except that £’(v*) is initialized as the layer
number of ¢(v*) plus 1. The £L’-label of all remaining ver-
tices in C can be assigned using Up-cast and Down-cast as
follows.

e Perform an Up-cast. The message of v* is its £’-label.
Each vertex v that receives a message m sets £'(v) = m+1,
and it will transmit the message m + 1 during the next
Upward transmission.

e Perform a Down-cast. For each vertex v that has obtained a
L’-label, its message is its £’-label (and it will not reset its
L’-label). Each vertex v that has not obtained a £’-label
sets L'(v) = m + 1, where m is the message it receives.

After the Down-cast in Step 2, everyone in C is guaranteed
to receive a vertex label. Information about cluster id and shared
random string can also be transmitted through this procedure.

Suppose that in this epoch of Partition(f), the clusters Cy, . . ., Cg
are merged into a cluster C’. Before merging, we let L be maximum
number of layers in a cluster Cy, . . ., Cg, and let L’ be the number of
layers of C’. Then, the number of layers in the new cluster resulting
from merging C, . ..,Cy into C’ is at most L’ + (2L — 1).

Since Partition(f) has (21log n)/p epochs, the maximum number
of layers in any cluster is multiplied by at most 1 + (4logn)/f after
Partition(p).

6 CONCLUSION AND OMITTED RESULTS

Energy complexity is a natural and attractive concept in wireless
radio networks. In this work we presented (to our best knowledge)
the first algorithm that solved Broadcast in poly log n energy. Sev-
eral results were omitted from this extended abstract. We briefly
summarize these below. Refer to the full version [9] for details.

Simulation of LOCAL Algorithms. With a preprocessing step,
one can simulate any LOCAL algorithm in No-CD by scheduling
all transmissions to avoid collisions. Specifically, we show that any
algorithm A for the LOCAL model taking time T and energy E can
be simulated in randomized No-CD using O(A%T + Alog Alog n)
time and O(A(E +log A log n)) energy. In particular, when A = O(1),
the Broadcast problem can be solved by a randomized No-CD algo-
rithm in O(n log n) time with energy cost O(log n), which shows that
the LOCAL lower bound on path graphs of Theorem 1 is matched
by a No-CD algorithm on bounded-degree graphs.
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Improved Randomized Algorithms for the CD Model. The energy
complexity for the randomized CD model in Section 4 can be fur-
ther improved to nearly match the lower bound, up to a small

O(loglog A/logloglog A) factor. Specifically, we demonstrate a CD
algorithm that takes O (%) energy and O (An1+§)
time, for any ¢ = w(loglogn/log n).

Time and Energy Optimal Algorithm for Path Graphs. We design
a Broadcast algorithm for path graphs that has O(n) worst case run-
time with O(log n) expected energy cost. This shows that optimality
in time and energy can be simultaneously achieved.

Deterministic Algorithms. We have a deterministic algorithm
for the CD model, also based on iterative clustering. Its energy
complexity is O(log® N log n) but the runtime is O(nN? log nlog N).

Open Problems. Assuming energy usage is paramount, can one
design Broadcast algorithms meeting our lower bounds: Q(log n)
in CD and Q(log Alogn) in No-CD? Can we get the best of both
worlds: near optimality in time and energy? Specifically, is there a
small constant ¢ for which O(D log€ n) time and O(log® n) energy
suffice to solve Broadcast? Can we simultaneously achieve O(n)
time and O(log n) per-vertex energy on arbitrary graphs?
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