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ABSTRACT

Vertex coloring is one of the classic symmetry breaking problems
studied in distributed computing. In this paper we present a new
algorithm for (A + 1)-list coloring in the randomized LOCAL model
running in O(log* n + Dety(polylogn)) time, where Det,(n’) is
the deterministic complexity of (deg +1)-list coloring on n’-vertex
graphs. This improves upon a previous randomized algorithm of
Harris, Schneider, and Su (STOC 2016) with complexity O(+/log A +
loglogn + Det4(poly logn)), and (when A is sufficiently large) is
much faster than the best known deterministic algorithm of Fraigni-
aud, Heinrich, and Kosowski (FOCS 2016), whose time complexity
is O(VAlog?™ A + log* n) time.

Our algorithm appears to be optimal. It matches the Q(log™ n)
randomized lower bound, due to Naor (SIDMA 1991) and sort of
matches the Q(Det(poly log n)) randomized lower bound due to
Chang, Kopelowitz, and Pettie (FOCS 2016), where Det is the deter-
ministic complexity of (A + 1)-list coloring. The best known upper
bounds on Det,(n’) and Det(n’) are both 20(V1°8™) (Panconesi
and Srinivasan (J. Algor 1996)) and it is quite plausible that the
complexities of both problems are the same, asymptotically.
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1 INTRODUCTION

Much of what we know about the LOCAL model has emerged
from studying the complexity of four canonical symmetry breaking
problems and their variants: maximal independent set (MIS), (A+1)-
vertex coloring, maximal matching, and (2A —1)-edge coloring. The
palette sizes “A + 1” and “2A — 1” are minimal to still admit a greedy
sequential solution; here A is the maximum degree.

Early work [1, 2, 24-27] showed that all the problems are re-
ducible to MIS, all four problems require Q(log* n) time, even with
randomization; all can be solved in O(poly(A) + log™ n) time (op-

timal when A is constant), or in 20(‘/@) time for any A. Until
recently, it was actually consistent with known results that all four

problems had the same complexity.
Kuhn, Moscibroda, and Wattenhofer (KWM) [22] proved that the
“independent set” problems (MIS and maximal matching) require
log A

Q (mln{ loglog A”

logn
loglogn

}) time, with or without randomization,
via a reduction from O(1)-approximate minimum vertex cover. This
lower bound provably separated MIS/maximal matching from sim-
pler symmetry-breaking problems like O(A?)-coloring, which can
be solved in O(log" n) time [24].

We now know the KMW lower bounds cannot be extended to
the canonical coloring problems, nor to variants of MIS like (2, t)-
ruling sets, for t > 2 [5, 6, 16]. Elkin, Pettie, and Su [12] proved that
(2A —1)-list edge coloring can be solved by a randomized algorithm
in O(log log n + Det(poly log n)) time, which shows that neither the

Q(—IolgoigA) nor Q(
problem. Here Det(n’) represents the deterministic complexity of
the problem in question on n’-vertex graphs. Improving on [5, 29],
Harris, Schneider, and Su [19] proved a similar separation for (A+1)-
vertex coloring. Their randomized algorithm solves the problem
in O(y/log A + loglog n + Det,(poly log n)) time, where Det, is the
complexity of (deg +1)-list coloring.

The “Det(poly log n)” terms in the running times of [12, 19] are a
consequence of the graph shattering technique applied to distributed
symmetry breaking. Barenboim, Elkin, Pettie, and Schneider [5]
showed that all the classic symmetry breaking problems could be
reduced in O(log A) or O(log2 A) time, w.h.p., to a situation where
we have independent subproblems of size poly log(n), which can
then be solved with the best available deterministic algorithm.

logn

1—) KMW lower bound applied to this
oglogn

!In the case of MIS, the subproblems actually have size poly(A) log n, but satisfy the
additional property that they contain distance-5 dominating sets of size O(log n),
which is often just as good as having poly log(n) size. See [5, §3] or [16, §4] for more
discussion of this.
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Later, Chang, Kopelowitz, and Pettie (CKP) [8] gave a simple proof
illustrating why graph shattering is inherent to the LOCAL model:
the randomized complexity of any locally checkable problem? is at
least its deterministic complexity on +/log n-size instances.

The CKP lower bound explains why the state-of-the-art ran-
domized symmetry breaking algorithms have such strange stated
running times: they all depend on a randomized graph shattering
routine (Rand.) and a deterministic (Det.) algorithm.

e O(logA + 20(Vloglogn)y f5;- MIS (Rand. due to [16] and Det.
to [27]),
o O(+/log A + 20(loglogm)y fo1 (A + 1)-vertex coloring (Rand.
due to [19] and Det. to [27]),
e O(log A + (loglog n)*) for maximal matching
to [5] and Det. to [13]),
e O((loglogn)®) for (2A — 1)-edge coloring (Rand. due to [12]
and Det. to [14]).
In each, the term that depends on n is the complexity of the best
deterministic algorithm, scaled down to poly log(n)-size instances.
In general, improvements in the deterministic complexities of these
problems imply improvements to their randomized complexities,
but only if the running times are improved in terms of “n” rather
than “A” For example, a recent line of research has improved the
complexity of (A + 1)-coloring in terms of A, from O(A +log* n) [4],
to O(A3/%) + log™ n [3], to the state-of-the-art bound of O(VA) +
log™ n, due to Fraigniaud, Heinrich, and Kosowski [15]. These im-
provements do not have consequences for randomized coloring
algorithms using graph shattering [5, 19] since we can only assume
A = (log n)2( in the shattered instances.

(Rand. due

A Technical History of Randomized (A + 1)-Coloring. In this pa-
per we prove that (A + 1)-list coloring can be solved in O(log™ n +

Dety(poly log n)) time w.h.p., which is always 20(V1oglogn) given

the best known bound on Det,(n’) = 20(¥ogn) [27]. Our al-
gorithm seems to come close to the Q(log* n + Det(poly log n))
lower bound implied by [8, 24, 26], where Det is the deterministic
complexity of (A + 1)-list coloring. Intellectually, our algorithm
builds on a succession of breakthroughs by Schneider and Watten-
hofer [29], Barenboim, Elkin, Pettie, and Schneider [5], Elkin, Pettie,
and Su, [12], and Harris, Schneider, and Su [19], which we shall
now review.

Schneider and Wattenhofer [29] gave the first evidence that
the canonical coloring problems may not be subject to the KMW
lower bounds. They showed that when the palette size is (1 + €)A,
where € = Q(1) and A > poly log n is sufficiently large, that vertex
coloring could be solved in just O(log™ n) time, w.h.p. The key
observation is that the number of excess colors (current palette size
minus number of uncolored neighbors) is non-decreasing over time.
After O(log e™!) rounds of a standard coloring routine, the number
of excess colors (eA) becomes larger than the uncolored degree.
At this point there is a dramatic transition, and the probability
that a vertex remains uncolored is reduced exponentially in each
successive round: O(log* n) more rounds suffice. Of course, in the
(A +1)-coloring problem there is just one excess color initially, so the

2See Naor and Stockmeyer [26] or Chang and Pettie [9] for a formal definition of the
class of locally checkable labeling (LCL) problems.
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problem is how to create them. Elkin, Pettie, and Su [12] observed
that if the graph is “(1 — €)-locally sparse,” that after one iteration
of a random coloring routine, a significant number (Q(eA)) of pairs
of vertices in the neighborhood N(v) get assigned the same color,
thereby creating Q(eA) excess colors at v.°> The notion of local
sparsity is especially useful for addressing the (2A—1)-edge coloring
problem [12], since it can be phrased as (A’ + 1)-vertex coloring
the line graph (A’ = 2A — 2), which is (1/2 + o(1))-locally sparse.
Of course, in the vertex coloring problem we cannot count on
any kind of local sparsity, so the next challenge is to make local
density also work to our advantage. Harris, Schneider, and Su [19]
developed a remarkable new graph decomposition that can be com-
puted in O(1) rounds of communication. The decomposition takes
a parameter ¢, and partitions the vertices into an “e-sparse” set,
and several vertex-disjoint “e-dense” components, each with weak
diameter 2. The sparse set can be colored in O(log e~ + loglog n +
Det,(poly log n)) time* using [12] and [5]. Harris et al. [19] proved
that by coordinating the coloring decisions within each dense
component, it takes only O(log; ;¢ A +loglogn + Det4(poly log n))
time to color the dense sets, i.e., the bound improves as € — 0.
The time for the overall algorithm is minimized by choosing € =

exp(—O(+/log A)).

1.1 New Results and Technical Overview

In this paper we give a fast randomized algorithm for (A + 1)-
vertex coloring. It is based on a hierarchical version of the Harris-
Schneider-Su clustering with roughly loglog A levels determined
by an increasing sequence of sparsity thresholds (e, . . ., €¢), with
€; = y/ei_1. Following [19], we begin with a single iteration of a
procedure OneShotColoring, in which a constant fraction of the
vertices are colored. The guarantee of this procedure is that any
vertex v at the ith level (which is €;-dense but €;_1-sparse), has
Q(el.z_lA) pairs of vertices in its neighborhood N(v) assigned the
same color, thereby creating that many excess colors in the palette
of v.

At this point, the most natural way to proceed is to apply a
Harris-Schneider-Su style coloring procedure to each level, one by
one, with the hope that each will take roughly constant time. The
reason is that 0(1031/ei 1/poly(ei-1)) = O(1), so in constant time
we should be able to create a situation where any uncolored vertices
have O(poly(e;—1)A) uncolored neighbors but Q(el.z_lA) excess col-
ors in their palette. With such a large gap, a Schneider-Wattenhofer
style coloring algorithm should complete in O(1) additional steps.
This approach does not seem to work. Moreover, doing the layers
one by one takes Q(loglog A) time.

In order to color ¢;-dense components efficiently we need to
maintain relatively large lower bounds on the available palette and
relatively small upper bounds on the number of external neighbors
(outside the ¢;-dense component). Thus, it is important that when
we first consider a vertex, we have not already colored too many
of its neighbors. Our algorithm partitions the vertices at level i
into large and small blocks, depending on how many vertices of

3A graph is (1 — €)-locally sparse if, for every v, the subgraph induced by N(v) has
at most (1 — e)(g) edges.

Tt is (1 — €’)-locally sparse according to Elkin et al’s definition [12], for some €’
depending on €.
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Table 1: Development of lower and upper bounds for distributed (A+1)-list coloring in the LOCAL model. The terms Det(n’) and
Det,(n’) are the deterministic complexities of (A + 1)-list coloring and (deg +1)-list coloring on n’-vertex graphs. All algorithms
listed, except for [19] and ours, also solve the (deg +1)-list coloring problem.

Randomized Deterministic
O(log* n + Dety(poly log n)) new | O(VAlog?> A + log* n) [15]
O(\/loﬁ + loglog n + Det,(poly log n)) [19] | O(A3/4 log A + log™ n) [3]
O(log A + Dety(poly log n)) [5] | O(A +log™ n) [4]
Upper | O(log A + +flog n) [29] | O(Alog A +log* n) [23]
Bounds | O(Aloglogn) [23] | O(Alogn) [2]
O(logn) [1,21,25] | O(A? + log* n) [17, 24]
O(A9D) 4 1og* n) [18]
20(yflogn) [27]
20(\/log nloglog n) [2]
Lower | Q(log™ n) [26]
Bounds | Q(Det(ylogn)) s | 200g ™ [24]

their €;-dense components stay at level i (because they are €;_1-
sparse). It also partitions the layers themselves into log*(A) strata.
We show that by coloring the small blocks in each stratum, one
stratum at a time, and then the large blocks, that we can always
guarantee a sufficiently large palette at each vertex when it is
first considered. Each of these coloring steps takes O(1) rounds
of communication but may not color all vertices. The vertices left
uncolored are put in O(1) classes, some of which induce constant
degree graphs, which are colored in O(log™ n) time, and some induce
poly log n-size components, which are colored in Det,(poly log n)
time.

1.2 The LOCAL Model

The undirected input graph G = (V, E) and communications net-
work are identical. Each v € V hosts a processor that initially
knows deg(v), a unique O(log n)-bit ID(v), and global graph param-
eters n = |V| and A = max ey deg(v). In the (A + 1)-list coloring
problem each vertex v also has a set ¥(v) of allowable colors, with
[¥(v)] = A + 1. As vertices progressively commit to their final
color, we also use ¥(v) to denote v’s available palette, excluding
colors taken by its neighbors in N(v). Each processor is allowed
unbounded computation and has access to a stream of private un-
biased random bits. Time is partitioned into synchronized rounds
of communication, in which each processor sends one unbounded
message to each neighbor. At the end of the algorithm, each v
declares its output label, which in our case is a color from ¥(v)
that is distinct from colors declared by all neighbors in N(v). Refer
to [24, 28] for more on the LOCAL model and variants.

1.3 Organization

In Section 2 we define a hierarchical decomposition based on [19]
and a certain partition of the vertices into log log A layers and log* A
strata. Section 3 gives a high-level description of the algorithm,
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which uses a variety of coloring routines whose guarantees are
summarized in Lemmas 3.2-3.7. Lemma 3.2 (cf. [5, 19]) shows that a
procedure OneShotColoring creates many excess colors; it is proved
in Section 4. Lemma 3.7 (cf. [12, 29]) analyzes a procedure Color-
Bidding, which is a generalization of the Schneider-Wattenhofer
coloring routing; it is proved in Section 5. Lemmas 3.3-3.6 analyze
two versions of an algorithm DenseColoringStep, which is a gener-
alization of the Harris-Schneider-Su routine [19]; they are proved
in Section 6. Appendix A reviews some standard concentration
inequalities.

2 HIERARCHICAL DECOMPOSITION

In this section, we extend the work of Harris, Schneider, and Su [19]
to define a hierarchical decomposition of the vertices based on local
sparsity. Let G = (V, E) be the input graph, A be the maximum
degree, and € € (0,1) be a parameter. An edge e = {u,v} is an
e-friend edge if [N(u) N N(v)| > (1 — €)A. We call u an e-friend of v
if {u, v} is an e-friend edge. A vertex v is e-dense if v has at least
(1 — €)A e-friends, otherwise it is e-sparse.

We write V¢ (and Ved) to be the set of e-sparse (and e-dense)
vertices. Let v be a vertex in a set S C V and V/ C V. Define
ds,y(v) = |(N(v) N V') \ S| to be the external degree of v with
respect to S and V', and ag(v) = |S \ (N(v) U {v})] to be the anti-
degree of v with respect to S. A connected component C of the
subgraph induced by the e-dense vertices and the e-friend edges is
called an e-almost clique. The following lemma summarizes some
properties of e-almost cliques from [19].

LEMMA 2.1 ([19]). Fix any e < 1/5. The following conditions are
met for each e-almost clique C, and each vertexv € C. (i) dC vd (v) <
e, (ii) ac(v) < 3eA, (iii) |C| < (1 + 3€)A, and (iv) distg(u, U) <2
foreachu,v € C, ie., C has weak diameter 2.



STOC’18, June 25-29, 2018, Los Angeles, CA, USA

2.1 A Hierarchy of Almost Cliques

Throughout this section, we fix some increasing sequence of spar-
sity parameters (€1, . . . , €¢) and a subset of vertices V* C V, whose
meaning will be explained shortly. The sequence (1, . . ., €¢) always
adheres to Definition 2.2.

Definition 2.2. A sequence (€1, . .., €¢) is a valid sparsity sequence

if the following conditions are met: (i) €; = \/e;j—1 = e{(H), and (ii)

el > K for some large enough constant K.
¢

Layers. Define V1 = V* n Vedl, andV; = V* N (Vedi \ Vg_l), for
i > 1. Define Vsp = V* NV, = V*\ (V1 U---UVp). It is clear that
(V1,...,Ve, Vsp) is a partition of V*. We call V; the layer-i vertices,
and call Vs, the sparse vertices. In other words, V; is the subset of
V* that are €;-dense but ¢;_1-sparse. Remember that the definition
of sparsity is with respect to the entire graph G = (V, E) not the
subgraph induced by V*.

Strata. Define & = €1, and & = 1/log(1/&;_;) for k > 1. By
definition, the 1st stratum is W V1. The kth stratum W
Ui:e;e(é11,51 Vi spans those layers whose sparsity parameter lies
in (ék_1, &k ] Define s < log*(1/e;) to be the index of the last
stratum Ws.

Blocks. The layer-i vertices V; are partitioned into blocks as
follows. Let {C1,Cy, ...} be the set of €;-almost cliques, and let
Bj = CjNV;. Then (By, B, . . .) is a partition of V;, and we call each
Bj a layer-i block. If layer i is in stratum k, then B; is also called a
stratum-k block.

A layer-i block B is a descendant of a layer-i’ block B’, i < i’, if
B and B’ are both subsets of the same ¢;7-almost clique. Therefore,
the set of all blocks in all layers naturally forms a rooted tree 7.
(The root represents Vsp; every other node represents a block in
some layer.)

Definition 2.3. A stratum-k block B is a large block if |B| >

—AB ___ and there is no other stratum-k’ block B’ (k’ > k) such
log*(1/&k) =

that B’ is ancestral to Bin 7 and |B’| >

a small block.

m. Otherwise B is

Notice that the threshold in the above definition de-

A
log?(1/&)
pends on the stratum in which the block B resides. By definition,
for any two blocks B and B’ in different layers, if B is a descendant
of B/, then B and B’ cannot both be large.

Define ViS, ViL, Wks, and Wll‘ to be, respectively, the sets of all
vertices in layer-i small blocks, layer-i large blocks, stratum-k small
blocks, and stratum-k large blocks. Notice that (Vl.s, ViL) is a parti-

tion of V; and (W3, W]i‘) is a partition of Wj..

Super-blocks. Suppose stratum k spans layers i’,i’ + 1, ..., 1. Let
{C1,Cs, ...} be the set of €;-almost cliques, and let R; = C; N Wj.
Then (Ry, Ry, . . .) is a partition of Wy, and we call each R; a stratum-
k super-block.

Overview of Our Algorithms. The decomposition and 7~ are triv-
ially computed in O(1) rounds of communication. Let us briefly ex-
plain how our algorithm uses this hierarchical decomposition. The
first step is to execute an O(1)-round coloring procedure (OneShot-
Coloring) which colors a small constant fraction of the vertices
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in G. Let V* be the remaining uncolored vertices. The set V* is
partitioned into subsets

(WP, W WL WE, Vip)

based on the hierarchical decomposition with respect to a particu-
lar sparsity sequence (e1,. .., €¢). We color the vertices of V* \
Vsp in s + 2 = O(log"(1/€1)) stages according to the ordering
(WSS,...,Wls,W', WIL), where W’ is defined as WZL U---uU WSL.
At the end of this process a small portion of vertices U € V* \ Vg,
may remain uncolored. However, they all have sufficiently large
palettes such that U U Vg, can be colored efficiently in O(log* n)
time.

The purpose of processing the small blocks before the large
blocks is to ensure that the vertices in small blocks still have an ad-
equate number of colors in their palettes when they are considered.
Lemma 2.4 specifies exactly what an adequate number of colors is.
That is, regardless of how (WSS, Wss_l, e Wks+1) are colored, each

vE WkS still has at least A/2log?(1/£;) excess colors in its palette,
beyond those needed to color Wks.

LEMMA 2.4. Suppose that [N(v) N V*| > A/3. For each k € [1,5]
and eachv € WkS, we have [N(v) N (WlS U---u Wks_1 U WlL U---u
WE U Vap)l = A/210g(1/&).

Before proving Lemma 2.4 we first establishing a useful property
of the block hierarchy 7.

LEMMA 2.5. Let C be an €;-almost clique and Cy, . . .,Cy be the

ei—1-almost cliques contained in C. Either | = 1 or Z§=1 ICjl <
2(3€; + €i—1)A. In particular, if B is the layer-i block contained in
C, either B has one child in T or the number of vertices in all strict

descendants of B is at most 2(3€; + €j—1)A < 7e€;A.

PRrROOF. Suppose, for the purpose of obtaining a contradiction,
that [ > 2 and 25‘:1 [Cj| > 2(3€; + €i—1)A. W.lo.g. suppose Cy is
smallest, so ijz |Cjl > (3€i +€;-1)A. Any v € Cy is €;—1-dense and
therefore has at least (1 — €;_1)A neighbors that are €;_1-friends.
By definition any e€;—i-friend is also an ¢; friend, so this set is
contained in C. By Lemma 2.1, |C| < (1 + 3¢;)A. Thus, by the
pigeonhole principle, some €;_1-friend of v must be in CoU- - -UCy,
contradicting the fact that C; is a connected component in the
subgraph induced by €;_1-dense vertices and €;_1-friend edges. O

PrOOF OF LEMMA 2.4. Recall that v € WkS lies in stratum k and
that by assumption, [N(v) N V*| > A/3. Suppose stratum k spans
layers [ip, i1] and let v € B where B is a layer-i small block, i €
[io, i1]. We put the neighbors of v into one of several groups.

(1) Neighbors in Wy U -+ U Wj_q U Vgp.

(2) The remaining neighbors in blocks that are neither in ances-

tors nor descendants of B in 7.
(3) Neighbors in all ancestors of B and those stratum-k descen-
dants of B.

Define
A1 = IN@) A (WL U U We_q U Vi)l

If A; > A/2log?(1/&) then the conclusion of the lemma already
holds, so assume otherwise. Let Ay be the number of neighbors
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in blocks that are neither in ancestors nor descendants of v. By
Lemma 2.1, Ay < Zle €jA < 2epA.
We now turn to A3. Let C;; be the €;, -almost clique containing
B. It follows from Lemma 2.5 that there is some index i* € [ig, i1]
such that
@ Ciy 2Cij—=1 2+ 2 Cy».
(i) Each Cj, j € [i*, i1 — 1], is an €j-almost clique and is the only
such almost clique contained in Cj41.
(iii) Either i* = iy or C;» contains at least two €;«_;-almost
cliques.

If i* # io then, by Lemma 2.5 again, the number of vertices in C;«
that are in €;«_;-almost cliques is at most 7¢;« A. Define B; to be
the block contained in C;» and let 8 be the set of all blocks that
are ancestors of B;x in 7.

We first entertain the possibility that all blocks in B are small.
Note that since B spans many strata, the definition of small is dif-
ferent for each stratum. It follows from Definition 2.2 that there
are fewer than log log(1/&y_1) layers in stratum k’. Thus, the max-
imum number of neighbors that v has in 8 is

s
2.
k'=k
s

A
log?(1/ &)
A
) kzk log(1/¢)
< 2A/log(1/&s) 2A/loglog(1/er)

In this case, the the number of neighbors contributed by group
3 is at most A3 = 7¢;+ A + 2A/loglog(1/e¢). Thus, the number of
v’s neighbors in V* is at most

A1+ Ar + Az
< AJlog?(1/&,) + 2epA + Tejx A + 2A/log log(1/ep)
< A/3,

-loglog(1/&k-1)

<

contradicting the assumption of the lemma. (Recall that ¢, < 1/K
for some sufficiently large constant K.) Thus, there must exist some
stratum-k’ block B’ € B containing at least A/log?(1/&) neigh-
bors of v. According to Definition 2.3, this implies that either B” or
a strict ancestor of B’ is large. Let B’ be the (unique) large ancestor
of B, and suppose it is in layer i’’ and stratum k”’. According to
Lemma 2.1, the number of neighbors of v in B is at least

|B”| —3eir A >

~ log?(1/&kr)
A

Z S —
log?(1/&k)
A

2 —_—
2log?(1/&)
A

= 2log®(1/&)
A/2log?(1/&).

3 MAIN ALGORITHM

Our algorithm follows the graph shattering framework [5]. In each
step of the algorithm, we specify an invariant that all vertices must

—3emA

=38 A

wt >

Thus N(v) N o 2

449

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

satisfy in order to continue to participate. Those bad vertices that
violate the invariant are removed from consideration; they form
connected components of size polylogn w.h.p., so we can color
them later in Det,(poly log n) time. More precisely, the emergence
of the small components is due to the following lemma [5, 13].

LEMMA 3.1 (THE SHATTERING LEMMA). Consider a randomized
procedure that generates a subset of vertices B C V. Suppose that for
eachv € V, we have Pr[v € B] < A_(ZC“), and this holds even if the
random bits not in N¢(v) are determined adversarially. Then, with
probability at least 1 — n=¢, each connected component in the graph
induced by B has size at most O(c’ A% log n).

Since our algorithm consists of t = O(log" A) steps, whether a
vertex v is bad actually depends on random bits in its distance-t
neighborhood. Nonetheless, we are still able to apply Lemma 3.1.
The reason is that we are able to show that each vertex v becomes
bad in one particular step with probability at most A™ (for any
specified constant x), and this is true regardless of the outcomes
in all previous steps and the choices of random bits outside of a
constant-radius of v.

The sparsity sequence for our algorithm is defined by €; =
A_l/lo, €; = y/éi_1 for i > 1, and ¢ is the largest index such that
el[ > K for some sufficiently large K.

3.1 Initial Coloring Step

At any point in time, the number of excess colors at v is the size of
v’s remaining palette minus the number of v’s uncolored neighbors.
This quantity is obviously non-decreasing over time. We first show
that in O(1) time, we can color a portion of the vertices such that
each remaining uncolored vertex has a certain number of excess
colors, which depends on its local sparsity. Refer to Section 4 for
proof.

LEMMA 3.2. There is an O(1)-round algorithm that colors a subset
of vertices such that each e-sparse vertex v with deg(v) > 0.9A
satisfies the following conditions.

o With probability 1 — exp(—Q(A)), the number of uncolored
neighbors of v is at least A /2.

e With probability 1 — exp(—=Q(e%A)), v has at least Q(e?A)
excess colors.

We execute the algorithm of Lemma 3.2. In order to proceed
a vertex must satisfy both of the following conditions: (i) if v is
€¢-dense, the number of uncolored neighbors of v is at least A/2;
(ii) if v is €;-dense but €;_1-sparse, v must have Q(eiz_lA) excess
colors. If either fails to hold, v is put in the set Vj,q.

Define V* to be the set of uncolored vertices that are not in Vj 4.
We compute the partition V* = WSU- - -UWSUW}U- - - UWL U Vg,
Notice that we invoke the conditions of Lemma 3.2 only with ¢ >
€1 = A™Y/10 Thus, if A = Q(log? n), then with high probability (i.e.,
1 —1/poly(n)), Vpad = 0. Otherwise, each component of V;,,q must,
by Lemma 3.1, have size O(poly(A) - log n) = O(poly log n), w.h.p.
We do not invoke a deterministic algorithm to color Vj,q just yet. In
subsequent steps of the algorithm, we continue to add “bad vertices”
to Vpad- These vertices are colored at the end of the algorithm.
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3.2 Coloring Vertices by Stratum

In this section, we show how we can color most of the vertices in
Wi, ..., Ws, leaving a small portion of uncolored vertices U, each
having a large number of excess colors. We do the coloring in s + 2
stages in this order (i) s — 1 stages of small blocks: WSS, cee WZS, (ii)
first layer small blocks wS, (iii) large blocks W’ = WZL U---u W}[[’

and (iv) first layer large blocks WlL.

Notice that due to Lemma 2.4, at the time we begin to process
Wks, each vertex v € WkS must have at least A/2log?(1/&;) excess
colors w.r.t. Wks, That is, its palette size minus the number of its
neighbors in WkS is large. If the condition |[N(v) N V*| > A/3 in
Lemma 2.4 is not met, then it means that at least (A/2 — A/3)
neighbors of v were included in V} 4 after the initial coloring step,
and so v automatically has at least A/6 > A/2log?(1/&;) excess
colors w.r.t. Wks, Refer to Section 6 for proofs of Lemmas 3.3-3.6.

LEMMA 3.3 (SMALL BLOCKS; STRATA OTHER THAN 1). Suppose that
each vertexv € WkS has at least A/ 2 logz(l/fk) excess colors w.r.t. WkS
There is an O(1)-time algorithm that colors a subset ofW]f' meeting
the following condition. For eachv € V* and each layer i in stratum
k, with probability at least 1 — exp(—Q(poly(A))), the number of
uncolored layer-i neighbors of v in V;> is at most el.sA‘ Vertices that
violate this property join the set Vj 4.

LEMMA 3.4 (SMALL BLOCKS; STRATUM 1). Suppose that each vertex
v € WlS has at least AJ21og?(1/£]) excess colors w.r.t. Wls. There
is an O(1)-time algorithm that colors a subset of WlS meeting the
following conditions, for any specified constant c. If A = O(log* n),
then each v € WlS is colored with probability at least 1 — A™¢, and
all uncolored vertices in WlS joins Viag. If A = Q(log? n), then, with
probability at at least 1 —n~€, the remaining uncolored vertices oleS
are partitioned into 2 sets X and R such that (i) the subgraph induced
by R has maximum degree O(1), (ii) each connected component in
the graph induced by X has size at most poly log n.

LEMMA 3.5 (LARGE BLOCKS; STRATA OTHER THAN 1). There is an
O(1)-time algorithm that colors a subset of W’ meeting the following
condition. For eachv € V* and each layeri € [2, (], with probabil-
ity at least 1 — exp(—Q(poly(A))), the number of uncolored layer-i
neighbors of v in ViL is at most eisA. Vertices that violate this property
Jjoin the set V4.

LEMMA 3.6 (LARGE BLOCKS; STRATUM 1). Let o be a sufficiently
large constant, and let ¢ be any constant. There is an O(1)-time algo-
rithm that colors a subset oleL and puts the remaining uncolored
vertices in one of X1, X2, R or V.. It is required that the subgraph
induced by R has constant degree, and every component in the sub-
graph induced by X1 and the subgraph induced by X, has size at
most polylogn. If A < log® n, then X1 = X2 = 0, and each v € WlL
is added to Vi,q with probability at most A™C. If A > log® n, with
probability 1 — 1/n™°, no vertex in WlL is added to Vp,q.

We apply Lemmas 3.3-3.6 to color the vertices in V* \ Vsp. The
subgraph induced by R (Lemma 3.4 and Lemma 3.6) has constant
degree. We immediately color these vertices using any O(log* n)-
time algorithm. All vertices in X (Lemma 3.4), X1, or X3 (Lemma 3.6)
are colored in time Det 4(poly log n) using a deterministic algorithm.
The vertices in X, X1, X2 do not join V4.
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Any vertex in V* that violates at least one condition specified
in the lemmas is added to the set V},,4. All remaining uncolored
vertices join the set U. In other words, U is the set of all vertices
in V¥ \ (Vsp UX UX; UX3 U V) that remain uncolored after
applying Lemmas 3.3-3.6.

3.3 Coloring the Remaining Vertices

At this point all uncolored vertices are in U U Vsp U Vp,q. We show
that U U Vyp can be colored efficiently in O(log™ A) time.

We first consider the set U. Let G’ be the directed acyclic graph
induced by U, where all edges are oriented from the sparser to the
denser endpoint. In particular, an edge e = {u,u’} is oriented as
(u,u”) if u is at layer i, u’ at layer i’, and i > i’, or if u and u’ are
at the same layer i and ID(u) > ID(u’). We write Noyt(v) to denote
the set of out-neighbors of v.

For each layer-i vertex v in G’, and each layer-j, the number
of layer-j neighbors of v in G’ is at most O(e;A), due to Lem-

5A —
=168 =
O(e?A) = O(eizj A). The number of excess colors at v is at least
Q(eiz_lA). Thus, there is an Q(1/+/€;—1)-factor gap between the
palette size of v and the out-degree of v.
We write ¥(v) to denote the set of available colors of v. There

exists a constant 7 > 0 such that, for each i € [2, ] and each layer-i

mas 3.3 and 3.5. The out-degree of v is therefore at most Zj.

vertex v in G’, we have |¥(v)| — outdeg(v) > ryel.zilA def po. There
is a constant C > 0 such that for each i € [2,{] and each layer-i
vertex v € U satisfies

i 62;51A i
Z 1/pu < Zo ! A) = ZO(e}’j) < 1/C.
NG (v) =1\ j=1

Lemma 3.7 is applied to color nearly all vertices in U in O(log™ A)
time, with any remaining uncolored vertices added to V},4. Notice
that in our setting, the parameters of Lemma 3.7 are p* > 17612 A=
Q(A%19) and d* < A. Thus, the probability that a vertex is bad is

exp(—Q(y/p*))+d* exp(—Q(p*)) = exp(~Q(A?/%)) (by Lemma 3.7).
Refer to Section 5 for proof of Lemma 3.7.

LEMMA 3.7. Consider a directed acyclic graph, where vertex v is
associated with a parameter p, < |¥(v)| — outdeg(v). We write
p* = mingcy py. Suppose that there is a constant C > 0 such that
all vertices v satisfy Yy eN,u(v) 1/Pu < 1/C. Let d* be the maxi-
mum out-degree of the graph. There is an O(log*(p*))-time algo-
rithm achieving the following. Each vertex v remains uncolored with
probability at most exp(—Q(y/p*)) + d* exp(-Q(p*)). This is true
even if the random bits generated outside a constant radius around v
are determined adversarially.

The set V;p can be colored in a similar way using the above
lemma. We let G”” be any acyclic orientation of the graph induced
by Vsp (e.g., orienting each edge {u, v} to the vertex v such that
ID(v) > ID(u)). The number of available colors of each v € Vg,
minus its out-degree is at least Q(e;A), which is at least yA, for
some constant y > 0 (according to the way we select the sparsity
sequence). We define p, = yA < |¥(v)| — outdeg(v). We have
2ueNu(v)(1/pu) < outdeg(v)/(yA) < 1/y. Thus, we can apply
Lemma 3.7 with C = y. Notice that both p* and d* are ©(A), and
so the probability that a vertex is bad is exp(—Q(\/K)).
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We add all remaining uncolored vertices in Vsp U U to V},54. We
are now ready to color Vj,q. If A > log® n, then Vj,,q = 0, whp.,
in view of the probabilities stated in Lemmas 3.3-3.7. Otherwise,
A < log” n, and by Lemma 3.1, each connected component of V4
has size at most poly(A) - polylogn = polylog n. Thus, it takes
Det,(poly log n) to color all bad vertices V,,q-

3.4 Time Complexity

The time for the initial coloring step is O(1). The time for processing
each of W3, . ., WZS, Wls, w’, WIL is also O(1), or O(s) = O(log* A)
in total. The time to color the vertices of U U Vs, not marked bad is
O(log™ A). In addition, we invoke O(1) times
(i) an O(log™ n)-time algorithm for coloring a bounded degree
graph (i.e., the set R in Lemma 3.4 and Lemma 3.6), and
(ii) a Det4(poly log n)-time algorithm for coloring compo-
nents of size poly log(n) (i.e., the sets X, X;, and X in Lemma
3.4 and Lemma 3.6, and the bad vertices Vp,q)-

Thus, the total time complexity is O(log* n + Det,(poly log n)).

THEOREM 3.8. There is an algorithm that computes a (A + 1)-list
coloring, with high probability, in O(log™ n + Det,(poly log n)) time.

There is a universal constant ¢ such that the size of each con-
nected component of Vj,,4, X, X1, and X3 is at most log® n, w.h.p.
If each vertex is allowed to have log® n extra colors, then we can
invoke the O(log* A)-time algorithm of Lemma 3.7 to color them
(rather than spending Det,(poly log n) time), thereby improving the
time complexity greatly. Notice that if every vertex is e-sparse, with
€2 A sufficiently large, then the algorithm of Lemma 3.2 gives every
vertex Q(e?A) excess colors, w.h.p. Thus, we have the following
theorems.

THEOREM 3.9. There is a universal constant ¢ such that there is
a randomized algorithm that, w.h.p., computes a (A + log® n)-list
coloring in O(log* n) time.

THEOREM 3.10. There is a universal constant ¢ such that the follow-
ing holds. Suppose each vertex is e-sparse, and €A = log® n. There is
a randomized algorithm that, w.h.p., computes a (A + 1)-list coloring
in O(log™ n) time.

Remark. Notice that Theorem 3.10 insists on every vertex being
e-sparse, as defined in Section 2. It is straightforward to show
connections between this definition of sparsity and others standard
measures from the literature. For example, such a graph is (1 — €’)-
locally sparse (according to the definition of [12]), where ¢’ = Q(¢?).
Similarly, any (1 — €’)-locally sparse graph is Q(e’)-sparse. Graphs
of degeneracy d < (1—€’)A or arboricity A < (1/2—¢€”)A are trivially
(1 = Q(€”))-locally sparse [5].

4 ANALYSIS OF ONESHOTCOLORING —
PROOF OF LEMMA 3.2

Fix a constant parameter p € (0,1/4). The procedure OneShot-
Coloring is a simple O(1)-round coloring procedure that breaks
ties by ID. Define N*(v) = {u € N(v) | ID(u) < ID(v)} to be the
neighbors of v with higher priority than v. We assume that each
vertex v is associated with a palette ¥(v) of size A + 1, and this is
used implicitly in the proofs of the lemmas in this section.

The procedure OneShotColoring is as follows.
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(1) Each uncolored vertex v decides to participate independently
with probability p.

(2) Each participating vertex v selects a color c¢(v) from its
palette ¥(v) uniformly at random.

(3) A participating vertex v successfully colors itself if ¢(v) is
not chosen by any vertex in N*(v).

After OneShotColoring, each vertex v removes all colors from
¥(v) that are taken by some neighbor u € N(v). The number
of excess colors at v is the size of v’s remaining palette minus
the number of uncolored neighbors of v. We prove one part of
Lemma 3.2 by showing that after a call to OneShotColoring, the
number of excess colors at any e-sparse v is Q(e?A), with probabil-
ity 1 — exp(—Q(e?A)). Similar but (slightly) weaker lemmas were
proved in [12, 19]. The corresponding lemma from [12] does not ap-
ply to list coloring, and the corresponding lemma from [19] obtains
a high probability bound only if €*A = Q(log n). Optimizing this
requirement is of importance, since this is the threshold about how
locally sparse a vertex needs to be in order to obtain excess colors
from OneShotColoring. The remainder of this section constitutes a
proof of Lemma 3.2.

Consider an execution of OneShotColoring with any constant
p € (0,1/4). Recall that we assume 1/e > K, for some large enough
constant K. Let v be an e-sparse vertex. Define the following two
numbers.

fi(v) : the number of vertices u € N(v) that successfully
color themselves by some ¢ ¢ ¥(v).

f2(v) : the number of colors ¢ € ¥(v) such that at least two
vertices in N(v) successfully color themselves c.

Itis clear that fi(v)+ f2(v) is a lower bound on the number of excess
colors at v after OneShotColoring. Our first goal is to show that
fi(©) + f2(v) = Q(e?A) with probability at least 1 — exp(—Q(e2A)).
We divide the analysis into two cases (Lemma 4.3 and Lemma 4.4),
depending on whether fi(v) or f2(v) is likely to be the dominant
term. For any v, the preconditions of either Lemma 4.3 or Lemma 4.4
are satisfied. Our second goal is to show that for each vertex v of
degree at least 0.9A, with high probability, at least (1-1.1p)|N(v)| >
A/2 neighbors of v remain uncolored after after OneShotColoring.
This is done in Lemma 4.5.

Lemmas 4.1 and 4.2 establish some generally useful facts of
OneShotColoring, which are used in the proofs of Lemma 4.3 and
4.4.

LEMMA 4.1. Let Q be any set of colors, and let S be any set of
vertices with size at most 2A. The number of colors in Q that are
selected by some vertices in S is less than |Q|/2 with probability at

least 1 — exp(—Q(|Q])).

Proor. Let E. denote the event that color c is selected by at least

one vertex in S. Then Pr[E.] < % <2p <1/2,sincep < 1/4 and
|S| < 2A. Moreover, the collection of events {E;} are negatively
correlated [11].

Let X denote the number of colors in Q that are selected by some
vertices in S. By linearity of expectation, p = E[X] < 2p - |Q|. We
apply a Chernoff bound with § = % Recall that 0 < p < 1/4,
and so § > 0. For the case of § € [0, 1], we have:

Pr{X = (1+8)u = |Q1/2] < exp(=6°p/3) = exp(=Q(1QD)).
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Similarly, if § > 1, we still have:
Pr[X > (1+8) = 101/2] < exp(~3u/3) = exp(-Q(IQ])).

LEMMA 4.2. Fix a sufficiently small e > 0. Consider a set of vertices
S ={u1,...,ux} with cardinality eA/2. Let Q be a set of colors such
that each u; € S satisfies |¥(u;) N Q| > (1 — €/2)(A + 1). Moreover,
eachu; € S is associated with a vertex set R; such that (i) SNR; = 0,
and (i) |R;| < 2A. Then, with probability at least 1 — exp(—Q(e?A)),
there are at least pe/\/8 vertices u; € S such that the color c selected
by u; satisfies (i) c € Q, and (ii) c is not selected by any vertex in
R US\ {u;}.

O

ProorF. Define Q; = ¥(u;) N Q. We call a vertex u; happy if u;
selects some color ¢ € Q and c is not selected by any vertex in
R; U S\ {u;}. Define the following events.

E?OOd: u; selects a color ¢ € Q; such that c is not selected by

any vertices in R;.

Ebad the number of colors in Q; that are selected by some

Vertlces in R; is at least |Q;]/2.

E;epeat: the color selected by u; is also selected by some
vertices in {uy,...,uj—1}.

Let X; be the indicator random variable that either

ElgOOd or E?ad

occurs, and let X = Z;‘:l Xj.Let Y; be the indicator random variable
that E;epeat occurs, and let Y = 25?:1 Y. Assuming that Ef.’“d does
not occur for each i € [1,k], it follows that X — 2Y is a lower
bound on the number of happy vertices. Notice that by Lemma 4.1,
Pr[EE.’ad] = exp(—Q(|Qil)) = exp(—Q(A)). Thus, assuming that no
Eli’ad occurs merely distorts our probability estimates by a negligible
exp(—Q(A)). We prove concentration bounds on X and Y, which
together imply the lemma.

We show that X > peA/7 with probability 1 — exp(—Q(eA)). It
is clear that

polQil/2  pi-€/2) p
A+1 2 3

Pr[X; = 1] > Pr{ES®Y | EPad] >

Moreover, since Pr[X; = 1 | Ell?ad] = 1, the above inequality also
holds, when conditioned on any colors selected by vertices in R;.
Thus, Pr[X < t] is upper bounded by Pr[Binomial(n’,p’) < ¢]
withn’ = |S| = eA/2 and p’ = %’ We set t = peAA/7. Notice that
n'p’ = peA/6 > t. Thus, according to a tail bound of binomial

distribution, Pr[X < t] < exp((2n—p)) = exp(—Q(eA)).

We show that Y < pe?A/2 with probability 1 — exp(—Q(e?A)).
It is clear that Pr[Y; = 1] < p(AlHl) < 2 even if we condition
on arbitrary colors selected by vertices in {uy, ..., u;j—1}. We have
u = E[Y] < % -1S] = Pe A . Thus, by a Chernoff bound (with
§ = 1), Pr[Y > pe?A/2] < Pr[Y > (1 + )] < exp(~82u/3) =
exp(—Q(e?A)).

To summarize, with probability at least 1 — exp(—Q(e?A)), we
have X — 2Y > peA/7 — 2pe? A2 > peA/8. O

Lemma 4.3 considers the case when a large fraction of ©’s neigh-
bors are likely to color themselves with colors outside the palette of
v, and therefore be counted by fj(v). This lemma holds regardless
of whether v is e-sparse or not.
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LEmMMA 4.3. Suppose that there is a subset S C N(v) such that
|S| = eA/5, and for eachu € S, [¥(u) \ ¥(v)| = (A + 1)/5. Then

filv) = 1020 with probability at least 1 — exp(-Q(e2A)).

Proor. Let S = (uy, ..., u) be sorted in increasing order by ID.
Define R; = N*(u;), and Q; = ¥(u;)\ ¥(v). Notice that |Q;]| > eA/5.
Define the following events.

E%OOd: u; selects a color ¢ € Q; and c is not selected by any

vertex in R;.
Ebad the number of colors in Q; that are selected by vertices
in R; is more than |Q;|/2.

Let X; be the indicator random variable that either EgOOd or

Eli’ad occurs, and let X = Z{le X;. Given that the events Ell.’a‘11 for

all i € [1,k] do not occur, we have X < fi(v), since if E;?”O(’d o
curs, then u; successfully colors itself by some color ¢ ¢ ¥(v). By
Lemma 4.1, Pr[E?ad] = exp(—Q(|Qi])) = exp(—Q(eA)). Thus, up to
this negligible error, we can assume that Ell.’ad does not occur, for
eachi € [1,k].

We show that X > €2A/100 with probability 1 - exp(=Q(e%A)).

It is clear that Pr[X; = 1] > Pr[EgOOd | Ebad] > PIAQiil/Z > [1);’
this inequality holds even when conditioning on any colors selected
by vertices in R; and Uy <j<; Rj U {u;} (since S = (ug, ..., ug) is
sorted in increasing order by ID, u; ¢ Rj = N*(u;) forany 1 < j < i).

Thus, Pr[X > t] is upper bounded by Pr[Binomial(n’, p’) < ¢] with
=|S| = eA/5and p’ = . We set t = nTp, = pfOOA Thus,

according to a lower tail of the binomial distribution, Pr[X < t] <

exp(“5E0) = exp(-Q(e2A)).

and

[m]

Lemma 4.4 considers the case that many pairs of neighbors of v
are likely to color themselves the same color, and contribute to f2(v).
Note that any e-sparse vertex that does not satisfy the preconditions
of Lemma 4.3 does satisfy the preconditions of Lemma 4.4.

LEMMA 4.4. Let v be an e-sparse vertex. Suppose that there is a
subset S C N(v) such that |S| > (1 — €/5)A, and for eachu € S,
[¥(u) N \r/(u)| > (1 -¢€/5)(A + 1). Then fo(v) = p>€>A/2000 with
probability 1 — exp(-Q(e?A)).

Proor. Let §’ be any subset of S such that (i) [S/] = jif)OA (ii)
each ul € S’ is associated with a set S; € S\ (S’ U N(u;)) of
size €. The existence of S’ ,S1,. .. ,S|5/‘ is guaranteed by the e-
sparseness of v. In particular, S must contain at least eA — eA/5 >
peA/100 = |S’| non-friends of v, and for each such non-friend
u; €5, 1S\ (8" UN(u;))| = A(1 —€/5—pe/100 — (1 —€)) > eA/2.

Order the set S = {uy,...,u;} in increasing order by vertex
ID. Define R; = {uy,...,uj—1} U N*(u;), and Q; = ¥(u;) N ¥(v).
Define ngmd as the subset of colors ¢ € Q; such that c is selected
by some vertex w € S;, but ¢ is not selected by any vertex in
(N*(w) U N*(u;)) \ S’. Define the following events.

Egoocl u; selects a color ¢ € QgOOd

Ebad

the number of colors in Qg is less than peA/8.

Efepeat the color selected by u; is also selected by some

vertices in {uy,...,uj—1}.
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Let X; be the indicator random variable that either Elgmd or
El.’alol occurs, and let X = Z;‘:l X;. Let Y; be the indicator random
variable that Erep cat Z;C:l
E‘?OOd occurs, and the color c selected by u; is not selected by any
vertex in S \ {u;}. Then there must exist a vertex w € S; such that
both u; and w successfully color themselves c. Notice that w and
u; are not adjacent. Thus, X — Y < f2(v), given that E?ad does not
occur, for each i € [1,k]. Notice that Pr[EE’ad] = exp(-Q(e?A))
(by Lemma 4.2 and the definition of ngmd), and thus indeed we

can assume that E}i’ad does not occur. In what follows, we prove

occurs, and let Y = Y;. Suppose that

concentration bounds on X and Y, which together imply the lemma.

We show that X >
peA/8

It is clear that Pr[X; = 1] 2 p - Y5 > P2 regardless of the
colors selected by vertices in R;. Thus, Pr[X < t] is upper bounded

by Pr[Blnomlal(n p') < =|9'| = pe_o

_ P
We set t = 1000

distribution, Pr[X < t] < exp((Zn—pt)) = exp(—Q(e?A)).

t] with n’

< n’p’. According to a tail bound of binomial

We show that Y < pe

2
It is clear that Pr[Y; 1] <p- % < <

oo regardless of the
colors selected by vertices in {u1, ..., uj—1}. We have p = E[Y] <

100 N 10 000 Thus, by a Chernoff bound (with § = 4), Pr[Y >

BB < Pr[Y > (1+ )] < exp(—8p1/3) = exp(~Q(e?A)).

To summarize, with probability at least 1 — exp(—Q(e2A)), we
have X — Y > p3€2A/1000 — p*¢2A /2000 > p3e2A/2000. m

LEMMA 4.5. The number of vertices in N(v) that remain uncolored
after OneShotColoring is at least (1 — 1.1p)|N(v)|, with probability
at least 1 — exp(—Q(|N(v)])).

ProoF. Let X be the number of vertices in N(v) participating
in OneShotColoring. It suffices to show that X < 1.1p|N(v)| with
probability 1 — exp(—Q(|N(v)|)). Since a vertex participates with
probability p, we have

Pr[X > (1+0.1)p|N(v)[] < exp(_w

= exp(-Q(IN()])

)

by Chernoff bound with § = 0.1. O

5 ANALYSIS OF COLORBIDDING — PROOF OF
LEMMA 3.7

Consider a directed acyclic graph G = (V, E), where each vertex v
has a palette ¥(v). Recall that each vertex v is associated with a
parameter p,, < |¥(v)| — outdeg(v), and we write p*
The maximum out-degree is denoted as d*. There is a number C > 0
such that all vertices v satisfy 3.y, en, . (v) 1/pu < 1/C. Intuitively,
the term 3, e N, (v) 1/Pu measures the amount of “contention” at
a vertex v (in ColorBidding, u selects each color ¢ € ¥(u) with
probability 2’% which is proportional to 1/p,,). All vertices agree
on the value of C.
The procedure ColorBidding is as follows.

1000 A with probablhty 1 — exp(-=Q(e?A)).

and p’ = pe,

W with probability 1 — exp(—Q(e?A)).

= mingey pPo.
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(1) Each color ¢ € ¥(v) is added to S, with probability 2’%

independently.

(2) If there exists a color ¢c* € S, that is not selected by any

vertex in Nout(v), v colors itself ¢*.

In Lemma 5.1 we present an analysis of ColorBidding. We show
that after an iteration of ColorBidding, the amount of “contention”
at a vertex v decreases by (roughly) an exp(C/6)-factor, with very
high probability. See [8, 12, 29] for proofs of similar claims. The
main technical difficulty of our setting is that we need to deal with
vertices with different out-degrees, and the guarantee of the number
of excess colors of a vertex depends on its out-degree (rather than
the global parameter A), and so we cannot simply use out-degree
as the measure of contention.

LEmMMA 5.1. Consider an execution of ColorBidding. Let v be any
vertex. Let d be the summation of 1/p, over all vertices u in Nout(v)
that remain uncolored after ColorBidding. Then the following holds.

Pr[ v remains uncolored | < exp(—C/6) + exp(—Q(p™)).
Pr{d > (1 + A) exp(—C/6)/C] < exp (—2/12p* exp(—C/6)/C)
+d* exp(—Q(p™)).
Proor. For each vertex u, we define the following two events.

E%OOd : u selects a color that is not selected by any vertex in
Nout(u)~

EBad : number of colors in ¥(u) that are selected by some
vertices in Noyt(u) is at least % | ¥(u).

Notice that Eﬁ""d is the event where u successfully colors itself.
We show that Pr[EBad] = exp(—Q(p*)). Fix a color ¢ € ¥(u). The
probability that c is selected by some vertex in Noyt(u) is

- 1 ()= X

w € Nour(1) W €Nout(u)
Thus, Pr[E}4] < Pr[Binomial(n’,p’) > 2] with n’ = [¥(u)| > py
and p’ = §. By a Chernoff bound, we have:
'p") = exp(-Q(p™)).

Conditioned on , u will color itself unless it fails to choose any
of |¥(u)|/3 specific colors from its palette. Thus,

C

2pwd <

1
3

Pr[E2] < exp(-Q(n

bad
E)2

Pr[E%,""d | Ebad] < (1 - < exp(%).

We are now in a position to prove the first inequality. The proba-

bility that v remains uncolored is at most Pr[Ell?ad] +Pr[Ef,0001 | EBad],
which is at most exp(%) + exp(—Q(p™*)).

Next, we prove the second inequality. Let Nout(v) = (u1, . .., ug).
Let Eli’ad and ElgOOd be short for EB?d and E%?Od. By a union bound,

k

U E?ad

i=1

Pr < outdeg(v) - exp(—=Q(p*)) < d* - exp(—Q(p*)).

Let X; = 1/py,; if either E%O(’d or E?ad occurs, and X; = 0 other-
wise. Let X = Zle X;. Notice that if E?ad does not occur, for all
€ [1,k], we have X = d.
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Notice that y def E[X] < exp(—C/6)/C, since Pr[ElgOOd | E?ad] <
exp(%). Each variable X; is within the range [a;, b;], where a; = 0
and b; = 1/py,. We have $_, (b; —aif* < ZueNyu(o) 1/(up*) <
1/(Cp*). By Hoeffding’s inequality,” we have

Pr[X > (14 A)exp(—C/6)/C] < Pr[X > (1 + A)p]

e —Z(Au)z
, 1(bl _al)z
<e ( 2(Aexp(~C/6)/C)*(p*C))

( 212p* exp(— C/6)/C)
Thus,
Pr[d > (1 + A)exp(—C/6)/C]

<exp (—2/12p* exp(—C/6)/C) +d* exp(-Q(p*)). O

Proor oF LEMMA 3.7. In what follows, we show how Lemma 5.1
can be used to derive Lemma 3.7. Our plan is to apply ColorBid-
ding for O(log*(p*)) iterations. For the ith iteration we use the
parameter C;, which is defined as follows: C; = C, and C;

min{+/p*, C’—’I,CH} Here A must be selected to be suffi-
(1+A) exp(—=)

ciently small such that (1 + 1) exp(—C;_;/6) < 1 so the sequence
increases. For example, if C > 6 initially, we can fix A = 1 through-
out.

In each iteration each vertex v use the same parameter p,,, since
the number of excess colors never decrease. The last iteration [* =
O(log*(p*)) is the minimum index I such that C; = /p*.

At the end of the Ith iteration (1 < [ < I*), we have the following
invariants H; that we expect all vertices to satisfy: If 1 < [ < [*,
for each uncolored vertex v after the Ith iteration, we require the
summation of 1/p,, over all uncolored vertices u in Nyyut(v) to be
less than 1/Cy.q; if I = I*, all vertices are colored at the end of
the Ith iteration. The purpose of the invariant H; (1 < [ < I*)is
to guarantee that the parameter C;,; is a valid parameter for the
(I + 1)th iteration.

We remove from consideration all vertices v violating Hj at
the end of the Ith iteration, and add them to the set V},4. Our
goal is to show that with probability at most exp(—Q(\/;? ) +
d* exp(—Q(p*)), a vertex v is removed, and this is true even if
the randomness outside constant distance to v is determined ad-
versarially. By definition of H«, all vertices that are not removed
must be colored.

By Lemma 5.1 the probability that a vertex v is removed at the
end of the Ith iteration, where 1 < I < I, is at most

exp(Q(p* /Cpy1)) + d* exp(-Q(p™))
< exp(—Q(p*)) + d* exp(-Q(p*))

5The variables {X, . .., Xy } are not independent, but we are still able to apply
Hoeffding’s inequality. The reason is as follows. Assume that Noyt(v) = (ug, . . ., Ug)
is sorted in reverse topological order, and so for each 1 < j < k, we have Nou(u;) N

{uj, ..., ur} = 0. Thus, conditioning on (i) E?ad and (ii) any colors selected by

vertices in Uy <j<; Nout(u;) U {u;}, the probability that E?’md occurs is still at most
-C
exp( o )-
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and the probability that a vertex v is removed at the end of the [*th
iteration is at most exp(—Cjx /6) + exp(—=Q(p™)) < exp(—Q(+/p*)).
m]

6 COLORING e-DENSE VERTICES

Consider the following setting. We are given a graph G = (V, E),
where a subset of vertices are already colored. Let S be a subset of
the uncolored vertices, and suppose S is partitioned into g disjoint
sets (clusters) Sy, .. ., Sg, each with weak diameter 2. Our goal is to
color a large fraction of the vertices in S in only constant time.

In Section 6.1 we describe a procedure DenseColoringStep (ver-
sion 1) that is efficient when each vertex has many excess colors
w.r.t. S. It is analyzed in Lemma 6.1, which is then used to prove
Lemmas 3.3 and 3.4.

For Lemmas 3.5 and 3.6, we have to deal with the case where no
excess color is available, and so we need another version of Dense-
ColoringStep. The proof of these two lemmas and the description
of DenseColoringStep (version 2) are omitted in the conference
proceeding; they can be found in the full version of the paper [7].

6.1 Version 1 of DenseColoringStep — Many
Excess Colors are Available

All vertices in S agree on a parameter Zey, which is a lower bound
on the number of excess colors w.r.t. S. That is, for each v € S, the
palette size of v minus the number of neighbors of v in S is at least
Zex.
Each vertex v € §; is associated with a parameter D,,. We pri-
oritize vertices by Dy, -value, breaking ties by ID. Define N’(v) =
{u € N(v) | Dy < Dy or Dy, = Dy, and ID(u) < ID(v)} to be the
neighbors of v with higher priority. For each v € S, we assume
that the choice of the parameter D, satisfies [N"(v) N (S\S;)| < Dy.
Define 8, = Dy /Zex.
The procedure DenseColoringStep (version 1) is as follows.
(1) Let 7w : {1,...,]Sj|} — S;j be the permutation that lists S; in
increasing order by D-value, breaking ties by ID. For g from
1 to |Sj], the vertex 7(q) selects a color c(7(q)) uniformly at
random from ¥(7(¢))\{c(7(¢")) | ¢’ < g and {n(q), 7(q")} €
E(G)}.

(2) Each v € S; permanently colors itself c(v) if c(v) is not
selected by any vertices in N’(v).

Observe that because each S; has weak diameter 2, Step 1 of
DenseColoringStep takes only O(1) rounds of communication. In-
tuitively, the probability that a vertex v € S remains uncolored after
DenseColoringStep (version 1) is at most 8. The following lemma
gives us the probabilistic guarantee of the DenseColoringStep (ver-
sion 1).

LEmMA 6.1. Consider an execution of DenseColoringStep (version
1). Let T be any subset of S, and let § = maxyeT 8. For any t, the
number of uncolored vertices in T is at least t with probability at most
Pr[Binomial(|T|, §) > t].

Proor. Let T = {v1,...,v7|} be listed by priority: in increas-
ing order by D-value, breaking ties by vertex ID. (Remember that
vertices in T can be spread across multiple clusters in S.) Imagine
exposing the color choices of all vertices in S, one by one, in order
of priority. The vertex v; will successfully color itself if it chooses
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any color not already selected by a vertex in N’(v;) N (S \ ). Since
IN"(v1)N(S\Sj)| < Dy and vy has at least Zey colors to choose from,
the probability that it fails to be colored is at most Dy, / Zex = 8y < 6,
independent of the choices made by higher priority vertices. Thus,
for any t, the number of uncolored vertices in T is at least t with
probability at most Pr[Binomial(|T|, §) > t]. O

Next, we prove Lemmas 3.3 and 3.4. The basic setup of these
two proofs are similar. We let S = WkS (k = 1 for Lemma 3.4),
and let Si,...,S4 be the super-blocks constituting S. According
to Lemma 2.4 we can set Zey = A/2log?(1/&;) and according to
Lemma 2.1’s bound on the external degree we can set Dy, = €;A if
v is a layer-i vertex. Our algorithm consists of several iterations of
DenseColoringStep (version 1) on S = S; U --- U Sg,.

6.2 Proof of Lemma 3.3

We execute DenseColoringStep (version 1) for 6 iterations using
the same parameters Zeyx and Dy, for all iterations. Consider any
vertex v € V*, and a layer i that is within stratum k. Let T be
the set of layer-i neighbors of v in S. Then § = maxy,er{d,} =
S8 = 26;10g%(1/£) < 2¢ilog?(1/€;). Define tg = |T|, and t;
max{28t;_1, e?A}. Since (28)°|T| < efA, we have tg = efA.

Assume that at the beginning of the Ith iteration, the number
of uncolored vertices in T is at most ¢;_;. By Lemma 6.1 and a
Chernoff bound, after the Ith iteration, with probability at most
exp(—Q(t7)) < exp(—Q(eisA)), the number of uncolored vertices
in T is more than t;. Thus, with probability 1 — exp(—Q(poly(A))),
after 6 iterations the number of uncolored layer-i neighbors of v in
WkS is at most e?A.

6.3 Proof of Lemma 3.4

Notice that the parameter 8, = Dy, /Zey is always at most
2¢1 log?(1/e1) < A"V,

Thus, we define § = A~1/20 a5 an upper bound on &,,. Let x be a
number to be determined. Consider the following invariants that
all vertices v € S and all clusters S; should satisfy after the Ith
iteration:
Invariant H;(v): the number of uncolored vertices of
(N(v) N S) is at most max{x, §'A}.
Invariant H;(S;): the number of uncolored vertices of S; is
at most max{x, §!A}.

Let [* be minimum such that 5" A < x. We run DenseColoring-
Step (version 1) for I* iterations. Again, we use the same parameters
Zex and Dy, (as defined above). Via Lemma 6.1, it is straightforward
to prove the following probabilistic bounds using a Chernoff bound.
Pr{H,(v)] = 1 - exp(=Q(polyA)).
Pr[H;(v) | Hj_1(v)] = 1 — exp(-Q(x)), for 1 < [ < I*.
Pr[H1(Sj)] = 1 — exp(—=Q(polyA)).
Pr[H(S;) | Hi_1(S))] = 1 — exp(—-Q(x)), for 1 <1 < I*.
For any I € [1,1*], any uncolored vertex v € S; such that H;(v) or

H;(S;) is violated is removed from further consideration at the end
of the Ith iteration, and included in V} 4. Thus, by the end of the
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[*th iteration, we have x as an upper bound on the cluster size and

the maximum degree of the remaining uncolored vertices.

Case: A = O(log? n). For this case, we set x = AY20 We do
one additional iteration of DenseColoringStep (version 1), aiming
to reduce the maximum degree of the uncolored vertices to O(1).
For this iteration, we set Dy, = A/20 and Zey = A/2 log?(1/&) =
©(A/log? A). Thus, we have the shrinking rate

5o = O(A™1/20 1082 A).

Let v € S be any vertex. By Lemma 6.1, the probability that there
exist at least t uncolored neighbors of v in S is at most

Pr[Binomial(|T|, §) > t],
where |T| = AY/20 and § = O(A™19/20 log? A). Thus,
Pr[Binomial(|T], §) > t] < |T|*6* = A=%0).

We choose t = ©(c) = O(1) in such a way that |T|!6? < A™C.
Let v € S be an uncolored vertex. If there exist at least ¢t uncolored
neighbors of v in S, then we add v to V},4; otherwise, v is added to

R. 1t is clear that the subgraph induced by R has maximum degree
0(1).

Case: A = Q(log* n). We now turn to the case where A
Q(log* n). We set x = O(log n). Clearly, with high probability (i.e.,
1 — 1/poly(n)) all invariants H;(v) and H;(S;) are met for each
iteration. But we still need to reduce the maximum degree from
O(log n) to O(1).

We do DenseColoringStep (version 1) for one extra iteration.
This time, for each vertex v, we use the parameter D, = D =
x = O(logn), and so the shrinking rate is §;, = § = D/Zex

( log n

AJlog® A

Consider any uncolored vertex v, and let T be the set of uncolored
neighbors of v just before this iteration. Notice that [T| < x =
O(log n). By Lemma 6.1, after this iteration, the number of uncolored
vertices in T is at least ¢ with probability at most

Pr[Binomial(|T|, §) > t] < |T|*6* = (O(1/logn))" .

) < 1/log? n, due to the assumption A = Q(log? n).

After this iteration, we partition the uncolored vertices into two
subsets X and R, where X consists of all vertices whose number of
uncolored neighbors are at least t. Thus, the subgraph induced by
R has maximum degree O(1).

Using Lemma 3.1, we argue that if ¢ is set to be sufficiently large,
then vertices in X form connected components of size at most
poly log n, with high probability. Consider the graph G’ induced by
the vertices that are uncolored at the beginning of this iteration,
together with additional edges added to G’ making (the uncolored
vertices of) each cluster a clique. Due to the O(log n) upper bound
on the maximum degree and the cluster size, the maximum degree
of G’ is also A’ = O(log n). Recall that a vertex v is added to X
with probability at most (O(1/log n))?, and this is true regardless of
random bits of vertices outside of a constant radius of v in G’. Thus,
if t is a sufficiently large constant, then w.h.p., each connected com-
ponent of X in G’ has size at most O(poly(A’) - log n) = poly log n.
Thus, w.h.p., each connected component of X (in the original graph
G) has size poly log n.

Notice that in the above analysis, to argue that the component
size is small, it is crucial that we use Lemma 3.1 w.r.t. a graph whose
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maximum degree is poly log n, and this is the reason that we define
the graph G’. This also explains the reason for having a separate
set X (rather than adding all these vertices to V},,q). In general, the
size of a component in Vj,q U X could be super-polylogarithmic.

7 CONCLUSION

We have presented a new randomized (A + 1)-list coloring algo-
rithm that requires O(log* n + Det,(poly log n)) rounds of commu-
nication, which comes close to the Q(log™ n + Det(+/log n)) lower
bound implied by Naor [26] (Q(log* n)) and Chang, Kopelowitz,
and Pettie [8] (Q(Det(+/log n))).® When A is unbounded (relative
to n), the best known algorithms for (A + 1)- and (deg +1)-list
coloring are the same: they use Panconesi and Srinivasan’s [27]

20(Vlogn)_time construction of network decompositions. Even if
optimal (O(log n), O(log n))-network decompositions could be com-
puted for free, we still do not know how to solve (A + 1)-list coloring
faster than O(log? n) time. Thus, reducing the Det,(poly log n) term
in our running time below O((log log n)?) will require a radically
new approach to the problem.

It is an open problem to generalize our algorithm (or that of [19])
to solve the (deg +1)-coloring problem. The main difficulty is to
extend the definition of “e-friend” to account for neighbors of differ-
ent degrees, while still preserving the useful properties of e-dense
clusters from Lemma 2.1.

A CONCENTRATION BOUNDS

We make use of the following standard tail bounds [10]. Let X be
binomially distributed with parameters (n, p), i.e., it is the sum of
n independent 0-1 variables with mean p. We have the following
bound on the lower tail of X:
~(p—1)?
2y

Chernoff bounds also hold when X is the sum of n negatively corre-
lated 0-1 random variables [10, 11] with mean p, i.e., total indepen-
dent is not required. We use a bound on the upper tail of X with
mean yi = np.

Pr[Xst]Sexp( ), where ¢t < p = np.

exp(Z92) if § € [0,1]

Pr[X > (1+6)u] < _
g exp(Z2£) if 8> 1.

Consider the scenario where X = Zl’.': Xj, and each Xj is an
independent random variable bounded by the interval [a;, b;]. Let
4 = E[X]. Then we have the following concentration bound (Ho-

effding’s inequality) [20].
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