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ABSTRACT

Vertex coloring is one of the classic symmetry breaking problems
studied in distributed computing. In this paper we present a new
algorithm for (∆+ 1)-list coloring in the randomized LOCALmodel
running in O(log∗ n + Detd (poly logn)) time, where Detd (n′) is
the deterministic complexity of (deg+1)-list coloring on n′-vertex
graphs. This improves upon a previous randomized algorithm of

Harris, Schneider, and Su (STOC 2016) with complexityO(
√

log∆+
log logn + Detd (poly logn)), and (when ∆ is sufficiently large) is
much faster than the best known deterministic algorithm of Fraigni-
aud, Heinrich, and Kosowski (FOCS 2016), whose time complexity

is O(
√
∆ log2.5 ∆ + log∗ n) time.

Our algorithm appears to be optimal. It matches the Ω(log∗ n)
randomized lower bound, due to Naor (SIDMA 1991) and sort of

matches the Ω(Det(poly logn)) randomized lower bound due to
Chang, Kopelowitz, and Pettie (FOCS 2016), where Det is the deter-
ministic complexity of (∆ + 1)-list coloring. The best known upper

bounds on Detd (n′) and Det(n′) are both 2O (
√
logn′) (Panconesi

and Srinivasan (J. Algor 1996)) and it is quite plausible that the
complexities of both problems are the same, asymptotically.
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1 INTRODUCTION

Much of what we know about the LOCAL model has emerged
from studying the complexity of four canonical symmetry breaking
problems and their variants: maximal independent set (MIS), (∆+1)-
vertex coloring, maximal matching, and (2∆−1)-edge coloring. The
palette sizes ł∆+ 1ž and ł2∆− 1ž are minimal to still admit a greedy
sequential solution; here ∆ is the maximum degree.

Early work [1, 2, 24ś27] showed that all the problems are re-
ducible to MIS, all four problems require Ω(log∗ n) time, even with
randomization; all can be solved in O(poly(∆) + log∗ n) time (op-

timal when ∆ is constant), or in 2O (
√
logn) time for any ∆. Until

recently, it was actually consistent with known results that all four
problems had the same complexity.

Kuhn, Moscibroda, andWattenhofer (KWM) [22] proved that the
łindependent setž problems (MIS and maximal matching) require

Ω

(

min{ log∆
log log∆ ,

√

logn
log logn }

)

time, with or without randomization,

via a reduction fromO(1)-approximate minimum vertex cover. This
lower bound provably separated MIS/maximal matching from sim-
pler symmetry-breaking problems like O(∆2)-coloring, which can
be solved in O(log∗ n) time [24].

We now know the KMW lower bounds cannot be extended to
the canonical coloring problems, nor to variants of MIS like (2, t)-
ruling sets, for t ≥ 2 [5, 6, 16]. Elkin, Pettie, and Su [12] proved that
(2∆−1)-list edge coloring can be solved by a randomized algorithm
inO(log logn+Det(poly logn)) time, which shows that neither the

Ω

(

log∆
log log∆

)

nor Ω

(
√

logn
log logn

)

KMW lower bound applied to this

problem. Here Det(n′) represents the deterministic complexity of
the problem in question on n′-vertex graphs. Improving on [5, 29],
Harris, Schneider, and Su [19] proved a similar separation for (∆+1)-
vertex coloring. Their randomized algorithm solves the problem

inO(
√

log∆ + log logn +Detd (poly logn)) time, where Detd is the
complexity of (deg+1)-list coloring.

The łDet(poly logn)ž terms in the running times of [12, 19] are a
consequence of the graph shattering technique applied to distributed
symmetry breaking. Barenboim, Elkin, Pettie, and Schneider [5]
showed that all the classic symmetry breaking problems could be
reduced in O(log∆) or O(log2 ∆) time, w.h.p., to a situation where
we have independent subproblems of size poly log(n), which can
then be solved with the best available deterministic algorithm.1

1In the case of MIS, the subproblems actually have size poly(∆) logn, but satisfy the
additional property that they contain distance-5 dominating sets of size O (logn),
which is often just as good as having poly log(n) size. See [5, ğ3] or [16, ğ4] for more
discussion of this.
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Later, Chang, Kopelowitz, and Pettie (CKP) [8] gave a simple proof
illustrating why graph shattering is inherent to the LOCAL model:
the randomized complexity of any locally checkable problem2 is at

least its deterministic complexity on
√

logn-size instances.
The CKP lower bound explains why the state-of-the-art ran-

domized symmetry breaking algorithms have such strange stated
running times: they all depend on a randomized graph shattering
routine (Rand.) and a deterministic (Det.) algorithm.

• O(log∆ + 2O (
√
log logn)) for MIS (Rand. due to [16] and Det.

to [27]),

• O(
√

log∆ + 2O (
√
log logn)) for (∆ + 1)-vertex coloring (Rand.

due to [19] and Det. to [27]),
• O(log∆ + (log logn)3) for maximal matching (Rand. due
to [5] and Det. to [13]),

• O((log logn)8) for (2∆ − 1)-edge coloring (Rand. due to [12]
and Det. to [14]).

In each, the term that depends on n is the complexity of the best
deterministic algorithm, scaled down to poly log(n)-size instances.
In general, improvements in the deterministic complexities of these
problems imply improvements to their randomized complexities,
but only if the running times are improved in terms of łnž rather
than ł∆.ž For example, a recent line of research has improved the
complexity of (∆+ 1)-coloring in terms of ∆, fromO(∆+ log∗ n) [4],
to Õ(∆3/4) + log∗ n [3], to the state-of-the-art bound of Õ(

√
∆) +

log∗ n, due to Fraigniaud, Heinrich, and Kosowski [15]. These im-
provements do not have consequences for randomized coloring
algorithms using graph shattering [5, 19] since we can only assume

∆ = (logn)Ω(1) in the shattered instances.

A Technical History of Randomized (∆ + 1)-Coloring. In this pa-
per we prove that (∆ + 1)-list coloring can be solved in O(log∗ n +
Detd (poly logn)) time w.h.p., which is always 2O (

√
log logn), given

the best known bound on Detd (n′) = 2O (
√
logn′) [27]. Our al-

gorithm seems to come close to the Ω(log∗ n + Det(poly logn))
lower bound implied by [8, 24, 26], where Det is the deterministic
complexity of (∆ + 1)-list coloring. Intellectually, our algorithm
builds on a succession of breakthroughs by Schneider and Watten-
hofer [29], Barenboim, Elkin, Pettie, and Schneider [5], Elkin, Pettie,
and Su, [12], and Harris, Schneider, and Su [19], which we shall
now review.

Schneider and Wattenhofer [29] gave the first evidence that
the canonical coloring problems may not be subject to the KMW
lower bounds. They showed that when the palette size is (1 + ϵ)∆,
where ϵ = Ω(1) and ∆ > poly logn is sufficiently large, that vertex
coloring could be solved in just O(log∗ n) time, w.h.p. The key
observation is that the number of excess colors (current palette size
minus number of uncolored neighbors) is non-decreasing over time.
AfterO(log ϵ−1) rounds of a standard coloring routine, the number
of excess colors (ϵ∆) becomes larger than the uncolored degree.
At this point there is a dramatic transition, and the probability
that a vertex remains uncolored is reduced exponentially in each
successive round: O(log∗ n) more rounds suffice. Of course, in the
(∆+1)-coloring problem there is just one excess color initially, so the

2See Naor and Stockmeyer [26] or Chang and Pettie [9] for a formal definition of the
class of locally checkable labeling (LCL) problems.

problem is how to create them. Elkin, Pettie, and Su [12] observed
that if the graph is ł(1 − ϵ)-locally sparse,ž that after one iteration
of a random coloring routine, a significant number (Ω(ϵ∆)) of pairs
of vertices in the neighborhood N (v) get assigned the same color,
thereby creating Ω(ϵ∆) excess colors at v .3 The notion of local
sparsity is especially useful for addressing the (2∆−1)-edge coloring
problem [12], since it can be phrased as (∆′

+ 1)-vertex coloring
the line graph (∆′

= 2∆ − 2), which is (1/2 + o(1))-locally sparse.
Of course, in the vertex coloring problem we cannot count on

any kind of local sparsity, so the next challenge is to make local
density also work to our advantage. Harris, Schneider, and Su [19]
developed a remarkable new graph decomposition that can be com-
puted in O(1) rounds of communication. The decomposition takes
a parameter ϵ , and partitions the vertices into an łϵ-sparsež set,
and several vertex-disjoint łϵ-densež components, each with weak
diameter 2. The sparse set can be colored inO(log ϵ−1 + log logn +
Detd (poly logn)) time4 using [12] and [5]. Harris et al. [19] proved
that by coordinating the coloring decisions within each dense
component, it takes onlyO(log1/ϵ ∆ + log logn +Detd (poly logn))
time to color the dense sets, i.e., the bound improves as ϵ → 0.
The time for the overall algorithm is minimized by choosing ϵ =

exp(−Θ(
√

log∆)).

1.1 New Results and Technical Overview

In this paper we give a fast randomized algorithm for (∆ + 1)-
vertex coloring. It is based on a hierarchical version of the Harris-
Schneider-Su clustering with roughly log log∆ levels determined
by an increasing sequence of sparsity thresholds (ϵ1, . . . , ϵℓ), with
ϵi =

√
ϵi−1. Following [19], we begin with a single iteration of a

procedure OneShotColoring, in which a constant fraction of the
vertices are colored. The guarantee of this procedure is that any
vertex v at the ith level (which is ϵi -dense but ϵi−1-sparse), has
Ω(ϵ2i−1∆) pairs of vertices in its neighborhood N (v) assigned the
same color, thereby creating that many excess colors in the palette
of v .

At this point, the most natural way to proceed is to apply a
Harris-Schneider-Su style coloring procedure to each level, one by
one, with the hope that each will take roughly constant time. The
reason is that O(log1/ϵi 1/poly(ϵi−1)) = O(1), so in constant time
we should be able to create a situation where any uncolored vertices
have O(poly(ϵi−1)∆) uncolored neighbors but Ω(ϵ2i−1∆) excess col-
ors in their palette. With such a large gap, a Schneider-Wattenhofer
style coloring algorithm should complete in O(1) additional steps.
This approach does not seem to work. Moreover, doing the layers
one by one takes Ω(log log∆) time.

In order to color ϵi -dense components efficiently we need to
maintain relatively large lower bounds on the available palette and
relatively small upper bounds on the number of external neighbors
(outside the ϵi -dense component). Thus, it is important that when
we first consider a vertex, we have not already colored too many
of its neighbors. Our algorithm partitions the vertices at level i
into large and small blocks, depending on how many vertices of

3A graph is (1 − ϵ )-locally sparse if, for every v , the subgraph induced by N (v) has
at most (1 − ϵ )

(

∆

2

)

edges.
4It is (1 − ϵ ′)-locally sparse according to Elkin et al.’s definition [12], for some ϵ ′

depending on ϵ .
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Table 1: Development of lower and upper bounds for distributed (∆+1)-list coloring in the LOCALmodel. The termsDet(n′) and
Detd (n′) are the deterministic complexities of (∆+ 1)-list coloring and (deg+1)-list coloring on n′-vertex graphs. All algorithms

listed, except for [19] and ours, also solve the (deg+1)-list coloring problem.

Randomized Deterministic

O(log∗ n + Detd (poly logn)) new O(
√
∆ log2.5 ∆ + log∗ n) [15]

O(
√

log∆ + log logn + Detd (poly logn)) [19] O(∆3/4 log∆ + log∗ n) [3]

O(log∆ + Detd (poly logn)) [5] O(∆ + log∗ n) [4]

Upper O(log∆ +
√

logn) [29] O(∆ log∆ + log∗ n) [23]

Bounds O(∆ log logn) [23] O(∆ logn) [2]

O(logn) [1, 21, 25] O(∆2
+ log∗ n) [17, 24]

O(∆O (∆)
+ log∗ n) [18]

2O (
√
logn) [27]

2O (
√
logn log logn) [2]

Lower Ω(log∗ n) [26]
Ω(log∗ n) [24]

Bounds Ω(Det(
√

logn)) [8]

their ϵi -dense components stay at level i (because they are ϵi−1-
sparse). It also partitions the layers themselves into log∗(∆) strata.
We show that by coloring the small blocks in each stratum, one
stratum at a time, and then the large blocks, that we can always
guarantee a sufficiently large palette at each vertex when it is
first considered. Each of these coloring steps takes O(1) rounds
of communication but may not color all vertices. The vertices left
uncolored are put in O(1) classes, some of which induce constant
degree graphs, which are colored inO(log∗ n) time, and some induce
poly logn-size components, which are colored in Detd (poly logn)
time.

1.2 The LOCALModel

The undirected input graph G = (V ,E) and communications net-
work are identical. Each v ∈ V hosts a processor that initially
knows deg(v), a unique Θ(logn)-bit ID(v), and global graph param-
eters n = |V | and ∆ = maxv ∈V deg(v). In the (∆ + 1)-list coloring
problem each vertex v also has a set Ψ(v) of allowable colors, with
|Ψ(v)| ≥ ∆ + 1. As vertices progressively commit to their final
color, we also use Ψ(v) to denote v’s available palette, excluding
colors taken by its neighbors in N (v). Each processor is allowed
unbounded computation and has access to a stream of private un-
biased random bits. Time is partitioned into synchronized rounds
of communication, in which each processor sends one unbounded
message to each neighbor. At the end of the algorithm, each v

declares its output label, which in our case is a color from Ψ(v)
that is distinct from colors declared by all neighbors in N (v). Refer
to [24, 28] for more on the LOCAL model and variants.

1.3 Organization

In Section 2 we define a hierarchical decomposition based on [19]
and a certain partition of the vertices into log log∆ layers and log∗ ∆
strata. Section 3 gives a high-level description of the algorithm,

which uses a variety of coloring routines whose guarantees are
summarized in Lemmas 3.2ś3.7. Lemma 3.2 (cf. [5, 19]) shows that a
procedureOneShotColoring creates many excess colors; it is proved
in Section 4. Lemma 3.7 (cf. [12, 29]) analyzes a procedure Color-
Bidding, which is a generalization of the Schneider-Wattenhofer
coloring routing; it is proved in Section 5. Lemmas 3.3ś3.6 analyze
two versions of an algorithm DenseColoringStep, which is a gener-
alization of the Harris-Schneider-Su routine [19]; they are proved
in Section 6. Appendix A reviews some standard concentration
inequalities.

2 HIERARCHICAL DECOMPOSITION

In this section, we extend the work of Harris, Schneider, and Su [19]
to define a hierarchical decomposition of the vertices based on local
sparsity. Let G = (V ,E) be the input graph, ∆ be the maximum
degree, and ϵ ∈ (0, 1) be a parameter. An edge e = {u,v} is an
ϵ-friend edge if |N (u) ∩ N (v)| ≥ (1 − ϵ)∆. We call u an ϵ-friend of v
if {u,v} is an ϵ-friend edge. A vertex v is ϵ-dense if v has at least
(1 − ϵ)∆ ϵ-friends, otherwise it is ϵ-sparse.

We write V s
ϵ (and V d

ϵ ) to be the set of ϵ-sparse (and ϵ-dense)
vertices. Let v be a vertex in a set S ⊆ V and V ′ ⊆ V . Define
d̄S,V ′(v) = |(N (v) ∩ V ′) \ S | to be the external degree of v with
respect to S and V ′, and aS (v) = |S \ (N (v) ∪ {v})| to be the anti-
degree of v with respect to S . A connected component C of the
subgraph induced by the ϵ-dense vertices and the ϵ-friend edges is
called an ϵ-almost clique. The following lemma summarizes some
properties of ϵ-almost cliques from [19].

Lemma 2.1 ([19]). Fix any ϵ < 1/5. The following conditions are
met for each ϵ-almost cliqueC , and each vertexv ∈ C . (i) d̄C,V d

ϵ
(v) ≤

ϵ∆, (ii) aC (v) ≤ 3ϵ∆, (iii) |C | ≤ (1 + 3ϵ)∆, and (iv) distG (u,v) ≤ 2
for each u,v ∈ C , i.e., C has weak diameter 2.

447



STOC’18, June 25ś29, 2018, Los Angeles, CA, USA Yi-Jun Chang, Wenzheng Li, and Seth Pettie

2.1 A Hierarchy of Almost Cliques

Throughout this section, we fix some increasing sequence of spar-
sity parameters (ϵ1, . . . , ϵℓ) and a subset of verticesV⋆ ⊆ V , whose
meaning will be explained shortly. The sequence (ϵ1, . . . , ϵℓ) always
adheres to Definition 2.2.

Definition 2.2. A sequence (ϵ1, . . . , ϵℓ) is a valid sparsity sequence
if the following conditions are met: (i) ϵi =

√
ϵi−1 = ϵ2

−(i−1)
1 , and (ii)

1
ϵℓ

≥ K for some large enough constant K .

Layers. Define V1 = V⋆ ∩V d
ϵ1 , and Vi = V⋆ ∩ (V d

ϵi \V
d
ϵi−1 ), for

i > 1. Define Vsp = V
⋆ ∩V s

ϵℓ = V
⋆ \ (V1 ∪ · · · ∪Vℓ). It is clear that

(V1, . . . ,Vℓ ,Vsp) is a partition of V⋆. We call Vi the layer-i vertices,
and call Vsp the sparse vertices. In other words, Vi is the subset of

V⋆ that are ϵi -dense but ϵi−1-sparse. Remember that the definition
of sparsity is with respect to the entire graph G = (V ,E) not the
subgraph induced by V⋆.

Strata. Define ξ1 = ϵ1, and ξk = 1/log(1/ξk−1) for k > 1. By
definition, the 1st stratum is W1 = V1. The kth stratum Wk =
⋃

i : ϵi ∈(ξk−1,ξk ]Vi spans those layers whose sparsity parameter lies

in (ξk−1, ξk ]. Define s ≤ log∗(1/ϵ1) to be the index of the last
stratumWs .

Blocks. The layer-i vertices Vi are partitioned into blocks as
follows. Let {C1,C2, . . .} be the set of ϵi -almost cliques, and let
Bj = Cj ∩Vi . Then (B1,B2, . . .) is a partition ofVi , and we call each
Bj a layer-i block. If layer i is in stratum k , then Bj is also called a
stratum-k block.

A layer-i block B is a descendant of a layer-i ′ block B′, i < i ′, if
B and B′ are both subsets of the same ϵi′-almost clique. Therefore,
the set of all blocks in all layers naturally forms a rooted tree T .
(The root represents Vsp; every other node represents a block in
some layer.)

Definition 2.3. A stratum-k block B is a large block if |B | ≥
∆

log2(1/ξk )
and there is no other stratum-k ′ block B′ (k ′ ≥ k) such

that B′ is ancestral to B in T and |B′ | ≥ ∆

log2(1/ξk′ )
. Otherwise B is

a small block.

Notice that the threshold ∆

log2(1/ξk )
in the above definition de-

pends on the stratum in which the block B resides. By definition,
for any two blocks B and B′ in different layers, if B is a descendant
of B′, then B and B′ cannot both be large.

Define V S
i , V

L
i ,W

S
k
, andW L

k
to be, respectively, the sets of all

vertices in layer-i small blocks, layer-i large blocks, stratum-k small
blocks, and stratum-k large blocks. Notice that (V S

i ,V
L
i ) is a parti-

tion of Vi and (W S
k
,W L

k
) is a partition ofWk .

Super-blocks. Suppose stratum k spans layers i ′, i ′ + 1, . . . , i . Let
{C1,C2, . . .} be the set of ϵi -almost cliques, and let Rj = Cj ∩Wk .
Then (R1,R2, . . .) is a partition ofWk , and we call each Rj a stratum-

k super-block.

Overview of Our Algorithms. The decomposition and T are triv-
ially computed in O(1) rounds of communication. Let us briefly ex-
plain how our algorithm uses this hierarchical decomposition. The
first step is to execute anO(1)-round coloring procedure (OneShot-
Coloring) which colors a small constant fraction of the vertices

in G. Let V⋆ be the remaining uncolored vertices. The set V⋆ is
partitioned into subsets

(W S
1 , . . . ,W

S
s ,W

L
1 , . . . ,W

L
s ,Vsp)

based on the hierarchical decomposition with respect to a particu-
lar sparsity sequence (ϵ1, . . . , ϵℓ). We color the vertices of V⋆ \
Vsp in s + 2 = O(log∗(1/ϵ1)) stages according to the ordering

(W S
s , . . . ,W

S
1 ,W

′,W L
1 ), where W

′ is defined as W L
2 ∪ · · · ∪W L

s .

At the end of this process a small portion of verticesU ⊆ V⋆ \Vsp
may remain uncolored. However, they all have sufficiently large
palettes such that U ∪ Vsp can be colored efficiently in O(log∗ n)
time.

The purpose of processing the small blocks before the large
blocks is to ensure that the vertices in small blocks still have an ad-
equate number of colors in their palettes when they are considered.
Lemma 2.4 specifies exactly what an adequate number of colors is.

That is, regardless of how (W S
s ,W

S
s−1, . . . ,W

S
k+1

) are colored, each
v ∈W S

k
still has at least ∆/2 log2(1/ξk ) excess colors in its palette,

beyond those needed to colorW S
k
.

Lemma 2.4. Suppose that |N (v) ∩V⋆ | ≥ ∆/3. For each k ∈ [1, s]
and each v ∈W S

k
, we have |N (v) ∩ (W S

1 ∪ · · · ∪W S
k−1 ∪W L

1 ∪ · · · ∪
W L
s ∪Vsp)| ≥ ∆/2 log2(1/ξk ).

Before proving Lemma 2.4 we first establishing a useful property
of the block hierarchy T .

Lemma 2.5. Let C be an ϵi -almost clique and C1, . . . ,Cl be the

ϵi−1-almost cliques contained in C . Either l = 1 or
∑l
j=1 |Cj | ≤

2(3ϵi + ϵi−1)∆. In particular, if B is the layer-i block contained in

C , either B has one child in T or the number of vertices in all strict

descendants of B is at most 2(3ϵi + ϵi−1)∆ < 7ϵi∆.

Proof. Suppose, for the purpose of obtaining a contradiction,

that l ≥ 2 and
∑l
j=1 |Cj | > 2(3ϵi + ϵi−1)∆. W.l.o.g. suppose C1 is

smallest, so
∑l
j=2 |Cj | > (3ϵi +ϵi−1)∆. Anyv ∈ C1 is ϵi−1-dense and

therefore has at least (1 − ϵi−1)∆ neighbors that are ϵi−1-friends.
By definition any ϵi−1-friend is also an ϵi friend, so this set is
contained in C . By Lemma 2.1, |C | ≤ (1 + 3ϵi )∆. Thus, by the
pigeonhole principle, some ϵi−1-friend ofv must be inC2∪ · · · ∪Cl ,
contradicting the fact that C1 is a connected component in the
subgraph induced by ϵi−1-dense vertices and ϵi−1-friend edges. �

Proof of Lemma 2.4. Recall that v ∈W S
k
lies in stratum k and

that by assumption, |N (v) ∩V⋆ | ≥ ∆/3. Suppose stratum k spans
layers [i0, i1] and let v ∈ B where B is a layer-i small block, i ∈
[i0, i1]. We put the neighbors of v into one of several groups.

(1) Neighbors inW1 ∪ · · · ∪Wk−1 ∪Vsp.
(2) The remaining neighbors in blocks that are neither in ances-

tors nor descendants of B in T .
(3) Neighbors in all ancestors of B and those stratum-k descen-

dants of B.

Define

A1 = |N (v) ∩ (W1 ∪ · · · ∪Wk−1 ∪Vsp)|.

If A1 ≥ ∆/2 log2(1/ξk ) then the conclusion of the lemma already
holds, so assume otherwise. Let A2 be the number of neighbors
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in blocks that are neither in ancestors nor descendants of v . By

Lemma 2.1, A2 ≤ ∑ℓ
j=1 ϵj∆ ≤ 2ϵℓ∆.

We now turn to A3. Let Ci1 be the ϵi1 -almost clique containing
B. It follows from Lemma 2.5 that there is some index i⋆ ∈ [i0, i1]
such that

(i) Ci1 ⊇ Ci1−1 ⊇ · · · ⊇ Ci⋆ .
(ii) EachCj , j ∈ [i⋆, i1 − 1], is an ϵj -almost clique and is the only

such almost clique contained in Cj+1.
(iii) Either i⋆ = i0 or Ci⋆ contains at least two ϵi⋆−1-almost

cliques.

If i⋆ , i0 then, by Lemma 2.5 again, the number of vertices in Ci⋆
that are in ϵi⋆−1-almost cliques is at most 7ϵi⋆∆. Define Bi⋆ to be
the block contained in Ci⋆ and let B be the set of all blocks that
are ancestors of Bi⋆ in T .

We first entertain the possibility that all blocks in B are small.
Note that since B spans many strata, the definition of small is dif-
ferent for each stratum. It follows from Definition 2.2 that there
are fewer than log log(1/ξk ′−1) layers in stratum k ′. Thus, the max-
imum number of neighbors that v has in B is

s
∑

k ′=k

∆

log2(1/ξk ′)
· log log(1/ξk ′−1)

=

s
∑

k ′=k

∆

log(1/ξk ′)
≤ 2∆/log(1/ξs ) ≤ 2∆/log log(1/ϵℓ)

In this case, the the number of neighbors contributed by group
3 is at most A3 = 7ϵi⋆∆ + 2∆/log log(1/ϵℓ). Thus, the number of
v’s neighbors in V⋆ is at most

A1 +A2 +A3

≤ ∆/log2(1/ξk ) + 2ϵℓ∆ + 7ϵi⋆∆ + 2∆/log log(1/ϵℓ)
≪ ∆/3,

contradicting the assumption of the lemma. (Recall that ϵℓ < 1/K
for some sufficiently large constant K .) Thus, there must exist some
stratum-k ′ block B′ ∈ B containing at least ∆/log2(1/ξk ′) neigh-
bors of v . According to Definition 2.3, this implies that either B′ or
a strict ancestor of B′ is large. Let B′′ be the (unique) large ancestor
of B′, and suppose it is in layer i ′′ and stratum k ′′. According to
Lemma 2.1, the number of neighbors of v in B′′ is at least

|B′′ | − 3ϵi′′∆ ≥ ∆

log2(1/ξk ′′)
− 3ϵi′′∆

≥ ∆

log2(1/ξk ′′)
− 3ξk ′′∆

≥ ∆

2 log2(1/ξk ′′)

≥ ∆

2 log2(1/ξk )
.

Thus N (v) ∩W L
k ′′ ≥ ∆/2 log2(1/ξk ). �

3 MAIN ALGORITHM

Our algorithm follows the graph shattering framework [5]. In each
step of the algorithm, we specify an invariant that all vertices must

satisfy in order to continue to participate. Those bad vertices that
violate the invariant are removed from consideration; they form
connected components of size poly logn w.h.p., so we can color
them later in Detd (poly logn) time. More precisely, the emergence
of the small components is due to the following lemma [5, 13].

Lemma 3.1 (The Shattering Lemma). Consider a randomized

procedure that generates a subset of vertices B ⊆ V . Suppose that for

each v ∈ V , we have Pr[v ∈ B] ≤ ∆
−(2c+1), and this holds even if the

random bits not in N c (v) are determined adversarially. Then, with

probability at least 1 − n−c
′
, each connected component in the graph

induced by B has size at most O(c ′∆2c logn).

Since our algorithm consists of t = O(log∗ ∆) steps, whether a
vertex v is bad actually depends on random bits in its distance-t
neighborhood. Nonetheless, we are still able to apply Lemma 3.1.
The reason is that we are able to show that each vertex v becomes
bad in one particular step with probability at most ∆−x (for any
specified constant x), and this is true regardless of the outcomes
in all previous steps and the choices of random bits outside of a
constant-radius of v .

The sparsity sequence for our algorithm is defined by ϵ1 =

∆
−1/10, ϵi =

√
ϵi−1 for i > 1, and ℓ is the largest index such that

1
ϵℓ

≥ K for some sufficiently large K .

3.1 Initial Coloring Step

At any point in time, the number of excess colors at v is the size of
v’s remaining palette minus the number ofv’s uncolored neighbors.
This quantity is obviously non-decreasing over time. We first show
that in O(1) time, we can color a portion of the vertices such that
each remaining uncolored vertex has a certain number of excess
colors, which depends on its local sparsity. Refer to Section 4 for
proof.

Lemma 3.2. There is an O(1)-round algorithm that colors a subset

of vertices such that each ϵ-sparse vertex v with deg(v) ≥ 0.9∆
satisfies the following conditions.

• With probability 1 − exp(−Ω(∆)), the number of uncolored

neighbors of v is at least ∆/2.
• With probability 1 − exp(−Ω(ϵ2∆)), v has at least Ω(ϵ2∆)
excess colors.

We execute the algorithm of Lemma 3.2. In order to proceed
a vertex must satisfy both of the following conditions: (i) if v is
ϵℓ-dense, the number of uncolored neighbors of v is at least ∆/2;
(ii) if v is ϵi -dense but ϵi−1-sparse, v must have Ω(ϵ2i−1∆) excess
colors. If either fails to hold, v is put in the set Vbad.

DefineV⋆ to be the set of uncolored vertices that are not inVbad.
We compute the partitionV⋆

=W S
1 ∪· · ·∪W

S
s ∪W L

1 ∪· · ·∪W
L
s ∪Vsp.

Notice that we invoke the conditions of Lemma 3.2 only with ϵ ≥
ϵ1 = ∆

−1/10. Thus, if ∆ = Ω(log2 n), then with high probability (i.e.,
1 − 1/poly(n)), Vbad = ∅. Otherwise, each component of Vbad must,
by Lemma 3.1, have size O(poly(∆) · logn) = O(poly logn), w.h.p.
We do not invoke a deterministic algorithm to colorVbad just yet. In
subsequent steps of the algorithm, we continue to add łbad verticesž
to Vbad. These vertices are colored at the end of the algorithm.
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3.2 Coloring Vertices by Stratum

In this section, we show how we can color most of the vertices in
W1, . . . ,Ws , leaving a small portion of uncolored vertices U , each
having a large number of excess colors. We do the coloring in s + 2
stages in this order (i) s − 1 stages of small blocks:W S

s , . . . ,W
S
2 , (ii)

first layer small blocksW S
1 , (iii) large blocksW

′
=W L

2 ∪ · · · ∪W L
h
,

and (iv) first layer large blocksW L
1 .

Notice that due to Lemma 2.4, at the time we begin to process
W S
k
, each vertex v ∈W S

k
must have at least ∆/2 log2(1/ξk ) excess

colors w.r.t.W S
k
. That is, its palette size minus the number of its

neighbors inW S
k
is large. If the condition |N (v) ∩ V⋆ | ≥ ∆/3 in

Lemma 2.4 is not met, then it means that at least (∆/2 − ∆/3)
neighbors of v were included in Vbad after the initial coloring step,
and so v automatically has at least ∆/6 > ∆/2 log2(1/ξk ) excess
colors w.r.t.W S

k
. Refer to Section 6 for proofs of Lemmas 3.3ś3.6.

Lemma 3.3 (Small blocks; strata other than 1). Suppose that

each vertexv ∈W S
k
has at least ∆/2 log2(1/ξk ) excess colors w.r.t.W S

k
.

There is an O(1)-time algorithm that colors a subset ofW S
k
meeting

the following condition. For each v ∈ V⋆ and each layer i in stratum

k , with probability at least 1 − exp(−Ω(poly(∆))), the number of

uncolored layer-i neighbors of v in V S
i is at most ϵ5i ∆. Vertices that

violate this property join the set Vbad.

Lemma 3.4 (Small blocks; stratum 1). Suppose that each vertex

v ∈ W S
1 has at least ∆/2 log2(1/ξ1) excess colors w.r.t.W S

1 . There

is an O(1)-time algorithm that colors a subset ofW S
1 meeting the

following conditions, for any specified constant c . If ∆ = O(log4 n),
then each v ∈W S

1 is colored with probability at least 1 − ∆
−c , and

all uncolored vertices inW S
1 joins Vbad. If ∆ = Ω(log4 n), then, with

probability at at least 1−n−c , the remaining uncolored vertices ofW S
1

are partitioned into 2 sets X and R such that (i) the subgraph induced

by R has maximum degree O(1), (ii) each connected component in

the graph induced by X has size at most poly logn.

Lemma 3.5 (Large blocks; strata other than 1). There is an

O(1)-time algorithm that colors a subset ofW ′ meeting the following

condition. For each v ∈ V⋆ and each layer i ∈ [2, ℓ], with probabil-

ity at least 1 − exp(−Ω(poly(∆))), the number of uncolored layer-i

neighbors ofv inV L
i is at most ϵ5i ∆. Vertices that violate this property

join the set Vbad.

Lemma 3.6 (Large blocks; stratum 1). Let α be a sufficiently

large constant, and let c be any constant. There is an O(1)-time algo-

rithm that colors a subset ofW L
1 and puts the remaining uncolored

vertices in one of X1,X2,R or Vbad. It is required that the subgraph

induced by R has constant degree, and every component in the sub-

graph induced by X1 and the subgraph induced by X2 has size at

most poly logn. If ∆ ≤ logα n, then X1 = X2 = ∅, and each v ∈W L
1

is added to Vbad with probability at most ∆−c . If ∆ ≥ logα n, with

probability 1 − 1/n−c , no vertex inW L
1 is added to Vbad.

We apply Lemmas 3.3ś3.6 to color the vertices in V⋆ \Vsp. The
subgraph induced by R (Lemma 3.4 and Lemma 3.6) has constant
degree. We immediately color these vertices using any O(log∗ n)-
time algorithm. All vertices inX (Lemma 3.4),X1, orX2 (Lemma 3.6)
are colored in timeDetd (poly logn) using a deterministic algorithm.
The vertices in X ,X1,X2 do not join Vbad.

Any vertex in V⋆ that violates at least one condition specified
in the lemmas is added to the set Vbad. All remaining uncolored
vertices join the set U . In other words, U is the set of all vertices
in V⋆ \ (Vsp ∪ X ∪ X1 ∪ X2 ∪ Vbad) that remain uncolored after
applying Lemmas 3.3ś3.6.

3.3 Coloring the Remaining Vertices

At this point all uncolored vertices are inU ∪Vsp ∪Vbad. We show
thatU ∪Vsp can be colored efficiently in O(log∗ ∆) time.

We first consider the setU . Let G ′ be the directed acyclic graph
induced by U , where all edges are oriented from the sparser to the
denser endpoint. In particular, an edge e = {u,u ′} is oriented as
(u,u ′) if u is at layer i , u ′ at layer i ′, and i > i ′, or if u and u ′ are
at the same layer i and ID(u) > ID(u ′). We write Nout(v) to denote
the set of out-neighbors of v .

For each layer-i vertex v in G ′, and each layer-j, the number
of layer-j neighbors of v in G ′ is at most O(ϵ5j ∆), due to Lem-

mas 3.3 and 3.5. The out-degree ofv is therefore at most
∑i
j=1 ϵ

5
j ∆ =

O(ϵ5i ∆) = O(ϵ2.5i−1∆). The number of excess colors at v is at least

Ω(ϵ2i−1∆). Thus, there is an Ω(1/√ϵi−1)-factor gap between the
palette size of v and the out-degree of v .

We write Ψ(v) to denote the set of available colors of v . There
exists a constant η > 0 such that, for each i ∈ [2, ℓ] and each layer-i

vertex v in G ′, we have |Ψ(v)| − outdeg(v) ≥ ηϵ2i−1∆
def
= pv . There

is a constant C > 0 such that for each i ∈ [2, ℓ] and each layer-i
vertex v ∈ U satisfies

∑

u ∈Nout(v)
1/pu ≤

i
∑

j=1

O

(

ϵ2.5j−1∆

ϵ2j−1∆

)

=

i
∑

j=1

O(ϵ0.5j−1) < 1/C .

Lemma 3.7 is applied to color nearly all vertices inU inO(log∗ ∆)
time, with any remaining uncolored vertices added to Vbad. Notice
that in our setting, the parameters of Lemma 3.7 are p⋆ ≥ ηϵ21∆ =

Ω(∆8/10) and d⋆ ≤ ∆. Thus, the probability that a vertex is bad is

exp(−Ω(
√

p⋆))+d⋆ exp(−Ω(p⋆)) = exp(−Ω(∆2/5)) (by Lemma 3.7).
Refer to Section 5 for proof of Lemma 3.7.

Lemma 3.7. Consider a directed acyclic graph, where vertex v is

associated with a parameter pv ≤ |Ψ(v)| − outdeg(v). We write

p⋆ = minv ∈V pv . Suppose that there is a constant C > 0 such that

all vertices v satisfy
∑

u ∈Nout(v) 1/pu ≤ 1/C . Let d⋆ be the maxi-

mum out-degree of the graph. There is an O(log∗(p⋆))-time algo-

rithm achieving the following. Each vertex v remains uncolored with

probability at most exp(−Ω(
√

p⋆)) + d⋆ exp(−Ω(p⋆)). This is true
even if the random bits generated outside a constant radius around v

are determined adversarially.

The set Vsp can be colored in a similar way using the above
lemma. We let G ′′ be any acyclic orientation of the graph induced
by Vsp (e.g., orienting each edge {u,v} to the vertex v such that
ID(v) > ID(u)). The number of available colors of each v ∈ Vsp
minus its out-degree is at least Ω(ϵ2

ℓ
∆), which is at least γ∆, for

some constant γ > 0 (according to the way we select the sparsity
sequence). We define pv = γ∆ < |Ψ(v)| − outdeg(v). We have
∑

u ∈Nout(v)(1/pu ) ≤ outdeg(v)/(γ∆) ≤ 1/γ . Thus, we can apply

Lemma 3.7 with C = γ . Notice that both p⋆ and d⋆ are Θ(∆), and
so the probability that a vertex is bad is exp(−Ω(

√
∆)).
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We add all remaining uncolored vertices in Vsp ∪U to Vbad. We
are now ready to color Vbad. If ∆ ≥ logα n, then Vbad = ∅, w.h.p.,
in view of the probabilities stated in Lemmas 3.3ś3.7. Otherwise,
∆ ≤ logα n, and by Lemma 3.1, each connected component of Vbad
has size at most poly(∆) · poly logn = poly logn. Thus, it takes
Detd (poly logn) to color all bad vertices Vbad.

3.4 Time Complexity

The time for the initial coloring step isO(1). The time for processing
each ofW S

s , . . . ,W
S
2 ,W

S
1 ,W

′,W L
1 is alsoO(1), orO(s) = O(log∗ ∆)

in total. The time to color the vertices ofU ∪Vsp not marked bad is
O(log∗ ∆). In addition, we invoke O(1) times

(i) anO(log∗ n)-time algorithm for coloring a bounded degree
graph (i.e., the set R in Lemma 3.4 and Lemma 3.6), and
(ii) a Detd (poly logn)-time algorithm for coloring compo-
nents of size poly log(n) (i.e., the setsX ,X1, andX2 in Lemma
3.4 and Lemma 3.6, and the bad vertices Vbad).

Thus, the total time complexity is O(log∗ n + Detd (poly logn)).
Theorem 3.8. There is an algorithm that computes a (∆ + 1)-list

coloring, with high probability, in O(log∗ n + Detd (poly logn)) time.

There is a universal constant c such that the size of each con-
nected component of Vbad, X , X1, and X2 is at most logc n, w.h.p.
If each vertex is allowed to have logc n extra colors, then we can
invoke the O(log∗ ∆)-time algorithm of Lemma 3.7 to color them
(rather than spendingDetd (poly logn) time), thereby improving the
time complexity greatly. Notice that if every vertex is ϵ-sparse, with
ϵ2∆ sufficiently large, then the algorithm of Lemma 3.2 gives every
vertex Ω(ϵ2∆) excess colors, w.h.p. Thus, we have the following
theorems.

Theorem 3.9. There is a universal constant c such that there is

a randomized algorithm that, w.h.p., computes a (∆ + logc n)-list
coloring in O(log∗ n) time.

Theorem 3.10. There is a universal constant c such that the follow-

ing holds. Suppose each vertex is ϵ-sparse, and ϵ2∆ = logc n. There is
a randomized algorithm that, w.h.p., computes a (∆ + 1)-list coloring
in O(log∗ n) time.

Remark. Notice that Theorem 3.10 insists on every vertex being
ϵ-sparse, as defined in Section 2. It is straightforward to show
connections between this definition of sparsity and others standard
measures from the literature. For example, such a graph is (1 − ϵ ′)-
locally sparse (according to the definition of [12]), where ϵ ′ = Ω(ϵ2).
Similarly, any (1 − ϵ ′)-locally sparse graph is Ω(ϵ ′)-sparse. Graphs
of degeneracy d ≤ (1−ϵ ′)∆ or arboricity λ ≤ (1/2−ϵ ′)∆ are trivially
(1 − Ω(ϵ ′))-locally sparse [5].

4 ANALYSIS OF ONESHOTCOLORING —

PROOF OF LEMMA 3.2

Fix a constant parameter p ∈ (0, 1/4). The procedure OneShot-

Coloring is a simple O(1)-round coloring procedure that breaks
ties by ID. Define N ∗(v) = {u ∈ N (v) | ID(u) < ID(v)} to be the
neighbors of v with higher priority than v . We assume that each
vertex v is associated with a palette Ψ(v) of size ∆ + 1, and this is
used implicitly in the proofs of the lemmas in this section.

The procedure OneShotColoring is as follows.

(1) Each uncolored vertexv decides to participate independently
with probability p.

(2) Each participating vertex v selects a color c(v) from its
palette Ψ(v) uniformly at random.

(3) A participating vertex v successfully colors itself if c(v) is
not chosen by any vertex in N ∗(v).

After OneShotColoring, each vertex v removes all colors from
Ψ(v) that are taken by some neighbor u ∈ N (v). The number
of excess colors at v is the size of v’s remaining palette minus
the number of uncolored neighbors of v . We prove one part of
Lemma 3.2 by showing that after a call to OneShotColoring, the
number of excess colors at any ϵ-sparse v is Ω(ϵ2∆), with probabil-
ity 1 − exp(−Ω(ϵ2∆)). Similar but (slightly) weaker lemmas were
proved in [12, 19]. The corresponding lemma from [12] does not ap-
ply to list coloring, and the corresponding lemma from [19] obtains
a high probability bound only if ϵ4∆ = Ω(logn). Optimizing this
requirement is of importance, since this is the threshold about how
locally sparse a vertex needs to be in order to obtain excess colors
from OneShotColoring. The remainder of this section constitutes a
proof of Lemma 3.2.

Consider an execution of OneShotColoring with any constant
p ∈ (0, 1/4). Recall that we assume 1/ϵ ≥ K , for some large enough
constant K . Let v be an ϵ-sparse vertex. Define the following two
numbers.

f1(v) : the number of vertices u ∈ N (v) that successfully
color themselves by some c < Ψ(v).
f2(v) : the number of colors c ∈ Ψ(v) such that at least two
vertices in N (v) successfully color themselves c .

It is clear that f1(v)+ f2(v) is a lower bound on the number of excess
colors at v after OneShotColoring. Our first goal is to show that
f1(v) + f2(v) = Ω(ϵ2∆) with probability at least 1 − exp(−Ω(ϵ2∆)).
We divide the analysis into two cases (Lemma 4.3 and Lemma 4.4),
depending on whether f1(v) or f2(v) is likely to be the dominant
term. For anyv , the preconditions of either Lemma 4.3 or Lemma 4.4
are satisfied. Our second goal is to show that for each vertex v of
degree at least 0.9∆, with high probability, at least (1−1.1p)|N (v)| >
∆/2 neighbors of v remain uncolored after after OneShotColoring.
This is done in Lemma 4.5.

Lemmas 4.1 and 4.2 establish some generally useful facts of
OneShotColoring, which are used in the proofs of Lemma 4.3 and
4.4.

Lemma 4.1. Let Q be any set of colors, and let S be any set of

vertices with size at most 2∆. The number of colors in Q that are

selected by some vertices in S is less than |Q |/2 with probability at

least 1 − exp(−Ω(|Q |)).

Proof. Let Ec denote the event that color c is selected by at least

one vertex in S . Then Pr[Ec ] ≤ p |S |
∆+1 < 2p < 1/2, since p < 1/4 and

|S | ≤ 2∆. Moreover, the collection of events {Ec } are negatively
correlated [11].

LetX denote the number of colors inQ that are selected by some
vertices in S . By linearity of expectation, µ = E[X ] < 2p · |Q |. We

apply a Chernoff bound with δ =
(1/2)−2p

2p . Recall that 0 < p < 1/4,
and so δ > 0. For the case of δ ∈ [0, 1], we have:

Pr[X ≥ (1 + δ )µ = |Q |/2] ≤ exp(−δ2µ/3) = exp(−Ω(|Q |)).
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Similarly, if δ > 1, we still have:

Pr[X ≥ (1 + δ )µ = |Q |/2] ≤ exp(−δµ/3) = exp(−Ω(|Q |)). �

Lemma 4.2. Fix a sufficiently small ϵ > 0. Consider a set of vertices
S = {u1, . . . ,uk } with cardinality ϵ∆/2. Let Q be a set of colors such

that each ui ∈ S satisfies |Ψ(ui ) ∩Q | ≥ (1 − ϵ/2)(∆ + 1). Moreover,

each ui ∈ S is associated with a vertex set Ri such that (i) S ∩ Ri = ∅,
and (ii) |Ri | ≤ 2∆. Then, with probability at least 1 − exp(−Ω(ϵ2∆)),
there are at least pϵ∆/8 vertices ui ∈ S such that the color c selected

by ui satisfies (i) c ∈ Q , and (ii) c is not selected by any vertex in

Ri ∪ S \ {ui }.

Proof. Define Qi = Ψ(ui ) ∩Q . We call a vertex ui happy if ui
selects some color c ∈ Q and c is not selected by any vertex in
Ri ∪ S \ {ui }. Define the following events.

E
good
i : ui selects a color c ∈ Qi such that c is not selected by

any vertices in Ri .

Ebadi : the number of colors in Qi that are selected by some
vertices in Ri is at least |Qi |/2.
E
repeat
i : the color selected by ui is also selected by some

vertices in {u1, . . . ,ui−1}.
Let Xi be the indicator random variable that either E

good
i or Ebadi

occurs, and letX =
∑k
i=1 Xi . LetYi be the indicator random variable

that E
repeat
i occurs, and let Y =

∑k
i=1 Yi . Assuming that Ebadi does

not occur for each i ∈ [1,k], it follows that X − 2Y is a lower
bound on the number of happy vertices. Notice that by Lemma 4.1,

Pr[Ebadi ] = exp(−Ω(|Qi |)) = exp(−Ω(∆)). Thus, assuming that no

Ebadi occurs merely distorts our probability estimates by a negligible
exp(−Ω(∆)). We prove concentration bounds on X and Y , which
together imply the lemma.

We show that X ≥ pϵ∆/7 with probability 1 − exp(−Ω(ϵ∆)). It
is clear that

Pr[Xi = 1] ≥ Pr[Egoodi | Ebadi ] ≥ p · |Qi |/2
∆ + 1

≥ p(1 − ϵ/2)
2

>
p

3
.

Moreover, since Pr[Xi = 1 | Ebadi ] = 1, the above inequality also
holds, when conditioned on any colors selected by vertices in Ri .
Thus, Pr[X ≤ t] is upper bounded by Pr[Binomial(n′,p′) ≤ t]
with n′ = |S | = ϵ∆/2 and p′ = p

3 . We set t = pϵ∆/7. Notice that
n′p′ = pϵ∆/6 > t . Thus, according to a tail bound of binomial

distribution, Pr[X ≤ t] ≤ exp(−(n
′p′−t )2
2n′p′ ) = exp(−Ω(ϵ∆)).

We show that Y ≤ pϵ2∆/2 with probability 1 − exp(−Ω(ϵ2∆)).
It is clear that Pr[Yi = 1] ≤ p(i−1)

∆+1 ≤ pϵ
2 , even if we condition

on arbitrary colors selected by vertices in {u1, . . . ,ui−1}. We have

µ = E[Y ] ≤ pϵ
2 · |S | = pϵ 2∆

4 . Thus, by a Chernoff bound (with

δ = 1), Pr[Y ≥ pϵ2∆/2] ≤ Pr[Y ≥ (1 + δ )µ] ≤ exp(−δ2µ/3) =
exp(−Ω(ϵ2∆)).

To summarize, with probability at least 1 − exp(−Ω(ϵ2∆)), we
have X − 2Y ≥ pϵ∆/7 − 2pϵ2∆/2 > pϵ∆/8. �

Lemma 4.3 considers the case when a large fraction of v’s neigh-
bors are likely to color themselves with colors outside the palette of
v , and therefore be counted by f1(v). This lemma holds regardless
of whether v is ϵ-sparse or not.

Lemma 4.3. Suppose that there is a subset S ⊆ N (v) such that

|S | = ϵ∆/5, and for each u ∈ S , |Ψ(u) \ Ψ(v)| ≥ ϵ(∆ + 1)/5. Then
f1(v) ≥ pϵ 2∆

100 with probability at least 1 − exp(−Ω(ϵ2∆)).

Proof. Let S = (u1, . . . ,uk ) be sorted in increasing order by ID.
Define Ri = N ∗(ui ), andQi = Ψ(ui )\Ψ(v). Notice that |Qi | ≥ ϵ∆/5.
Define the following events.

E
good
i : ui selects a color c ∈ Qi and c is not selected by any

vertex in Ri .
Ebadi : the number of colors inQi that are selected by vertices
in Ri is more than |Qi |/2.

Let Xi be the indicator random variable that either E
good
i or

Ebadi occurs, and let X =
∑k
i=1 Xi . Given that the events Ebadi for

all i ∈ [1,k] do not occur, we have X ≤ f1(v), since if Egoodi oc-
curs, then ui successfully colors itself by some color c < Ψ(v). By
Lemma 4.1, Pr[Ebadi ] = exp(−Ω(|Qi |)) = exp(−Ω(ϵ∆)). Thus, up to

this negligible error, we can assume that Ebadi does not occur, for
each i ∈ [1,k].

We show that X ≥ ϵ2∆/100 with probability 1 − exp(−Ω(ϵ2∆)).
It is clear that Pr[Xi = 1] ≥ Pr[Egoodi | Ebadi ] ≥ p |Qi |/2

∆+1 ≥ pϵ
10 , and

this inequality holds even when conditioning on any colors selected
by vertices in Ri and

⋃

1≤j<i Rj ∪ {uj } (since S = (u1, . . . ,uk ) is
sorted in increasing order by ID,ui < Rj = N ∗(uj ) for any 1 ≤ j < i).
Thus, Pr[X ≥ t] is upper bounded by Pr[Binomial(n′,p′) ≤ t] with
n′ = |S | = ϵ∆/5 and p′ = pϵ

10 . We set t =
n′p′

2 =
pϵ 2∆
100 . Thus,

according to a lower tail of the binomial distribution, Pr[X ≤ t] ≤
exp(−(n

′p′−t )2
2n′p′ ) = exp(−Ω(ϵ2∆)). �

Lemma 4.4 considers the case that many pairs of neighbors of v
are likely to color themselves the same color, and contribute to f2(v).
Note that any ϵ-sparse vertex that does not satisfy the preconditions
of Lemma 4.3 does satisfy the preconditions of Lemma 4.4.

Lemma 4.4. Let v be an ϵ-sparse vertex. Suppose that there is a

subset S ⊆ N (v) such that |S | ≥ (1 − ϵ/5)∆, and for each u ∈ S ,

|Ψ(u) ∩ Ψ(v)| ≥ (1 − ϵ/5)(∆ + 1). Then f2(v) ≥ p3ϵ2∆/2000 with
probability 1 − exp(−Ω(ϵ2∆)).

Proof. Let S ′ be any subset of S such that (i) |S ′ | = pϵ∆
100 , (ii)

each ui ∈ S ′ is associated with a set Si ⊆ S \ (S ′ ∪ N (ui )) of
size ϵ∆

2 . The existence of S ′, S1, . . . , S |S ′ | is guaranteed by the ϵ-
sparseness of v . In particular, S must contain at least ϵ∆ − ϵ∆/5 >
pϵ∆/100 = |S ′ | non-friends of v , and for each such non-friend
ui ∈ S ′, |S \ (S ′ ∪ N (ui ))| ≥ ∆(1 − ϵ/5 − pϵ/100 − (1 − ϵ)) > ϵ∆/2.

Order the set S ′ = {u1, . . . ,uk } in increasing order by vertex
ID. Define Ri = {u1, . . . ,ui−1} ∪ N ∗(ui ), and Qi = Ψ(ui ) ∩ Ψ(v).
Define Q

good
i as the subset of colors c ∈ Qi such that c is selected

by some vertex w ∈ Si , but c is not selected by any vertex in
(N ∗(w) ∪ N ∗(ui )) \ S ′. Define the following events.

E
good
i : ui selects a color c ∈ Q

good
i .

Ebadi : the number of colors in Q
good
i is less than pϵ∆/8.

E
repeat
i : the color selected by ui is also selected by some

vertices in {u1, . . . ,ui−1}.

452



An Optimal Distributed (∆ + 1)-Coloring Algorithm? STOC’18, June 25ś29, 2018, Los Angeles, CA, USA

Let Xi be the indicator random variable that either E
good
i or

Ebadi occurs, and let X =
∑k
i=1 Xi . Let Yi be the indicator random

variable that E
repeat
i occurs, and let Y =

∑k
i=1 Yi . Suppose that

E
good
i occurs, and the color c selected by ui is not selected by any

vertex in S \ {ui }. Then there must exist a vertexw ∈ Si such that
both ui andw successfully color themselves c . Notice thatw and

ui are not adjacent. Thus, X − Y ≤ f2(v), given that Ebadi does not

occur, for each i ∈ [1,k]. Notice that Pr[Ebadi ] = exp(−Ω(ϵ2∆))
(by Lemma 4.2 and the definition of Q

good
i ), and thus indeed we

can assume that Ebadi does not occur. In what follows, we prove
concentration bounds onX andY , which together imply the lemma.

We show that X ≥ p3ϵ 2∆
1000 with probability 1 − exp(−Ω(ϵ2∆)).

It is clear that Pr[Xi = 1] ≥ p · pϵ∆/8
∆+1 >

p2ϵ
8 , regardless of the

colors selected by vertices in Ri . Thus, Pr[X ≤ t] is upper bounded
by Pr[Binomial(n′,p′) ≤ t] with n′ = |S ′ | = pϵ∆

100 and p′ = p2ϵ
8 .

We set t =
p3ϵ 2∆
1000 < n′p′. According to a tail bound of binomial

distribution, Pr[X ≤ t] ≤ exp(−(n
′p′−t )2
2n′p′ ) = exp(−Ω(ϵ2∆)).

We show that Y ≤ p3ϵ 2∆
2000 with probability 1 − exp(−Ω(ϵ2∆)).

It is clear that Pr[Yi = 1] ≤ p · (i−1)
∆+1 ≤ p2ϵ

100 regardless of the
colors selected by vertices in {u1, . . . ,ui−1}. We have µ = E[Y ] ≤
p2ϵ
100 · |S ′ | = p3ϵ 2∆

10,000 . Thus, by a Chernoff bound (with δ = 4), Pr[Y ≥
p3ϵ 2∆
2000 ] ≤ Pr[Y ≥ (1 + δ )µ] ≤ exp(−δµ/3) = exp(−Ω(ϵ2∆)).

To summarize, with probability at least 1 − exp(−Ω(ϵ2∆)), we
have X − Y ≥ p3ϵ2∆/1000 − p3ϵ2∆/2000 > p3ϵ2∆/2000. �

Lemma 4.5. The number of vertices in N (v) that remain uncolored

after OneShotColoring is at least (1 − 1.1p)|N (v)|, with probability

at least 1 − exp(−Ω(|N (v)|)).

Proof. Let X be the number of vertices in N (v) participating
in OneShotColoring. It suffices to show that X ≤ 1.1p |N (v)| with
probability 1 − exp(−Ω(|N (v)|)). Since a vertex participates with
probability p, we have

Pr[X ≥ (1 + 0.1)p |N (v)|] ≤ exp(− (0.1)2p |N (v)|
3

)

= exp(−Ω(|N (v)|))
by Chernoff bound with δ = 0.1. �

5 ANALYSIS OF COLORBIDDING — PROOF OF

LEMMA 3.7

Consider a directed acyclic graph G = (V ,E), where each vertex v
has a palette Ψ(v). Recall that each vertex v is associated with a
parameter pv ≤ |Ψ(v)| −outdeg(v), and we write p⋆ = minv ∈V pv .
Themaximum out-degree is denoted asd⋆. There is a numberC > 0
such that all vertices v satisfy

∑

u ∈Nout(v) 1/pu ≤ 1/C . Intuitively,
the term

∑

u ∈Nout(v) 1/pu measures the amount of łcontentionž at
a vertex v (in ColorBidding, u selects each color c ∈ Ψ(u) with
probability C

2pu
, which is proportional to 1/pu ). All vertices agree

on the value of C .
The procedure ColorBidding is as follows.

(1) Each color c ∈ Ψ(v) is added to Sv with probability C
2pv

independently.
(2) If there exists a color c⋆ ∈ Sv that is not selected by any

vertex in Nout(v), v colors itself c⋆.

In Lemma 5.1 we present an analysis of ColorBidding. We show
that after an iteration of ColorBidding, the amount of łcontentionž
at a vertex v decreases by (roughly) an exp(C/6)-factor, with very
high probability. See [8, 12, 29] for proofs of similar claims. The
main technical difficulty of our setting is that we need to deal with
vertices with different out-degrees, and the guarantee of the number
of excess colors of a vertex depends on its out-degree (rather than
the global parameter ∆), and so we cannot simply use out-degree
as the measure of contention.

Lemma 5.1. Consider an execution of ColorBidding. Let v be any

vertex. Let d be the summation of 1/pu over all vertices u in Nout(v)
that remain uncolored after ColorBidding. Then the following holds.

Pr[ v remains uncolored ] ≤ exp(−C/6) + exp(−Ω(p⋆)).

Pr[d ≥ (1 + λ) exp(−C/6)/C] ≤ exp
(

−2λ2p⋆ exp(−C/6)/C
)

+ d⋆ exp(−Ω(p⋆)).

Proof. For each vertex u, we define the following two events.

E
good
u : u selects a color that is not selected by any vertex in

Nout(u).
Ebadu : number of colors in Ψ(u) that are selected by some

vertices in Nout(u) is at least 2
3 · |Ψ(u)|.

Notice that E
good
u is the event where u successfully colors itself.

We show that Pr[Ebadu ] = exp(−Ω(p⋆)). Fix a color c ∈ Ψ(u). The
probability that c is selected by some vertex in Nout(u) is

1 −
∏

w ∈Nout(u)

(

1 − C
2pw

)

≤
∑

w ∈Nout(u)

C
2pwd

≤ 1
2 .

Thus, Pr[Ebadu ] ≤ Pr[Binomial(n′,p′) ≥ 2n′
3 ] with n′ = |Ψ(u)| ≥ pu

and p′ = 1
2 . By a Chernoff bound, we have:

Pr[Ebadu ] ≤ exp(−Ω(n′p′)) = exp(−Ω(p⋆)).

Conditioned on Ebadu , u will color itself unless it fails to choose any
of |Ψ(u)|/3 specific colors from its palette. Thus,

Pr[Egoodu | Ebadu ] ≤
(

1 − C
2pu

)

|Ψ(u) |/3 ≤
(

1 − C
2pu

) pu
3 ≤ exp

(

−C
6

)

.

We are now in a position to prove the first inequality. The proba-

bility thatv remains uncolored is atmost Pr[Ebadi ]+Pr[Egoodu | Ebadu ],
which is at most exp(−C6 ) + exp(−Ω(p⋆)).

Next, we prove the second inequality. Let Nout(v) = (u1, . . . ,uk ).
Let Ebadi and E

good
i be short for Ebadui and E

good
ui . By a union bound,

Pr

[

k
⋃

i=1

Ebadi

]

≤ outdeg(v) · exp(−Ω(p⋆)) ≤ d⋆ · exp(−Ω(p⋆)).

Let Xi = 1/pui if either E
good
i or Ebadi occurs, and Xi = 0 other-

wise. Let X =
∑k
i=1 Xi . Notice that if E

bad
i does not occur, for all

i ∈ [1,k], we have X = d .
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Notice that µ
def
= E[X ] ≤ exp(−C/6)/C , since Pr[Egoodi | Ebadi ] ≤

exp(−C6 ). Each variableXi is within the range [ai ,bi ], where ai = 0

and bi = 1/pui . We have
∑k
i=1(bi −ai )2 ≤ ∑

u ∈Nout(v) 1/(pu ·p⋆) ≤
1/(Cp⋆). By Hoeffding’s inequality,5 we have

Pr[X ≥ (1 + λ) exp(−C/6)/C] ≤ Pr[X ≥ (1 + λ)µ]

≤ exp

(

−2(λµ)2
∑k
i=1(bi − ai )2

)

≤ exp
(

−2(λ exp(−C/6)/C)2(p⋆C)
)

= exp
(

−2λ2p⋆ exp(−C/6)/C
)

.

Thus,

Pr[d ≥ (1 + λ) exp(−C/6)/C]

≤ exp
(

−2λ2p⋆ exp(−C/6)/C
)

+ d⋆ exp(−Ω(p⋆)). �

Proof of Lemma 3.7. In what follows, we show how Lemma 5.1
can be used to derive Lemma 3.7. Our plan is to apply ColorBid-

ding for O(log∗(p⋆)) iterations. For the ith iteration we use the
parameter Ci , which is defined as follows: C1 = C , and Cl =

min{
√

p⋆,
Cl−1

(1+λ) exp( −Cl−16 )
}. Here λ must be selected to be suffi-

ciently small such that (1 + λ) exp(−Cl−1/6) < 1 so the sequence
increases. For example, if C ≥ 6 initially, we can fix λ = 1 through-
out.

In each iteration each vertex v use the same parameter pv , since
the number of excess colors never decrease. The last iteration l⋆ =
O(log∗(p⋆)) is the minimum index l such that Cl =

√

p⋆.
At the end of the lth iteration (1 ≤ l ≤ l⋆), we have the following

invariants Hl that we expect all vertices to satisfy: If 1 ≤ l < l⋆,
for each uncolored vertex v after the lth iteration, we require the
summation of 1/pu over all uncolored vertices u in Nout(v) to be
less than 1/Cl+1; if l = l⋆, all vertices are colored at the end of
the lth iteration. The purpose of the invariant Hl (1 ≤ l < l⋆) is
to guarantee that the parameter Cl+1 is a valid parameter for the
(l + 1)th iteration.

We remove from consideration all vertices v violating Hl at
the end of the lth iteration, and add them to the set Vbad. Our

goal is to show that with probability at most exp(−Ω(
√

p⋆)) +
d⋆ exp(−Ω(p⋆)), a vertex v is removed, and this is true even if
the randomness outside constant distance to v is determined ad-
versarially. By definition ofHl⋆ , all vertices that are not removed
must be colored.

By Lemma 5.1 the probability that a vertex v is removed at the
end of the lth iteration, where 1 ≤ l < l⋆, is at most

exp(Ω(p⋆/Cl+1)) + d⋆ exp(−Ω(p⋆))

≤ exp(−Ω(
√

p⋆)) + d⋆ exp(−Ω(p⋆))

5The variables {X1, . . . , Xk } are not independent, but we are still able to apply
Hoeffding’s inequality. The reason is as follows. Assume that Nout(v) = (u1, . . . , uk )
is sorted in reverse topological order, and so for each 1 ≤ j ≤ k , we have Nout(uj ) ∩
{uj , . . . , uk } = ∅. Thus, conditioning on (i) Ebad

i and (ii) any colors selected by

vertices in
⋃

1≤j<i Nout(uj ) ∪ {uj }, the probability that E
good
i occurs is still at most

exp( −C6 ).

and the probability that a vertexv is removed at the end of the l⋆th

iteration is at most exp(−Cl⋆/6) + exp(−Ω(p⋆)) ≤ exp(−Ω(
√

p⋆)).
�

6 COLORING ϵ-DENSE VERTICES

Consider the following setting. We are given a graph G = (V ,E),
where a subset of vertices are already colored. Let S be a subset of
the uncolored vertices, and suppose S is partitioned into д disjoint
sets (clusters) S1, . . . , Sд , each with weak diameter 2. Our goal is to
color a large fraction of the vertices in S in only constant time.

In Section 6.1 we describe a procedure DenseColoringStep (ver-
sion 1) that is efficient when each vertex has many excess colors
w.r.t. S . It is analyzed in Lemma 6.1, which is then used to prove
Lemmas 3.3 and 3.4.

For Lemmas 3.5 and 3.6, we have to deal with the case where no
excess color is available, and so we need another version of Dense-
ColoringStep. The proof of these two lemmas and the description
of DenseColoringStep (version 2) are omitted in the conference
proceeding; they can be found in the full version of the paper [7].

6.1 Version 1 of DenseColoringStep — Many

Excess Colors are Available

All vertices in S agree on a parameter Zex, which is a lower bound
on the number of excess colors w.r.t. S . That is, for each v ∈ S , the
palette size of v minus the number of neighbors of v in S is at least
Zex.

Each vertex v ∈ Sj is associated with a parameter Dv . We pri-
oritize vertices by Dv -value, breaking ties by ID. Define N ′(v) =
{u ∈ N (v) | Du < Dv or Du = Dv and ID(u) < ID(v)} to be the
neighbors of v with higher priority. For each v ∈ Sj , we assume
that the choice of the parameterDv satisfies |N ′(v)∩(S \Sj )| ≤ Dv .
Define δv = Dv/Zex.

The procedure DenseColoringStep (version 1) is as follows.

(1) Let π : {1, . . . , |Sj |} → Sj be the permutation that lists Sj in
increasing order by D-value, breaking ties by ID. For q from
1 to |Sj |, the vertex π (q) selects a color c(π (q)) uniformly at
random fromΨ(π (q))\{c(π (q′)) | q′ < q and {π (q),π (q′)} ∈
E(G)}.

(2) Each v ∈ Sj permanently colors itself c(v) if c(v) is not
selected by any vertices in N ′(v).

Observe that because each Sj has weak diameter 2, Step 1 of
DenseColoringStep takes only O(1) rounds of communication. In-
tuitively, the probability that a vertexv ∈ S remains uncolored after
DenseColoringStep (version 1) is at most δv . The following lemma
gives us the probabilistic guarantee of the DenseColoringStep (ver-
sion 1).

Lemma 6.1. Consider an execution of DenseColoringStep (version

1). Let T be any subset of S , and let δ = maxv ∈T δv . For any t , the

number of uncolored vertices inT is at least t with probability at most

Pr[Binomial(|T |,δ ) ≥ t].

Proof. Let T = {v1, . . . ,v |T |} be listed by priority: in increas-
ing order by D-value, breaking ties by vertex ID. (Remember that
vertices in T can be spread across multiple clusters in S .) Imagine
exposing the color choices of all vertices in S , one by one, in order
of priority. The vertex vl will successfully color itself if it chooses
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any color not already selected by a vertex in N ′(vl ) ∩ (S \Sj ). Since
|N ′(vl )∩(S \Sj )| ≤ Dv andvl has at leastZex colors to choose from,
the probability that it fails to be colored is at mostDv/Zex = δv ≤ δ ,
independent of the choices made by higher priority vertices. Thus,
for any t , the number of uncolored vertices in T is at least t with
probability at most Pr[Binomial(|T |,δ ) ≥ t]. �

Next, we prove Lemmas 3.3 and 3.4. The basic setup of these
two proofs are similar. We let S = W S

k
(k = 1 for Lemma 3.4),

and let S1, . . . , Sд be the super-blocks constituting S . According

to Lemma 2.4 we can set Zex = ∆/2 log2(1/ξk ) and according to
Lemma 2.1’s bound on the external degree we can set Dv = ϵi∆ if
v is a layer-i vertex. Our algorithm consists of several iterations of
DenseColoringStep (version 1) on S = S1 ∪ · · · ∪ Sд .

6.2 Proof of Lemma 3.3

We execute DenseColoringStep (version 1) for 6 iterations using
the same parameters Zex and Dv for all iterations. Consider any
vertex v ∈ V⋆, and a layer i that is within stratum k . Let T be
the set of layer-i neighbors of v in S . Then δ = maxu ∈T {δu } =
ϵi∆
Zex
= 2ϵi log

2(1/ξk ) ≤ 2ϵi log
2(1/ϵi ). Define t0 = |T |, and tl =

max{2δtl−1, ϵ5i ∆}. Since (2δ )
6 |T | ≤ ϵ5i ∆, we have t6 = ϵ5i ∆.

Assume that at the beginning of the lth iteration, the number
of uncolored vertices in T is at most tl−1. By Lemma 6.1 and a
Chernoff bound, after the lth iteration, with probability at most
exp(−Ω(tl )) ≤ exp(−Ω(ϵ5i ∆)), the number of uncolored vertices
in T is more than tl . Thus, with probability 1 − exp(−Ω(poly(∆))),
after 6 iterations the number of uncolored layer-i neighbors of v in
W S
k
is at most ϵ5i ∆.

6.3 Proof of Lemma 3.4

Notice that the parameter δv = Dv/Zex is always at most

2ϵ1 log
2(1/ϵ1) ≪ ∆

−1/20
.

Thus, we define δ̄ = ∆
−1/20 as an upper bound on δv . Let x be a

number to be determined. Consider the following invariants that
all vertices v ∈ S and all clusters Sj should satisfy after the lth
iteration:

InvariantHl (v): the number of uncolored vertices of

(N (v) ∩ S) is at most max{x , δ̄ l∆}.
InvariantHl (Sj ): the number of uncolored vertices of Sj is

at most max{x , δ̄ l∆}.
Let l⋆ be minimum such that δ̄ l

⋆

∆ ≤ x . We run DenseColoring-

Step (version 1) for l⋆ iterations. Again, we use the same parameters
Zex and Dv (as defined above). Via Lemma 6.1, it is straightforward
to prove the following probabilistic bounds using a Chernoff bound.

Pr[H1(v)] = 1 − exp(−Ω(poly∆)).
Pr[Hl (v) | Hl−1(v)] = 1 − exp(−Ω(x)), for 1 < l ≤ l⋆.

Pr[H1(Sj )] = 1 − exp(−Ω(poly∆)).
Pr[Hl (Sj ) | Hl−1(Sj )] = 1 − exp(−Ω(x)), for 1 < l ≤ l⋆.

For any l ∈ [1, l⋆], any uncolored vertex v ∈ Sj such that Hl (v) or
Hl (Sj ) is violated is removed from further consideration at the end
of the lth iteration, and included in Vbad. Thus, by the end of the

l⋆th iteration, we have x as an upper bound on the cluster size and
the maximum degree of the remaining uncolored vertices.

Case: ∆ = O(log4 n). For this case, we set x = ∆
1/20. We do

one additional iteration of DenseColoringStep (version 1), aiming
to reduce the maximum degree of the uncolored vertices to O(1).
For this iteration, we set Dv = ∆

1/20, and Zex = ∆/2 log2(1/ξ1) =
Θ(∆/log2 ∆). Thus, we have the shrinking rate

δv = O(∆−19/20 log2 ∆).
Letv ∈ S be any vertex. By Lemma 6.1, the probability that there

exist at least t uncolored neighbors of v in S is at most

Pr[Binomial(|T |,δ ) ≥ t],
where |T | = ∆

1/20 and δ = O(∆−19/20 log2 ∆). Thus,

Pr[Binomial(|T |,δ ) ≥ t] ≤ |T |tδ t = ∆
−Ω(t )

.

We choose t = Θ(c) = O(1) in such a way that |T |tδ t ≪ ∆
−c .

Let v ∈ S be an uncolored vertex. If there exist at least t uncolored
neighbors of v in S , then we add v toVbad; otherwise, v is added to
R. It is clear that the subgraph induced by R has maximum degree
O(1).

Case: ∆ = Ω(log4 n). We now turn to the case where ∆ =

Ω(log4 n). We set x = Θ(logn). Clearly, with high probability (i.e.,
1 − 1/poly(n)) all invariants H1(v) and H1(Sj ) are met for each
iteration. But we still need to reduce the maximum degree from
Θ(logn) to O(1).

We do DenseColoringStep (version 1) for one extra iteration.
This time, for each vertex v , we use the parameter Dv = D =

x = Θ(logn), and so the shrinking rate is δv = δ = D/Zex =
O

(

logn

∆/log2 ∆

)

≪ 1/log2 n, due to the assumption ∆ = Ω(log4 n).
Consider any uncolored vertexv , and letT be the set of uncolored

neighbors of v just before this iteration. Notice that |T | ≤ x =

O(logn). By Lemma 6.1, after this iteration, the number of uncolored
vertices in T is at least t with probability at most

Pr[Binomial(|T |,δ ) ≥ t] ≤ |T |tδ t = (O(1/logn))t .
After this iteration, we partition the uncolored vertices into two
subsets X and R, where X consists of all vertices whose number of
uncolored neighbors are at least t . Thus, the subgraph induced by
R has maximum degree O(1).

Using Lemma 3.1, we argue that if t is set to be sufficiently large,
then vertices in X form connected components of size at most
poly logn, with high probability. Consider the graphG ′ induced by
the vertices that are uncolored at the beginning of this iteration,
together with additional edges added to G ′ making (the uncolored
vertices of) each cluster a clique. Due to the O(logn) upper bound
on the maximum degree and the cluster size, the maximum degree
of G ′ is also ∆

′
= O(logn). Recall that a vertex v is added to X

with probability at most (O(1/logn))t , and this is true regardless of
random bits of vertices outside of a constant radius ofv inG ′. Thus,
if t is a sufficiently large constant, then w.h.p., each connected com-
ponent of X in G ′ has size at most O(poly(∆′) · logn) = poly logn.
Thus, w.h.p., each connected component of X (in the original graph
G) has size poly logn.

Notice that in the above analysis, to argue that the component
size is small, it is crucial that we use Lemma 3.1 w.r.t. a graph whose
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maximum degree is poly logn, and this is the reason that we define
the graph G ′. This also explains the reason for having a separate
set X (rather than adding all these vertices to Vbad). In general, the
size of a component in Vbad ∪ X could be super-polylogarithmic.

7 CONCLUSION

We have presented a new randomized (∆ + 1)-list coloring algo-
rithm that requires O(log∗ n + Detd (poly logn)) rounds of commu-

nication, which comes close to the Ω(log∗ n + Det(
√

logn)) lower
bound implied by Naor [26] (Ω(log∗ n)) and Chang, Kopelowitz,

and Pettie [8] (Ω(Det(
√

logn))).6 When ∆ is unbounded (relative
to n), the best known algorithms for (∆ + 1)- and (deg+1)-list
coloring are the same: they use Panconesi and Srinivasan’s [27]

2O (
√
logn)-time construction of network decompositions. Even if

optimal (O(logn),O(logn))-network decompositions could be com-
puted for free, we still do not know how to solve (∆+1)-list coloring
faster thanO(log2 n) time. Thus, reducing theDetd (poly logn) term
in our running time below O((log logn)2) will require a radically
new approach to the problem.

It is an open problem to generalize our algorithm (or that of [19])
to solve the (deg+1)-coloring problem. The main difficulty is to
extend the definition of łϵ-friendž to account for neighbors of differ-
ent degrees, while still preserving the useful properties of ϵ-dense
clusters from Lemma 2.1.

A CONCENTRATION BOUNDS

We make use of the following standard tail bounds [10]. Let X be
binomially distributed with parameters (n,p), i.e., it is the sum of
n independent 0-1 variables with mean p. We have the following
bound on the lower tail of X :

Pr[X ≤ t] ≤ exp

(

−(µ − t)2
2µ

)

, where t < µ = np.

Chernoff bounds also hold when X is the sum of n negatively corre-

lated 0-1 random variables [10, 11] with mean p, i.e., total indepen-
dent is not required. We use a bound on the upper tail of X with
mean µ = np.

Pr[X ≥ (1 + δ )µ] ≤
{

exp(−δ
2µ
3 ) if δ ∈ [0, 1]

exp(−δ µ3 ) if δ > 1.

Consider the scenario where X =
∑n
i=1 Xi , and each Xi is an

independent random variable bounded by the interval [ai ,bi ]. Let
µ = E[X ]. Then we have the following concentration bound (Ho-
effding’s inequality) [20].

Pr[X ≥ (1 + δ )µ] ≤ exp

(

−2(δµ)2
∑n
i=1(bi − ai )2

)

.
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