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We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid,
forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the per-
iod 1989–2011. To perform the OI we used observational data from the Spanish Meteorological Agency
(AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to
generate grids for the five observed climate variables necessary to compute ETo using the FAO-
recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids
are less sensitive to variations in the density and distribution of the observational network than those
generated by other interpolation methods. This is because our implementation of the OI method uses
a physically-based climate model as prior background information about the spatial distribution of the
climatic variables, which is critical for under-observed regions. This provides temporal consistency in
the spatial variability of the climatic fields. We also show that increases in the density and improvements
in the distribution of the observational network reduces substantially the uncertainty of the climatic and
ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification sug-
gests the existence of a trade-off between quantity and quality of observations.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Estimations of the atmospheric evaporative demand (AED) are
critical for understanding and diagnosing imbalances in the
hydrologic supply and demand systems of a region. Of the available
methods to estimate AED, the Food and Agriculture Organization
recommended form of the Penman-Monteith equation (FAO-PM
ETo) is considered the best and most reliable one. The FAO-PM is
a modification of the physically-based Penman-Monteith equation
proposed in the FAO-56 manual (Allen et al., 1998), and has been
shown to outperform other methods under a wide range of
conditions. However, this method is data intensive, requiring
information on air temperature, relative humidity, solar radiation,
and wind speed. Simultaneous information on all these variables is
often unavailable at monitored locations used for regional AED
analysis.

Alternatives to obtain ETo estimates using less data-
demanding models exist, often only requiring information on air
temperature (e.g. Blaney and Criddle, 1950;Priestley and Taylor,
1972; Hargreaves and Samani, 1985). However, as Irmak et al.
(2012) and McVicar et al. (2012) pointed out, the information
carried by the additional meteorological variables required by
the FAO-PM method are critical to obtain reliable ETo estimates.
Hence, it is important to find a methodology that permits the
generalization of the FAO-PM calculations to locations for which
full information on meteorological conditions is not available. A
first attempt at this generalization was included in the FAO-56
manual (Allen et al., 1998), recommending a methodology to esti-
mate missing data using stationary relationships between tem-
perature and other variables. This method, hereinafter referred
to as FAO-PMT, is however not devoid of problems due to the
assumption of stationarity in the relationship between meteoro-
logical variables.

An alternative approach consists in using spatial interpolation
to estimate the value of missing variables at the desired locations
using data from nearby stations, an option that Tomas-Burguera
et al. (2017) showed to perform better than FAO-PMT or other
simplified models such as Hargreaves and Samani, at least in the
Iberian Peninsula (IP). This methodology have been tested in other
regions, such as Greece (Mardikis et al., 2005), China (McVicar
et al., 2007), Austria (Haslinger and Bartsch, 2016), or Great Britain
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(Robinson et al., 2017). The last two efforts resulted in the develop-
ment of high spatial resolution (1 km) datasets for these countries.

Also in Britain, Prudhomme and Williamson (2013) tested the
use of HadRM3-Q0 to quantify potential evapotranspiration and
compared it against the Meteorological Office Rainfall and Evapo-
ration Calculation System (MORECS) observational grid. In the
Conterminous United States, Abatzoglou (2013) constructed a
FAO-PM-based ETo dataset derived from his 4 km resolution daily
downscaling of meteorological variables. At a much coarser spatial
resolution, the Climate Research Unit (CRU) TS dataset also offers
an estimation of the FAO-PM ETo with global coverage (Harris
et al., 2014).

While gridded datasets based on spatial interpolation methods
are easy to implement, the quality of the results is highly depen-
dent on the spatial density of the observational dataset used for
interpolation. The minimum necessary density of the observational
network capable of resolving the meteorological field depends on
the spatial variability of the meteorological variable, and smooth-
ing of the meteorological field occurs when the observational net-
work is sparse. This smoothing is exacerbated in regions of
complex terrain (Silverman and Maneta, 2016). Moreover, geosta-
tistical interpolation methods often rest on the assumption that
the spatial model (the semivariogram) is spatially stationary, an
assumption that is not valid in many practical situations, and spe-
cially over rugged regions with sparse observational coverage.

The use of climate grids derived from physically-based climate
models is an alternative that overcome some of the problems of
interpolation methods. These models, which are commonly used
in climatological and meteorological studies, have several main
advantages: the computed meteorological grids have homoge-
neous and consistent temporal and spatial coverage, they capture
the dependence (covariance) between climatic variables, and they
maintain the physical spatial coherence of the field, taking into
account the influence of topography on the meteorological vari-
ables and reducing the spatial smoothing that is characteristic of
classic interpolation methods. There are many examples of the
use of meteorological outputs from climatologic models to calcu-
late AED. Ishak et al. (2010) used NCAR/Penn State Mesoscale
Model Version 5 (MM5) to downscale ERA-40 (European Centre
for Medium-Range Weather Forecasts Re-analysis) (Uppala et al.,
2005) for estimating ETo in a catchment of southwest England.
Similarly, Srivastava et al. (2013) compared the performance of
ERA-INTERIM (Dee et al., 2011) and National Centers for Environ-
mental Prediction (NCEP)/National Center for Atmospheric
Research (NCAR) (Kalnay et al., 1996) reanalysis data downscaled
through the Weather Research and Forecasting model (WRF) to
estimate ETo. Strong et al. (2017) tested the use of WRF to estimate
ETo in Utah, comparing the results against the Gridded Evapotran-
spiration estimation (GridET) framework (Lewis and Allen, 2016)
and obtaining a good performance. Despite its advantages, the
use of physically-based climate models data to estimate ETo also
presents important issues. The presence of a bias is very common,
which is the reason why a bias correction step using ground
weather station data is compulsory in forecasting models. Also,
most climatologic model products have a coarse resolution and
some variables, such as wind speed, are often poorly estimated
or carry high uncertainties.

A third alternative is to use a mixture of distinct sources of data
for estimating ETo. For instance, Hart et al. (2009) developed a sys-
tem to estimate ETo in California by using weather station data and
satellite-based estimates of radiation. Martins et al. (2017) used
meteorological fields from a reanalysis at 0.5� of spatial resolution
to estimate ETo, but without the bias correction process conducted
by Sheffield et al. (2006) on this dataset.

The different studies described above use the FAO-PM approach
to generate ETo estimates, but do not provide a formal
quantification of their uncertainty. Studies that take into account
the uncertainty of ETo estimations look at it mostly as the variation
in an ensemble of models (Kay and Davies, 2008;Kingston et al.,
2009; Hosseinzadehtalaei et al., 2016), and do not consider the
uncertainty of individual members of the ensemble. Unfortunately,
the variance of a model ensemble reflects the uncertainty associ-
ated with a (finite) set of model architectures, and does not neces-
sarily reflect the quality of each ensemble member, which is
critical to interpret patterns emerging form the analysis of individ-
ual grids. For instance, Brohan et al. (2006) and Morice et al. (2012)
proposed and evaluated distinct methodologies to quantify the
uncertainty in the HadCRUT3 and HadCRUT4 datasets, and used
this information to evaluate the statistical significance of temporal
trends analysis done on these datasets, which allowed them to
eliminate non-significant trends from further analysis and
interpretation.

The quantification of the uncertainty around interpolated
climatologic estimates is specially important when interpolation
is based on an inhomogeneous or time-changing network of obser-
vations. Variations over time in the uncertainty of the recon-
structed climatologic field reflects variations in the quality of the
observational network. For instance, changes in the number or
location of stations in the network can have important effects on
the spatial variance of an interpolated grid. An analysis of the vari-
ance in a time series of these grids may yield trends easily attribu-
table to a climate processes if information on the uncertainty of the
estimates is not available. Beguería et al. (2016) argued that this
may be one of the most important handicaps of the application
of spatial interpolation techniques for climatologic studies.

Densifications and reorganizations of regional climatologic net-
works are very common. For example, the deployment of auto-
matic weather stations in Spain accelerated dramatically during
the last decade, increasing the availability of data for the estima-
tion of ETo. A few decades back, only weather stations from the
principal network (approximately 100) measured the variables
required to compute ETo (Azorin-Molina et al., 2015), while cur-
rently more than 700 weather stations are collecting and providing
near real time data on these variables. Since the spatial distribution
of AED is a quantity difficult to measure directly, studies seeking to
identify spatial-temporal trends in AED will rely on ETo grids
reconstructed using the FAO-PMT approximation, which in turn
relies on information from weather stations. Minimizing and
controlling the impact of the configuration of the observational
network on the resulting grid is important to avoid miss-
interpreting statistical artifacts as a real climatologic process.

Beyond the increasing availability of observational data for cli-
matologic studies, climatologic fields from new physically-based
climate models at high spatial resolution have become available
thanks to international projects like Coordinated Regional climate
Downscaling Experiment (CORDEX) (Giorgi et al., 2009). These
models often cover a period starting in 1979 similar to the ERA-
INTERIM reanalysis product (Dee et al., 2011). The advantage of
these products is that they reconstruct climatological fields that
are based on atmospheric physics and largely independent from
ground observations, which overcomes some of the disadvantages
of interpolated grids.

Unprecedented data availability and access to computational
power facilitate the use of data fusion techniques to obtain
improved estimates of ETo. Here we propose to use data assimila-
tion methods to combine information from ground observatories
and from physically-based climate models to produce improved
climatic and ETo grids. The variance of the resulting grids is less
sensitive to the number of available stations in the observational
network, while ensuring that the grid from climate models are con-
ditioned by actual observations. In addition, an estimation of their
mean error is also provided as a natural by-product of the method.
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Specifically, our methodology is based on Optimal Interpolation
(OI), which has been extensively used in the analysis of weather
forecasts, in climatology and in oceanography (e.g. Reynolds
et al., 2002; Ruiz-Arias et al., 2015; Lusana, 2017). OI is a minimum
variance estimator that is easy to implement and that takes into
account observational and model uncertainties in the final
estimates.

The objective of this paper is to describe the generation of a grid
of ETo over the IP. This grid maximizes the use of all available data
while controlling the uncertainty and statistical stability of the
resulting grid. To achieve this, we first used ground observations
and a Regional Climate Model within an OI scheme to generate
gridded estimates and standard errors of each individual meteoro-
logical input variable needed to calculate the FAO-PM ETo. Then we
used this information with the FAO-PM equation to obtain the
optimal ETo estimate. To quantify the uncertainty of the gridded
ETo, the errors from each individual gridded input variable were
propagated through the FAO-PM equation using a first order
method. We then analyzed the resulting grids to assess if it reduces
some of the problems detected in standard interpolation methods
such as kriging.
2. Dataset

Daily meteorological data on maximum (Tmax) and minimum
temperature (Tmin), relative humidity (RH), wind speed (W) and
sunshine duration (SD) (as the best available surrogate for solar
radiation, which is poorly measured in Spain, (Sanchez-Lorenzo
et al., 2013)) from 1989 to 2011 was provided by the Spanish mete-
orological agency (AEMET). A quality control process was imple-
mented at daily time-scale (Tomas-Burguera et al., 2016) prior to
the aggregation to monthly scales following the recommendation
of theWorld Meteorological Organization (WMO, 1989), using only
weather stations with more than 12 months of data. The length of
the available record varied between variables and the number of
stations were different for each variable and varied over time. A
substantial increase in the number of stations recording RH and
W is noticeable toward the end of the study period, as previously
highlighted by Vicente-Serrano et al. (2014b) and Azorin-Molina
et al. (2016), respectively. Table 1 summarizes the number of
weather stations available after quality control. The highest num-
ber of weather stations corresponded to temperature (the same
number of weather stations was available for Tmin and Tmax) and
the minimum to SD. No observed meteorological data was used
for Portugal.

The Regional Climate Model (RCM) that we used in this study
was HIRHAM version 5 (Christensen et al., 2006), which dynam-
ically downscales the ERA-INTERIM model (Dee et al., 2011) for
the CORDEX project (Giorgi et al., 2009). From this model we
extracted gridded outputs for Tmax; Tmin;RH;W , and SD, which
are the same variables in the observational dataset. The grids
covered the IP at monthly temporal resolution and 0:11� spatial
resolution for the period 1989–2011. Additionally, a digital ele-
vation model obtained from the Spanish National Geographic
Institute (IGN) was used to evaluate the mean elevation of each
grid cell.
Table 1
Number of weather stations.

Variable Number of weather stations Simultaneous maximum

Temperature 3187 1871
Relative humidity 756 633
Wind speed 659 525
Sunshine duration 131 104
The study area, and the location of the main geographic features
referenced in this paper, are presented in Fig. 1.

3. Methods

The meteorological variables described above were used as
inputs to the Penman Monteith equation to obtain ETo. We used
the form of the Penman Monteith equation recommended by
FAO (Allen et al., 1998). To construct the ETo grid from information
obtained at meteorological sites we used the method of OI, a data
assimilation technique commonly used in the atmospheric and
ocean sciences. The application of the OI algorithm to generate
the ETo grid can be done in two different ways:

1. calculate the ETo using FAO-PM at each point with available
observations and then optimally interpolate the resulting ETo

values to generate the grid; and
2. optimally interpolate the five individual meteorological fields

needed to calculate ETo, generate five interpolated grids, one
per variable, and then calculate ETo using the FAO-PM equation
in the complete grids.

Previous work (Tomas-Burguera et al., 2017) has shown that
although more computationally demanding, the latter approach
is preferable, at least in the IP, and therefore we chose it in this
study. Since in option 2) ETo is not directly optimally interpolated,
the uncertainty of each individual meteorological field needs to be
propagated through the FAO-PM equation to calculate the final
uncertainty of the ETo estimates.

3.1. ETo estimation

Allen et al. (1998) adapted the Penman–Monteith equation to a
reference crop of height 0.12 m, a surface resistance of 70 s m�1

and an albedo of 0.23:

ETo ¼
0:408 � D � ðRn � GÞ þ c � 900

Tþ273

� �
� U2 � ðes � eaÞ

Dþ c � ð1þ 0:34 � U2Þ ð1Þ

where Rn is the net radiation at the crop surface (MJ m�2 day�1), G is

the soil heat flux density (MJ m�2 day�1), T is the mean air temper-
ature at 2 m (�C), U2 is the wind speed at 2 m (m s�1), es is the
saturation vapor pressure (kPa), ea is the actual vapor pressure
(kPa), es � ea is the saturation vapor pressure deficit (kPa), D is the
slope of the vapor pressure curve (kPa �C�1) and c is the psychro-
metric constant (kPa �C�1). The value 0.408 is used to convert from

MJ m�2 day�1 units to kg m�2 day�1 (alternatively: mm day�1).
Some of the previous variables are not directly measured, but

according to the procedure defined in Allen et al. (1998) they could
be estimated using the meteorological data at hand. Specifically,
T;Rn;G; es; ea and D were estimated using SD; Tmax; Tmin and RH.
The variable U2 coincided with W.

The equation (Eq. (1)) is usually known as FAO-PM and is the
equation we used to estimate ETo at the monthly time-step. When
necessary, we shall distinguish between ETo computed using RCM

data, ETb
o, and from OI data, ETa

o.

3.2. Optimal Interpolation

The OI equations can be easily derived as a variational problem
with the goal of finding a vector of estimates that minimizes the
total error variance of the field being estimated (Wikle and
Berliner, 2007). The estimator is unbiased and linear between the
observations and a first guess (a priori estimation) of the field.
The general form of the OI equations takes the form:
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xa
v ¼ xb

v þ Kvðyv �Hvxb
vÞ

Kv ¼ ðPvH|
vÞðHvPvH

|
v þ RvÞ�1

Pþ
v ¼ ðI� KvHvÞPv

ð2Þ

where the subscript v refers to each one of the meteorological
variables used in the Penman Monteith equation
(Tmax; Tmin;RH;W; SD) and that we are interested in optimally inter-
polating. Notice that we have an independent OI process for each
variable; xa is a vector of length m representing the final interpo-
lated variable, i.e. the OI estimator for the variable v; xb is a vector
of length m representing the background or first guess of the field
(in our case the RCM); y is a vector of length n of observations (in
our case the instrumental data from the weather stations);
H (n�m) is a sparse binary matrix to project the background data
into the observation space; K (m� n) is the Kalman gain matrix
that provides the optimal linear combination between the back-
ground and the observations; P (m�m) and R (n� n) are the error
covariance matrices for the background and the observations,
respectively; Pþ (m�m) is the error covariance matrix of xa;
and I (m�m) is the identity matrix. Finally, m is the grid size,
which is invariant and in our case has 3930 cells, and n is the
number of grid cells with observations, which varies with each
variable and time step.

The results are sensitive to the values prescribed for P and R,
but these quantities are difficult to estimate because the amount
of background (process) uncertainty associated and the observa-
tional errors are typically unknown. The parameterization of these
quantities is explained later in this section.

OI assumes that both the background and the observations are
unbiased with normally distributed errors:

xb
v ¼ xt

v þ gv ; gv � Nð0;PvÞ
yv ¼ yt

v þ ev ; ev � Nð0;RvÞ
ð3Þ
where xt is the (unknown) true value of the meteorological field, yt

is the (unknown) true value at grid cells with observations, and g
and e are random errors normally distributed with mean 0 and
covariance matrices P and R, respectively. P and R are assumed to
be independent from each other, a condition that is critical for the
correct performance of the OI.

In this study, the background estimates of the meteorological
fields (xb

v and Pv ) were obtained from the RCM. We assume that
the climatologic variables of each month are random variables
with stationary variance, and that each month in the record is a
sample. Following this assumption, and in the absence of better
information, the inter-annual variance of a meteorological variable
is the most natural approximation of the uncertainty about the
estimation of such variable in a given specific month and year. In
other words, variables with more variance have higher uncertainty.
This is further discussed in Section 4.5.

The matrix Pjv for each of the 12 months j in the record of N
years can then be calculated as:

Pjv ¼ 1
N � 1

xb
j v � 1xb

j
|
v

� �|
xb
j v � 1xb

j
|
v

� �
; for j ¼ f1; . . . ;12g ð4Þ

where xb
j v

is a matrix where each column is a cell in the grid and
each row is a simulated month j in the record, 1 is a column vector

of ones of size N, and xb
j v

is a column vector with the monthly

means of each cell obtained by averaging the columns of xb
j v
.

For simplicity, the use of the subscript v to refer to the different
meteorological variables is suppressed from now on. When neces-
sary, explicit references to the variables will be used.

3.2.1. Observation uncertainty, R
Unlike RCM outputs, which provide meteorological estimates

that are representative at the grid-cell scale, ground observations
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at a location in a cell can be considered a sample of the probability
distribution of the variable within that cell. This distribution is
determined by the spatial variability of the meteorological variable
within the cell, which is unknown. We calculated the observed
estimates at each grid cell where at least one weather observation
exists, and interpreted R as representing the uncertainty associ-
ated with the point-to-grid conversion (representational uncer-
tainty). In other words, R is the uncertainty that the actual
measured location is representative of the average conditions of
the entire cell. Representational errors are assumed to be indepen-
dent, i.e. R is a diagonal matrix and therefore error covariances
between stations are zero. Note that since R is diagonal, the com-
bination of observational information imposed by K on the opti-
mally interpolated grid (Eq. (2)) is mostly controlled by the
covariances of P (i.e. interpolation relies on the spatial covariance
of the climatologic process as described by the physics of the
model). Without a direct way to calculate the representational
error we chose R to be inversely proportional to the number of sta-
tions in the monitored cell:

R ¼ Ib=nobs ð5Þ
where I is the identify matrix of order n;b is a fixed scaling param-
eter that controls the magnitude of R and that will be used to test
the impact of representational errors on the results, and nobs is the
number of observatories used in the estimation of y. The higher
the number of stations in a cell, the lower the representational
uncertainty.

Guided by our experience, we initially fixed b at 4.5 for Tmax and
Tmin, 9 for RH and W and 0.9 for SD. To investigate the impact of
scaling R on the results, we performed a sensitivity analysis on
the choice of b as described in Section 3.4.

3.3. Uncertainty estimation

To estimate the uncertainty of ETa
o we propagated the uncer-

tainty of each one of the meteorological variables through the
FAO-PM equation using a first-order method. For this we linearized
the FAO-PM equation to obtain its Jacobian matrix JETo and used it
to propagate the covariance of the meteorological variables. For a
specific location (grid-cell) k, we have:

ðra
ETo Þ

2
k
¼ ðJETo ÞkQ kðJETo Þ|k ð6Þ

where Q k is the covariance matrix of the variables at location k. The
Jacobian was analytically calculated with the following form:

ðJETo Þ ¼ @ETo
@Tmax

@ETo
@Tmin

@ETo
@HR

@ETo
@W

@ETo
@SD

h i

Assuming independence of errors between the meteorological
variables, and using only the diagonal values (variances) of Pþ,
i.e. r2 � diagðPþÞ, the total error covariance matrix at location k
is diagonal:

Q k ¼

ðr2
Tmax

Þ
k

0 0 0 0

0 ðr2
Tmin

Þ
k

0 0 0

0 0 ðr2
HRÞk 0 0

0 0 0 ðr2
WÞk 0

0 0 0 0 ðr2
SDÞk

2
6666666664

3
7777777775

where the subscript k denotes we are using the scalar k element
of r2

v . The assumption of independence and the diagonal nature
of Q permits to avoid operating with the full matrix Q and sim-
plifies the propagation of errors. Under these assumptions, the
uncertainty of ETa

o can be calculated independently at each loca-
tion k as:
ðra
EToÞ

2
k
¼ @ETo

@Tmax

� �2

k

� ðr2
Tmax

Þ
k
þ @ETo

@Tmin

� �2

k

� ðr2
Tmin

Þ
k
þ

@ETo

@HR

� �2

k

� ðr2
HRÞk þ

@ETo

@W

� �2

k

� ðr2
WÞk þ

@ETo

@SD

� �2

k

� ðr2
SDÞk

ð7Þ
3.4. Sensitivity analysis

To assess the impact that the choice of R has on the results, we
conducted multiple OI analyses using a range of values of b to vary
de magnitude of R. For each interpolated meteorological variable,
we tested four different values of this scaling parameter that
evenly partitioned the range of R from an end member that repre-
sents high confidence in the observations (<R> 6<P>) to a value
that represents low confidence (<R> P <P>). Table 2 shows the
spatial mean values of P (<P>), which were used as a reference
to design the values to scale R. Lowest and higher values of (<P>)
are selected from the 12 unique (<P>) monthly values. b values
are chosen to cover the range between a value lower than the low-
est (<P>) value, and a value higher than the highest (<P>) value.
3.5. Spatial correlation with Portugal

The impact of not using weather observations over Portugal was
evaluated by analyzing the spatial structure of P, and specifically
how cells with observations in Spain covary and inform climatic
estimates over Portugal. Since R is diagonal, the spatial structure
imposed by the optimal interpolation scheme is to a large extent
driven by P. To facilitate the spatial analysis, we first transformed
our covariance matrices into correlation matrices. Then, we ana-
lyzed the number of grid points in Portugal that correlate with
observed grid-points in Spain with a coefficient higher than 0.75.
When grid cells in Portugal correlate highly with cells containing
observations, then these observation can inform the corrections
in Portugal even though they are located in Spain. During periods
where correlations are lower, the quality of the estimates over Por-
tugal decrease.
4. Results

4.1. Observational dataset

The number of instrumental observations used in the gridding
process varied with time as individual stations in the network were
added or decommissioned. Fig. 2 presents a time series with the
number of grid cells in the domain containing one or more obser-
vations for each of the meteorological variables used in the calcu-
lation of ETo. Temperature (Tmax and Tmin) had the densest spatial
coverage. The number of grid cells for which temperature data
were available increased from about 1200 in the late 1980s to over
1300 in 1995. From the mid-1990s, the number of stations
declined steadily, and the number grid cells with temperature data
was 1100–1150 toward the end of the study period. Stations that
registered RH and W where less common at the start of analysis
period. In the late 1980s, only about 100 grid cells contained infor-
mation on these variables. The number of stations measuring RH
and W increased steadily until the mid-2000s, when the installa-
tion of automatic weather stations (AWS) resulted in a sharp
increase in the number of grid cells containing information. On
the other hand, the number of stations measuring SD declined over
time from about 90 stations in the late 1980s to less than 70 at the
end of the study period. This decline was partly due to the obsoles-
cence of the heliographs used to perform the measurements, which
are being replaced by modern radiometers. The reason we did not



Table 2
Spatial mean values of P (<P>) and interval of tested b values.

Variable <P> values b tested values

Lowest value Highest value 1st 2nd 3rd 4th

Tmax 1.1 4 0.9 3.6 6.3 9
Tmin 1.3 3 0.9 3.6 6.3 9
RH 28 48 9 36 63 90
W 0.06 0.37 0.009 0.09 0.9 9
SD 0.03 0.74 0.009 0.09 0.9 9
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Fig. 2. Time series of the number of grid cells containing at least one weather station (n) for temperature, T; relative humidity, RH; wind speed,W; and sunshine duration, SD.
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include information from radiometers is that only heliographs pro-
vide a homogeneous dataset that covers the entire study period.
4.2. Optimally interpolated climatic variables and ETo estimates

The proposed method produces gridded fields of mean (xa) and
variance ðraÞ2 estimates for each climate variable and for

ETo (ETa
o and ðra

ETo Þ
2). To illustrate the outcome of the process

and provide a sense of the typical spatial distribution of the esti-
mates and their associated uncertainty, results are presented for
one sample month, July 1994 (Fig. 3). Overall, the estimates for
all meteorological variables and for ETo show spatial structure
devoid of the interpolation artefacts often produced by other
interpolation methods. The expected spatial climatologic patterns
of the variables over the IP are captured, including very localized
windward-leeward effects produced by the rugged physiography
of mountain regions. In this sample month, the highest tempera-
tures are located in the southern region of the peninsula and in
the Ebro Valley in the northeast. High xa

RH values are concentrated
in regions close to the coast and along corridors that extend the
oceanic influence further inland. Wind speed, xa

W , is highest in
the Castilla la Mancha region (eastern Spain), and in the Ebro Val-
ley in northeastern Spain, where high wind speeds are facilitated
by the unobstructed high plateau of Castilla, and by accelerations
of northern winds in the Ebro Valley due to the interaction
between the orographic dipole of the Pyrenees mountain range
with the morphology of the Ebro catchment (Riosalido et al., 1986).

Finally, sunny summers and the compact shape of the IP pro-
duce similar mean xa

SD estimates in July, with the exception of
the coastal northern region where mean xa

SD values are significantly
lower due to persistent cloud cover. The climatology described by
these variables produces ETa

o estimates that are higher in the
southern region and in the Ebro valley, and lower in the north



Fig. 3. OI estimated mean values (xa
v ) and standard deviation (ra

v ) of maximum temperature (Tmax); minimum temperature (Tmin); relative humidity (RH); wind speed (W);
sunshine duration (SD) and reference evapotranspiration (ETa

o and ra
ETo ), for the month of July 1994.
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and northwest region of the peninsula. The uncertainty of these
estimates, represented as the standard deviation ra, are in general
low due to the relatively high number of instrumental observations
available and the high spatial correlation of the variables. This is
especially true for ra

Tmax
and ra

Tmin
, for which typical values were

lower than 0.3 �C. ra
RH presents higher values in the southwest

and northeast. This study did not use observations in Portugal,
which is the reason why these variables show higher uncertainty
in the west and southwestern regions of the IP. Relatively high val-
ues of ra

W are present only in the regions with highest wind speeds.
The northwestern and northern coastal regions, where cloud cover
is most variable, result in the highest values for ra

SD. Because the
FAO-PM equation is non-linear and concave upward, uncertainties
are amplified in regions of high ETo, where the function tends to
have steeper derivatives.

To illustrate the typical time series generated by our method for
each meteorological variable and for ETa

o. Fig. 4 presents results for
one sample location in central Spain. The most prominent feature
of estimates for xa

Tmax
;xa

Tmin
;xa

SD, and ETa
o is the expected and marked

seasonality with summer peaks and winter lows. An inverse sea-
sonality affects xa

RH, with summer lows and winter peaks, whereas
xa
W does not show seasonality. The most interesting information in

this figure is the standard deviation of the estimates ra, which
shows that uncertainty has a clear dependency on time (seasonal-
ity) for all variables. In addition, ra

RH , and to a lesser degree ra
W ,

exhibit a marked decrease in the standard deviation of the



Fig. 4. Time series of OI estimated mean values (xa
v ) and standard deviation ðra

v Þ of maximum temperature (Tmax); minimum temperature (Tmin); relative humidity (RH); wind
speed (W); sunshine duration (SD) and reference evapotranspiration (ETa

o and ra
ETo ), at one random grid cell.
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estimates toward the last quarter of the study period, while ra
SD

shows a moderate increase over time. These trends are associated
with variations in the number of data points used to perform the
interpolation, as we will discuss later. Seasonality and trends in
the uncertainty of individual climate variables are propagated to
ra

ETo , which in general also shows a clear seasonality and a decline
toward the last quarter of the period.

4.3. Comparison between OI and the RCM

The analysis of differences d ¼ xa � xb between the OI and the
background RCM is of interest for detecting possible biases in the
RCM, and also to evaluate the adequacy of the observational net-
work. Fig. 5 shows xa (the mean of xa over time) and xb (the same

for xb) for each climate variable and for ETo (ETa
o and ETb

o), as well
as their differences d. In general, the RCM tended to underestimate
Tmax (dTmax > 0) and to overestimate Tmin (dTmin

< 0), indicating that
the RCM describes a shallower annual temperature range than the
observations. We should keep in mind, though, that the RCM out-
put represents mean cell estimates, which are expected to have a
lower variability than the very local (point) information repre-
sented by the observations. For RH, the OI estimates present higher
values (dRH > 0) in the southern region of the IP, and lower values
in the northern part (dRH < 0). For W the biggest differences
appeared in the north-east region, specially along the Ebro Valley.



Fig. 5. Mean annual values of OI estimated and background RCM (xa
v and xb

v , respectively) of maximum temperature (Tmax); minimum temperature (Tmin); relative humidity
(RH); wind speed (W); sunshine duration, (SD); and reference crop evapotranspiration (ETa

o and ETb
o), and the differences between them (d).
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Lower values of SD (dSD < 0) appeared in the northern region,
which could be related to the presence of low level clouds not
easily resolved by RCMs.

The effect of these differences is only modestly apparent in the

mean ETo of the study period. The method corrects an ETb
o overes-

timation (dETo < 0) in the southern region of the IP and in the Ebro
Valley, and corrects an underestimation (dETo > 0) in the northern

region and mountainous areas. ETa
o presents higher values in the

northern region and lower values in the southern region. In gen-
eral, it appears that the spatial pattern of dETo is very similar to
the pattern of dRH, suggesting that this variable is a major player
in determining the spatial patterns of the atmospheric water
demand in the region.

The domain-wide seasonal amount of correction is depicted in

Fig. 6, which presents monthly <ETa
o> and <ETb

o>. In general, the
mean values are similar except during spring and autumn, where

ETb
o seems to overestimate regional mean values. The figure also

presents the spatial interquartile range. Here also, the largest dif-
ferences between the two datasets occur during spring and

autumn. During these months, the spatial variability of ETa
o is smal-

ler than that represented by ETb
o.

4.4. Impact of the number of available observations

As described in Section 4.1, the number of stations providing
meteorological information varies over time, being most promi-
nent the increase in the number of stations measuring RH and
W . In standard interpolation methods, the granularity of the result-
ing fields is highly dependent on the number and spatial distribu-
tion of the observational data used for interpolation. This is a
problem because it also generates trends in the dispersion statis-
tics (variance, kurtosis) of the spatial fields. We evaluate the extent
to which OI reduces this problem by analyzing the impact of the
number of observations on the amount of correction that our
methods apply to the RCM estimates, and on the spatial variance
of the corrected fields.

Fig. 7 shows time series of the spatial mean of the correction
applied to the RCM, <dETo>. The differences are grouped by months
to remove the seasonal cycle. While a strong variability in the
mean correction is detected in some months, no trends are appar-
ent in the time series, not even in the last quarter of the period
when a sharp increase in the number of RH andW weather stations
took place. We also analyzed if the varying number of stations used
in the OI process generated temporal trends in the spatial variabil-
ity of the ETa

o field. Fig. 8 shows time series of the standard devia-
tion of the field, also grouped by months. An inspection of the
figure shows that only seasonal patterns exist, and that no appar-
ent trends can be identified that reveal an increase or decrease in
the variability of the field as the number of observations used for
interpolation changed over the years.

While the mean estimates did not seem sensitive to the number
of stations used in the OI process, the same was not true for their
uncertainty. Fig. 9 show time series of the spatial mean of the
uncertainty of meteorological variables <ra> and of ETo, <ra

ETo>.
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In the figure we see that <ra
ETo> follows the same seasonality of the

mean values, showing higher uncertainty during the summer
months and lower in winter, but the overall uncertainty decreased
over the years as the available information used to condition the
RCM field increased. The Man-Kendall trend test (Man, 1945;
Kendall, 1975), with a significance level a ¼ 0:05, determined that
the negative trend in the mean spatial uncertainty <ðra

EToÞ
2> is sig-

nificant for all the months except for June (Table 1 Anex). The
decrease in <ra

ETo> seems to be most related to the sharp decrease
in <ra

RH> and <ra
W> as the number of observations for these two

variables increase. This occurs despite the fact that the <ra
Tmax

>,
<ra

Tmin
> and <ra

SD> increase as the number of available observations
declined. The highest uncertainty in the temperature estimates
occurred during the warmest months of the year, with a secondary
peak in winter for <ra

Tmin
>. On the other hand, <ra

W> and <ra
SD>

showed higher values in winter and lower values in summer.
<ra

RH> showed no seasonality, having similar values throughout
the year.
4.5. Impact of R

Figs. 10 and 11 present, respectively, the time series of the spa-
tial mean of estimates for each meteorological variable, <xa>, and
of the spatial mean of their associated posterior standard devia-
tion, <ra>, for each of the four tested R matrices.

In general we found that the results estimates remained
robust for the range of R matrices tested and only xa

W and
xa
SD showed relevant differences. In the case of xa

W , differences
appeared only in the first years of the study when the number
of available observations was similar to those of SD. As the
number of W observations increased, the effect of R on xa

W

faded out, and similar results were obtained for the different
matrices. On the other hand, the sensitivity of xa

SD on R
remained since the number of observations available of this
variable continued to decline. This suggests the existence of
an observation density threshold beyond which the impact of
observation uncertainties on the OI estimation process is lim-
ited. The magnitude of R has a more severe impact on the spa-
tial mean of the estimate uncertainty, <ra>. As expected, larger
R values resulted in larger uncertainties, with a clear depen-
dency on the number of available observations. This effect
was most clear on <ra

RH> and <ra
W>, since these two variables

experienced the sharpest increase in the number of observa-
tions during the study period. It is worth noting that the values
of <ra

RH> at the end of the period in the worst-case scenario
(largest R) were similar to those at the start of the period in
the best-case scenario (lowest R), which suggests the existence
of a trade-off between the quantity and the quality of the
observations.
4.6. Portugal correlation analysis

Fig. 12 shows the results of the spatial correlation analysis over
Portugal for all the variables in two contrasting months, January
and July. The color in each cell indicates with how many of the
600 grid-cells over Portugal the cell has a correlation higher than
0.75. In January (winter), large areas of Spain show high correlation
with Portugal. In all cases, and not surprisingly, western Spain is
the most correlated region with Portugal. Tmax and Tmin are the vari-
ables exhibiting the most extensive correlation.It is interesting that
RH and SD during the month of January show a region of extensive
correlation with Portugal in the southern face of Pyrenees range.
This is mostly explained by the orographic uplift of southern winds



Fig. 7. Time series of the spatial mean correction applied to the RCM, <dETo> = <ETa
o � ETb

o>, for each month (1 indicating January, etc).

Fig. 8. Time series of the spatial standard deviation of input variables (�xa
v	) and (�ETa

o	). Different shades of gray indicate years, and the months are in the x-axis
(1 indicating January, etc).
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Fig. 9. Time series of the spatial mean of the uncertainty of climate variables, <ra>, and ETo , <ra
ETo>. Different shades of gray indicate years, and the months are in the x-axis

(1 indicating January, etc).

Fig. 10. Time series of spatial mean values of each climatic variable (<xa
v>), as a function of different values of b. The exact values of b for each variable and test number are

given in Table 2.
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in this region, which occur simultaneously with cyclonic condi-
tions affecting the western part of IP. on the other hand, correlated
areas tend to decrease in July (summer) for all variables and the
correlations are more spatially restricted to the western area of
Spain. The decrease in the extension of highly correlated areas is
specially acute for SD, which is explained by the fact that cloudi-
ness during summer months is often related to local or subregional
conditions (i.e. mainly convection and sea fog interacting with
coastal areas).
From these results, we consider that obtaining good climato-
logical and ETo estimates over Portugal using observations
located in Spain is possible, but these estimates are expected
to be of better quality during winter, when synoptic conditions
over IP is highly correlated. Unfortunately, ETo estimates are
most relevant during the summer months, when AED is high
(Fig. 6). During summer local conditions become more impor-
tant and correlations between Portugal and the rest of the IP
become more fragmented.



Fig. 11. Time series of spatial mean values of uncertainty of each climatic variable (<ra
v>), as a function of different values of b. The exact values of b for each variable and test

number are given in Table 2.
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5. Discussion

5.1. Meteorological estimates

The mean climatic fields presented in Fig. 5 describe the clima-
tology of the IP. The northern and northwestern regions are the
wettest and coolest, with the lowest values of ETo; SD, and Tmax

and Tmin, and higher values of RH. The highest Tmax and Tmin are
mostly concentrated in the southern half, with the Guadalquivir
River valley standing out, with the exception of the Ebro River val-
ley in the northeast, which forms a depression with a characteristic
semi-arid local climate.

Obtained values of ETo are in concordance with previous studies
in the Iberian Peninsula, taking into account that other studies
were developed using only a subset of weather stations (Vicente-
Serrano et al., 2014c used 46 weather stations in the Spanish part
of the IP) or only analyzed a subregion in the IP (such as
Vanderlinden et al., 2008 and Espadafor et al., 2011, who analyzed
only Andalusia). The same spatial distribution of ETo was detected
by some of those previous works. The higher values appear in the
southern region and the lower values in the northern region of the
IP. The Ebro Valley, a region located in the north, is an exception to
this latitudinal pattern, showing high values of ETo. The absolute
values detected in our study are quite similar to the values of pre-
vious studies, with maximum values higher than 1400 mm in the
Guadalquivir Valley, and values lower than 1000 mm in the north-
ern region. Our results show somewhat higher values in the south-
ern region, up to 1600 mm at some locations in the Guadalquivir
Valley. Some reasons for these higher estimates are: i) We used
all the weather stations available; ii) 1961–2011 period show a
clear positive trend in ETo, as detected by Espadafor et al. (2011)
and Vicente-Serrano et al., 2014a, and our study period (1989–
2011) is the last part of that period. Because of that we possibly
detected higher mean values than previous studies in some
regions. On the other hand, minimum values below 700 mm in
mountainous regions would be in agreement with the detection
of low values in Sierra Nevada done by Vanderlinden et al. (2008).
The seasonality of ETo (Fig. 6) follows the well-known seasonal
cycles of Tmax; Tmin and SD, with highest ETo in the summer and
lowest during the winter months (Espadafor et al., 2011;
Vicente-Serrano et al., 2014c; Martins et al., 2017). The higher
spatial variability of summer months was also detected in those
previous studies.

The correction that meteorological observations impose on the
background RCM can be analyzed by the differences between the
meteorological fields estimated by the OI and those from the
RCM. These differences often present systematic patterns that
can be attributed to biases in the RCM, as found by Kotlarski
et al. (2014); but they could also be attributed to the impact of cor-
recting the field with observations that have a footprint smaller
than the grid cells. The spatial and temporal variability expected
from ground observations is larger because their footprint is repre-
sentative of a region much smaller than that of the grid cell. For
instance, optimally interpolated annual mean values of Tmax are
higher than those of the RCM, while mean values of Tmin are lower,
indicating that the RCM tends to dampen thermal oscillations in
most of the spatial domain. This correction is spatially consistent,
except perhaps in high elevation regions. The only variable that
shows very contrasting spatial corrections of different sign is RH,
since OI tend to increase the lower values of RH in the northern half
of the IP and decrease the highest values in the south. This spatial
correction pattern of RH is very similar to the differences in the
mean ETo field calculated from the OI variables and from the ETo

calculated from the uncorrected RCM variables, which reinforces
the conclusions by Azorin-Molina et al. (2015) that RH is a key dri-
ver of ETo in the IP.

Regarding SD, annual mean values in the OI field are generally
lower than those estimated by the RCM. Two main factors could
help explain differences in SD: i) the WMO defined SD as the time
interval in which the solar radiation exceeds 120 Wm�2 (WMO,
2003). While SD obtained from the RCM considers this, the
observed SD data is more subjective for the period when the
Campbell-Stokes (CS) recorder was used. Kerr and Tabony (2004)
compared the perfomance of CS and automatic sensors obtaining



Fig. 12. Number of Portuguese grid points for which the correlation coefficient is higher than 0.75 for each grid point in Iberian Peninsula.
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a good agreement, but with some differences perhaps because the
solar radiation at which the CS starts to record ranges from 106 to
285 Wm�2 (Painter, 1981); and, ii) the general over-prediction of
solar radiation affecting climate models could also be affecting
the RCM used in this study (Wild et al., 2013). In fact, our correc-
tion of SD values are in concordance with the results obtained for
solar radiation by Ruiz-Arias et al. (2015).

Finally, while we expected higher spatial variability of W in the
observational dataset than in the RCM, the annual mean values of
the OI fields are lower than those of the RCM.Wind speed is a com-
plex variable, with high local spatial variability that physical mod-
els find difficult to capture. In fact, some authors (e.g. Ishak et al.,
2010) detected that dynamically downscaling a global reanalysis
did not improve the quality of the W field with respect to the orig-
inal reanalysis. Moreover, an experiment using the WRF
(Skamarock and Klemp, 2008) Regional Climate Model in the north
of the IP by Jiménez and Dudhia (2012) showed that wind speeds
calculated at grid points were poor predictors of values observed
at the closest ground observatories.

In the IP, Martins et al. (2017) tested a blended reanalysis devel-
oped by Sheffield et al. (2006), which combined data from distinct
sources to obtain a global reanalysis of better quality than any of
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the individual sources. Usually, the global products have a coarser
spatial resolution (0.5� in this case), than regional products
(0.11� for our product). While they used weather observations to val-
idate the results they obtained, we preferred not to do that because
the value of a weather observation refers to an exact point, while
the values of OI refer to a grid cell. Nevertheless, as it has been pre-
viously explained, both the spatial and temporal distribution of our
product are coherent with results obtained by previous studies.

5.2. Uncertainty of estimates

Our methodology makes a number of assumptions that are
worth discussing before interpreting the results. We consider that
the uncertainty of background (RCM) estimates P equals to their
monthly variance. This assumption is based on the idea that
monthly estimates of a variable are random variables, and that
each year in the RCM record is one sample of the variable for each
month. Under this assumption and in the absence of additional
information, the historical variability (the sample variance) of the
RCM estimates for a given month of the year is the uncertainty
around the estimate of this variable. Note that we are not inferring
monthly climatologic means, whose uncertainty is represented by
the standard error of the mean, but values for each particular
month in the record, so the sample variance (the climatological
variability) and not the standard error is a more appropriate mea-
sure of their uncertainty.

We believe this choice provides a conservative (pessimistic)
estimate of the background uncertainty because it does not lever-
age information available from previous months.

An alternative approach to parameterize P would be to use the
variance from an ensemble of models (e.g. from the CORDEX pro-
ject). We argue that this approach would underestimate the actual
uncertainty of the estimates because the limited number of models
included in the ensemble, and because the finite conceptualisa-
tions of the reality that they implement, sample only a limited
range of the actual uncertainty (Knutti, 2010). For this, and for its
simplicity, we preferred to provide the initial estimate of uncer-
tainty from the monthly climatology of the RCM. Recently, the
ERA5 (new reanalysis of the ECMWF) was made available for the
period 2010–2016, and includes a measure of its uncertainty.
A comparison between both approaches to parameterize P will
be possible when the full temporal record in the ERA5 dataset
becomes available (Hersbach and Dee, 2016).

A second relevant consideration is the prescription of matrix R,
which represents the error variance of the observations. We
assumed that observational or instrument errors, which are sel-
dom documented, are negligible compared to the station represen-
tativity error, which quantifies the uncertainty associated with the
local conditions measured by a given station being representative
of the cell where the station is located. To approximate this uncer-
tainty we assumed that station errors are independent from each
other (i.e., that the matrix R is diagonal), and that the uncertainty
of each station is inversely proportional to the number of data
occurring inside a specific grid cell, such that the higher the num-
ber of observatories used to estimate the mean value of a grid cell
the lower the observational uncertainty for that cell.

Fig. 10 shows that variables that are sampled by a large number
of stations (Tmin and Tmax), variations in R affect only the uncer-
tainty while the estimates themselves are not affected. This is
because errors in R are assumed to be unbiased and independent,
which along with the large number of available stations and the
high spatial covariation imposed by P allows for a robust estima-
tion of the spatial field. On the other hand, variables with a smaller
number of observations such as RH;W and SD show that variations
in R affect both the estimate’s uncertainty and the estimates
themselves. Interestingly, the case of RH and W , both of which
experienced a large increase in the number of available observa-
tions over time, suggests that there is a threshold in the number
of observations beyond which the estimates are mostly unaffected
by observation uncertainty. This is indicative of a trade-off
between the quantity and the quality of observational information,
as we will discuss below.
5.3. Impact of changes in the density of the observational network

The generation of meteorological grids using standard interpo-
lation methods, such as kriging and other methods based on dis-
tance weighting, is very sensitive to variations in the number
and location of the weather stations used. Moreover, the density
and distribution of ground observations necessary to resolve the
spatial variability of the climatic field being reconstructed depends
on the degree of spatial autocorrelation of the field. This is because
the covariance of the process determines the size of the region
each observation is representative of Silverman and Maneta
(2016). This has non-trivial consequences for any climate analysis
performed using these grids, because the varying number of sta-
tions used for interpolation may induce trends in the spatial vari-
ability (granularity) of the meteorological fields that can easily be
misinterpreted as being genuinely caused by a climatic process.

Our analysis (Fig. 8) showed that the spatial standard deviation
of the fields produced by OI was not as acutely affected by this
problem as traditional interpolation methods are, as demonstrated
in previous studies (Beguería et al., 2016). While the rapid increase
in the number of observations affected the estimates of RH;W and
SD (Fig. 2), the spatial variance of these fields did not show appre-
ciable changes that could be attributed to the densification of the
observational network. For RH and W , which more than doubled
the available data in the last 5 years of the study period, an
increase of the granularity of the field could be expected, due to
more local effects being detected within the observational net-
work. On the other hand, SD experienced a steady decrease in
the number of grid cells with data with potential impacts on the
granularity of the field. However, we did not find significant tem-
poral trends in the dispersion statistics of the resulting climatic
fields. A reason for this is that in the OI scheme, the information
about the spatial variability of the climatic field being recon-
structed does not exclusively depend on ground observations, as
other methods do, but also on the RCM variance-covariance matrix
(P), which embeds a physically-based estimation of the spatial
variability of the climatic process over the entire domain, including
areas sparsely monitored. Since R is a diagonal matrix, the spatial
correction performed by OI mostly depends on P (i.e. on the spatial
variability of the climate process extracted from the RCM), which is
available for all grid points and reduces the dependency of the
resulting field variance on ground observations.

On the other hand, the uncertainty of the estimates <ra>, repre-
sented on Fig. 9, was very sensitive to the number of stations used,
especially for RH and W . The sharp increment in the density of the
observational network for these variables had a strong impact in
reducing <ra

RH> and <ra
W>. From an algebraic point of view, the

increase in the number of grid cells containing data affects the cal-
culation of the gain matrix K (Eq. (2)). As R decreases, P becomes a
larger share of the total error variance represented by K, informing
the updates to increase the amount of correction on the prior esti-
mates (i.e. observations gain influence). When the variance update
formula is used to calculate the posterior uncertainty of the
estimate (Pþ), K induces a larger reduction in the background
uncertainty (P).

Similarly, a decrease in the number of observations, such as in
the case of SD, results in an increase in <ra

SD>. This also happens,
albeit to a smaller extent, with Tmax and Tmin. Nevertheless, the
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increment in the number of RH and W observations was more
important than the decrease in the number of observations in
these three variables, and the overall uncertainty in the ETo esti-
mate, <ra

ETo>, decreased over the study period.
6. Conclusions

1. The use of an OI scheme blending background RCM data with
observational data from a relatively dense network allowed
estimating fields of the variables needed to compute fields of
FAO-PM ETo.

2. OI also allowed propagating the initial uncertainty of the data to
the OI estimated fields, which were then propagated through
the Jacobian of FAO-PM equation to finally get ETo uncertainty
fields.

3. The granularity of the estimated ETo fields, as measured
through their spatial variance, was not affected by changes in
the number of stations in the observational network, which
were noticeable during the study period. This can be attributed
to the physically-coherent information on the spatial structure
of the variables provided by the RCM, and contrasts with other
methods that rely on observational data alone.

4. The uncertainty of the meteorological variables and therefore of
ETo was, however, sensitive to changes in the number of sta-
tions used. In this sense, we found that in our case study the
number and spatial distribution of temperature records was
adequate for the spatial resolution of our analysis, while a
recent increase in the number of air humidity and wind speed
stations substantially reduced the uncertainty of computed
ETo. A reduction was found in the number of sunshine duration
stations that affected negatively the computation of ETo.

5. The propagation of uncertainty is a highly relevant issue when
constructing meteorological grids but it is often neglected,
probably due to difficulties in determining the uncertainty of
the original data sources. In this case a number of assumptions
were made to quantify the uncertainties of the RCM and obser-
vational data used and their consequences were checked and
discussed, but other options could be explored.
Table B.3
ETo uncertainty trend.

Month Tau 2-Sided p value trend (mm2=year)

1 �0.50 8.75e�04 �0.08
2 �0.66 1.16e�05 �0.10
3 �0.62 3.00e�05 �0.17
4 �0.48 1.00e�03 �0.12
5 �0.35 0.02 �0.19
6 �0.17 0.24 �0.18
7 �0.63 2.38e�05 �0.46
8 �0.65 1.48e�05 �0.45
9 �0.43 3.60e�03 �0.18
10 �0.45 2.00e�03 �0.14
11 �0.63 2.38e�05 �0.11
12 �0.66 9.12e�06 �0.10
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Appendix A. Glossary
ETa
o:
 Reference crop evapotranspiration calculated using

meteorological variables estimated by Optimal
Interpolation [mm] [dimensions: m]
ETb
o:
 Reference crop evapotranspiration calculated using

physically-based climate model data [mm]
[dimensions: m]
H:
 Mask used to map physically-based climate model
data into observations data space [dimensions: n�m]
I:
 Identity matrix [dimensions n� n]

JETo

:
 Refers to the Jacobian of ETo considering only the
partial derivatives of climate variables
K:
 Kalman Gain used in the Optimal Interpolation
[dimensions: m� n]
m:
 Number of physically-based climate grid cells [m =
3930]
n:
 Number of grid cells containing at least one weather
station. Its value varies for each variable and time step.
Pv :
 Error covariance matrix of physically-based climate
model variables [dimensions: m�m]
Pþ
v :
 Posterior error covariance matrix of each climate

variable [dimensions: m�m]

Q k:
 Error covariance matrix of the climate variables at the

specific location k [dimensions: 5� 5]

Rv :
 Error covariance matrix of observations. [dimensions:

n� n]

xav :
 Refers to the Optimal Interpolation climate variable

values

xbv :
 Refers to the Regional Climate Model climate variable

values

xtv :
 Refers to the (unknown) true climate variable values

yv :
 Refers to the observed climate variables values

r:
 Refers to the diagonal positions (the variance) of one

of the error covariance matrix

b:
 Refers to a fix scaling parameter that controls the

magnitude of R

d:
 Refers to the analysis differences between the Optimal

Interpolation values and the Regional Climate Model
values (xa � xb)
<
>:
 Refers to the spatial mean of 


�
	:
 Refers to the spatial standard deviation of 


�
 :
 Refers to the temporal mean of 



̂ :
 Refers to the estimated value of 

Appendix B. Uncertainty trends

See Table B.3.
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