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Abstract. This article developed and implemented a new methodology for calculating the
Standardized Evapotranspiration DeficityIndex (SEDI) globally based on the log-logistic
distribution to fit the evaporationw~deficit (ED), the difference between actual
evapotranspiration (ETa) and atmbspheric evaporative demand (AED). Our findings
demonstrate that, regardleés of the AED dataset used, a log-logistic distribution most
optimally fitted the ED, time series. As such, in many regions across the terrestrial globe, the
SEDI is insensitive to the AED method used for calculation, with the exception of winter
months and boteal regions. The SEDI showed significant correlations (p < 0.05) with the
Standardized Precipitation Evapotranspiration Index (SPEI) across a wide range of regions,
pafticulatly for short (< 3-months) SPEI time-scales. This work provides a robust approach
for ca:lculating spatially and temporally comparable SEDI estimates, regardless of the climate
region and land surface conditions, and it assesses the performance and the applicability of
the SEDI to quantify drought severity across varying crop and natural vegetation areas.
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1. Introduction

Drought is usually considered as a period of abnormally low water supply that fails to satisfy
the existing demands of different natural systems and socioeconomic sectors. This situation is
usually caused by a prolonged period of below average precipitation. It is well-known that
drought is difficult to identify and quantify over space and time, which makes it one of the
most complex natural hazards (Wilhite 1993, 2000; Vicente-Serrano 2016). This is
particularly so because according to most definitions of drought, with the exception of those
that focus exclusively on meteorological aspects, droughts are impact-dependent phenomena
that affect a diverse range of natural and socioeconomic variables (Lloyd-Hughes 2014; Van
Loon, 2015). Moreover, the degree of vulnerability and the capacity of recovery to drought
occurrence strongly differ among regions as a function of their background socioeconomic
and environmental characteristics (Simelton et al. 2009; Choat et al. 2012; Antwi-Agyei et al.
2012; Yang et al., 2017). Therefore, drought severity depends on meteorological conditions
(e.g. magnitude and duration of precipitation shortage), and is also impacted by several
human and environmental factors, such as land use or risk management (Van Loon et al.

2016).

However, the quantification of drought severity based on its impacts is a challenge, given the
spatial differences, the sector of interest, as well as the availability of impact data (Stahl et al.
2015 and 2016). For these reasons, scientists, managers and policy makers usually quantify
drought based on climate information only (McKee et al. 1993; Vicente-Serrano et al. 2010):
the most widely-used drought metrics are generally based on climate information available
across the globe. Overall, the potential of drought indices is particularly related to the

possibility of quantifying drought severity and comparing their climate component both
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spatially and temporally. A detailed review of current climate drought indices can be found in

Heim (2002), Keyantash and Dracup (2002) and Mishra and Singh (2010).

Being inexpensively and widely observed, precipitation is usually employed as the key input
variable in traditional drought indices (e.g. Palmer 1965; McKee et al. 1993). However,
precipitation is only one of the multiple variables that control water stress conditions in
natural ecosystems and affect water availability in usable water stores (e.g. soil moisture,
streamflow, reservoir storage, lake water). Water shortage is ultimately dependent on the
input of water through precipitation, lateral inflows, melting or irrigation, and is also crucially
regulated by the atmospheric evaporative demand (AED), i.e. the potential of the lower
atmosphere to receive water via evapotranspiration from the abovementioned terrestrial water
stores. Under low soil moisture, rising AED rates further increases vegetation water stress
(e.g., Ciais et al. 2005; McDowell et al. 2008; Zampieri et al. 2009), causing stomata closure
and the collapse of the photosynthetic machinery potentially resulting in crop failure (Lobell
etal. 2011; Asseng et al. 2015) and forest decay and mortality (Allen et al. 2015; Anderegg et

al. 2013; Breshears et al. 2013).

Numerous studies have demonstrated the importance of AED in triggering drought or
intensifying drought severity (e.g. Ciais et al. 2005; Otkin et al. 2016). For these reasons,
several drought indices use AED in their formulations. For example, compared to
precipitation-based drought indices, such as the Standardized Precipitation Index (SPI)
(McKee et al. 1993), the Standardized Precipitation Evapotranspiration Index (SPEI)
(Vicente-Serrano et al. 2010), which is obtained by means the standardization of the
difference between precipitation and AED at different time-scales, has shown better

performance in terms of identifying drought impacts in a variety of drought-prone systems
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and regions across the globe (Vicente-Serrano et al. 2012; McEvoy et al. 2012; Wang et al.
2016; Chen et al. 2016; Labudova et al. 2017). In fact, it has been suggested that the AED
may be the single most useful variable to quantify drought severity (McEvoy et al. 2016a).
Accordingly, drought indices based only on AED have been recently formulated under the
premise that AED anomalies are strongly connected, via a complementary relationship, with
precipitation, soil moisture and actual evapotranspiration (ETa) anomalies (Hobbins et al.

2016; McEvoy et al. 2016b).

Here, a conceptual distinction between AED and ETa must be established. There are different
forms to determine AED, among them pan evaporation (the evaporation from a pan full of
water), or crop reference evapotranspiration (ETo) (the ETa of a hypothetical unstressed
alfalfa grassland of uniform height with a closed canopy so the soil is shaded), which can be
compared spatially since it calculation only depends on meteorological inputs (Katerji and
Rana 2011). Independent of the choice of these definitions, AED does not directly depend on
the actual water storage in land, and it is thus different from the ETa, which is the volume of
water that is actually evaporated directly from soil/water/vegetation surfaces and/or transpired
from vegetation into the atmosphere. While there are no water constrains for evaporation
under humid conditions, ETa is constrained mainly by soil water availability (and ultimately
by precipitation) in dry environments (Budyko 1948). As such, the use of drought indices that
account only for AED is inappropriate in regions with non-constraining soil moisture
conditions, given that a positive AED anomaly cannot be representative of drought severity.
In such regions, water stress conditions are likely better quantified considering both AED and

ETa.
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From agronomic and eco-physiological perspectives, the evaporation deficit (ED), defined as
the difference between ETa and AED, is more relevant than considering ETa or AED
separately. Regardless of the climate regime, high ED causes stomatal closure, thus a decrease
in the photosynthetic activity, carbohydrate accumulation and net primary production
(Leuning 1995; Briimer et al. 2012; Vicente-Serrano et al. 2015). If the ED is very high and
wilting point is reached, plants may die due to vascular damage (Will et al. 2013, Anderegg et
al. 2015). Under the aforementioned assumptions, the ED has been proposed for quantifying
drought severity (Narasimhan and Srinivasan 2005; Yao et al. 2010; Anderson et al. 2011;
Kim and Rhee 2016). Unlike AED, which can be calculated by means of relatively simple
physically-based models (e.g. Penman 1948; Allen et al. 1998; Rotstayn et al. 2006), the
calculation of ETa is subject to many sources of uncertainty. ETa depends on a wide range of
factors, including, but not limited to, AED, soil water availability, soil characteristics,
vegetation morphology, physiology and phenology, and the complex relationships existing

between these factors (Morton 1983).

Recently, the availability of remote sensing data and surface-atmosphere models has allowed
for the development of global ETa products (Allen et al. 2007; Fisher et al. 2008; Mu et al.
2011; Miralles et al. 2011; Zhang et al. 2016). Similarly, drought indices have been developed
based on the ED, mainly to analyze natural vegetation and crop stress; for instance, Anderson
et al. (2011), Yao et al. (2010) and Mu et al. (2011) developed different normalized drought
indices (e.g. the Evapotranspiration Deficit Index [EDI] and the Evaporative Stress Index
[ESI]) by means of observational meteorological data and space-based products to estimate
ED. Following the same rationale, Kim and Rhee (2016) proposed the Standardized
Evapotranspiration Deficit Index (SEDI) using ETa data estimated based on Bouchet’s (1963)

complementary hypothesis, and used an approach widely used to calculate a drought index
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comparable spatially and temporally (e.g. the SPI and the SPEI). Here, we follow the same
nomenclature proposed by Kim and Rhee (2016) to refer to a standardized drought index

based on the ED.

It is expected that future improvements on ETa estimates based on remote sensing data and
model outputs will increase the use of ETa for analyzing and monitoring drought at large
scale (Fisher et al. 2017). Our definition of SEDI allows for a straightforward utilisation of
these estimates. Yet, it is necessary to develop robust statistical calculation procedures, and to
comprehensively evaluate the usefulness of this indicator in comparison to other available

drought indices.

Our overarching goal is to provide a metric using ED to quantify drought severity and make
robust spatial and seasonal comparisons. Our specific objectives are to: (i) find a robust
probability distribution to fit the ED series worldwide to calculate the SEDI; (i1) compare the
impact of different AED estimations on the SEDI; (iii) compare the SEDI time series at the
global scale with another widely used drought index that accounts for precipitation and AED,
namely the SPEI; and (iv) assess the skill of the SEDI in terms of determining vegetation

activity anomalies globally.

2. Data
2.1. Actual evapotranspiration

We used ETa estimates from the Global Land Evaporation Amsterdam Model (GLEAM) v3a.
Full details about the development and characteristics of this dataset are found in Miralles et
al. (2011) and Martens et al. (2017). GLEAM is a methodology dedicated to deriving

evaporation from satellite observations of its main drivers. Interception loss is independently
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calculated using Gash’s (1979) analytical model forced by observations of precipitation and
vegetation cover while the remaining evaporation components use Priestley and Taylor’s
(1972) potential evaporation formulation constrained by a multiplicative stress factor. For
transpiration and soil evaporation, this stress factor is calculated based on the content of water
in vegetation (microwave vegetation optical depth) and root zone (multilayer soil model
driven by observations of precipitation and updated through assimilation of microwave
surface soil moisture).

Actual evaporation estimates from GLEAM have been validated against eddy covariance
towers worldwide and errors have been estimated base on triple collocation analysis. Miralles
et al. (2011) reported average correlations of 0.83 and 0.90 for daily and monthly estimates,
respectively, and an average RMSD of ~ 0.3 mm day ' for in situ validations against 43 eddy
covariance towers. More recently, Martens et al. (2017) reported a mean correlation of 0.81—
0.86 based on 91 eddy-covariance towers. In addition, GLEAM output has shown a better
performance than other available evaporation datasets to close the water balance over a wide
range of hydrological catchments, a better agreement with the expectations from the Budyko
framework, and a good skill to partition evaporation fluxes into transpiration, interception and
bare soil evaporation (Michel et al., 2016; Miralles et al., 2016). GLEAM datasets are openly
available globally at daily temporal resolution and 0.25° spatial resolution for 1980-2016

(https://www.gleam.eu). Here, we aggregated the data to monthly, 0.5° resolution.

2.2. Atmospheric evaporative demand and precipitation

To assess the sensitivity of SEDI to different AED inputs two AED datasets were used: (1)
GLEAM v3a (Miralles et al. 2011; Martens et al. 2017); and (i1) Climate Research Unit
(CRU) TS v.3.24.01 (Harris et al. 2014). GLEAM calculates Priestley and Taylor (1972)

potential evapotranspiration (ETp), which is only forced by incoming radiation and air
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temperature, and here are used as a proxy of AED. The CRU TS AED is estimated by Allen’s
et al. (1998) FAO-56 ETo Penman—Monteith equation which is simplified by assuming
spatio-temporally constant wind speed (Harris et al. 2014). For the calculation of SPEI we

used the analogous CRU TS precipitation dataset.

2.3. Global GIMMS NDVI

To compare the SEDI spatiotemporal variability with the anomalies of vegetation activity that
could be related to drought severity conditions, a metric of vegetation activity based on
satellite data was used. For this purpose, we used the Normalized Difference Vegetation
Index (NDVI) (3g.vl) dataset developed by the Global Inventory Monitoring and Modeling
System (GIMMS) observed by AVHRR sensors on-board NOAA satellites (Pinzon and
Tucker 2014), which Beck et al. (2011) demonstrated was the optimal AVHRR-NDVI dataset
for time series analysis. The NDVI exhibits a strong relationship with vegetation parameters
such as green biomass (Tucker et al. 1983; Gutman 1991) and fractional vegetation cover
(Gillies et al. 1997; Duncan et al. 1993). NDVI has long been used to analyze drought impacts
on vegetation (Liu and Kogan 1996; Kogan 1997; McVicar and Jupp 1998; Ji and Peters
2003; Vicente-Serrano et al. 2013; Papagiannopoulou et al. 2017). The NDVI dataset is
monthly at 0.5° resolution over 1981-2014. To facilitate a direct comparison between the
NDVI and SEDI in both space and time, the NDVI series were standardized by fitting the
monthly NDVI series to a log-logistic distribution and the cumulative probabilities were
transformed to standardized units following the same approach used for the SPI and the SPEI

(Vicente-Serrano 2006; Vicente-Serrano et al. 2010).

3. Methods

3.1. Calculation of the evapotranspiration deficit from the gridded global data
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Recall that we define the evapotranspiration deficit (ED) as ETa — AED. Two versions of
monthly ED were calculated; both used monthly GLEAM ETa estimates with AED
formulations from: (i) CRU TS v. 3.24.01 ETo; and (i1) GLEAM ETp. These calculations
were performed for the terrestrial globe excluding the warm desert areas and Antarctica /
Greenland where several methodological limitations exist (Fisher et al. 2010; Begueria et al.
2014). Supplementary Figures 1 illustrates the spatial averages and standard deviations of the
ED in representative months of the four seasons of the year and Supplementary Figure 2

shows the temporal evolution of the ED in some world regions.

3.2. Assessment of different probability distributions to calculate the SEDI

Eight probability distributions were tested (General Extreme Value, Log-logistic, Log-normal,
Pearson III, Generalized Pareto, Weibull, Normal, and Exponential) to transform ED values to
a standardized normal variable (SEDI). These statistical distributions have been widely used
to standardize numerous hydrological and meteorological variables (e.g. Vicente-Serrano et
al. 2012b; Stagge et al. 2016), being a common tool to calculate spatially and temporally
comparable drought indices using either precipitation, AED or both (e.g. McKee et al. 1993;
Vicente-Serrano et al. 2010; Ma et al. 2014; Hobbins et al. 2016). Unfortunately, no previous
studies have tested the goodness of these distributions to fit ED values. Since the use of
different probability distributions may produce substantial differences in the resulting drought
indices (e.g. Stage et al. 2015; Vicente-Serrano and Begueria 2016), we calculated 16
different global SEDI datasets, each one using one of the aforementioned probability
distributions and the two different AED datasets (CRU TS v. 3.24.01 and GLEAM).
Following Hosking (1990) the parameters of the distributions were calculated using unbiased
Probability Weighted Moments (UB-PWMs). Calculations were performed independently for

each ED monthly series to account for the strong seasonality of ED in the majority of the
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world climates. Once the monthly ED series were fit to a probability distribution, cumulative
probabilities of the ED values were obtained and transformed to standardized units (SEDI).
For this purpose, the classical approach of Abramowitz and Stegun (1965) was used, which is

also used for calculating other drought indices such as the SPI and the SPEI.

Similar to the SPI handling of months with no precipitation, the calculation of ED also
considers the case of months with ED = 0.0 mm/month. This occurs when ETa equals AED.
In humid and cold regions this conditions can occur frequently during winter months, even at
monthly time scales, given that ETa tends to approach AED and there is adequate water
availability to satisfy ETa (due to low AED) of these regions at these times. To cope with zero
values we implemented Stagge et al.’s (2015) approach to calculate the SPI, which is based

on the ‘centre of mass’ of the zero distribution rather than the maximum probability.

The UB-PWMs calculation of each monthly ED series requires a minimum of three values
larger than zero in the entire multi-annual record. In large areas of the northern hemisphere
ED is likely to be zero during the winter months, which makes it impossible to define the
SEDI in these months and regions. Additionally, a SEDI calculation based on some of the
eight tested probability distributions is not possible in some cases because the parameters of
that specific distribution cannot be fitted to the ED data. Moreover, in a few cases, the origin
parameter of the distribution can be higher than the lowest observed ED values, indicating no

solution for the SEDI in these cases.

To assess the performance and robustness of the eight probability distributions used for the
calculation of the SEDI, we firstly calculated the percentage of monthly ED series that cannot

be fitted by each of them, and distributions with high percentages were discarded (usually >

10
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50%, see Table 1). With the remaining distributions, the normality of the resulting SEDI
series across the terrestrial globe at each 0.50 degree resolution pixel was tested. Stagge et al.
(2015) applied the Shapiro—Wilks (SW) test to determine whether the standardized variable
(i.e. the SEDI) follows a standard normal distribution. The advantage of this test is that the
parameter values are known beforehand, and not computed from the input data. The p-values
of the SW test for each of the monthly global SEDI series obtained with the eight probability
distributions were calculated. A rejection rate of p < 0.05 (corresponding to 95% confidence

level) was used to discriminate the SEDI series that follow a normal standard variable.

Nevertheless, as shown by Vicente-Serrano and Begueria (2016), it is difficult to define the
‘best’ candidate distribution to calculate a standardized drought index, as the application of
the SW goodness-of-fit test to evaluate the goodness of a distribution is limited at the tails of
the distribution which are the most relevant values for a drought index. For this reason, we
also analyzed the frequencies of high and low SEDI values obtained by the eight probability

distributions and compared the associated return periods.

3.3. Comparison between SEDI obtained from two different AED datasets and between
SEDI and SPEI

SEDI calculated using the CRU and GLEAM AED datasets were compared by means of the

per-pixel Pearson’s correlation coefficient considering the different monthly series.

3.4. Comparison between SEDI and SPEI

The SPEI at time-scales ranging between 1 and 24 months was calculated using CRU monthly
precipitation and GLEAM AED data for 1981-2014. For this purpose, a log-logistic
distribution and UB-PWMs were used (see details in Vicente-Serrano et al. 2010; Begueria et

al. 2014 and Vicente-Serrano and Begueria 2016). For each pixel, we calculated the SPEI

11
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time-scale that had the highest correlation with the SEDI for the different monthly series.
Regardless of the SPEI timescale, we also calculated the spatial distribution of the maximum

correlation between SPEI and SEDL

3.5. Assessing the skill of the SEDI and SPEI in identifying spatiotemporal anomalies of
vegetation state

Finally, the relationship between the standardized NDVI (sNDVI) and the SEDI and SPEI
using Pearson’s correlation coefficients was calculated. As the global relationship between
vegetation activity and drought is strongly dependent on the drought time scale (Vicente-
Serrano et al. 2013), the correlation between the SNDVI and the SPEI was calculated at time-
scales ranging between 1 and 24 months. Given the strong seasonality of vegetation,
correlations were calculated independently for specific months of the year as well as for the
monthly time series as a whole. Regardless of the timescale of the SPEIL, we only retained the
lag of maximum correlations and compared it spatially with the correlations obtained between

sNDVI and SEDI.

4. Results
4.1. Assessment of probability distributions to calculate the SEDI at the global scale

Table 1 show the percentage of monthly series for which the SEDI could not be calculated
based on GLEAM and CRU AED data for each of the eight probability distributions used for
standardization. The log-normal and Weibull distributions showed a markedly high
percentage of series (often exceeding 40% of the terrestrial land-surface) with no solution for
the SEDI suggesting that they are least suited for SEDI calculation, so they were removed
from further analyses. The remaining six distributions showed smaller percentages of cases
for which no solution could be found, with Normal and Exponential being slightly better.

Interestingly, there is a clear seasonal pattern in the ability of these six distributions to fit the

12
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ED series, with better performance found between March and September, compared to the
October to February period. In comparison to the GLEAM AED, the SEDI calculated using
the CRU AED shows a lower percentage of cases with no solution for the SEDI fitting. This

may be explained by the higher AED values found in the CRU dataset.

< Table 1 here please >

The Shapiro-Wilks normality test applied to the SEDI series computed using the six
remaining distributions indicated a poor performance of the Generalized Pareto, Normal and
Exponential distributions, which had large percentages (typically 50% to 90%) of monthly
series for which the null hypothesis of normality was rejected (Table 2, for the GLEAM and
CRU AED datasets respectively). The remaining three distributions had a lower percentage of
rejections, with the log-Logistic distribution having the lowest overall. The results were
similar with the two AED datasets considered, although the SEDI calculated with the CRU
AED yielded worse results (i.e., a larger proportion of rejections). In both AED cases, there
was a notable seasonality, with fewer rejections in the boreal summer (less than 10% for log-

Logistic) and more in boreal winter (around 25%).

< Table 2 here please >

Dry events are located in the lower tail of distribution and it is important to discern departures
from normality in this region, even though data located there may represent less than 2—-3% of
all data. Figure 1(a) shows the relationship between the return periods and raw SEDI values
obtained from GLEAM AED using log-logistic and GEV distributions, with Figure 1(b)

documenting similar for the log-logistic and Pearson-III distributions. The SEDI values
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obtained with GEV and Pearson-1II distributions show more extreme values in both tails than
those obtained with the log-logistic. This translates to higher return periods and more extreme

SEDI values with GEV and Pearson-III distributions in comparison to the log-logistic.

< Figure 1 here please >

The frequencies of high and low SEDI events using the GEV probability distribution for
standardization are unrealistically high using a sample of 35 years The plots are truncated to 1
event in 500 cases, corresponding to = 2.88 sigmas, but even longer return periods were
obtained with the GEV. On the other hand, the log-logistic distribution provided more
coherent return periods and less extreme SEDI values. The plots also show that differences
found in the high-density region (£1.80 sigmas) between the different probability distributions
have only a residual influence on the SEDI values. The results based on the CRU AED
yielded similar results. This is clearly illustrated in Figure 2, which shows the frequency of
values below -2.58 sigmas (which corresponds to a return period of 1 in 200 years) in each
time series. As expected, the majority of series do not show values below the threshold, but
lower percentages dominate for the log-logistic distribution. The SEDI series obtained with
GEV and Pearson III distributions show higher percentage of very extreme values. Given the
relatively short sample used here (1980-2014, with the start-date determined by when the
satellite remote sensing first become available), it is unlikely to find such a high frequency of
SEDI cases corresponding to a return period higher than 200 years. Considering these results
altogether (i.e., Tables 1-2 and Figures 1-2), we recommend the use of the log-logistic

distribution for computing the SEDI series across the globe.

< Figure 2 here please >
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4.2. Comparison of SEDI series from two different AED datasets

The boxplots in Figure 3 summarize the per-pixel correlations between the SEDI series and
the GLEAM and CRU AED datasets. All calculations were computed independently for each
month for the 34 years, and for the entire monthly time series altogether. In general,
correlations were dominantly positive and statistically significant (p < 0.05), albeit being
generally higher for April and September inclusive. There is large variability in the boxplots,
especially during the Northern Hemisphere cold-season where Pearson’s r value range from
maximum positive to maximum negative values. Nevertheless, with the exception of the
Northern Hemisphere cold season, the percentage of series showing significant correlations
across the globe was generally higher than 70%. Figure 4 depicts the spatial distribution of
correlations between both datasets annually and for the mid-season months (i.e., January,
April, July and October). Results reveal markedly seasonal differences. During the boreal
winter (i.e., January), large areas of the Northern Hemisphere were not considered, given that
the SEDI had no solution for this region in the majority of the cases, as discussed in the
methods section. Nevertheless, in low latitudes, there were noticeable spatial differences in
the correlations. Although the latter were high in the majority of tropical and subtropical
regions, they were close to zero in the equatorial humid regions. This pattern persists in all
seasons, and all months. Overall, during the boreal spring (i.e., April) and summer (i.e., July),
large regions showed statistically significant correlations between the SEDI calculated using

AED from CRU and GLEAM.

< Figure 3 here please >

< Figure 4 here please >
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The analysis of selected drought events illustrates a good agreement between the two datasets.
Figure 5 shows two recent exceptional droughts: (i) Russia (2010); and (ii) southern United
States/northern Mexico (2011). In both events, although there are some spatial differences in
the beginning and end of the drought periods, strong spatial agreement was exhibited between
the two SEDI datasets during the months of maximum extension of drought severity (July and

August for Russia and June-August for south North America).

< Figure 5 here please >

4.3. Comparison of the SEDI and the SPEI at different time scales

To avoid redundancy in the presentation of the results, in the following we only use the SEDI
series obtained with the GLEAM AED dataset and the log-logistic standardisation. The
temporal variability of the SEDI showed a strong agreement with the SPEI. Considering only
the SPEI time scale with the best correlation with the SEDI, large areas exhibited significant
correlation (p < 0.05) between both indices (Figure 6). For instance, in the boreal summer,
more than 85% of the world exhibited significant correlations between the SEDI and SPEI,
albeit the exceptionally low correlation in the rainforests of Amazonia, Congo and Southeast
Asia (Figure 7). In general, the globe’s semi-arid regions showed the strongest (typically >
0.7) significant correlations between both drought indices, likely reflecting the ample seasonal

cycle and multi-annual climate variability in these regions.

< Figure 6 here please >

< Figure 7 here please >
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SEDI series exhibited higher correlations with short SPEI time scales (Figure 8). Independent
of the month, correlations were significant (p < 0.05) over the majority of globe, considering
SPEI time scales between 1 and 9 months. With respect to longer time scales, the magnitude
and statistical significance of the correlations diminished progressively. In the boreal summer,
the differences in the magnitude of the correlations among the different time scales were
lower, however lower correlations were observed for long SPEI time scales. About 40% of
the world revealed the strongest correlation at the 1-month SPEI timescale, compared to 15—
20% at the 2-month time scale (Table 3). In summary, around 80% of world exhibited the
highest and most statistically significant (p < 0.05) correlations between the SEDI and SPEI
considering SPEI time scales shorter than 5 months. Exceptionally, a few regions (< 10% of
the terrestrial globe) showed the highest and most significant correlations at time scales
longer than 9 months. Thus, during the boreal winter, apart from some areas in South America
and central Africa, and in north latitudinal areas, the majority of regions showed maximum
correlation between the SEDI and SPEI at short SPEI time scales (Figure 9). The areas that
did not show significant correlations between the SEDI and SPEI mostly corresponded to
those showing higher correlations at longer time scales (> 12 months). This finding
demonstrates that where the SEDI is significantly correlated with SPEIL, this correlation is

recorded at short SPEI timescales (> 5 months).

< Table 3 here please >

< Figure 8 here please >

< Figure 9 here please >

4.4. Relationship between the SEDI, SPEI and the sSNDVI

17



432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Figure 10 illustrates the spatial distribution of the correlations between the SEDI and sSNDVI
and between SPEI and sNDVI for mid-season months and for the entire record. There were
important spatial differences in the magnitude of the correlations between the SNDVI and
both drought indices at the global scale. Regardless of the month, higher and statistically
significant correlations were found over semiarid regions, including — among others —
southwestern North America, the Sahel, South Africa, Australia, and northeastern Brazil.
Strong seasonality in the correlations related to the phenological cycles of vegetation was
found. Monthly crossplots of SEDI and SPEI and their correlations with SNDVI are seen
Figure 11, which illustrates that the spatial correlations were positive and statistically
significant during all months. The correlations with sNDVI were higher for SPEI than for

SEDI, particularly in the boreal summer (i.e., JJA).

< Figure 10 here please >

< Figure 11 here please >

The percentage of the terrestrial globe that showed significant correlations between either
SEDI and sNDVI or SPEI and sSNDVI were relatively small (typically ~15-45%; see Table 4.
For the full monthly time series, less than 20% of the area exhibited significant correlations,
independent of the selected drought index. This low percentage is partly explained by the fact
that most ecosystems on Earth are not driven by water availability during one or more periods
of the year (e.g., dormancy). Monthly correlations between the sNDVI and SPEI were
statistically significant over more than 40% of the area during the boreal summer, where
vegetation is active in large areas of the Northern Hemisphere. The SEDI showed lower
percentages, with roughly 25% of the area showing significant correlations with the SNDVI

during the same season.

18



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

< Table 4 here please >

5. Discussion

5.1 Data used in the computation of the drought index

In this study we delve into the computation and performance of the standardized
evapotranspiration deficit index (SEDI). The SEDI is based on the evapotranspiration deficit
(ED), which is defined as the difference between the actual evapotranspiration (ETa) and the
atmospheric evaporative demand (AED). The rationale behind this computation is to
explicitly account for the water actually used by the vegetation (the ETa) compared with the
amount of water that the same ecosystem would have used in an ideal perfect hydric state, i.e.
with no water stress. The departures between ETa and AED allow quantification of the degree
of water stress the vegetation is suffering, i.e. the drought state. Nevertheless, it is also
necessary to state that ED defined here may depend on many other factors (e.g., leaf-out
period, harvesting, fire, pests) and not just water availability.

A major technical problem with this approach is how to obtain values of both ETa and AED,
most notably the former. The recent availability of global ETa datasets based on satellite
observations (McCabe et al. 2016; Miralles et al. 2016; Zhang et al. 2016), however, has
opened the possibility to explore this approach.

Several studies have already proposed the quantification of drought severity based on either
the ED, the ratio between ETa and AED, or using ETa estimations obtained from remote
sensing data (e.g. Yao et al. 2010; Anderson et al. 2011). In their South Korean study, Kim
and Rhee (2016) proposed the use of the ED to develop a drought index. They estimated ETa
following the Budyko theoretical approach, which establishes a non-linear relationship

between the AED/Precipitation ratio and the ETa/Precipitation ratio. The novelty of our study
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is that it calculates the SEDI globally, using ETa from a global satellite dataset (GLEAM).
Despite the uncertainties in GLEAM, its detailed description of the soil water balance and
phenological stress mean an improvement over using ETa estimations using Budyko’s
hydroclimatic framework (Martens et al. 2017).

Regarding the AED data, two datasets were compared to calculate the SEDI globally. The
first (GLEAM) calculates AED using the Priestley and Taylor (1972) potential ET
formulation. The second (CRU) calculates AED using a simplification of Allen et al’s (1998)
FAO-56 Penman-Monteith equation. Several studies have shown that the spatial and temporal
variability of the AED is strongly dependent on the methodology used to estimate this
variable (e.g. Espadafor et al. 2011; Vicente-Serrano et al. 2014; Wang et al. 2015; Fisher et
al. 2010), and on the uncertainty in the atmospheric forcing data (McVicar et al. 2012a,b).
Here, we assessed the sensitivity of the global-scale SEDI to the choice of AED, and found
notable differences in the boreal winter months (i.e., DJF) and also in the humid equatorial
regions during their summer months (i.e., JJA) — these are regions in which the aerodynamic
component of AED can be substantial (McVicar et al. 2012b). As Priestley and Taylor is a
radiative based estimate of ETp (Donohue et al. 2010) which does not include aerodynamic
variables (i.e., relative humidity) explicitly in its calculations, whereas the FAO-56 Penman-
Monteith formulation does, they are expected to depart. Conversely, in sub-humid to semi-
arid climates of both hemispheres, and especially during their summer, the correlation
between the two SEDI datasets was strong and not sensitive to the AED dataset used in the
calculations. This is highly relevant for drought analysis and monitoring since in these regions
vegetation dynamics are more determined by drought variability (Vicente-Serrano et al.
2013).

In tropical forests, the correlation between both SEDI datasets was statistically not significant,

regardless of the season of the year. There are several factors driving this pattern. It can be
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related to the low climate data availability. While GLEAM AED uses reanalysis output the
CRU AED depends on observational data, which are sparse over these regions (Harris et al.
2014). It can also be related to uncertainties in the reanalysis output meteorological fields,
which are the likely cause for the difference found between the two SEDI datasets,
particularly for those variables that are most difficult to model such as wind speed and solar
radiation (McVicar et al. 2008; Perdigao et al. 2016). Moreover, the lack of relative humidity
in the Priestley and Taylor scheme could affect the estimations, given that strong changes in
this variable have been recorded in observations and reanalysis output over the past two
decades (Willett et al. 2014; Vicente-Serrano et al. 2017) and it is taken into account in the
Penman-Monteith ETo.

Despite the differences found, the SEDI provides a quantification of the intensity of drought
that is largely independent of the method used to compute the AED in most global regions
affected by recurrent droughts events. Low sensitivity of the SEDI to the methodology used to
estimate AED is relevant for the evaluation of impact in some regions such as the Sahel,
South America, or central Asia. In these regions the impacts of droughts are usually severe
and quantifying the extent and intensity of drought conditions is critical to inform policy and
guide mitigating action.

Although we provide an initial assessment of the impact of using different datasets to
compute the SEDI at globally, further research is needed to test the sensibility of the SEDI to
both ETa and AED variables under a range of climate and land-cover conditions, and to
investigate the impact of using different ETa and AED datasets in the calculation of the SEDI.
Meanwhile, there are several international initiatives to improve the quality and assess the
uncertainties in global ET data from satellite and in situ observations (Zhang et al. 2016;

McCabe et al. 2017; Fisher et al. 2017).
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5.2. Optimum probability distribution to calculate the SEDI worldwide

This study tested eight standardizing probability distributions approaches calculate the SEDI,
and proposed a robust methodology to obtain global SEDI values that are spatially and
temporally comparable. The log-logistic probability distribution showed clear advantages for
calculating the SEDI. This distribution has already been recommended when calculating the
SPEI (Vicente-Serrano et al. 2010; Vicente-Serrano and Begueria 2016). From the tested
distributions, only the GEV, Pearson-III and log-logistic distributions provided solutions for
the SEDI over most of the terrestrial globe, and provided SEDI series that most frequently
followed a standard normal distribution. The Pearson-III distribution has been proposed to
calculate the SPI (Guttman 1999; Vicente-Serrano 2006) as the most reliable alternative to the
original proposed standardization using the Gamma distribution (McKee et al. 1993).
However, here we found that the Pearson-III distribution yielded a higher number of SEDI
series that did not follow a normal distribution compared to the log-logistic distribution.
Moreover, the Pearson-III distribution tended to overestimate the frequency of extreme SEDI
values at both ends of the distribution. The same was found with the GEV distribution,
proposed by Stagge et al. (2015) for calculating the SPEI. Based on our global results we
recommend the use of the log-logistic distribution to fit monthly ED series across the
terrestrial environment to obtain the SEDI. Moreover, this recommendation holds

independently of the AED form used in this study.

5.3. Comparison of the SEDI with the SPEI

The SPEI has been thoroughly validated and used to detect and monitor moisture anomalies
for agricultural (e.g. Zipper et al. 2016; Wang et al. 2016; Pascoa et al. 2017) and
environmental applications (e.g. Zhang et al. 2017; Greenwood et al. 2017). The SEDI

showed positive significant correlations with the SPEI over most terrestrial ecosystems, with
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some exceptions in the equatorial region and across some boreal regions. Under abundant soil
moisture the SPEI could also show a drought signal if precipitation is below average when
really there is limited plant available soil water constrain. This suggests that in some areas
SPEI and SEDI are complementary. In areas in which the ETa strongly depends on
precipitation (e.g., arid and semi-arid regions) SPEI and SEDI are expected to fit well; in
other regions they could provide different but complementary information to assess drought
severity. Nonetheless, during the summer boreal season, the SEDI showed significant
correlation with the SPEI over the entire Northern Hemisphere. If all data was perfect, SEDI
would be better in capturing vegetation impacts simply because the use of precipitation in
SPEI is meant to be as a surrogate for plant water availability. Thus, SPEI uses precipitation
as proxy of ETa to identify drought impacts on vegetation. This approach, although less
consistent physically than the SEDI, may produce better results to determine drought severity
than a complex physical simulation model (i.e., Vicente-Serrano et al. 2011).

The SEDI was best correlated with the SPEI at short time scales, with the highest and most
significant correlations recorded at 1- and 2-month time scales, independent of the month.
There are a few regions where the strongest correlations between the SPEI and SEDI were
observed at time scales longer than 18 months, but these correlations were not statistically
significant. Therefore, we can regard SEDI as a short time scale drought index, characterized
by its sensitivity to high frequency climate variations. Kim and Rhee (2016) suggested the
calculation of the SEDI at a timescale of 9 months by standardizing the cumulative ET and
AED differences over the previous nine months. They justified the selection of this period by
the high correlation found between the Palmer Drought Severity Index (PDSI) and the SPEI at
this time scale (see Vicente-Serrano et al. 2010b). We showed that in most regions of the

world, the standardized anomalies of the ED are mostly determined by the high-frequency
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variability of the climatic water balance recorded at short time scales, which makes
recommendable the use of the SEDI at 1-month timescale.

The selection of a specific time scale for drought analysis is justified by the different
characteristic response times of agricultural, hydrological and environmental systems to water
shortage. Water shortages are mostly determined by precipitation shortfalls (McKee et al.
1993) and/or increased AED (Vicente-Serrano et al. 2010). The use of different drought time
scales is essential to adjust the duration of anomalous climate conditions to the anomalous
response of the ecohydrologic system, such as abnormally low stream flows (e,g. Lopez-
Moreno et al. 2013; Lorenzo-Lacruz et al. 2013; Barker et al. 2016; see further clarifications
and discussion on the drought time scales in Vicente-Serrano et al. 2011). However, the use of
long cumulative time scales is not justified for the SEDI because ED is mostly determined by
high-frequency variability in climatic conditions. In essence, this is similar to those
streamflow-based drought indices, such as the Standardized Streamflow Index (SSI, Vicente-
Serrano et al. 2012). For instance, like the SSI, the SEDI could also be considered a direct
indicator of the impact of droughts on vegetation because the AED is an important driver of
vegetation gross primary production through its control on plant stomatal closure and plant
respiration (Stephenson 1990, 1998) and because ETa strongly controls photosynthesis and

carbon uptake (Donohue et al. 2014; Yang et al. 2015).

5.4. Performance of the SEDI to identify vegetation anomalies associated with drought

The response of vegetation activity, measured as greenness indices (e.g. NDVI) from satellite
imagery, to water availability is complex. Numerous studies have demonstrated different
spatial and seasonal relationships between NDVI and different climate drought indices (e.g. Ji
and Peters 2003; Quiring and Paraprikaou 2008). Here, we demonstrated that the correlation

between the SNDVI and the SPEI and SEDI was strongly variable over both space and time.
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As expected, a clear relationship was recorded in semi-arid regions, which in general show a
higher response to soil water availability, compared to sub-humid and humid regions in which
vegetation is driven by other climatic and environmental factors (Vicente-Serrano et al. 2013;
Papagiannopoul et al. 2017). Overall, a lower correlation of the sSNDVI to the SEDI than to
the SPEI was found. In general, the correlations were higher and more frequently statistically
significant between the sSNDVI and SPEI, possibly due to the higher flexibility of the SPEI,
which is computed at different time scales, since the relationship between vegetation activity
and drought indices strongly differs as a function of the timescale at which drought indices
were calculated (Pasho et al. 2011; Vicente-Serrano et al. 2013, 2015). SPEI would show
higher flexibility to compute water deficits recorded at different timescales since vegetation
types have several physiological strategies to cope with water stress (Chaves et al. 2003).
Thus, stomatal closure under high vapor pressure deficit conditions is a mechanism to reduce
water losses and hydrologic stress in plants. Although during periods of low transpiration
photosynthesis may be reduced, non-structural carbohydrates in the plant can maintain plant
metabolism and maintain greenness (Rosas et al. 2013).

Overall, we indicated that although the SEDI showed lower correlations, it exhibited similar
spatial patterns of correlation with the SNDVI. Compared to the SPEI, SEDI’s sensitivity to
high-frequency changes in ED makes it more suitable for identifying regions where leaf
activity is highly sensitive to water stress conditions. We defend that using and combining
different drought indices is the best approach for drought quantification, analysis and
monitoring. The recently proposed SEDI based on the satellite-based ET data can
complement traditional drought indices and provide information about regions that are
sensitive to short-term changes in atmospheric demand. Figure 12 provides a representative
example of two exceptional drought events recorded in the Iberian Peninsula in 1995 and the

Sahel in 1984. In both cases, the SEDI and 3-month SPEI showed strong drought severity
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over large areas and months, but they did not exactly agree either over space or in magnitude,
which indicates that SEDI is bringing new information not captured by the SPEIL. NDVI
anomalies were different in time and space from each of the drought indices (SEDI and
SPEI), indicating that none of them alone captures the full impact on vegetation greenness,

with additional insight possible when both indices are combined.

< Figure 12 here please >

6. Conclusion

We provided recommendations on the best approaches for calculating a temporally and
spatially comparable SEDI, regardless of the climate region and land surface conditions.
Although the performance of the SEDI for monitoring the hydric status of ecosystems, and
despite its theoretical superiority since it is based on directly comparing the use of water
(ETa) with its theoretical demand (AED), we have shown that other indices such as the SPEI
which do not require estimation of the ETa showed a similar performance to identify drought
severity globally. In any case, SEDI calculations will benefit from further improvements in
remotely sensed ETa. Additionally, while the SEDI can be of interest for drought assessment
related to crops and natural vegetation, its potential application in relation to other drought
impacts such as river discharges, reservoir storages or groundwater levels is yet to be
explored. The SEDI global dataset developed in this study 1is available at

http://hdl.handle.net/10261/160091.
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Figure

1: Global terrestrial relationship between SEDI (and return period - 1 event in number
of cases-) obtained from GEV (a) and Pearson-III (b) distributions and log-logistic
distribution using the GLEAM and CRU AED. Colors represent the density of points
(dark red being the highest)

2. Percentage of series showing absolute frequencies of SEDI values below -2.58. a)
GLEAM AED, b) CRU AED

3: Box and whisker plot showing the Pearson correlation coefficient (r) between SEDI
series calculated from GLEAM and CRU AED the entire monthly record and for each
month independently. Light Horizontal line shows the threshold for positive and
significant correlations (p < 0.05), with numbers above the top whisker indicating the
percentage of global terrestrial area with such correlations. The heavy line in the box
represents the median, the upper and lower parts of the box denote the interquartile
range and the whiskers show the 95% or 5%.

4: Spatial distribution of the correlations between SEDI series calculated using the
GLEAM and the CRU datasets for AED for the mid-season monthly series and for the
series of all months. Terrestrially white areas represent deserts/Greenland and areas in
which SEDI fit has no solution

5: Spatial distribution of the SEDI values obtained from GLEAM and CRU AED data
during the recent drought episodes that affected Russia (top-most three rows) and
southern North America (bottom-most three rows) in 2010 and 2011, respectively.

6. Box-plot and whisker plot showing the Pearson correlation coefficient (r) between
the SEDI and SPEI for specific months of the year as well as for the entire record.
Light Horizontal line shows the threshold for positive and significant correlations (p <
0.05), with numbers above the top whisker indicating the percentage of global
terrestrial area with such correlations. The heavy line in the box represents the median,
the upper and lower parts of the box denote the interquartile range and the whiskers
show the 95% or 5%.

7: Spatial distribution of the correlations between SEDI and SPEI series for mid-
season months and for the entire record. Terrestrially white areas represent
deserts/Greenland and areas in which SEDI fit has no solution.

8: Correlation between the SEDI and SPEI at different time scales (from 1- to 24-
months) for specific months and for the entire record. Light Horizontal line shows the
threshold for positive and significant correlations (p < 0.05), with numbers above the
top whisker indicating the percentage of global terrestrial area with such correlations.
The heavy line in the box represents the median, the upper and lower parts of the box
denote the interquartile range and the whiskers show the 95% or 5%.

9. SPEI time scale at which the highest correlation with the SEDI series was found for
mid-season months and for the entire record. Terrestrially white areas represent
deserts/Greenland and areas in which SEDI fit has no solution.

10. Spatial distribution of the Maximum Pearson correlation coefficient (r) between
SEDI and sNDVI (left) and between SPEI and sNDVT (right) for mid-season months
and for the entire record 1981-2014.

11: Density scatterplots with the spatial relationship between the sNDVI and SEDI
correlations and between the SNDVI and SPEI correlations. The scatterplots show the
results for all months and for the entire record. Blue line: linear regression, black line:
1-to-1 line. Given the large sample, and to avoid an overrepresentation of significant
correlations, the p values were obtained by means of a bootstrap sampling approach
that considers 2000 independent samples of 30 cases and p values for correlations of
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1029 the samples of 30 cases were averaged. The colors of the scatterplots represent the

1030 density of points (dark red being the highest).

1031  Figure 12: Spatial distribution of the SEDI, 3-month SPEI and sNDVI during two
1032 extraordinary drought events recorded in the Iberian Peninsula (1995 shown in the top-
1033 three rows) and the Sahel (1984 shown in the bottom three rows).
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Table 1: Percentage of monthly time series of ED with no fitting solution tested with the eight

probability distributions.

Month | Log-logistic GEV Log-normal Pearson-Ill Weibull G. Pareto Normal Exponential
GLEAM | CRU | GLEAM | CRU | GLEAM | CRU | GLEAM | CRU | GLEAM | CRU | GLEAM | CRU | GLEAM | CRU | GLEAM | CRU

Jan. 34.6 154 | 346 15.4 77.9 68.8 | 346 154 | 624 383 34.6 15.4 316 12.9 316 12.9
Feb. 13.9 29 | 139 2.9 74.5 67.9 13.9 29 49.4 305 13.9 29 12.1 1.8 12.1 18
Mar 5.2 19 5.2 19 63.9 66.7 5.2 19 342 229 5.2 19 4.8 16 4.8 16
Apr. 25 0.4 25 0.4 58.0 63.7 25 0.4 29.5 17.7 25 0.4 2.2 0.3 2.2 03
May 0.4 03 0.4 03 59.9 57.3 0.4 03 27.8 11.7 0.4 03 0.4 0.2 0.4 0.2
Jun. 0.7 0.9 0.7 0.9 66.6 58.1 0.7 0.9 35.0 12.6 0.7 0.9 0.7 0.7 0.7 0.7
Jul. 0.6 0.8 0.6 038 69.6 60.6 0.6 0.8 40.6 15.6 0.6 0.8 0.5 0.6 0.5 0.6
Aug. 16 03 16 03 69.7 61.0 16 03 46.7 15.9 16 03 14 0.2 14 0.2
Sep. 4.4 0.3 4.4 03 68.9 56.9 4.4 03 46.9 10.6 4.4 03 4.2 0.2 4.2 0.2
Oct. 19.2 08 | 192 038 721 57.0 19.2 0.8 49.9 17.7 19.2 0.8 18.4 0.4 18.4 0.4
Nov. 376 58 | 376 5.8 77.7 66.3 37.6 5.8 61.0 308 | 376 5.8 36.2 4.4 36.2 4.4
Dec. 433 137 | 433 13.7 81.3 680 | 433 137 | 672 389 | 433 137 | 416 101 | 416 10.1

36



1039 Table 2: Percentage of monthly SEDI series calculated using the remaining six probability

1040 distributions for which the null hypothesis of normality was rejected (fail-to-reject-rate) by the
1041 Shapiro-Wilks test at a confidence level p = 0.05.
1042
Month | Log-logistic GEV Pearson-Il| G. Pareto Normal Exponential
GLEAM CRU | GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU
Jan. 75.9 60.0 68.0 58.6 65.7 58.2 20.4 13.1 35.5 46.6 11.2 8.2
Feb. 74.3 57.6 68.7 57.1 66.6 56.7 22.4 14.7 38.8 46.7 10.7 8.8
Mar. 86.3 66.3 79.4 64.4 77.0 65.2 24.0 14.3 50.3 53.4 14.4 9.2
Apr‘ 89.0 78.1 81.3 74.2 79.3 74.6 22.6 15.4 51.3 59.3 16.1 10.2
May 91.4 88.7 83.2 85.5 80.8 86.1 23.6 18.0 51.3 71.5 15.2 12.0
Jun. 92.8 89.1 81.6 85.5 79.9 86.3 19.5 18.9 48.2 71.9 11.8 12.0
Jul. 91.4 88.9 80.8 84.9 78.5 86.2 19.1 18.5 44.2 71.3 10.6 11.1
Aug. 87.7 88.8 75.8 85.1 72.1 86.0 17.9 17.7 36.5 68.1 11.2 11.0
SEP. 87.3 88.7 73.9 85.4 70.7 86.0 20.4 17.9 36.6 71.5 12.3 11.7
Oct. 83.6 72.3 72.8 70.8 70.2 70.6 19.2 17.9 38.1 58.0 12.5 11.1
Nov. 81.8 59.0 73.3 56.8 71.1 56.5 20.1 11.9 40.9 46.5 12.8 7.4
Dec. 76.9 53.4 68.2 52.4 66.4 51.8 18.3 12.6 37.7 40.2 10.8 7.6
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Table 3: Percentage of global terrestrial 0.5°-degree resolution grid points at which the maximum

correlation between the SEDI and SPEl is recorded corresponding to different SPEI time scales.

SPEI Time scale

(months) All months | Jan. | Feb. | Mar. | Apr. | May | Jun. [Jul. | Aug. |Sep. | Oct. | Nov. | Dec.
1 42.0(21.5|24.5|31.9|40.7|42.0|42.0|38.0|32.9|33.5|23.4|24.5|20.2
2 20.2|149|135| 14.6|14.3|14.7|139(17.6|179|149|17.1| 19.2|17.8
3 9.7|119| 82| 10.1| 85| 83| 94| 76| 98| 9.6| 9.3|12.1|13.1
4 75| 78| 86| 67| 66| 45| 60| 64| 69| 71| 78| 58| 7.5
5 43| 52| 53| 51| 45| 42| 36| 45| 47| 43| 63| 49| 58
6 3.7| 48| 46| 51| 27| 32| 3.0| 35| 36| 36| 41| 42| 4.0
7 23| 3.1| 42| 38| 30| 3.1| 24| 26| 23| 2.7| 29| 3.3| 34
8 19| 35| 29| 28| 24| 28| 27| 23| 18| 18| 25| 36| 2.7
9 13| 21| 44| 26| 18| 24| 22| 21| 17| 14| 15| 18| 34

10 1.1 20| 25| 14| 22| 27| 24| 18| 1.7| 19| 19| 1.7| 25
11 07| 16| 20| 15| 16| 15| 16| 23| 16| 1.7| 12| 16| 1.7
12 05| 15| 1.2| 15| 13| 11| 13| 18| 2.7| 19| 13| 15| 1.2
13 03| 11| 08| 08| 08| 08| 08| 08| 15| 13| 14| 09| 1.0
14 0.2| 11| 09| 06| 06| 05| 08| 09| 16| 19| 16| 10| 1.0
15 03| 13| 12| 08| 05| 04| 08| 07| 13| 16| 1.7| 13| 1.2
16 03| 20| 13| 08| 06| 05| 05| 0.7 08| 1.2| 21| 10| 1.0
17 03| 15| 10| 06| 06| 05| 06| 05| 0.7| 10| 21| 15| 1.2
18 01| 19| 10| 09| 06| 05| 06| 05| 06| 09| 11| 16| 1.6
19 04| 14| 22| 07| 0.7 05| 07| 05| 04| 06| 10| 11| 1.6
20 05| 15| 16| 11| 1.2 08| 06| 0.7| 0.6| 05| 10| 13| 1.3
21 04| 19| 18| 16| 09| 11| 06| 06| 08| 10| 0.7 10| 1.4
22 04| 16| 17| 14| 06| 08| 09| 0.7 0.7 11| 14| 11| 1.2
23 05| 15| 14| 11| 10| 12| 11| 10| 11| 16| 29| 12| 1.7
24 13| 3.7| 3.0 28| 23| 18| 16| 21| 25| 28| 3.7| 29| 28
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and SEDI and between sNDVI and SPEI

sSNDVI vs. sSNDVI vs.

SEDI SPEI
All months 13.09 19.24
January 23.52 36.94
February 22.74 35.68
March 23.59 37.12
April 26.67 38.08
May 27.81 37.63
June 24.49 41.22
July 26.84 43.88
August 26.21 46.72
September 23.95 43.67
October 25.35 42.92
November 25.41 37.64
December 28.93 39.10

Table 4. Percentage of the global terrestrial areas showing significant correlations between sNDVI
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Figure 1: Global terrestrial relationship between SEDI (and return period - 1 event in number of cases-) obtained from GEV (a) and Pearson-III

(b) distributions and log-logistic distribution using the GLEAM and CRU AED. Colors represent the density of points (dark red being the

highest)
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Figure 2. Percentage of series showing absolute frequencies of SEDI values below -2.58. a)
GLEAM AED, b) CRU AED
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Figure 3: Box and whisker plot showing the Pearson correlation coefficient (r) between SEDI

series calculated from GLEAM and CRU AED the entire monthly record and for each month

independently. Light Horizontal line shows the threshold for positive and significant
correlations (p < 0.05), with numbers above the top whisker indicating the percentage of

global terrestrial area with such correlations. The heavy line in the box represents the median,
the upper and lower parts of the box denote the interquartile range and the whiskers show the

95% or 5%.
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Figure 4: Spatial distribution of the correlations between SEDI series calculated using the

GLEAM and the CRU datasets for AED for the mid-season monthly series and for the series of
all months. Terrestrially white areas represent deserts/Greenland and areas in which SEDI fit

has no solution
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Figure 5: Spatial distribution of the SEDI values obtained from GLEAM and CRU AED data
during the recent drought episodes that affected Russia (top-most three rows) and southern
North America (bottom-most three rows) in 2010 and 2011, respectively.

44



1088

1089
1090
1091
1092
1093
1094

o | 70.9% 67.6% 61.7% 67.7% 76.5% 83.9% 88.1%  88.9% 85.2% 75.9% 70.8% 73.6% T1.5%
- H
w | - H H : ; ' H | !
o
ES
o i | i i 1 | i 1 |
c H i H ] ; : H : |
Qo | i i i i |
[} — . — - i I i I — — :
3}
o
ot
a A
T
Q
<

T T T T T T T T T T T T
Allm.  Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Figure 6. Box-plot and whisker plot showing the Pearson correlation coefficient (r) between

the SEDI and SPEI for specific months of the year as well as for the entire record. Light

Horizontal line shows the threshold for positive and significant correlations (p < 0.05), with

numbers above the top whisker indicating the percentage of global terrestrial area with such

correlations. The heavy line in the box represents the median, the upper and lower parts of the

box denote the interquartile range and the whiskers show the 95% or 5%.
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Figure 7: Spatial distribution of the correlations between SEDI and SPEI series for mid-season
months and for the entire record. Terrestrially white areas represent deserts/Greenland and

areas in which SEDI fit has no solution.
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Figure 8: Correlation between the SEDI and SPEI at different time scales (from 1- to 24-months)

for specific months and for the entire record. Light Horizontal line shows the threshold for

positive and significant correlations (p < 0.05), with numbers above the top whisker indicating

the percentage of global terrestrial area with such correlations. The heavy line in the box

represents the median, the upper and lower parts of the box denote the interquartile range

and the whiskers show the 95% or 5%.
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Figure 9. SPEI time scale at which the highest correlation with the SEDI series was found for
mid-season months and for the entire record. Terrestrially white areas represent
deserts/Greenland and areas in which SEDI fit has no solution.
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Figure 10. Spatial distribution of the Maximum Pearson correlation coefficient (r) between
SEDI and sNDVI (left) and between SPEI and sNDVI (right) for mid-season months and for the
entire record 1981-2014.
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1119 Figure 11: Density scatterplots with the spatial relationship between the sNDVI and SEDI
1120 correlations and between the sNDVI and SPEI correlations. The scatterplots show the results
1121 for all months and for the entire record. Blue line: linear regression, black line: 1-to-1 line.
1122 Given the large sample, and to avoid an overrepresentation of significant correlations, the p
1123 values were obtained by means of a bootstrap sampling approach that considers 2000
1124 independent samples of 30 cases and p values for correlations of the samples of 30 cases were
1125 averaged. The colors of the scatterplots represent the density of points (dark red being the
1126 highest).
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1130 Figure 12: Spatial distribution of the SEDI, 3-month SPEI and sNDVI during two extraordinary
1131 drought events recorded in the Iberian Peninsula (1995 shown in the top-three rows) and the
1132 Sahel (1984 shown in the bottom three rows).
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