
 
 

 
 
 
 
 

 
Journal of Climate 

 

EARLY ONLINE RELEASE 
 

This is a preliminary PDF of the author-produced 
manuscript that has been peer-reviewed and 
accepted for publication. Since it is being posted 
so soon after acceptance, it has not yet been 
copyedited, formatted, or processed by AMS 
Publications. This preliminary version of the 
manuscript may be downloaded, distributed, and 
cited, but please be aware that there will be visual 
differences and possibly some content differences 
between this version and the final published version. 

 
The DOI for this manuscript is doi: 10.1175/JCLI-D-17-0775.1 
 
The final published version of this manuscript will replace the 
preliminary version at the above DOI once it is available. 
 
If you would like to cite this EOR in a separate work, please use the following full 
citation: 
 
Vicente-Serrano, S., D. Miralles, F. Domínguez-Castro, C. Azorin-Molina, A. El 
Kenawy, T. McVicar, M. Tomás-Burguera, S. Beguería, M. Maneta, and M. Peña-
Gallardo, 2018: Global assessment of the Standardized Evapotranspiration 

 
AMERICAN  
METEOROLOGICAL  

SOCIETY 

Deficit Index (SEDI) for drought analysis and monitoring. J. Climate. 
doi:10.1175/JCLI-D-17-0775.1, in press. 
 
© 2018 American Meteorological Society 



1 
 

Global assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for 1 

drought analysis and monitoring 2 

Sergio M. Vicente-Serrano 1,*, Diego G. Miralles 2, Fernando Domínguez-Castro 1, Cesar 3 

Azorin-Molina 3, Ahmed El Kenawy 1,4, Tim R. McVicar 5,6, Miquel Tomás-Burguera 7, 4 

Santiago Beguería 7, Marco Maneta 8, Marina Peña-Gallardo 1 5 

Family names (or surnames) are underlined 6 

1 Instituto Pirenaico de Ecología, Spanish National Research Council (IPE-CSIC), 7 
Campus de Aula Dei, P.O. Box 13034, E-50059 Zaragoza, Spain; 2 Ghent University, 8 

Ghent, Belgium; 3 Regional Climate Group, Department of Earth Sciences, University of 9 
Gothenburg, Gothenburg, Sweden; 4 Department of Geography, Mansoura University, 10 

35516, Mansoura, Egypt; 5 CSIRO Land and Water, Canberra, ACT, Australia; 6 11 
Australian Research Council Centre of Excellence for Climate System Science, University 12 

of New South Wales, Sydney, Australia; 7 Estación Experimental de Aula Dei, Spanish 13 
National Research Council (EEAD-CSIC), Zaragoza, Spain; 8 Department of Geosciences, 14 

University of Montana, Missoula, MT, USA. 15 

 16 

* Corresponding author: Sergio M. Vicente-Serrano (e-mail: svicen@ipe.csic.es) 17 

 18 

Abstract. This article developed and implemented a new methodology for calculating the 19 

Standardized Evapotranspiration Deficit Index (SEDI) globally based on the log-logistic 20 

distribution to fit the evaporation deficit (ED), the difference between actual 21 

evapotranspiration (ETa) and atmospheric evaporative demand (AED). Our findings 22 

demonstrate that, regardless of the AED dataset used, a log-logistic distribution most 23 

optimally fitted the ED time series. As such, in many regions across the terrestrial globe, the 24 

SEDI is insensitive to the AED method used for calculation, with the exception of winter 25 

months and boreal regions. The SEDI showed significant correlations (p < 0.05) with the 26 

Standardized Precipitation Evapotranspiration Index (SPEI) across a wide range of regions, 27 

particularly for short (< 3-months) SPEI time-scales. This work provides a robust approach 28 

for calculating spatially and temporally comparable SEDI estimates, regardless of the climate 29 

region and land surface conditions, and it assesses the performance and the applicability of 30 

the SEDI to quantify drought severity across varying crop and natural vegetation areas.   31 
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1. Introduction 34 

Drought is usually considered as a period of abnormally low water supply that fails to satisfy 35 

the existing demands of different natural systems and socioeconomic sectors. This situation is 36 

usually caused by a prolonged period of below average precipitation. It is well-known that 37 

drought is difficult to identify and quantify over space and time, which makes it one of the 38 

most complex natural hazards (Wilhite 1993, 2000; Vicente-Serrano 2016). This is 39 

particularly so because according to most definitions of drought, with the exception of those 40 

that focus exclusively on meteorological aspects, droughts are impact-dependent phenomena 41 

that affect a diverse range of natural and socioeconomic variables (Lloyd-Hughes 2014; Van 42 

Loon, 2015). Moreover, the degree of vulnerability and the capacity of recovery to drought 43 

occurrence strongly differ among regions as a function of their background socioeconomic 44 

and environmental characteristics (Simelton et al. 2009; Choat et al. 2012; Antwi-Agyei et al. 45 

2012; Yang et al., 2017). Therefore, drought severity depends on meteorological conditions 46 

(e.g. magnitude and duration of precipitation shortage), and is also impacted by several 47 

human and environmental factors, such as land use or risk management (Van Loon et al. 48 

2016). 49 

 50 

However, the quantification of drought severity based on its impacts is a challenge, given the 51 

spatial differences, the sector of interest, as well as the availability of impact data (Stahl et al. 52 

2015 and 2016). For these reasons, scientists, managers and policy makers usually quantify 53 

drought based on climate information only (McKee et al. 1993; Vicente-Serrano et al. 2010): 54 

the most widely-used drought metrics are generally based on climate information available 55 

across the globe. Overall, the potential of drought indices is particularly related to the 56 

possibility of quantifying drought severity and comparing their climate component both 57 
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spatially and temporally. A detailed review of current climate drought indices can be found in 58 

Heim (2002), Keyantash and Dracup (2002) and Mishra and Singh (2010). 59 

 60 

Being inexpensively and widely observed, precipitation is usually employed as the key input 61 

variable in traditional drought indices (e.g. Palmer 1965; McKee et al. 1993). However, 62 

precipitation is only one of the multiple variables that control water stress conditions in 63 

natural ecosystems and affect water availability in usable water stores (e.g. soil moisture, 64 

streamflow, reservoir storage, lake water). Water shortage is ultimately dependent on the 65 

input of water through precipitation, lateral inflows, melting or irrigation, and is also crucially 66 

regulated by the atmospheric evaporative demand (AED), i.e. the potential of the lower 67 

atmosphere to receive water via evapotranspiration from the abovementioned terrestrial water 68 

stores. Under low soil moisture, rising AED rates further increases vegetation water stress 69 

(e.g., Ciais et al. 2005; McDowell et al. 2008; Zampieri et al. 2009), causing stomata closure 70 

and the collapse of the photosynthetic machinery potentially resulting in crop failure (Lobell 71 

et al. 2011; Asseng et al. 2015) and forest decay and mortality (Allen et al. 2015; Anderegg et 72 

al. 2013; Breshears et al. 2013). 73 

 74 

Numerous studies have demonstrated the importance of AED in triggering drought or 75 

intensifying drought severity (e.g. Ciais et al. 2005; Otkin et al. 2016). For these reasons, 76 

several drought indices use AED in their formulations. For example, compared to 77 

precipitation-based drought indices, such as the Standardized Precipitation Index (SPI) 78 

(McKee et al. 1993), the Standardized Precipitation Evapotranspiration Index (SPEI) 79 

(Vicente-Serrano et al. 2010), which is obtained by means the standardization of the 80 

difference between precipitation and AED at different time-scales, has shown better 81 

performance in terms of identifying drought impacts in a variety of drought-prone systems 82 
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and regions across the globe (Vicente-Serrano et al. 2012; McEvoy et al. 2012; Wang et al. 83 

2016; Chen et al. 2016; Labudova et al. 2017). In fact, it has been suggested that the AED 84 

may be the single most useful variable to quantify drought severity (McEvoy et al. 2016a). 85 

Accordingly, drought indices based only on AED have been recently formulated under the 86 

premise that AED anomalies are strongly connected, via a complementary relationship, with 87 

precipitation, soil moisture and actual evapotranspiration (ETa) anomalies (Hobbins et al. 88 

2016; McEvoy et al. 2016b). 89 

 90 

Here, a conceptual distinction between AED and ETa must be established. There are different 91 

forms to determine AED, among them pan evaporation (the evaporation from a pan full of 92 

water), or crop reference evapotranspiration (ETo) (the ETa of a hypothetical unstressed 93 

alfalfa grassland of uniform height with a closed canopy so the soil is shaded), which can be 94 

compared spatially since it calculation only depends on meteorological inputs (Katerji and 95 

Rana 2011). Independent of the choice of these definitions, AED does not directly depend on 96 

the actual water storage in land, and it is thus different from the ETa, which is the volume of 97 

water that is actually evaporated directly from soil/water/vegetation surfaces and/or transpired 98 

from vegetation into the atmosphere. While there are no water constrains for evaporation 99 

under humid conditions, ETa is constrained mainly by soil water availability (and ultimately 100 

by precipitation) in dry environments (Budyko 1948). As such, the use of drought indices that 101 

account only for AED is inappropriate in regions with non-constraining soil moisture 102 

conditions, given that a positive AED anomaly cannot be representative of drought severity. 103 

In such regions, water stress conditions are likely better quantified considering both AED and 104 

ETa. 105 

 106 
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From agronomic and eco-physiological perspectives, the evaporation deficit (ED), defined as 107 

the difference between ETa and AED, is more relevant than considering ETa or AED 108 

separately. Regardless of the climate regime, high ED causes stomatal closure, thus a decrease 109 

in the photosynthetic activity, carbohydrate accumulation and net primary production 110 

(Leuning 1995; Brümer et al. 2012; Vicente-Serrano et al. 2015). If the ED is very high and 111 

wilting point is reached, plants may die due to vascular damage (Will et al. 2013, Anderegg et 112 

al. 2015). Under the aforementioned assumptions, the ED has been proposed for quantifying 113 

drought severity (Narasimhan and Srinivasan 2005; Yao et al. 2010; Anderson et al. 2011; 114 

Kim and Rhee 2016). Unlike AED, which can be calculated by means of relatively simple 115 

physically-based models (e.g. Penman 1948; Allen et al. 1998; Rotstayn et al. 2006), the 116 

calculation of ETa is subject to many sources of uncertainty. ETa depends on a wide range of 117 

factors, including, but not limited to, AED, soil water availability, soil characteristics, 118 

vegetation morphology, physiology and phenology, and the complex relationships existing 119 

between these factors (Morton 1983). 120 

 121 

Recently, the availability of remote sensing data and surface-atmosphere models has allowed 122 

for the development of global ETa products (Allen et al. 2007; Fisher et al. 2008; Mu et al. 123 

2011; Miralles et al. 2011; Zhang et al. 2016). Similarly, drought indices have been developed 124 

based on the ED, mainly to analyze natural vegetation and crop stress; for instance, Anderson 125 

et al. (2011), Yao et al. (2010) and Mu et al. (2011) developed different normalized drought 126 

indices (e.g. the Evapotranspiration Deficit Index [EDI] and the Evaporative Stress Index 127 

[ESI]) by means of observational meteorological data and space-based products to estimate 128 

ED. Following the same rationale, Kim and Rhee (2016) proposed the Standardized 129 

Evapotranspiration Deficit Index (SEDI) using ETa data estimated based on Bouchet’s (1963) 130 

complementary hypothesis, and used an approach widely used to calculate a drought index 131 
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comparable spatially and temporally (e.g. the SPI and the SPEI). Here, we follow the same 132 

nomenclature proposed by Kim and Rhee (2016) to refer to a standardized drought index 133 

based on the ED. 134 

 135 

It is expected that future improvements on ETa estimates based on remote sensing data and 136 

model outputs will increase the use of ETa for analyzing and monitoring drought at large 137 

scale (Fisher et al. 2017). Our definition of SEDI allows for a straightforward utilisation of 138 

these estimates. Yet, it is necessary to develop robust statistical calculation procedures, and to 139 

comprehensively evaluate the usefulness of this indicator in comparison to other available 140 

drought indices. 141 

 142 

Our overarching goal is to provide a metric using ED to quantify drought severity and make 143 

robust spatial and seasonal comparisons. Our specific objectives are to: (i) find a robust 144 

probability distribution to fit the ED series worldwide to calculate the SEDI; (ii) compare the 145 

impact of different AED estimations on the SEDI; (iii) compare the SEDI time series at the 146 

global scale with another widely used drought index that accounts for precipitation and AED, 147 

namely the SPEI; and (iv) assess the skill of the SEDI in terms of determining vegetation 148 

activity anomalies globally.  149 

 150 

2. Data 151 

2.1. Actual evapotranspiration  152 

We used ETa estimates from the Global Land Evaporation Amsterdam Model (GLEAM) v3a. 153 

Full details about the development and characteristics of this dataset are found in Miralles et 154 

al. (2011) and Martens et al. (2017). GLEAM is a methodology dedicated to deriving 155 

evaporation from satellite observations of its main drivers. Interception loss is independently 156 
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calculated using Gash’s (1979) analytical model forced by observations of precipitation and 157 

vegetation cover while the remaining evaporation components use Priestley and Taylor’s 158 

(1972) potential evaporation formulation constrained by a multiplicative stress factor. For 159 

transpiration and soil evaporation, this stress factor is calculated based on the content of water 160 

in vegetation (microwave vegetation optical depth) and root zone (multilayer soil model 161 

driven by observations of precipitation and updated through assimilation of microwave 162 

surface soil moisture).  163 

Actual evaporation estimates from GLEAM have been validated against eddy covariance 164 

towers worldwide and errors have been estimated base on triple collocation analysis. Miralles 165 

et al. (2011) reported average correlations of 0.83 and 0.90 for daily and monthly estimates, 166 

respectively, and an average RMSD of ∼ 0.3 mm day−1 for in situ validations against 43 eddy 167 

covariance towers. More recently, Martens et al. (2017) reported a mean correlation of 0.81–168 

0.86 based on 91 eddy-covariance towers. In addition, GLEAM output has shown a better 169 

performance than other available evaporation datasets to close the water balance over a wide 170 

range of hydrological catchments, a better agreement with the expectations from the Budyko 171 

framework, and a good skill to partition evaporation fluxes into transpiration, interception and 172 

bare soil evaporation (Michel et al., 2016; Miralles et al., 2016). GLEAM datasets are openly 173 

available globally at daily temporal resolution and 0.25º spatial resolution for 1980–2016 174 

(https://www.gleam.eu). Here, we aggregated the data to monthly, 0.5º resolution. 175 

 176 

2.2. Atmospheric evaporative demand and precipitation 177 

To assess the sensitivity of SEDI to different AED inputs two AED datasets were used: (i) 178 

GLEAM v3a (Miralles et al. 2011; Martens et al. 2017); and (ii) Climate Research Unit 179 

(CRU) TS v.3.24.01 (Harris et al. 2014). GLEAM calculates Priestley and Taylor (1972) 180 

potential evapotranspiration (ETp), which is only forced by incoming radiation and air 181 
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temperature, and here are used as a proxy of AED. The CRU TS AED is estimated by Allen’s 182 

et al. (1998) FAO-56 ETo Penman–Monteith equation which is simplified by assuming 183 

spatio-temporally constant wind speed (Harris et al. 2014). For the calculation of SPEI we 184 

used the analogous CRU TS precipitation dataset. 185 

 186 

2.3. Global GIMMS NDVI 187 

To compare the SEDI spatiotemporal variability with the anomalies of vegetation activity that 188 

could be related to drought severity conditions, a metric of vegetation activity based on 189 

satellite data was used. For this purpose, we used the Normalized Difference Vegetation 190 

Index (NDVI) (3g.v1) dataset developed by the Global Inventory Monitoring and Modeling 191 

System (GIMMS) observed by AVHRR sensors on-board NOAA satellites (Pinzon and 192 

Tucker 2014), which Beck et al. (2011) demonstrated was the optimal AVHRR-NDVI dataset 193 

for time series analysis. The NDVI exhibits a strong relationship with vegetation parameters 194 

such as green biomass (Tucker et al. 1983; Gutman 1991) and fractional vegetation cover 195 

(Gillies et al. 1997; Duncan et al. 1993). NDVI has long been used to analyze drought impacts 196 

on vegetation (Liu and Kogan 1996; Kogan 1997; McVicar and Jupp 1998; Ji and Peters 197 

2003; Vicente-Serrano et al. 2013; Papagiannopoulou et al. 2017). The NDVI dataset is 198 

monthly at 0.5º resolution over 1981–2014. To facilitate a direct comparison between the 199 

NDVI and SEDI in both space and time, the NDVI series were standardized by fitting the 200 

monthly NDVI series to a log-logistic distribution and the cumulative probabilities were 201 

transformed to standardized units following the same approach used for the SPI and the SPEI 202 

(Vicente-Serrano 2006; Vicente-Serrano et al. 2010). 203 

 204 

3. Methods 205 

3.1. Calculation of the evapotranspiration deficit from the gridded global data 206 
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Recall that we define the evapotranspiration deficit (ED) as ETa – AED. Two versions of 207 

monthly ED were calculated; both used monthly GLEAM ETa estimates with AED 208 

formulations from: (i) CRU TS v. 3.24.01 ETo; and (ii) GLEAM ETp. These calculations 209 

were performed for the terrestrial globe excluding the warm desert areas and Antarctica / 210 

Greenland where several methodological limitations exist (Fisher et al. 2010; Beguería et al. 211 

2014). Supplementary Figures 1 illustrates the spatial averages and standard deviations of the 212 

ED in representative months of the four seasons of the year and Supplementary Figure 2 213 

shows the temporal evolution of the ED in some world regions. 214 

 215 

3.2. Assessment of different probability distributions to calculate the SEDI 216 

Eight probability distributions were tested (General Extreme Value, Log-logistic, Log-normal, 217 

Pearson III, Generalized Pareto, Weibull, Normal, and Exponential) to transform ED values to 218 

a standardized normal variable (SEDI). These statistical distributions have been widely used 219 

to standardize numerous hydrological and meteorological variables (e.g. Vicente-Serrano et 220 

al. 2012b; Stagge et al. 2016), being a common tool to calculate spatially and temporally 221 

comparable drought indices using either precipitation, AED or both (e.g. McKee et al. 1993; 222 

Vicente-Serrano et al. 2010; Ma et al. 2014; Hobbins et al. 2016). Unfortunately, no previous 223 

studies have tested the goodness of these distributions to fit ED values. Since the use of 224 

different probability distributions may produce substantial differences in the resulting drought 225 

indices (e.g. Stage et al. 2015; Vicente-Serrano and Beguería 2016), we calculated 16 226 

different global SEDI datasets, each one using one of the aforementioned probability 227 

distributions and the two different AED datasets (CRU TS v. 3.24.01 and GLEAM). 228 

Following Hosking (1990) the parameters of the distributions were calculated using unbiased 229 

Probability Weighted Moments (UB-PWMs). Calculations were performed independently for 230 

each ED monthly series to account for the strong seasonality of ED in the majority of the 231 
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world climates. Once the monthly ED series were fit to a probability distribution, cumulative 232 

probabilities of the ED values were obtained and transformed to standardized units (SEDI). 233 

For this purpose, the classical approach of Abramowitz and Stegun (1965) was used, which is 234 

also used for calculating other drought indices such as the SPI and the SPEI. 235 

 236 

Similar to the SPI handling of months with no precipitation, the calculation of ED also 237 

considers the case of months with ED = 0.0 mm/month. This occurs when ETa equals AED. 238 

In humid and cold regions this conditions can occur frequently during winter months, even at 239 

monthly time scales, given that ETa tends to approach AED and there is adequate water 240 

availability to satisfy ETa (due to low AED) of these regions at these times. To cope with zero 241 

values we implemented Stagge et al.’s (2015) approach to calculate the SPI, which is based 242 

on the ‘centre of mass’ of the zero distribution rather than the maximum probability. 243 

 244 

The UB-PWMs calculation of each monthly ED series requires a minimum of three values 245 

larger than zero in the entire multi-annual record. In large areas of the northern hemisphere 246 

ED is likely to be zero during the winter months, which makes it impossible to define the 247 

SEDI in these months and regions. Additionally, a SEDI calculation based on some of the 248 

eight tested probability distributions is not possible in some cases because the parameters of 249 

that specific distribution cannot be fitted to the ED data. Moreover, in a few cases, the origin 250 

parameter of the distribution can be higher than the lowest observed ED values, indicating no 251 

solution for the SEDI in these cases. 252 

 253 

To assess the performance and robustness of the eight probability distributions used for the 254 

calculation of the SEDI, we firstly calculated the percentage of monthly ED series that cannot 255 

be fitted by each of them, and distributions with high percentages were discarded (usually > 256 
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50%, see Table 1). With the remaining distributions, the normality of the resulting SEDI 257 

series across the terrestrial globe at each 0.50 degree resolution pixel was tested. Stagge et al. 258 

(2015) applied the Shapiro–Wilks (SW) test to determine whether the standardized variable 259 

(i.e. the SEDI) follows a standard normal distribution. The advantage of this test is that the 260 

parameter values are known beforehand, and not computed from the input data. The p-values 261 

of the SW test for each of the monthly global SEDI series obtained with the eight probability 262 

distributions were calculated. A rejection rate of p < 0.05 (corresponding to 95% confidence 263 

level) was used to discriminate the SEDI series that follow a normal standard variable. 264 

 265 

Nevertheless, as shown by Vicente-Serrano and Beguería (2016), it is difficult to define the 266 

‘best’ candidate distribution to calculate a standardized drought index, as the application of 267 

the SW goodness-of-fit test to evaluate the goodness of a distribution is limited at the tails of 268 

the distribution which are the most relevant values for a drought index. For this reason, we 269 

also analyzed the frequencies of high and low SEDI values obtained by the eight probability 270 

distributions and compared the associated return periods. 271 

 272 

3.3. Comparison between SEDI obtained from two different AED datasets and between 273 

SEDI and SPEI 274 

SEDI calculated using the CRU and GLEAM AED datasets were compared by means of the 275 

per-pixel Pearson’s correlation coefficient considering the different monthly series. 276 

 277 

3.4. Comparison between SEDI and SPEI 278 

The SPEI at time-scales ranging between 1 and 24 months was calculated using CRU monthly 279 

precipitation and GLEAM AED data for 1981–2014. For this purpose, a log-logistic 280 

distribution and UB-PWMs were used (see details in Vicente-Serrano et al. 2010; Beguería et 281 

al. 2014 and Vicente-Serrano and Beguería 2016). For each pixel, we calculated the SPEI 282 
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time-scale that had the highest correlation with the SEDI for the different monthly series. 283 

Regardless of the SPEI timescale, we also calculated the spatial distribution of the maximum 284 

correlation between SPEI and SEDI. 285 

 286 

3.5. Assessing the skill of the SEDI and SPEI in identifying spatiotemporal anomalies of 287 

vegetation state 288 

Finally, the relationship between the standardized NDVI (sNDVI) and the SEDI and SPEI 289 

using Pearson’s correlation coefficients was calculated. As the global relationship between 290 

vegetation activity and drought is strongly dependent on the drought time scale (Vicente-291 

Serrano et al. 2013), the correlation between the sNDVI and the SPEI was calculated at time-292 

scales ranging between 1 and 24 months. Given the strong seasonality of vegetation, 293 

correlations were calculated independently for specific months of the year as well as for the 294 

monthly time series as a whole. Regardless of the timescale of the SPEI, we only retained the 295 

lag of maximum correlations and compared it spatially with the correlations obtained between 296 

sNDVI and SEDI. 297 

 298 

4. Results 299 

4.1. Assessment of probability distributions to calculate the SEDI at the global scale 300 

Table 1 show the percentage of monthly series for which the SEDI could not be calculated 301 

based on GLEAM and CRU AED data for each of the eight probability distributions used for 302 

standardization. The log-normal and Weibull distributions showed a markedly high 303 

percentage of series (often exceeding 40% of the terrestrial land-surface) with no solution for 304 

the SEDI suggesting that they are least suited for SEDI calculation, so they were removed 305 

from further analyses. The remaining six distributions showed smaller percentages of cases 306 

for which no solution could be found, with Normal and Exponential being slightly better. 307 

Interestingly, there is a clear seasonal pattern in the ability of these six distributions to fit the 308 
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ED series, with better performance found between March and September, compared to the 309 

October to February period. In comparison to the GLEAM AED, the SEDI calculated using 310 

the CRU AED shows a lower percentage of cases with no solution for the SEDI fitting. This 311 

may be explained by the higher AED values found in the CRU dataset. 312 

 313 

< Table 1 here please > 314 

 315 

The Shapiro-Wilks normality test applied to the SEDI series computed using the six 316 

remaining distributions indicated a poor performance of the Generalized Pareto, Normal and 317 

Exponential distributions, which had large percentages (typically 50% to 90%) of monthly 318 

series for which the null hypothesis of normality was rejected (Table 2, for the GLEAM and 319 

CRU AED datasets respectively). The remaining three distributions had a lower percentage of 320 

rejections, with the log-Logistic distribution having the lowest overall. The results were 321 

similar with the two AED datasets considered, although the SEDI calculated with the CRU 322 

AED yielded worse results (i.e., a larger proportion of rejections). In both AED cases, there 323 

was a notable seasonality, with fewer rejections in the boreal summer (less than 10% for log-324 

Logistic) and more in boreal winter (around 25%). 325 

 326 

< Table 2 here please > 327 

 328 

Dry events are located in the lower tail of distribution and it is important to discern departures 329 

from normality in this region, even though data located there may represent less than 2–3% of 330 

all data. Figure 1(a) shows the relationship between the return periods and raw SEDI values 331 

obtained from GLEAM AED using log-logistic and GEV distributions, with Figure 1(b) 332 

documenting similar for the log-logistic and Pearson-III distributions. The SEDI values 333 
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obtained with GEV and Pearson-III distributions show more extreme values in both tails than 334 

those obtained with the log-logistic. This translates to higher return periods and more extreme 335 

SEDI values with GEV and Pearson-III distributions in comparison to the log-logistic. 336 

 337 

< Figure 1 here please > 338 

 339 

The frequencies of high and low SEDI events using the GEV probability distribution for 340 

standardization are unrealistically high using a sample of 35 years The plots are truncated to 1 341 

event in 500 cases, corresponding to ± 2.88 sigmas, but even longer return periods were 342 

obtained with the GEV. On the other hand, the log-logistic distribution provided more 343 

coherent return periods and less extreme SEDI values. The plots also show that differences 344 

found in the high-density region (±1.80 sigmas) between the different probability distributions 345 

have only a residual influence on the SEDI values. The results based on the CRU AED 346 

yielded similar results. This is clearly illustrated in Figure 2, which shows the frequency of 347 

values below -2.58 sigmas (which corresponds to a return period of 1 in 200 years) in each 348 

time series. As expected, the majority of series do not show values below the threshold, but 349 

lower percentages dominate for the log-logistic distribution. The SEDI series obtained with 350 

GEV and Pearson III distributions show higher percentage of very extreme values. Given the 351 

relatively short sample used here (1980–2014, with the start-date determined by when the 352 

satellite remote sensing first become available), it is unlikely to find such a high frequency of 353 

SEDI cases corresponding to a return period higher than 200 years. Considering these results 354 

altogether (i.e., Tables 1-2 and Figures 1-2), we recommend the use of the log-logistic 355 

distribution for computing the SEDI series across the globe. 356 

 357 

< Figure 2 here please > 358 
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 359 

4.2. Comparison of SEDI series from two different AED datasets 360 

The boxplots in Figure 3 summarize the per-pixel correlations between the SEDI series and 361 

the GLEAM and CRU AED datasets. All calculations were computed independently for each 362 

month for the 34 years, and for the entire monthly time series altogether. In general, 363 

correlations were dominantly positive and statistically significant (p < 0.05), albeit being 364 

generally higher for April and September inclusive. There is large variability in the boxplots, 365 

especially during the Northern Hemisphere cold-season where Pearson’s r value range from 366 

maximum positive to maximum negative values. Nevertheless, with the exception of the 367 

Northern Hemisphere cold season, the percentage of series showing significant correlations 368 

across the globe was generally higher than 70%. Figure 4 depicts the spatial distribution of 369 

correlations between both datasets annually and for the mid-season months (i.e., January, 370 

April, July and October). Results reveal markedly seasonal differences. During the boreal 371 

winter (i.e., January), large areas of the Northern Hemisphere were not considered, given that 372 

the SEDI had no solution for this region in the majority of the cases, as discussed in the 373 

methods section. Nevertheless, in low latitudes, there were noticeable spatial differences in 374 

the correlations. Although the latter were high in the majority of tropical and subtropical 375 

regions, they were close to zero in the equatorial humid regions. This pattern persists in all 376 

seasons, and all months. Overall, during the boreal spring (i.e., April) and summer (i.e., July), 377 

large regions showed statistically significant correlations between the SEDI calculated using 378 

AED from CRU and GLEAM. 379 

 380 

< Figure 3 here please > 381 

< Figure 4 here please > 382 

 383 
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The analysis of selected drought events illustrates a good agreement between the two datasets. 384 

Figure 5 shows two recent exceptional droughts: (i) Russia (2010); and (ii) southern United 385 

States/northern Mexico (2011). In both events, although there are some spatial differences in 386 

the beginning and end of the drought periods, strong spatial agreement was exhibited between 387 

the two SEDI datasets during the months of maximum extension of drought severity (July and 388 

August for Russia and June-August for south North America).  389 

 390 

< Figure 5 here please > 391 

 392 

4.3. Comparison of the SEDI and the SPEI at different time scales 393 

To avoid redundancy in the presentation of the results, in the following we only use the SEDI 394 

series obtained with the GLEAM AED dataset and the log-logistic standardisation. The 395 

temporal variability of the SEDI showed a strong agreement with the SPEI. Considering only 396 

the SPEI time scale with the best correlation with the SEDI, large areas exhibited significant 397 

correlation (p < 0.05) between both indices (Figure 6). For instance, in the boreal summer, 398 

more than 85% of the world exhibited significant correlations between the SEDI and SPEI, 399 

albeit the exceptionally low correlation in the rainforests of Amazonia, Congo and Southeast 400 

Asia (Figure 7). In general, the globe’s semi-arid regions showed the strongest (typically > 401 

0.7) significant correlations between both drought indices, likely reflecting the ample seasonal 402 

cycle and multi-annual climate variability in these regions. 403 

 404 

< Figure 6 here please > 405 

< Figure 7 here please > 406 

 407 
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SEDI series exhibited higher correlations with short SPEI time scales (Figure 8). Independent 408 

of the month, correlations were significant (p < 0.05) over the majority of globe, considering 409 

SPEI time scales between 1 and 9 months. With respect to longer time scales, the magnitude 410 

and statistical significance of the correlations diminished progressively. In the boreal summer, 411 

the differences in the magnitude of the correlations among the different time scales were 412 

lower, however lower correlations were observed for long SPEI time scales. About 40% of 413 

the world revealed the strongest correlation at the 1-month SPEI timescale, compared to 15–414 

20% at the 2-month time scale (Table 3). In summary, around 80% of world exhibited the 415 

highest and most statistically significant (p < 0.05) correlations between the SEDI and SPEI 416 

considering SPEI time scales shorter than 5 months. Exceptionally, a few regions (< 10% of 417 

the terrestrial globe) showed the highest and most significant correlations at time scales 418 

longer than 9 months. Thus, during the boreal winter, apart from some areas in South America 419 

and central Africa, and in north latitudinal areas, the majority of regions showed maximum 420 

correlation between the SEDI and SPEI at short SPEI time scales (Figure 9). The areas that 421 

did not show significant correlations between the SEDI and SPEI mostly corresponded to 422 

those showing higher correlations at longer time scales (> 12 months). This finding 423 

demonstrates that where the SEDI is significantly correlated with SPEI, this correlation is 424 

recorded at short SPEI timescales (> 5 months). 425 

 426 

< Table 3 here please > 427 

< Figure 8 here please > 428 

< Figure 9 here please > 429 

 430 

4.4. Relationship between the SEDI, SPEI and the sNDVI 431 
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Figure 10 illustrates the spatial distribution of the correlations between the SEDI and sNDVI 432 

and between SPEI and sNDVI for mid-season months and for the entire record. There were 433 

important spatial differences in the magnitude of the correlations between the sNDVI and 434 

both drought indices at the global scale. Regardless of the month, higher and statistically 435 

significant correlations were found over semiarid regions, including – among others – 436 

southwestern North America, the Sahel, South Africa, Australia, and northeastern Brazil. 437 

Strong seasonality in the correlations related to the phenological cycles of vegetation was 438 

found. Monthly crossplots of SEDI and SPEI and their correlations with sNDVI are seen 439 

Figure 11, which illustrates that the spatial correlations were positive and statistically 440 

significant during all months. The correlations with sNDVI were higher for SPEI than for 441 

SEDI, particularly in the boreal summer (i.e., JJA). 442 

 443 

< Figure 10 here please > 444 

< Figure 11 here please > 445 

 446 

The percentage of the terrestrial globe that showed significant correlations between either 447 

SEDI and sNDVI or SPEI and sNDVI were relatively small (typically ~15-45%; see Table 4. 448 

For the full monthly time series, less than 20% of the area exhibited significant correlations, 449 

independent of the selected drought index. This low percentage is partly explained by the fact 450 

that most ecosystems on Earth are not driven by water availability during one or more periods 451 

of the year (e.g., dormancy). Monthly correlations between the sNDVI and SPEI were 452 

statistically significant over more than 40% of the area during the boreal summer, where 453 

vegetation is active in large areas of the Northern Hemisphere. The SEDI showed lower 454 

percentages, with roughly 25% of the area showing significant correlations with the sNDVI 455 

during the same season. 456 
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 457 

< Table 4 here please > 458 

 459 

5. Discussion 460 

5.1 Data used in the computation of the drought index 461 

In this study we delve into the computation and performance of the standardized 462 

evapotranspiration deficit index (SEDI). The SEDI is based on the evapotranspiration deficit 463 

(ED), which is defined as the difference between the actual evapotranspiration (ETa) and the 464 

atmospheric evaporative demand (AED). The rationale behind this computation is to 465 

explicitly account for the water actually used by the vegetation (the ETa) compared with the 466 

amount of water that the same ecosystem would have used in an ideal perfect hydric state, i.e. 467 

with no water stress. The departures between ETa and AED allow quantification of the degree 468 

of water stress the vegetation is suffering, i.e. the drought state. Nevertheless, it is also 469 

necessary to state that ED defined here may depend on many other factors (e.g., leaf-out 470 

period, harvesting, fire, pests) and not just water availability.  471 

A major technical problem with this approach is how to obtain values of both ETa and AED, 472 

most notably the former. The recent availability of global ETa datasets based on satellite 473 

observations (McCabe et al. 2016; Miralles et al. 2016; Zhang et al. 2016), however, has 474 

opened the possibility to explore this approach.  475 

Several studies have already proposed the quantification of drought severity based on either 476 

the ED, the ratio between ETa and AED, or using ETa estimations obtained from remote 477 

sensing data (e.g. Yao et al. 2010; Anderson et al. 2011). In their South Korean study, Kim 478 

and Rhee (2016) proposed the use of the ED to develop a drought index. They estimated ETa 479 

following the Budyko theoretical approach, which establishes a non-linear relationship 480 

between the AED/Precipitation ratio and the ETa/Precipitation ratio. The novelty of our study 481 
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is that it calculates the SEDI globally, using ETa from a global satellite dataset (GLEAM). 482 

Despite the uncertainties in GLEAM, its detailed description of the soil water balance and 483 

phenological stress mean an improvement over using ETa estimations using Budyko’s 484 

hydroclimatic framework (Martens et al. 2017).  485 

Regarding the AED data, two datasets were compared to calculate the SEDI globally. The 486 

first (GLEAM) calculates AED using the Priestley and Taylor (1972) potential ET 487 

formulation. The second (CRU) calculates AED using a simplification of Allen et al’s (1998) 488 

FAO-56 Penman-Monteith equation. Several studies have shown that the spatial and temporal 489 

variability of the AED is strongly dependent on the methodology used to estimate this 490 

variable (e.g. Espadafor et al. 2011; Vicente-Serrano et al. 2014; Wang et al. 2015; Fisher et 491 

al. 2010), and on the uncertainty in the atmospheric forcing data (McVicar et al. 2012a,b). 492 

Here, we assessed the sensitivity of the global-scale SEDI to the choice of AED, and found 493 

notable differences in the boreal winter months (i.e., DJF) and also in the humid equatorial 494 

regions during their summer months (i.e., JJA) – these are regions in which the aerodynamic 495 

component of AED can be substantial (McVicar et al. 2012b). As Priestley and Taylor is a 496 

radiative based estimate of ETp (Donohue et al. 2010) which does not include aerodynamic 497 

variables (i.e., relative humidity) explicitly in its calculations, whereas the FAO-56 Penman-498 

Monteith formulation does, they are expected to depart. Conversely, in sub-humid to semi-499 

arid climates of both hemispheres, and especially during their summer, the correlation 500 

between the two SEDI datasets was strong and not sensitive to the AED dataset used in the 501 

calculations. This is highly relevant for drought analysis and monitoring since in these regions 502 

vegetation dynamics are more determined by drought variability (Vicente-Serrano et al. 503 

2013). 504 

In tropical forests, the correlation between both SEDI datasets was statistically not significant, 505 

regardless of the season of the year. There are several factors driving this pattern. It can be 506 
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related to the low climate data availability. While GLEAM AED uses reanalysis output the 507 

CRU AED depends on observational data, which are sparse over these regions (Harris et al. 508 

2014). It can also be related to uncertainties in the reanalysis output meteorological fields, 509 

which are the likely cause for the difference found between the two SEDI datasets, 510 

particularly for those variables that are most difficult to model such as wind speed and solar 511 

radiation (McVicar et al. 2008; Perdigao et al. 2016). Moreover, the lack of relative humidity 512 

in the Priestley and Taylor scheme could affect the estimations, given that strong changes in 513 

this variable have been recorded in observations and reanalysis output over the past two 514 

decades (Willett et al. 2014; Vicente-Serrano et al. 2017) and it is taken into account in the 515 

Penman-Monteith ETo.  516 

Despite the differences found, the SEDI provides a quantification of the intensity of drought 517 

that is largely independent of the method used to compute the AED in most global regions 518 

affected by recurrent droughts events. Low sensitivity of the SEDI to the methodology used to 519 

estimate AED is relevant for the evaluation of impact in some regions such as the Sahel, 520 

South America, or central Asia. In these regions the impacts of droughts are usually severe 521 

and quantifying the extent and intensity of drought conditions is critical to inform policy and 522 

guide mitigating action. 523 

Although we provide an initial assessment of the impact of using different datasets to 524 

compute the SEDI at globally, further research is needed to test the sensibility of the SEDI to 525 

both ETa and AED variables under a range of climate and land-cover conditions, and to 526 

investigate the impact of using different ETa and AED datasets in the calculation of the SEDI. 527 

Meanwhile, there are several international initiatives to improve the quality and assess the 528 

uncertainties in global ET data from satellite and in situ observations (Zhang et al. 2016; 529 

McCabe et al. 2017; Fisher et al. 2017). 530 

 531 
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5.2. Optimum probability distribution to calculate the SEDI worldwide 532 

This study tested eight standardizing probability distributions approaches calculate the SEDI, 533 

and proposed a robust methodology to obtain global SEDI values that are spatially and 534 

temporally comparable. The log-logistic probability distribution showed clear advantages for 535 

calculating the SEDI. This distribution has already been recommended when calculating the 536 

SPEI (Vicente-Serrano et al. 2010; Vicente-Serrano and Beguería 2016). From the tested 537 

distributions, only the GEV, Pearson-III and log-logistic distributions provided solutions for 538 

the SEDI over most of the terrestrial globe, and provided SEDI series that most frequently 539 

followed a standard normal distribution. The Pearson-III distribution has been proposed to 540 

calculate the SPI (Guttman 1999; Vicente-Serrano 2006) as the most reliable alternative to the 541 

original proposed standardization using the Gamma distribution (McKee et al. 1993). 542 

However, here we found that the Pearson-III distribution yielded a higher number of SEDI 543 

series that did not follow a normal distribution compared to the log-logistic distribution. 544 

Moreover, the Pearson-III distribution tended to overestimate the frequency of extreme SEDI 545 

values at both ends of the distribution. The same was found with the GEV distribution, 546 

proposed by Stagge et al. (2015) for calculating the SPEI. Based on our global results we 547 

recommend the use of the log-logistic distribution to fit monthly ED series across the 548 

terrestrial environment to obtain the SEDI. Moreover, this recommendation holds 549 

independently of the AED form used in this study. 550 

 551 

5.3. Comparison of the SEDI with the SPEI 552 

The SPEI has been thoroughly validated and used to detect and monitor moisture anomalies 553 

for agricultural (e.g. Zipper et al. 2016; Wang et al. 2016; Pascoa et al. 2017) and 554 

environmental applications (e.g. Zhang et al. 2017; Greenwood et al. 2017). The SEDI 555 

showed positive significant correlations with the SPEI over most terrestrial ecosystems, with 556 
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some exceptions in the equatorial region and across some boreal regions. Under abundant soil 557 

moisture the SPEI could also show a drought signal if precipitation is below average when 558 

really there is limited plant available soil water constrain. This suggests that in some areas 559 

SPEI and SEDI are complementary. In areas in which the ETa strongly depends on 560 

precipitation (e.g., arid and semi-arid regions) SPEI and SEDI are expected to fit well; in 561 

other regions they could provide different but complementary information to assess drought 562 

severity. Nonetheless, during the summer boreal season, the SEDI showed significant 563 

correlation with the SPEI over the entire Northern Hemisphere. If all data was perfect, SEDI 564 

would be better in capturing vegetation impacts simply because the use of precipitation in 565 

SPEI is meant to be as a surrogate for plant water availability. Thus, SPEI uses precipitation 566 

as proxy of ETa to identify drought impacts on vegetation. This approach, although less 567 

consistent physically than the SEDI, may produce better results to determine drought severity 568 

than a complex physical simulation model (i.e., Vicente-Serrano et al. 2011). 569 

The SEDI was best correlated with the SPEI at short time scales, with the highest and most 570 

significant correlations recorded at 1- and 2-month time scales, independent of the month. 571 

There are a few regions where the strongest correlations between the SPEI and SEDI were 572 

observed at time scales longer than 18 months, but these correlations were not statistically 573 

significant. Therefore, we can regard SEDI as a short time scale drought index, characterized 574 

by its sensitivity to high frequency climate variations. Kim and Rhee (2016) suggested the 575 

calculation of the SEDI at a timescale of 9 months by standardizing the cumulative ET and 576 

AED differences over the previous nine months. They justified the selection of this period by 577 

the high correlation found between the Palmer Drought Severity Index (PDSI) and the SPEI at 578 

this time scale (see Vicente-Serrano et al. 2010b). We showed that in most regions of the 579 

world, the standardized anomalies of the ED are mostly determined by the high-frequency 580 
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variability of the climatic water balance recorded at short time scales, which makes 581 

recommendable the use of the SEDI at 1-month timescale. 582 

The selection of a specific time scale for drought analysis is justified by the different 583 

characteristic response times of agricultural, hydrological and environmental systems to water 584 

shortage. Water shortages are mostly determined by precipitation shortfalls (McKee et al. 585 

1993) and/or increased AED (Vicente-Serrano et al. 2010). The use of different drought time 586 

scales is essential to adjust the duration of anomalous climate conditions to the anomalous 587 

response of the ecohydrologic system, such as abnormally low stream flows (e,g. López-588 

Moreno et al. 2013; Lorenzo-Lacruz et al. 2013; Barker et al. 2016; see further clarifications 589 

and discussion on the drought time scales in Vicente-Serrano et al. 2011). However, the use of 590 

long cumulative time scales is not justified for the SEDI because ED is mostly determined by 591 

high-frequency variability in climatic conditions. In essence, this is similar to those 592 

streamflow-based drought indices, such as the Standardized Streamflow Index (SSI, Vicente-593 

Serrano et al. 2012). For instance, like the SSI, the SEDI could also be considered a direct 594 

indicator of the impact of droughts on vegetation because the AED is an important driver of 595 

vegetation gross primary production through its control on plant stomatal closure and plant 596 

respiration (Stephenson 1990, 1998) and because ETa strongly controls photosynthesis and 597 

carbon uptake (Donohue et al. 2014; Yang et al. 2015). 598 

 599 

5.4. Performance of the SEDI to identify vegetation anomalies associated with drought 600 

The response of vegetation activity, measured as greenness indices (e.g. NDVI) from satellite 601 

imagery, to water availability is complex. Numerous studies have demonstrated different 602 

spatial and seasonal relationships between NDVI and different climate drought indices (e.g. Ji 603 

and Peters 2003; Quiring and Paraprikaou 2008). Here, we demonstrated that the correlation 604 

between the sNDVI and the SPEI and SEDI was strongly variable over both space and time. 605 
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As expected, a clear relationship was recorded in semi-arid regions, which in general show a 606 

higher response to soil water availability, compared to sub-humid and humid regions in which 607 

vegetation is driven by other climatic and environmental factors (Vicente-Serrano et al. 2013; 608 

Papagiannopoul et al. 2017). Overall, a lower correlation of the sNDVI to the SEDI than to 609 

the SPEI was found. In general, the correlations were higher and more frequently statistically 610 

significant between the sNDVI and SPEI, possibly due to the higher flexibility of the SPEI, 611 

which is computed at different time scales, since the relationship between vegetation activity 612 

and drought indices strongly differs as a function of the timescale at which drought indices 613 

were calculated (Pasho et al. 2011; Vicente-Serrano et al. 2013, 2015). SPEI would show 614 

higher flexibility to compute water deficits recorded at different timescales since vegetation 615 

types have several physiological strategies to cope with water stress (Chaves et al. 2003). 616 

Thus, stomatal closure under high vapor pressure deficit conditions is a mechanism to reduce 617 

water losses and hydrologic stress in plants. Although during periods of low transpiration 618 

photosynthesis may be reduced, non-structural carbohydrates in the plant can maintain plant 619 

metabolism and maintain greenness (Rosas et al. 2013).  620 

Overall, we indicated that although the SEDI showed lower correlations, it exhibited similar 621 

spatial patterns of correlation with the sNDVI. Compared to the SPEI, SEDI’s sensitivity to 622 

high-frequency changes in ED makes it more suitable for identifying regions where leaf 623 

activity is highly sensitive to water stress conditions. We defend that using and combining 624 

different drought indices is the best approach for drought quantification, analysis and 625 

monitoring. The recently proposed SEDI based on the satellite-based ET data can 626 

complement traditional drought indices and provide information about regions that are 627 

sensitive to short-term changes in atmospheric demand. Figure 12 provides a representative 628 

example of two exceptional drought events recorded in the Iberian Peninsula in 1995 and the 629 

Sahel in 1984. In both cases, the SEDI and 3-month SPEI showed strong drought severity 630 
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over large areas and months, but they did not exactly agree either over space or in magnitude, 631 

which indicates that SEDI is bringing new information not captured by the SPEI. NDVI 632 

anomalies were different in time and space from each of the drought indices (SEDI and 633 

SPEI), indicating that none of them alone captures the full impact on vegetation greenness, 634 

with additional insight possible when both indices are combined. 635 

 636 

< Figure 12 here please > 637 

 638 

6. Conclusion 639 

We provided recommendations on the best approaches for calculating a temporally and 640 

spatially comparable SEDI, regardless of the climate region and land surface conditions. 641 

Although the performance of the SEDI for monitoring the hydric status of ecosystems, and 642 

despite its theoretical superiority since it is based on directly comparing the use of water 643 

(ETa) with its theoretical demand (AED), we have shown that other indices such as the SPEI 644 

which do not require estimation of the ETa showed a similar performance to identify drought 645 

severity globally. In any case, SEDI calculations will benefit from further improvements in 646 

remotely sensed ETa. Additionally, while the SEDI can be of interest for drought assessment 647 

related to crops and natural vegetation, its potential application in relation to other drought 648 

impacts such as river discharges, reservoir storages or groundwater levels is yet to be 649 

explored. The SEDI global dataset developed in this study is available at 650 

http://hdl.handle.net/10261/160091.  651 
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FIGURE CAPTIONS 979 

 980 
Figure 1: Global terrestrial relationship between SEDI (and return period - 1 event in number 981 

of cases-) obtained from GEV (a) and Pearson-III (b) distributions and log-logistic 982 
distribution using the GLEAM and CRU AED. Colors represent the density of points 983 
(dark red being the highest) 984 

Figure 2. Percentage of series showing absolute frequencies of SEDI values below -2.58. a) 985 
GLEAM AED, b) CRU AED 986 

Figure 3: Box and whisker plot showing the Pearson correlation coefficient (r) between SEDI 987 
series calculated from GLEAM and CRU AED the entire monthly record and for each 988 
month independently. Light Horizontal line shows the threshold for positive and 989 
significant correlations (p < 0.05), with numbers above the top whisker indicating the 990 
percentage of global terrestrial area with such correlations. The heavy line in the box 991 
represents the median, the upper and lower parts of the box denote the interquartile 992 
range and the whiskers show the 95% or 5%. 993 

Figure 4: Spatial distribution of the correlations between SEDI series calculated using the 994 
GLEAM and the CRU datasets for AED for the mid-season monthly series and for the 995 
series of all months. Terrestrially white areas represent deserts/Greenland and areas in 996 
which SEDI fit has no solution 997 

Figure 5: Spatial distribution of the SEDI values obtained from GLEAM and CRU AED data 998 
during the recent drought episodes that affected Russia (top-most three rows) and 999 
southern North America (bottom-most three rows) in 2010 and 2011, respectively. 1000 

Figure 6. Box-plot and whisker plot showing the Pearson correlation coefficient (r) between 1001 
the SEDI and SPEI for specific months of the year as well as for the entire record. 1002 
Light Horizontal line shows the threshold for positive and significant correlations (p < 1003 
0.05), with numbers above the top whisker indicating the percentage of global 1004 
terrestrial area with such correlations. The heavy line in the box represents the median, 1005 
the upper and lower parts of the box denote the interquartile range and the whiskers 1006 
show the 95% or 5%.  1007 

Figure 7: Spatial distribution of the correlations between SEDI and SPEI series for mid-1008 
season months and for the entire record. Terrestrially white areas represent 1009 
deserts/Greenland and areas in which SEDI fit has no solution. 1010 

Figure 8: Correlation between the SEDI and SPEI at different time scales (from 1- to 24-1011 
months) for specific months and for the entire record. Light Horizontal line shows the 1012 

threshold for positive and significant correlations (p < 0.05), with numbers above the 1013 
top whisker indicating the percentage of global terrestrial area with such correlations. 1014 
The heavy line in the box represents the median, the upper and lower parts of the box 1015 
denote the interquartile range and the whiskers show the 95% or 5%. 1016 

Figure 9. SPEI time scale at which the highest correlation with the SEDI series was found for 1017 

mid-season months and for the entire record. Terrestrially white areas represent 1018 
deserts/Greenland and areas in which SEDI fit has no solution.  1019 

Figure 10. Spatial distribution of the Maximum Pearson correlation coefficient (r) between 1020 

SEDI and sNDVI (left) and between SPEI and sNDVI (right) for mid-season months 1021 
and for the entire record 1981–2014. 1022 

Figure 11: Density scatterplots with the spatial relationship between the sNDVI and SEDI 1023 
correlations and between the sNDVI and SPEI correlations. The scatterplots show the 1024 

results for all months and for the entire record. Blue line: linear regression, black line: 1025 
1-to-1 line. Given the large sample, and to avoid an overrepresentation of significant 1026 
correlations, the p values were obtained by means of a bootstrap sampling approach 1027 
that considers 2000 independent samples of 30 cases and p values for correlations of 1028 



35 
 

the samples of 30 cases were averaged. The colors of the scatterplots represent the 1029 

density of points (dark red being the highest).  1030 
Figure 12: Spatial distribution of the SEDI, 3-month SPEI and sNDVI during two 1031 

extraordinary drought events recorded in the Iberian Peninsula (1995 shown in the top-1032 
three rows) and the Sahel (1984 shown in the bottom three rows). 1033 
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Table 1: Percentage of monthly time series of ED with no fitting solution tested with the eight 1035 

probability distributions. 1036 

Month Log-logistic GEV Log-normal Pearson-III Weibull G. Pareto Normal Exponential 

 
GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU 

Jan. 34.6 15.4 34.6 15.4 77.9 68.8 34.6 15.4 62.4 38.3 34.6 15.4 31.6 12.9 31.6 12.9 

Feb. 13.9 2.9 13.9 2.9 74.5 67.9 13.9 2.9 49.4 30.5 13.9 2.9 12.1 1.8 12.1 1.8 

Mar. 5.2 1.9 5.2 1.9 63.9 66.7 5.2 1.9 34.2 22.9 5.2 1.9 4.8 1.6 4.8 1.6 

Apr. 2.5 0.4 2.5 0.4 58.0 63.7 2.5 0.4 29.5 17.7 2.5 0.4 2.2 0.3 2.2 0.3 

May 0.4 0.3 0.4 0.3 59.9 57.3 0.4 0.3 27.8 11.7 0.4 0.3 0.4 0.2 0.4 0.2 

Jun. 0.7 0.9 0.7 0.9 66.6 58.1 0.7 0.9 35.0 12.6 0.7 0.9 0.7 0.7 0.7 0.7 

Jul. 0.6 0.8 0.6 0.8 69.6 60.6 0.6 0.8 40.6 15.6 0.6 0.8 0.5 0.6 0.5 0.6 

Aug. 1.6 0.3 1.6 0.3 69.7 61.0 1.6 0.3 46.7 15.9 1.6 0.3 1.4 0.2 1.4 0.2 

Sep. 4.4 0.3 4.4 0.3 68.9 56.9 4.4 0.3 46.9 10.6 4.4 0.3 4.2 0.2 4.2 0.2 

Oct. 19.2 0.8 19.2 0.8 72.1 57.0 19.2 0.8 49.9 17.7 19.2 0.8 18.4 0.4 18.4 0.4 

Nov. 37.6 5.8 37.6 5.8 77.7 66.3 37.6 5.8 61.0 30.8 37.6 5.8 36.2 4.4 36.2 4.4 

Dec. 43.3 13.7 43.3 13.7 81.3 68.0 43.3 13.7 67.2 38.9 43.3 13.7 41.6 10.1 41.6 10.1 

 1037 
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Table 2: Percentage of monthly SEDI series calculated using the remaining six probability 1039 

distributions for which the null hypothesis of normality was rejected (fail-to-reject-rate) by the 1040 

Shapiro-Wilks test at a confidence level p = 0.05. 1041 

 1042 

Month Log-logistic GEV Pearson-III G. Pareto Normal Exponential 

 
GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU 

Jan. 75.9 60.0 68.0 58.6 65.7 58.2 20.4 13.1 35.5 46.6 11.2 8.2 

Feb. 74.3 57.6 68.7 57.1 66.6 56.7 22.4 14.7 38.8 46.7 10.7 8.8 

Mar. 86.3 66.3 79.4 64.4 77.0 65.2 24.0 14.3 50.3 53.4 14.4 9.2 

Apr. 89.0 78.1 81.3 74.2 79.3 74.6 22.6 15.4 51.3 59.3 16.1 10.2 

May 91.4 88.7 83.2 85.5 80.8 86.1 23.6 18.0 51.3 71.5 15.2 12.0 

Jun. 92.8 89.1 81.6 85.5 79.9 86.3 19.5 18.9 48.2 71.9 11.8 12.0 

Jul. 91.4 88.9 80.8 84.9 78.5 86.2 19.1 18.5 44.2 71.3 10.6 11.1 

Aug. 87.7 88.8 75.8 85.1 72.1 86.0 17.9 17.7 36.5 68.1 11.2 11.0 

Sep. 87.3 88.7 73.9 85.4 70.7 86.0 20.4 17.9 36.6 71.5 12.3 11.7 

Oct. 83.6 72.3 72.8 70.8 70.2 70.6 19.2 17.9 38.1 58.0 12.5 11.1 

Nov. 81.8 59.0 73.3 56.8 71.1 56.5 20.1 11.9 40.9 46.5 12.8 7.4 

Dec. 76.9 53.4 68.2 52.4 66.4 51.8 18.3 12.6 37.7 40.2 10.8 7.6 

 1043 
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Table 3: Percentage of global terrestrial 0.5°-degree resolution grid points at which the maximum 1045 

correlation between the SEDI and SPEI is recorded corresponding to different SPEI time scales. 1046 

SPEI Time scale 
(months) All months Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

1 42.0 21.5 24.5 31.9 40.7 42.0 42.0 38.0 32.9 33.5 23.4 24.5 20.2 

2 20.2 14.9 13.5 14.6 14.3 14.7 13.9 17.6 17.9 14.9 17.1 19.2 17.8 

3 9.7 11.9 8.2 10.1 8.5 8.3 9.4 7.6 9.8 9.6 9.3 12.1 13.1 

4 7.5 7.8 8.6 6.7 6.6 4.5 6.0 6.4 6.9 7.1 7.8 5.8 7.5 

5 4.3 5.2 5.3 5.1 4.5 4.2 3.6 4.5 4.7 4.3 6.3 4.9 5.8 

6 3.7 4.8 4.6 5.1 2.7 3.2 3.0 3.5 3.6 3.6 4.1 4.2 4.0 

7 2.3 3.1 4.2 3.8 3.0 3.1 2.4 2.6 2.3 2.7 2.9 3.3 3.4 

8 1.9 3.5 2.9 2.8 2.4 2.8 2.7 2.3 1.8 1.8 2.5 3.6 2.7 

9 1.3 2.1 4.4 2.6 1.8 2.4 2.2 2.1 1.7 1.4 1.5 1.8 3.4 

10 1.1 2.0 2.5 1.4 2.2 2.7 2.4 1.8 1.7 1.9 1.9 1.7 2.5 

11 0.7 1.6 2.0 1.5 1.6 1.5 1.6 2.3 1.6 1.7 1.2 1.6 1.7 

12 0.5 1.5 1.2 1.5 1.3 1.1 1.3 1.8 2.7 1.9 1.3 1.5 1.2 

13 0.3 1.1 0.8 0.8 0.8 0.8 0.8 0.8 1.5 1.3 1.4 0.9 1.0 

14 0.2 1.1 0.9 0.6 0.6 0.5 0.8 0.9 1.6 1.9 1.6 1.0 1.0 

15 0.3 1.3 1.2 0.8 0.5 0.4 0.8 0.7 1.3 1.6 1.7 1.3 1.2 

16 0.3 2.0 1.3 0.8 0.6 0.5 0.5 0.7 0.8 1.2 2.1 1.0 1.0 

17 0.3 1.5 1.0 0.6 0.6 0.5 0.6 0.5 0.7 1.0 2.1 1.5 1.2 

18 0.1 1.9 1.0 0.9 0.6 0.5 0.6 0.5 0.6 0.9 1.1 1.6 1.6 

19 0.4 1.4 2.2 0.7 0.7 0.5 0.7 0.5 0.4 0.6 1.0 1.1 1.6 

20 0.5 1.5 1.6 1.1 1.2 0.8 0.6 0.7 0.6 0.5 1.0 1.3 1.3 

21 0.4 1.9 1.8 1.6 0.9 1.1 0.6 0.6 0.8 1.0 0.7 1.0 1.4 

22 0.4 1.6 1.7 1.4 0.6 0.8 0.9 0.7 0.7 1.1 1.4 1.1 1.2 

23 0.5 1.5 1.4 1.1 1.0 1.2 1.1 1.0 1.1 1.6 2.9 1.2 1.7 

24 1.3 3.7 3.0 2.8 2.3 1.8 1.6 2.1 2.5 2.8 3.7 2.9 2.8 
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Table 4. Percentage of the global terrestrial areas showing significant correlations between sNDVI 1049 

and SEDI and between sNDVI and SPEI 1050 

 1051 

 1052 

 1053 

  1054 

 

sNDVI vs. 
SEDI 

sNDVI vs. 
SPEI 

All months 13.09 19.24 

January 23.52 36.94 

February 22.74 35.68 

March 23.59 37.12 

April 26.67 38.08 

May 27.81 37.63 

June 24.49 41.22 

July 26.84 43.88 

August 26.21 46.72 

September 23.95 43.67 

October 25.35 42.92 

November 25.41 37.64 

December 28.93 39.10 
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 1055 

Figure 1: Global terrestrial relationship between SEDI (and return period - 1 event in number of cases-) obtained from GEV (a) and Pearson-III 1056 

(b) distributions and log-logistic distribution using the GLEAM and CRU AED. Colors represent the density of points (dark red being the 1057 

highest) 1058 

GLEAM CRU

a)

b)

a)

b)
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 1059 

 1060 

Figure 2. Percentage of series showing absolute frequencies of SEDI values below -2.58. a) 1061 

GLEAM AED, b) CRU AED 1062 
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 1064 

Figure 3: Box and whisker plot showing the Pearson correlation coefficient (r) between SEDI 1065 

series calculated from GLEAM and CRU AED the entire monthly record and for each month 1066 

independently. Light Horizontal line shows the threshold for positive and significant 1067 

correlations (p < 0.05), with numbers above the top whisker indicating the percentage of 1068 

global terrestrial area with such correlations. The heavy line in the box represents the median, 1069 

the upper and lower parts of the box denote the interquartile range and the whiskers show the 1070 

95% or 5%. 1071 

 1072 

 1073 

1074 
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 1075 

Figure 4: Spatial distribution of the correlations between SEDI series calculated using the 1076 

GLEAM and the CRU datasets for AED for the mid-season monthly series and for the series of 1077 

all months. Terrestrially white areas represent deserts/Greenland and areas in which SEDI fit 1078 

has no solution 1079 

  1080 
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 1081 

Figure 5: Spatial distribution of the SEDI values obtained from GLEAM and CRU AED data 1082 

during the recent drought episodes that affected Russia (top-most three rows) and southern 1083 

North America (bottom-most three rows) in 2010 and 2011, respectively. 1084 
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 1088 

Figure 6. Box-plot and whisker plot showing the Pearson correlation coefficient (r) between 1089 

the SEDI and SPEI for specific months of the year as well as for the entire record. Light 1090 

Horizontal line shows the threshold for positive and significant correlations (p < 0.05), with 1091 

numbers above the top whisker indicating the percentage of global terrestrial area with such 1092 

correlations. The heavy line in the box represents the median, the upper and lower parts of the 1093 

box denote the interquartile range and the whiskers show the 95% or 5%.  1094 
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 1095 

Figure 7: Spatial distribution of the correlations between SEDI and SPEI series for mid-season 1096 

months and for the entire record. Terrestrially white areas represent deserts/Greenland and 1097 

areas in which SEDI fit has no solution. 1098 
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  1100 
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 1101 

Figure 8: Correlation between the SEDI and SPEI at different time scales (from 1- to 24-months) 1102 

for specific months and for the entire record. Light Horizontal line shows the threshold for 1103 

positive and significant correlations (p < 0.05), with numbers above the top whisker indicating 1104 

the percentage of global terrestrial area with such correlations. The heavy line in the box 1105 

represents the median, the upper and lower parts of the box denote the interquartile range 1106 

and the whiskers show the 95% or 5%. 1107 

  1108 
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 1109 

Figure 9. SPEI time scale at which the highest correlation with the SEDI series was found for 1110 

mid-season months and for the entire record. Terrestrially white areas represent 1111 

deserts/Greenland and areas in which SEDI fit has no solution.  1112 
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 1113 

Figure 10. Spatial distribution of the Maximum Pearson correlation coefficient (r) between 1114 

SEDI and sNDVI (left) and between SPEI and sNDVI (right) for mid-season months and for the 1115 

entire record 1981–2014. 1116 

  1117 



50 
 

 1118 

Figure 11: Density scatterplots with the spatial relationship between the sNDVI and SEDI 1119 

correlations and between the sNDVI and SPEI correlations. The scatterplots show the results 1120 

for all months and for the entire record. Blue line: linear regression, black line: 1-to-1 line. 1121 

Given the large sample, and to avoid an overrepresentation of significant correlations, the p 1122 

values were obtained by means of a bootstrap sampling approach that considers 2000 1123 

independent samples of 30 cases and p values for correlations of the samples of 30 cases were 1124 

averaged. The colors of the scatterplots represent the density of points (dark red being the 1125 

highest).  1126 

 1127 

1128 



51 
 

 1129 

Figure 12: Spatial distribution of the SEDI, 3-month SPEI and sNDVI during two extraordinary 1130 

drought events recorded in the Iberian Peninsula (1995 shown in the top-three rows) and the 1131 

Sahel (1984 shown in the bottom three rows). 1132 


