



# AMERICAN METEOROLOGICAL SOCIETY

*Journal of Climate*

## EARLY ONLINE RELEASE

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version.

The DOI for this manuscript is doi: 10.1175/JCLI-D-17-0775.1

The final published version of this manuscript will replace the preliminary version at the above DOI once it is available.

If you would like to cite this EOR in a separate work, please use the following full citation:

Vicente-Serrano, S., D. Miralles, F. Domínguez-Castro, C. Azorin-Molina, A. El Kenawy, T. McVicar, M. Tomás-Burguera, S. Beguería, M. Maneta, and M. Peña-Gallardo, 2018: Global assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for drought analysis and monitoring. *J. Climate.* doi:10.1175/JCLI-D-17-0775.1, in press.



# Global assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for drought analysis and monitoring

Sergio M. Vicente-Serrano<sup>1,\*</sup>, Diego G. Miralles<sup>2</sup>, Fernando Domínguez-Castro<sup>1</sup>, Cesar Azorin-Molina<sup>3</sup>, Ahmed El Kenawy<sup>1,4</sup>, Tim R. McVicar<sup>5,6</sup>, Miquel Tomás-Burguera<sup>7</sup>, Santiago Beguería<sup>7</sup>, Marco Maneta<sup>8</sup>, Marina Peña-Gallardo<sup>1</sup>

Family names (or surnames) are underlined

<sup>1</sup> Instituto Pirenaico de Ecología, Spanish National Research Council (IPE-CSIC), Campus de Aula Dei, P.O. Box 13034, E-50059 Zaragoza, Spain; <sup>2</sup> Ghent University, Ghent, Belgium; <sup>3</sup> Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden; <sup>4</sup> Department of Geography, Mansoura University, 35516, Mansoura, Egypt; <sup>5</sup> CSIRO Land and Water, Canberra, ACT, Australia; <sup>6</sup> Australian Research Council Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia; <sup>7</sup> Estación Experimental de Aula Dei, Spanish National Research Council (EEAD-CSIC), Zaragoza, Spain; <sup>8</sup> Department of Geosciences, University of Montana, Missoula, MT, USA.

\* Corresponding author: Sergio M. Vicente-Serrano (e-mail: svicen@ipe.csic.es)

19 **Abstract.** This article developed and implemented a new methodology for calculating the  
20 Standardized Evapotranspiration Deficit Index (SEDI) globally based on the log-logistic  
21 distribution to fit the evaporation deficit (ED), the difference between actual  
22 evapotranspiration (ET<sub>a</sub>) and atmospheric evaporative demand (AED). Our findings  
23 demonstrate that, regardless of the AED dataset used, a log-logistic distribution most  
24 optimally fitted the ED time series. As such, in many regions across the terrestrial globe, the  
25 SEDI is insensitive to the AED method used for calculation, with the exception of winter  
26 months and boreal regions. The SEDI showed significant correlations ( $p < 0.05$ ) with the  
27 Standardized Precipitation Evapotranspiration Index (SPEI) across a wide range of regions,  
28 particularly for short (< 3-months) SPEI time-scales. This work provides a robust approach  
29 for calculating spatially and temporally comparable SEDI estimates, regardless of the climate  
30 region and land surface conditions, and it assesses the performance and the applicability of  
31 the SEDI to quantify drought severity across varying crop and natural vegetation areas.

32 **Keywords:** Drought, Evapotranspiration deficit, Log-logistic distribution, Evapotranspiration,  
33 SPEI.

34 **1. Introduction**

35 Drought is usually considered as a period of abnormally low water supply that fails to satisfy  
36 the existing demands of different natural systems and socioeconomic sectors. This situation is  
37 usually caused by a prolonged period of below average precipitation. It is well-known that  
38 drought is difficult to identify and quantify over space and time, which makes it one of the  
39 most complex natural hazards (Wilhite 1993, 2000; Vicente-Serrano 2016). This is  
40 particularly so because according to most definitions of drought, with the exception of those  
41 that focus exclusively on meteorological aspects, droughts are impact-dependent phenomena  
42 that affect a diverse range of natural and socioeconomic variables (Lloyd-Hughes 2014; Van  
43 Loon, 2015). Moreover, the degree of vulnerability and the capacity of recovery to drought  
44 occurrence strongly differ among regions as a function of their background socioeconomic  
45 and environmental characteristics (Simelton et al. 2009; Choat et al. 2012; Antwi-Agyei et al.  
46 2012; Yang et al., 2017). Therefore, drought severity depends on meteorological conditions  
47 (e.g. magnitude and duration of precipitation shortage), and is also impacted by several  
48 human and environmental factors, such as land use or risk management (Van Loon et al.  
49 2016).

50

51 However, the quantification of drought severity based on its impacts is a challenge, given the  
52 spatial differences, the sector of interest, as well as the availability of impact data (Stahl et al.  
53 2015 and 2016). For these reasons, scientists, managers and policy makers usually quantify  
54 drought based on climate information only (McKee et al. 1993; Vicente-Serrano et al. 2010):  
55 the most widely-used drought metrics are generally based on climate information available  
56 across the globe. Overall, the potential of drought indices is particularly related to the  
57 possibility of quantifying drought severity and comparing their climate component both

58 spatially and temporally. A detailed review of current climate drought indices can be found in  
59 Heim (2002), Keyantash and Dracup (2002) and Mishra and Singh (2010).

60

61 Being inexpensively and widely observed, precipitation is usually employed as the key input  
62 variable in traditional drought indices (e.g. Palmer 1965; McKee et al. 1993). However,  
63 precipitation is only one of the multiple variables that control water stress conditions in  
64 natural ecosystems and affect water availability in usable water stores (e.g. soil moisture,  
65 streamflow, reservoir storage, lake water). Water shortage is ultimately dependent on the  
66 input of water through precipitation, lateral inflows, melting or irrigation, and is also crucially  
67 regulated by the atmospheric evaporative demand (AED), i.e. the potential of the lower  
68 atmosphere to receive water via evapotranspiration from the abovementioned terrestrial water  
69 stores. Under low soil moisture, rising AED rates further increases vegetation water stress  
70 (e.g., Ciais et al. 2005; McDowell et al. 2008; Zampieri et al. 2009), causing stomata closure  
71 and the collapse of the photosynthetic machinery potentially resulting in crop failure (Lobell  
72 et al. 2011; Asseng et al. 2015) and forest decay and mortality (Allen et al. 2015; Anderegg et  
73 al. 2013; Breshears et al. 2013).

74

75 Numerous studies have demonstrated the importance of AED in triggering drought or  
76 intensifying drought severity (e.g. Ciais et al. 2005; Otkin et al. 2016). For these reasons,  
77 several drought indices use AED in their formulations. For example, compared to  
78 precipitation-based drought indices, such as the Standardized Precipitation Index (SPI)  
79 (McKee et al. 1993), the Standardized Precipitation Evapotranspiration Index (SPEI)  
80 (Vicente-Serrano et al. 2010), which is obtained by means the standardization of the  
81 difference between precipitation and AED at different time-scales, has shown better  
82 performance in terms of identifying drought impacts in a variety of drought-prone systems

83 and regions across the globe (Vicente-Serrano et al. 2012; McEvoy et al. 2012; Wang et al.  
84 2016; Chen et al. 2016; Labudova et al. 2017). In fact, it has been suggested that the AED  
85 may be the single most useful variable to quantify drought severity (McEvoy et al. 2016a).  
86 Accordingly, drought indices based only on AED have been recently formulated under the  
87 premise that AED anomalies are strongly connected, via a complementary relationship, with  
88 precipitation, soil moisture and actual evapotranspiration (ETa) anomalies (Hobbins et al.  
89 2016; McEvoy et al. 2016b).

90

91 Here, a conceptual distinction between AED and ETa must be established. There are different  
92 forms to determine AED, among them pan evaporation (the evaporation from a pan full of  
93 water), or crop reference evapotranspiration (ETo) (the ETa of a hypothetical unstressed  
94 alfalfa grassland of uniform height with a closed canopy so the soil is shaded), which can be  
95 compared spatially since its calculation only depends on meteorological inputs (Katerji and  
96 Rana 2011). Independent of the choice of these definitions, AED does not directly depend on  
97 the actual water storage in land, and it is thus different from the ETa, which is the volume of  
98 water that is actually evaporated directly from soil/water/vegetation surfaces and/or transpired  
99 from vegetation into the atmosphere. While there are no water constraints for evaporation  
100 under humid conditions, ETa is constrained mainly by soil water availability (and ultimately  
101 by precipitation) in dry environments (Budyko 1948). As such, the use of drought indices that  
102 account only for AED is inappropriate in regions with non-constraining soil moisture  
103 conditions, given that a positive AED anomaly cannot be representative of drought severity.  
104 In such regions, water stress conditions are likely better quantified considering both AED and  
105 ETa.

106

107 From agronomic and eco-physiological perspectives, the evaporation deficit (ED), defined as  
108 the difference between ET<sub>a</sub> and AED, is more relevant than considering ET<sub>a</sub> or AED  
109 separately. Regardless of the climate regime, high ED causes stomatal closure, thus a decrease  
110 in the photosynthetic activity, carbohydrate accumulation and net primary production  
111 (Leuning 1995; Brümer et al. 2012; Vicente-Serrano et al. 2015). If the ED is very high and  
112 wilting point is reached, plants may die due to vascular damage (Will et al. 2013, Anderegg et  
113 al. 2015). Under the aforementioned assumptions, the ED has been proposed for quantifying  
114 drought severity (Narasimhan and Srinivasan 2005; Yao et al. 2010; Anderson et al. 2011;  
115 Kim and Rhee 2016). Unlike AED, which can be calculated by means of relatively simple  
116 physically-based models (e.g. Penman 1948; Allen et al. 1998; Rotstayn et al. 2006), the  
117 calculation of ET<sub>a</sub> is subject to many sources of uncertainty. ET<sub>a</sub> depends on a wide range of  
118 factors, including, but not limited to, AED, soil water availability, soil characteristics,  
119 vegetation morphology, physiology and phenology, and the complex relationships existing  
120 between these factors (Morton 1983).

121

122 Recently, the availability of remote sensing data and surface-atmosphere models has allowed  
123 for the development of global ET<sub>a</sub> products (Allen et al. 2007; Fisher et al. 2008; Mu et al.  
124 2011; Miralles et al. 2011; Zhang et al. 2016). Similarly, drought indices have been developed  
125 based on the ED, mainly to analyze natural vegetation and crop stress; for instance, Anderson  
126 et al. (2011), Yao et al. (2010) and Mu et al. (2011) developed different normalized drought  
127 indices (e.g. the Evapotranspiration Deficit Index [EDI] and the Evaporative Stress Index  
128 [ESI]) by means of observational meteorological data and space-based products to estimate  
129 ED. Following the same rationale, Kim and Rhee (2016) proposed the Standardized  
130 Evapotranspiration Deficit Index (SEDI) using ET<sub>a</sub> data estimated based on Bouchet's (1963)  
131 complementary hypothesis, and used an approach widely used to calculate a drought index

132 comparable spatially and temporally (e.g. the SPI and the SPEI). Here, we follow the same  
133 nomenclature proposed by Kim and Rhee (2016) to refer to a standardized drought index  
134 based on the ED.

135

136 It is expected that future improvements on ETa estimates based on remote sensing data and  
137 model outputs will increase the use of ETa for analyzing and monitoring drought at large  
138 scale (Fisher et al. 2017). Our definition of SEDI allows for a straightforward utilisation of  
139 these estimates. Yet, it is necessary to develop robust statistical calculation procedures, and to  
140 comprehensively evaluate the usefulness of this indicator in comparison to other available  
141 drought indices.

142

143 Our overarching goal is to provide a metric using ED to quantify drought severity and make  
144 robust spatial and seasonal comparisons. Our specific objectives are to: (i) find a robust  
145 probability distribution to fit the ED series worldwide to calculate the SEDI; (ii) compare the  
146 impact of different AED estimations on the SEDI; (iii) compare the SEDI time series at the  
147 global scale with another widely used drought index that accounts for precipitation and AED,  
148 namely the SPEI; and (iv) assess the skill of the SEDI in terms of determining vegetation  
149 activity anomalies globally.

150

## 151 **2. Data**

### 152 **2.1. Actual evapotranspiration**

153 We used ETa estimates from the Global Land Evaporation Amsterdam Model (GLEAM) v3a.  
154 Full details about the development and characteristics of this dataset are found in Miralles et  
155 al. (2011) and Martens et al. (2017). GLEAM is a methodology dedicated to deriving  
156 evaporation from satellite observations of its main drivers. Interception loss is independently

157 calculated using Gash's (1979) analytical model forced by observations of precipitation and  
158 vegetation cover while the remaining evaporation components use Priestley and Taylor's  
159 (1972) potential evaporation formulation constrained by a multiplicative stress factor. For  
160 transpiration and soil evaporation, this stress factor is calculated based on the content of water  
161 in vegetation (microwave vegetation optical depth) and root zone (multilayer soil model  
162 driven by observations of precipitation and updated through assimilation of microwave  
163 surface soil moisture).

164 Actual evaporation estimates from GLEAM have been validated against eddy covariance  
165 towers worldwide and errors have been estimated base on triple collocation analysis. Miralles  
166 et al. (2011) reported average correlations of 0.83 and 0.90 for daily and monthly estimates,  
167 respectively, and an average RMSD of  $\sim 0.3$  mm day $^{-1}$  for in situ validations against 43 eddy  
168 covariance towers. More recently, Martens et al. (2017) reported a mean correlation of 0.81–  
169 0.86 based on 91 eddy-covariance towers. In addition, GLEAM output has shown a better  
170 performance than other available evaporation datasets to close the water balance over a wide  
171 range of hydrological catchments, a better agreement with the expectations from the Budyko  
172 framework, and a good skill to partition evaporation fluxes into transpiration, interception and  
173 bare soil evaporation (Michel et al., 2016; Miralles et al., 2016). GLEAM datasets are openly  
174 available globally at daily temporal resolution and 0.25° spatial resolution for 1980–2016  
175 (<https://www.gleam.eu>). Here, we aggregated the data to monthly, 0.5° resolution.

176

## 177 **2.2. Atmospheric evaporative demand and precipitation**

178 To assess the sensitivity of SEDI to different AED inputs two AED datasets were used: (i)  
179 GLEAM v3a (Miralles et al. 2011; Martens et al. 2017); and (ii) Climate Research Unit  
180 (CRU) TS v.3.24.01 (Harris et al. 2014). GLEAM calculates Priestley and Taylor (1972)  
181 potential evapotranspiration (ETp), which is only forced by incoming radiation and air

182 temperature, and here are used as a proxy of AED. The CRU TS AED is estimated by Allen's  
183 et al. (1998) FAO-56 ETo Penman–Monteith equation which is simplified by assuming  
184 spatio-temporally constant wind speed (Harris et al. 2014). For the calculation of SPEI we  
185 used the analogous CRU TS precipitation dataset.

186

### 187 **2.3. Global GIMMS NDVI**

188 To compare the SEDI spatiotemporal variability with the anomalies of vegetation activity that  
189 could be related to drought severity conditions, a metric of vegetation activity based on  
190 satellite data was used. For this purpose, we used the Normalized Difference Vegetation  
191 Index (NDVI) (3g.v1) dataset developed by the Global Inventory Monitoring and Modeling  
192 System (GIMMS) observed by AVHRR sensors on-board NOAA satellites (Pinzon and  
193 Tucker 2014), which Beck et al. (2011) demonstrated was the optimal AVHRR-NDVI dataset  
194 for time series analysis. The NDVI exhibits a strong relationship with vegetation parameters  
195 such as green biomass (Tucker et al. 1983; Gutman 1991) and fractional vegetation cover  
196 (Gillies et al. 1997; Duncan et al. 1993). NDVI has long been used to analyze drought impacts  
197 on vegetation (Liu and Kogan 1996; Kogan 1997; McVicar and Jupp 1998; Ji and Peters  
198 2003; Vicente-Serrano et al. 2013; Papagiannopoulou et al. 2017). The NDVI dataset is  
199 monthly at 0.5° resolution over 1981–2014. To facilitate a direct comparison between the  
200 NDVI and SEDI in both space and time, the NDVI series were standardized by fitting the  
201 monthly NDVI series to a log-logistic distribution and the cumulative probabilities were  
202 transformed to standardized units following the same approach used for the SPI and the SPEI  
203 (Vicente-Serrano 2006; Vicente-Serrano et al. 2010).

204

## 205 **3. Methods**

### 206 **3.1. Calculation of the evapotranspiration deficit from the gridded global data**

207 Recall that we define the evapotranspiration deficit (ED) as ETa – AED. Two versions of  
208 monthly ED were calculated; both used monthly GLEAM ETa estimates with AED  
209 formulations from: (i) CRU TS v. 3.24.01 ET<sub>0</sub>; and (ii) GLEAM ET<sub>p</sub>. These calculations  
210 were performed for the terrestrial globe excluding the warm desert areas and Antarctica /  
211 Greenland where several methodological limitations exist (Fisher et al. 2010; Beguería et al.  
212 2014). Supplementary Figures 1 illustrates the spatial averages and standard deviations of the  
213 ED in representative months of the four seasons of the year and Supplementary Figure 2  
214 shows the temporal evolution of the ED in some world regions.

215

### 216 **3.2. Assessment of different probability distributions to calculate the SEDI**

217 Eight probability distributions were tested (General Extreme Value, Log-logistic, Log-normal,  
218 Pearson III, Generalized Pareto, Weibull, Normal, and Exponential) to transform ED values to  
219 a standardized normal variable (SEDI). These statistical distributions have been widely used  
220 to standardize numerous hydrological and meteorological variables (e.g. Vicente-Serrano et  
221 al. 2012b; Stagge et al. 2016), being a common tool to calculate spatially and temporally  
222 comparable drought indices using either precipitation, AED or both (e.g. McKee et al. 1993;  
223 Vicente-Serrano et al. 2010; Ma et al. 2014; Hobbins et al. 2016). Unfortunately, no previous  
224 studies have tested the goodness of these distributions to fit ED values. Since the use of  
225 different probability distributions may produce substantial differences in the resulting drought  
226 indices (e.g. Stage et al. 2015; Vicente-Serrano and Beguería 2016), we calculated 16  
227 different global SEDI datasets, each one using one of the aforementioned probability  
228 distributions and the two different AED datasets (CRU TS v. 3.24.01 and GLEAM).  
229 Following Hosking (1990) the parameters of the distributions were calculated using unbiased  
230 Probability Weighted Moments (UB-PWMs). Calculations were performed independently for  
231 each ED monthly series to account for the strong seasonality of ED in the majority of the

232 world climates. Once the monthly ED series were fit to a probability distribution, cumulative  
233 probabilities of the ED values were obtained and transformed to standardized units (SEDI).  
234 For this purpose, the classical approach of Abramowitz and Stegun (1965) was used, which is  
235 also used for calculating other drought indices such as the SPI and the SPEI.

236

237 Similar to the SPI handling of months with no precipitation, the calculation of ED also  
238 considers the case of months with ED = 0.0 mm/month. This occurs when ETa equals AED.  
239 In humid and cold regions this conditions can occur frequently during winter months, even at  
240 monthly time scales, given that ETa tends to approach AED and there is adequate water  
241 availability to satisfy ETa (due to low AED) of these regions at these times. To cope with zero  
242 values we implemented Stagge et al.'s (2015) approach to calculate the SPI, which is based  
243 on the 'centre of mass' of the zero distribution rather than the maximum probability.

244

245 The UB-PWMs calculation of each monthly ED series requires a minimum of three values  
246 larger than zero in the entire multi-annual record. In large areas of the northern hemisphere  
247 ED is likely to be zero during the winter months, which makes it impossible to define the  
248 SEDI in these months and regions. Additionally, a SEDI calculation based on some of the  
249 eight tested probability distributions is not possible in some cases because the parameters of  
250 that specific distribution cannot be fitted to the ED data. Moreover, in a few cases, the origin  
251 parameter of the distribution can be higher than the lowest observed ED values, indicating no  
252 solution for the SEDI in these cases.

253

254 To assess the performance and robustness of the eight probability distributions used for the  
255 calculation of the SEDI, we firstly calculated the percentage of monthly ED series that cannot  
256 be fitted by each of them, and distributions with high percentages were discarded (usually >

257 50%, see Table 1). With the remaining distributions, the normality of the resulting SEDI  
258 series across the terrestrial globe at each 0.50 degree resolution pixel was tested. Stagge et al.  
259 (2015) applied the Shapiro–Wilks (SW) test to determine whether the standardized variable  
260 (i.e. the SEDI) follows a standard normal distribution. The advantage of this test is that the  
261 parameter values are known beforehand, and not computed from the input data. The *p*-values  
262 of the SW test for each of the monthly global SEDI series obtained with the eight probability  
263 distributions were calculated. A rejection rate of  $p < 0.05$  (corresponding to 95% confidence  
264 level) was used to discriminate the SEDI series that follow a normal standard variable.

265

266 Nevertheless, as shown by Vicente-Serrano and Beguería (2016), it is difficult to define the  
267 ‘best’ candidate distribution to calculate a standardized drought index, as the application of  
268 the SW goodness-of-fit test to evaluate the goodness of a distribution is limited at the tails of  
269 the distribution which are the most relevant values for a drought index. For this reason, we  
270 also analyzed the frequencies of high and low SEDI values obtained by the eight probability  
271 distributions and compared the associated return periods.

272

### 273 **3.3. Comparison between SEDI obtained from two different AED datasets and between 274 SEDI and SPEI**

275 SEDI calculated using the CRU and GLEAM AED datasets were compared by means of the  
276 per-pixel Pearson’s correlation coefficient considering the different monthly series.

277

### 278 **3.4. Comparison between SEDI and SPEI**

279 The SPEI at time-scales ranging between 1 and 24 months was calculated using CRU monthly  
280 precipitation and GLEAM AED data for 1981–2014. For this purpose, a log-logistic  
281 distribution and UB-PWMs were used (see details in Vicente-Serrano et al. 2010; Beguería et  
282 al. 2014 and Vicente-Serrano and Beguería 2016). For each pixel, we calculated the SPEI

283 time-scale that had the highest correlation with the SEDI for the different monthly series.  
284 Regardless of the SPEI timescale, we also calculated the spatial distribution of the maximum  
285 correlation between SPEI and SEDI.

286

287 **3.5. Assessing the skill of the SEDI and SPEI in identifying spatiotemporal anomalies of**  
288 **vegetation state**

289 Finally, the relationship between the standardized NDVI (sNDVI) and the SEDI and SPEI  
290 using Pearson's correlation coefficients was calculated. As the global relationship between  
291 vegetation activity and drought is strongly dependent on the drought time scale (Vicente-  
292 Serrano et al. 2013), the correlation between the sNDVI and the SPEI was calculated at time-  
293 scales ranging between 1 and 24 months. Given the strong seasonality of vegetation,  
294 correlations were calculated independently for specific months of the year as well as for the  
295 monthly time series as a whole. Regardless of the timescale of the SPEI, we only retained the  
296 lag of maximum correlations and compared it spatially with the correlations obtained between  
297 sNDVI and SEDI.

298

299 **4. Results**

300 **4.1. Assessment of probability distributions to calculate the SEDI at the global scale**

301 Table 1 show the percentage of monthly series for which the SEDI could not be calculated  
302 based on GLEAM and CRU AED data for each of the eight probability distributions used for  
303 standardization. The log-normal and Weibull distributions showed a markedly high  
304 percentage of series (often exceeding 40% of the terrestrial land-surface) with no solution for  
305 the SEDI suggesting that they are least suited for SEDI calculation, so they were removed  
306 from further analyses. The remaining six distributions showed smaller percentages of cases  
307 for which no solution could be found, with Normal and Exponential being slightly better.  
308 Interestingly, there is a clear seasonal pattern in the ability of these six distributions to fit the

309 ED series, with better performance found between March and September, compared to the  
310 October to February period. In comparison to the GLEAM AED, the SEDI calculated using  
311 the CRU AED shows a lower percentage of cases with no solution for the SEDI fitting. This  
312 may be explained by the higher AED values found in the CRU dataset.

313

314 < Table 1 here please >

315

316 The Shapiro-Wilks normality test applied to the SEDI series computed using the six  
317 remaining distributions indicated a poor performance of the Generalized Pareto, Normal and  
318 Exponential distributions, which had large percentages (typically 50% to 90%) of monthly  
319 series for which the null hypothesis of normality was rejected (Table 2, for the GLEAM and  
320 CRU AED datasets respectively). The remaining three distributions had a lower percentage of  
321 rejections, with the log-Logistic distribution having the lowest overall. The results were  
322 similar with the two AED datasets considered, although the SEDI calculated with the CRU  
323 AED yielded worse results (i.e., a larger proportion of rejections). In both AED cases, there  
324 was a notable seasonality, with fewer rejections in the boreal summer (less than 10% for log-  
325 Logistic) and more in boreal winter (around 25%).

326

327 < Table 2 here please >

328

329 Dry events are located in the lower tail of distribution and it is important to discern departures  
330 from normality in this region, even though data located there may represent less than 2–3% of  
331 all data. Figure 1(a) shows the relationship between the return periods and raw SEDI values  
332 obtained from GLEAM AED using log-logistic and GEV distributions, with Figure 1(b)  
333 documenting similar for the log-logistic and Pearson-III distributions. The SEDI values

334 obtained with GEV and Pearson-III distributions show more extreme values in both tails than  
335 those obtained with the log-logistic. This translates to higher return periods and more extreme  
336 SEDI values with GEV and Pearson-III distributions in comparison to the log-logistic.

337

338 < Figure 1 here please >

339

340 The frequencies of high and low SEDI events using the GEV probability distribution for  
341 standardization are unrealistically high using a sample of 35 years. The plots are truncated to 1  
342 event in 500 cases, corresponding to  $\pm 2.88$  sigmas, but even longer return periods were  
343 obtained with the GEV. On the other hand, the log-logistic distribution provided more  
344 coherent return periods and less extreme SEDI values. The plots also show that differences  
345 found in the high-density region ( $\pm 1.80$  sigmas) between the different probability distributions  
346 have only a residual influence on the SEDI values. The results based on the CRU AED  
347 yielded similar results. This is clearly illustrated in Figure 2, which shows the frequency of  
348 values below -2.58 sigmas (which corresponds to a return period of 1 in 200 years) in each  
349 time series. As expected, the majority of series do not show values below the threshold, but  
350 lower percentages dominate for the log-logistic distribution. The SEDI series obtained with  
351 GEV and Pearson III distributions show higher percentage of very extreme values. Given the  
352 relatively short sample used here (1980–2014, with the start-date determined by when the  
353 satellite remote sensing first became available), it is unlikely to find such a high frequency of  
354 SEDI cases corresponding to a return period higher than 200 years. Considering these results  
355 altogether (i.e., Tables 1-2 and Figures 1-2), we recommend the use of the log-logistic  
356 distribution for computing the SEDI series across the globe.

357

358 < Figure 2 here please >

359

360 **4.2. Comparison of SEDI series from two different AED datasets**

361 The boxplots in Figure 3 summarize the per-pixel correlations between the SEDI series and  
362 the GLEAM and CRU AED datasets. All calculations were computed independently for each  
363 month for the 34 years, and for the entire monthly time series altogether. In general,  
364 correlations were dominantly positive and statistically significant ( $p < 0.05$ ), albeit being  
365 generally higher for April and September inclusive. There is large variability in the boxplots,  
366 especially during the Northern Hemisphere cold-season where Pearson's  $r$  value range from  
367 maximum positive to maximum negative values. Nevertheless, with the exception of the  
368 Northern Hemisphere cold season, the percentage of series showing significant correlations  
369 across the globe was generally higher than 70%. Figure 4 depicts the spatial distribution of  
370 correlations between both datasets annually and for the mid-season months (i.e., January,  
371 April, July and October). Results reveal markedly seasonal differences. During the boreal  
372 winter (i.e., January), large areas of the Northern Hemisphere were not considered, given that  
373 the SEDI had no solution for this region in the majority of the cases, as discussed in the  
374 methods section. Nevertheless, in low latitudes, there were noticeable spatial differences in  
375 the correlations. Although the latter were high in the majority of tropical and subtropical  
376 regions, they were close to zero in the equatorial humid regions. This pattern persists in all  
377 seasons, and all months. Overall, during the boreal spring (i.e., April) and summer (i.e., July),  
378 large regions showed statistically significant correlations between the SEDI calculated using  
379 AED from CRU and GLEAM.

380

381 < Figure 3 here please >

382 < Figure 4 here please >

383

384 The analysis of selected drought events illustrates a good agreement between the two datasets.  
385 Figure 5 shows two recent exceptional droughts: (i) Russia (2010); and (ii) southern United  
386 States/northern Mexico (2011). In both events, although there are some spatial differences in  
387 the beginning and end of the drought periods, strong spatial agreement was exhibited between  
388 the two SEDI datasets during the months of maximum extension of drought severity (July and  
389 August for Russia and June-August for south North America).

390

391 <Figure 5 here please >

392

### 393 **4.3. Comparison of the SEDI and the SPEI at different time scales**

394 To avoid redundancy in the presentation of the results, in the following we only use the SEDI  
395 series obtained with the GLEAM AED dataset and the log-logistic standardisation. The  
396 temporal variability of the SEDI showed a strong agreement with the SPEI. Considering only  
397 the SPEI time scale with the best correlation with the SEDI, large areas exhibited significant  
398 correlation ( $p < 0.05$ ) between both indices (Figure 6). For instance, in the boreal summer,  
399 more than 85% of the world exhibited significant correlations between the SEDI and SPEI,  
400 albeit the exceptionally low correlation in the rainforests of Amazonia, Congo and Southeast  
401 Asia (Figure 7). In general, the globe's semi-arid regions showed the strongest (typically  $>$   
402 0.7) significant correlations between both drought indices, likely reflecting the ample seasonal  
403 cycle and multi-annual climate variability in these regions.

404

405 <Figure 6 here please >

406 <Figure 7 here please >

407

408 SEDI series exhibited higher correlations with short SPEI time scales (Figure 8). Independent  
409 of the month, correlations were significant ( $p < 0.05$ ) over the majority of globe, considering  
410 SPEI time scales between 1 and 9 months. With respect to longer time scales, the magnitude  
411 and statistical significance of the correlations diminished progressively. In the boreal summer,  
412 the differences in the magnitude of the correlations among the different time scales were  
413 lower, however lower correlations were observed for long SPEI time scales. About 40% of  
414 the world revealed the strongest correlation at the 1-month SPEI timescale, compared to 15–  
415 20% at the 2-month time scale (Table 3). In summary, around 80% of world exhibited the  
416 highest and most statistically significant ( $p < 0.05$ ) correlations between the SEDI and SPEI  
417 considering SPEI time scales shorter than 5 months. Exceptionally, a few regions (< 10% of  
418 the terrestrial globe) showed the highest and most significant correlations at time scales  
419 longer than 9 months. Thus, during the boreal winter, apart from some areas in South America  
420 and central Africa, and in north latitudinal areas, the majority of regions showed maximum  
421 correlation between the SEDI and SPEI at short SPEI time scales (Figure 9). The areas that  
422 did not show significant correlations between the SEDI and SPEI mostly corresponded to  
423 those showing higher correlations at longer time scales ( $> 12$  months). This finding  
424 demonstrates that where the SEDI is significantly correlated with SPEI, this correlation is  
425 recorded at short SPEI timescales ( $> 5$  months).

426

427 < Table 3 here please >

428 < Figure 8 here please >

429 < Figure 9 here please >

430

431 **4.4. Relationship between the SEDI, SPEI and the sNDVI**

432 Figure 10 illustrates the spatial distribution of the correlations between the SEDI and sNDVI  
433 and between SPEI and sNDVI for mid-season months and for the entire record. There were  
434 important spatial differences in the magnitude of the correlations between the sNDVI and  
435 both drought indices at the global scale. Regardless of the month, higher and statistically  
436 significant correlations were found over semiarid regions, including – among others –  
437 southwestern North America, the Sahel, South Africa, Australia, and northeastern Brazil.  
438 Strong seasonality in the correlations related to the phenological cycles of vegetation was  
439 found. Monthly crossplots of SEDI and SPEI and their correlations with sNDVI are seen  
440 Figure 11, which illustrates that the spatial correlations were positive and statistically  
441 significant during all months. The correlations with sNDVI were higher for SPEI than for  
442 SEDI, particularly in the boreal summer (i.e., JJA).

443

444 < Figure 10 here please >

445 < Figure 11 here please >

446

447 The percentage of the terrestrial globe that showed significant correlations between either  
448 SEDI and sNDVI or SPEI and sNDVI were relatively small (typically ~15-45%; see Table 4.  
449 For the full monthly time series, less than 20% of the area exhibited significant correlations,  
450 independent of the selected drought index. This low percentage is partly explained by the fact  
451 that most ecosystems on Earth are not driven by water availability during one or more periods  
452 of the year (e.g., dormancy). Monthly correlations between the sNDVI and SPEI were  
453 statistically significant over more than 40% of the area during the boreal summer, where  
454 vegetation is active in large areas of the Northern Hemisphere. The SEDI showed lower  
455 percentages, with roughly 25% of the area showing significant correlations with the sNDVI  
456 during the same season.

457

458 < Table 4 here please >

459

460 **5. Discussion**

461 **5.1 Data used in the computation of the drought index**

462 In this study we delve into the computation and performance of the standardized  
463 evapotranspiration deficit index (SEDI). The SEDI is based on the evapotranspiration deficit  
464 (ED), which is defined as the difference between the actual evapotranspiration (ETa) and the  
465 atmospheric evaporative demand (AED). The rationale behind this computation is to  
466 explicitly account for the water actually used by the vegetation (the ETa) compared with the  
467 amount of water that the same ecosystem would have used in an ideal perfect hydric state, i.e.  
468 with no water stress. The departures between ETa and AED allow quantification of the degree  
469 of water stress the vegetation is suffering, i.e. the drought state. Nevertheless, it is also  
470 necessary to state that ED defined here may depend on many other factors (e.g., leaf-out  
471 period, harvesting, fire, pests) and not just water availability.

472 A major technical problem with this approach is how to obtain values of both ETa and AED,  
473 most notably the former. The recent availability of global ETa datasets based on satellite  
474 observations (McCabe et al. 2016; Miralles et al. 2016; Zhang et al. 2016), however, has  
475 opened the possibility to explore this approach.

476 Several studies have already proposed the quantification of drought severity based on either  
477 the ED, the ratio between ETa and AED, or using ETa estimations obtained from remote  
478 sensing data (e.g. Yao et al. 2010; Anderson et al. 2011). In their South Korean study, Kim  
479 and Rhee (2016) proposed the use of the ED to develop a drought index. They estimated ETa  
480 following the Budyko theoretical approach, which establishes a non-linear relationship  
481 between the AED/Precipitation ratio and the ETa/Precipitation ratio. The novelty of our study

482 is that it calculates the SEDI globally, using ETa from a global satellite dataset (GLEAM).  
483 Despite the uncertainties in GLEAM, its detailed description of the soil water balance and  
484 phenological stress mean an improvement over using ETa estimations using Budyko's  
485 hydroclimatic framework (Martens et al. 2017).

486 Regarding the AED data, two datasets were compared to calculate the SEDI globally. The  
487 first (GLEAM) calculates AED using the Priestley and Taylor (1972) potential ET  
488 formulation. The second (CRU) calculates AED using a simplification of Allen et al's (1998)  
489 FAO-56 Penman-Monteith equation. Several studies have shown that the spatial and temporal  
490 variability of the AED is strongly dependent on the methodology used to estimate this  
491 variable (e.g. Espadafor et al. 2011; Vicente-Serrano et al. 2014; Wang et al. 2015; Fisher et  
492 al. 2010), and on the uncertainty in the atmospheric forcing data (McVicar et al. 2012a,b).  
493 Here, we assessed the sensitivity of the global-scale SEDI to the choice of AED, and found  
494 notable differences in the boreal winter months (i.e., DJF) and also in the humid equatorial  
495 regions during their summer months (i.e., JJA) – these are regions in which the aerodynamic  
496 component of AED can be substantial (McVicar et al. 2012b). As Priestley and Taylor is a  
497 radiative based estimate of ETp (Donohue et al. 2010) which does not include aerodynamic  
498 variables (i.e., relative humidity) explicitly in its calculations, whereas the FAO-56 Penman-  
499 Monteith formulation does, they are expected to depart. Conversely, in sub-humid to semi-  
500 arid climates of both hemispheres, and especially during their summer, the correlation  
501 between the two SEDI datasets was strong and not sensitive to the AED dataset used in the  
502 calculations. This is highly relevant for drought analysis and monitoring since in these regions  
503 vegetation dynamics are more determined by drought variability (Vicente-Serrano et al.  
504 2013).

505 In tropical forests, the correlation between both SEDI datasets was statistically not significant,  
506 regardless of the season of the year. There are several factors driving this pattern. It can be

507 related to the low climate data availability. While GLEAM AED uses reanalysis output the  
508 CRU AED depends on observational data, which are sparse over these regions (Harris et al.  
509 2014). It can also be related to uncertainties in the reanalysis output meteorological fields,  
510 which are the likely cause for the difference found between the two SEDI datasets,  
511 particularly for those variables that are most difficult to model such as wind speed and solar  
512 radiation (McVicar et al. 2008; Perdigao et al. 2016). Moreover, the lack of relative humidity  
513 in the Priestley and Taylor scheme could affect the estimations, given that strong changes in  
514 this variable have been recorded in observations and reanalysis output over the past two  
515 decades (Willett et al. 2014; Vicente-Serrano et al. 2017) and it is taken into account in the  
516 Penman-Monteith ET<sub>0</sub>.

517 Despite the differences found, the SEDI provides a quantification of the intensity of drought  
518 that is largely independent of the method used to compute the AED in most global regions  
519 affected by recurrent droughts events. Low sensitivity of the SEDI to the methodology used to  
520 estimate AED is relevant for the evaluation of impact in some regions such as the Sahel,  
521 South America, or central Asia. In these regions the impacts of droughts are usually severe  
522 and quantifying the extent and intensity of drought conditions is critical to inform policy and  
523 guide mitigating action.

524 Although we provide an initial assessment of the impact of using different datasets to  
525 compute the SEDI at globally, further research is needed to test the sensibility of the SEDI to  
526 both ET<sub>a</sub> and AED variables under a range of climate and land-cover conditions, and to  
527 investigate the impact of using different ET<sub>a</sub> and AED datasets in the calculation of the SEDI.  
528 Meanwhile, there are several international initiatives to improve the quality and assess the  
529 uncertainties in global ET data from satellite and in situ observations (Zhang et al. 2016;  
530 McCabe et al. 2017; Fisher et al. 2017).

531

532 **5.2. Optimum probability distribution to calculate the SEDI worldwide**

533 This study tested eight standardizing probability distributions approaches calculate the SEDI,  
534 and proposed a robust methodology to obtain global SEDI values that are spatially and  
535 temporally comparable. The log-logistic probability distribution showed clear advantages for  
536 calculating the SEDI. This distribution has already been recommended when calculating the  
537 SPEI (Vicente-Serrano et al. 2010; Vicente-Serrano and Beguería 2016). From the tested  
538 distributions, only the GEV, Pearson-III and log-logistic distributions provided solutions for  
539 the SEDI over most of the terrestrial globe, and provided SEDI series that most frequently  
540 followed a standard normal distribution. The Pearson-III distribution has been proposed to  
541 calculate the SPI (Guttman 1999; Vicente-Serrano 2006) as the most reliable alternative to the  
542 original proposed standardization using the Gamma distribution (McKee et al. 1993).  
543 However, here we found that the Pearson-III distribution yielded a higher number of SEDI  
544 series that did not follow a normal distribution compared to the log-logistic distribution.  
545 Moreover, the Pearson-III distribution tended to overestimate the frequency of extreme SEDI  
546 values at both ends of the distribution. The same was found with the GEV distribution,  
547 proposed by Stagge et al. (2015) for calculating the SPEI. Based on our global results we  
548 recommend the use of the log-logistic distribution to fit monthly ED series across the  
549 terrestrial environment to obtain the SEDI. Moreover, this recommendation holds  
550 independently of the AED form used in this study.

551

552 **5.3. Comparison of the SEDI with the SPEI**

553 The SPEI has been thoroughly validated and used to detect and monitor moisture anomalies  
554 for agricultural (e.g. Zipper et al. 2016; Wang et al. 2016; Pascoa et al. 2017) and  
555 environmental applications (e.g. Zhang et al. 2017; Greenwood et al. 2017). The SEDI  
556 showed positive significant correlations with the SPEI over most terrestrial ecosystems, with

557 some exceptions in the equatorial region and across some boreal regions. Under abundant soil  
558 moisture the SPEI could also show a drought signal if precipitation is below average when  
559 really there is limited plant available soil water constrain. This suggests that in some areas  
560 SPEI and SEDI are complementary. In areas in which the ETa strongly depends on  
561 precipitation (e.g., arid and semi-arid regions) SPEI and SEDI are expected to fit well; in  
562 other regions they could provide different but complementary information to assess drought  
563 severity. Nonetheless, during the summer boreal season, the SEDI showed significant  
564 correlation with the SPEI over the entire Northern Hemisphere. If all data was perfect, SEDI  
565 would be better in capturing vegetation impacts simply because the use of precipitation in  
566 SPEI is meant to be as a surrogate for plant water availability. Thus, SPEI uses precipitation  
567 as proxy of ETa to identify drought impacts on vegetation. This approach, although less  
568 consistent physically than the SEDI, may produce better results to determine drought severity  
569 than a complex physical simulation model (i.e., Vicente-Serrano et al. 2011).

570 The SEDI was best correlated with the SPEI at short time scales, with the highest and most  
571 significant correlations recorded at 1- and 2-month time scales, independent of the month.  
572 There are a few regions where the strongest correlations between the SPEI and SEDI were  
573 observed at time scales longer than 18 months, but these correlations were not statistically  
574 significant. Therefore, we can regard SEDI as a short time scale drought index, characterized  
575 by its sensitivity to high frequency climate variations. Kim and Rhee (2016) suggested the  
576 calculation of the SEDI at a timescale of 9 months by standardizing the cumulative ET and  
577 AED differences over the previous nine months. They justified the selection of this period by  
578 the high correlation found between the Palmer Drought Severity Index (PDSI) and the SPEI at  
579 this time scale (see Vicente-Serrano et al. 2010b). We showed that in most regions of the  
580 world, the standardized anomalies of the ED are mostly determined by the high-frequency

581 variability of the climatic water balance recorded at short time scales, which makes  
582 recommendable the use of the SEDI at 1-month timescale.

583 The selection of a specific time scale for drought analysis is justified by the different  
584 characteristic response times of agricultural, hydrological and environmental systems to water  
585 shortage. Water shortages are mostly determined by precipitation shortfalls (McKee et al.  
586 1993) and/or increased AED (Vicente-Serrano et al. 2010). The use of different drought time  
587 scales is essential to adjust the duration of anomalous climate conditions to the anomalous  
588 response of the ecohydrologic system, such as abnormally low stream flows (e,g. López-  
589 Moreno et al. 2013; Lorenzo-Lacruz et al. 2013; Barker et al. 2016; see further clarifications  
590 and discussion on the drought time scales in Vicente-Serrano et al. 2011). However, the use of  
591 long cumulative time scales is not justified for the SEDI because ED is mostly determined by  
592 high-frequency variability in climatic conditions. In essence, this is similar to those  
593 streamflow-based drought indices, such as the Standardized Streamflow Index (SSI, Vicente-  
594 Serrano et al. 2012). For instance, like the SSI, the SEDI could also be considered a direct  
595 indicator of the impact of droughts on vegetation because the AED is an important driver of  
596 vegetation gross primary production through its control on plant stomatal closure and plant  
597 respiration (Stephenson 1990, 1998) and because ET<sub>a</sub> strongly controls photosynthesis and  
598 carbon uptake (Donohue et al. 2014; Yang et al. 2015).

599

#### 600 **5.4. Performance of the SEDI to identify vegetation anomalies associated with drought**

601 The response of vegetation activity, measured as greenness indices (e.g. NDVI) from satellite  
602 imagery, to water availability is complex. Numerous studies have demonstrated different  
603 spatial and seasonal relationships between NDVI and different climate drought indices (e.g. Ji  
604 and Peters 2003; Quiring and Paraprikaou 2008). Here, we demonstrated that the correlation  
605 between the sNDVI and the SPEI and SEDI was strongly variable over both space and time.

606 As expected, a clear relationship was recorded in semi-arid regions, which in general show a  
607 higher response to soil water availability, compared to sub-humid and humid regions in which  
608 vegetation is driven by other climatic and environmental factors (Vicente-Serrano et al. 2013;  
609 Papagiannopoul et al. 2017). Overall, a lower correlation of the sNDVI to the SEDI than to  
610 the SPEI was found. In general, the correlations were higher and more frequently statistically  
611 significant between the sNDVI and SPEI, possibly due to the higher flexibility of the SPEI,  
612 which is computed at different time scales, since the relationship between vegetation activity  
613 and drought indices strongly differs as a function of the timescale at which drought indices  
614 were calculated (Pasho et al. 2011; Vicente-Serrano et al. 2013, 2015). SPEI would show  
615 higher flexibility to compute water deficits recorded at different timescales since vegetation  
616 types have several physiological strategies to cope with water stress (Chaves et al. 2003).  
617 Thus, stomatal closure under high vapor pressure deficit conditions is a mechanism to reduce  
618 water losses and hydrologic stress in plants. Although during periods of low transpiration  
619 photosynthesis may be reduced, non-structural carbohydrates in the plant can maintain plant  
620 metabolism and maintain greenness (Rosas et al. 2013).

621 Overall, we indicated that although the SEDI showed lower correlations, it exhibited similar  
622 spatial patterns of correlation with the sNDVI. Compared to the SPEI, SEDI's sensitivity to  
623 high-frequency changes in ED makes it more suitable for identifying regions where leaf  
624 activity is highly sensitive to water stress conditions. We defend that using and combining  
625 different drought indices is the best approach for drought quantification, analysis and  
626 monitoring. The recently proposed SEDI based on the satellite-based ET data can  
627 complement traditional drought indices and provide information about regions that are  
628 sensitive to short-term changes in atmospheric demand. Figure 12 provides a representative  
629 example of two exceptional drought events recorded in the Iberian Peninsula in 1995 and the  
630 Sahel in 1984. In both cases, the SEDI and 3-month SPEI showed strong drought severity

631 over large areas and months, but they did not exactly agree either over space or in magnitude,  
632 which indicates that SEDI is bringing new information not captured by the SPEI. NDVI  
633 anomalies were different in time and space from each of the drought indices (SEDI and  
634 SPEI), indicating that none of them alone captures the full impact on vegetation greenness,  
635 with additional insight possible when both indices are combined.

636

637 < Figure 12 here please >

638

## 639 **6. Conclusion**

640 We provided recommendations on the best approaches for calculating a temporally and  
641 spatially comparable SEDI, regardless of the climate region and land surface conditions.  
642 Although the performance of the SEDI for monitoring the hydric status of ecosystems, and  
643 despite its theoretical superiority since it is based on directly comparing the use of water  
644 (ETa) with its theoretical demand (AED), we have shown that other indices such as the SPEI  
645 which do not require estimation of the ETa showed a similar performance to identify drought  
646 severity globally. In any case, SEDI calculations will benefit from further improvements in  
647 remotely sensed ETa. Additionally, while the SEDI can be of interest for drought assessment  
648 related to crops and natural vegetation, its potential application in relation to other drought  
649 impacts such as river discharges, reservoir storages or groundwater levels is yet to be  
650 explored. The SEDI global dataset developed in this study is available at  
651 <http://hdl.handle.net/10261/160091>.

652

## 653 **Acknowledgements**

654 This work was supported by the research projects PCIN-2015-220 and CGL2014-52135-C03-  
655 01 financed by the Spanish Commission of Science and Technology and FEDER,  
656 IMDROFLOOD financed by the Water Works 2014 co-funded call of the European  
657 Commission and INDECIS, which is part of ERA4CS, an ERA-NET initiated by JPI Climate,

658 and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR  
659 (FR) with co-funding by the European Union (Grant 690462). Diego G. Miralles  
660 acknowledges support from the European Research Council (ERC) under grant agreement n°  
661 715254 (DRY-2-DRY). Marina Peña-Gallardo was granted by the Spanish Ministry of  
662 Economy and Competitiveness and Miquel Tomas-Burguera was supported by a doctoral  
663 grant by the Ministerio de Educación, Cultura y Deporte.

664

## 665 References

666 Abramowitz, M., and Stegun, I.A. 1965: *Handbook of Mathematical Functions*, Dover  
667 Publications, New York.

668 Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998: *Crop evapotranspiration: Guidelines*  
669 *for computing crop water requirements*. Food and Agricultural Organization (FAO),  
670 Irrig. Drain. pap. 56, Rome,

671 Allen, R.G., M. Tasumi, and R. Trezza. 2007: Satellite-based energy balance for mapping  
672 evapotranspiration with internalized calibration (METRIC) – Model. *Journal of*  
673 *Irrigation and Drainage Engineering*, **133**, 380-394.

674 Allen, C.D., D.D. Breshears, and N.G. McDowell. 2015: On underestimation of global  
675 vulnerability to tree mortality and forest die-off from hotter drought in the  
676 Anthropocene. *Ecosphere*, **6**, 129.

677 Anderegg, L.D.L., W.R.L. Anderegg, J. Abatzoglou, A.M. Haudsladen, and J.A. Berry. 2013:  
678 Drought characteristics' role in widespread aspen forest mortality across Colorado,  
679 USA. *Global Change Biology*, **19**, 1526-1537.

680 Anderegg, W.R.L., A. Flint, C.-Y Huang, and Coauthors. 2015: Tree mortality predicted from  
681 drought-induced vascular damage. *Nature Geoscience*, **8**, 367–371.

682 Anderson, M.C., C. Hain, B. Wardlow, B. and Coauthors. 2011: Evaluation of drought  
683 indices based on Thermal remote sensing of evapotranspiration over the continental  
684 United States. *Journal of Climate*, **24**, 2025-2044.

685 Antwi-Agyei, P., E.D.G. Fraser, A.J. Dougill, L.C. Stringer, and E. Simelton. 2012: Mapping  
686 the vulnerability of crop production to drought in Ghana using rainfall, yield and  
687 socioeconomic data. *Applied Geography*, **32**, 324-334.

688 Asseng, S., F. Ewert, P. Martre, and Coauthors. 2015: Rising temperatures reduce global  
689 wheat production. *Nature Climate Change*, **5**, 143-147.

690 Barker, L.J., J. Hannaford, A. Chiverton, C. Svensson. 2016: From meteorological to  
691 hydrological drought using standardised indicators. *Hydrology and Earth System*  
692 *Sciences*, **20**, 2483-2505.

693 Beck, H.E., T.R. McVicar, A.I.J.M. van Dijk, J. Schellekens, R.A.M. de Jeu, and L.A.  
694 Bruijnzeel, 2011: Global evaluation of four AVHRR-NDVI data-sets: Intercomparison  
695 and assessment against Landsat imagery. *Remote Sensing of Environment*, **115**, 2547-  
696 2563.

697 Beguería, S., S.M. Vicente-Serrano, F. Reig, and B. Latorre. 2014: Standardized Precipitation  
698 Evapotranspiration Index (SPEI) revisited: parameter fitting, evapotranspiration  
699 models, kernel weighting, tools, datasets and drought monitoring. *International*  
700 *Journal of Climatology*, **34**, 3001–3023.

701 Breshears, D.D., Adams, H.D., Eamus, D. and Coauthors. 2013: The critical amplifying role  
702 of increasing atmospheric moisture demand on tree mortality and associated regional  
703 die-off. *Frontiers in Plant Science* 4(AUG),266

704 Brümmer, C., T.A. Black, and R.S. Jassal. 2012: How climate and vegetation type influence  
705 evapotranspiration and water use efficiency in Canadian forest, peatland and grassland  
706 ecosystems. *Agricultural and Forest Meteorology*, **153**, 14-30.

707 Bouchet, R.J. 1963: Evapotranspiration réelle evapotranspiration potentielle, signification  
708 climatique, 134–142, in International Association of Scientific Hydrology, General  
709 Assembly of Berkeley, Transactions, vol. 2, Evaporation, Berkeley, Calif

710 Budyko, M.I. 1948: Evaporation Under Natural Conditions, Gidrometeorizdat, Jerusalem.

711 Chaves, M.M., J.P. Maroco, and J.S. Pereira. 2003: Understanding plant responses to  
712 drought—From genes to the whole plant. *Funct Plant Biol*, **30**, 239–264.

713 Chen, T., G. Xia, T. Liu, W. Chen, and D. Chi. 2016: Assessment of drought impact on main  
714 cereal crops using a standardized precipitation evapotranspiration index in Liaoning  
715 Province, China. *Sustainability (Switzerland)*, **8**, art. no. 1069.

716 Choat, B., S. Jansen, T.J. Brodribb, and Coauthors. 2012: Global convergence in the  
717 vulnerability of forests to drought. *Nature*, **491**, 752-755.

718 Ciais Ph, and Coauthors. 2005: Europe-wide reduction in primary productivity caused by the  
719 heat and drought in 2003. *Nature*, **437**, 529–533.

720 Donohue, R.J., T.R. McVicar, and M.L. Roderick. 2010: Assessing the ability of potential  
721 evaporation formulations to capture the dynamics in evaporative demand within a  
722 changing climate. *Journal of Hydrology*, **386**, 186-197.

723 Donohue, R.J., I.H. Hume, M.L. Roderick, and Coauthors. 2014: Evaluation of the remote-  
724 sensing-based DIFFUSE model for estimating photosynthesis of vegetation. *Remote  
725 Sensing of Environment*, **155**, 349-364.

726 Duncan, J., D. Stow, J. Franklin, and A. Hope. 1993. Assessing the relationship between  
727 spectral vegetation indices and shrub cover in the Jordana Basin, New Mexico.  
728 *International Journal of Remote Sensing*, **14**, 3395–3416.

729 Espadafor, M., I. J. Lorite, P. Gavilán, and J. Berengena, 2011: An analysis of the tendency of  
730 reference evapotranspiration estimates and other climate variables during the last 45  
731 years in southern Spain. *Agric. Water Manage.*, **98**, 1045–1061.

732 Fisher, J., K. Tu, and D. Baldocchi, 2008: Global estimates of the land-atmosphere water flux  
733 based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites.  
734 *Remote Sensing of Environment*, **112**, 901–919.

735 Fisher, J.B., R.J. Whittaker, and Y. Malhi, 2010: ET come home: potential evapotranspiration  
736 in geographical ecology. *Global Ecology and Biogeography*, **20**, 1–18.

737 Fisher, J. B., F. Melton, E. Middleton, C. Hain, and Coauthors. 2017: The future of  
738 evapotranspiration: Global requirements for ecosystem functioning, carbon and  
739 climate feedbacks, agricultural management, and water resources. *Water Resources  
740 Research*, **53**, 2618–2626.

741 Gash, J., 1979: An analytical model of rainfall interception by forests. *Quarterly Journal of  
742 the Royal Meteorological Society*, **105**, 43–55.

743 Gillies, R.R., T.N. Carlson, J. Cui, W.P. Kustas, and K.S. Humes. 1997: A verification of the  
744 triangle method for obtaining surface soil water content and energy fluxes from remote  
745 measurements of the Normalized Difference Vegetation Index (NDVI) and surface  
746 radiant temperature. *International Journal of Remote Sensing*, **18**, 3145–3166.

747 Greenwood, S., P. Ruiz-Benito, J. Martínez-Vilalta, and Coauthors. 2017: Tree mortality  
748 across biomes is promoted by drought intensity, lower wood density and higher  
749 specific leaf area. *Ecology Letters*, **20**, 539-553.

750 Gutman, G. 1991: Vegetation indices from AVHRR: an update and future prospects. *Remote  
751 Sensing of Environment*, **35**, 121–136.

752 Guttman, N.B. 1999: Accepting the standardized precipitation index: A calculation algorithm.  
753 *Journal of the American Water Resources Association*, **35**, 311–322.

754 Harris, I., P.D. Jones, T.J. Osborn, and D.H. Lister. 2014: Updated high-resolution grids of  
755 monthly climatic observations – the CRU TS3.10 dataset. *Int. J. Climatol.*, **34**, 623–  
756 642.

757 Heim, R.R. 2002: A review of twentieth-century drought indices used in the United States.  
758 *Bull. Amer. Meteor. Soc.*, **83**, 1149–1165.

759 Hobbins, M.T., A. Wood, D.J. McEvoy, D.J., and Coauthors. 2016: The evaporative demand  
760 drought index. Part I: Linking drought evolution to variations in evaporative demand.  
761 *Journal of Hydrometeorology*, **17**, 1745–1761.

762 Hosking, J.R.M. 1990: L-moments: Analysis and estimation of distributions using linear  
763 combinations of order statistics. *Journal of Royal Statistical Society B*, **52**, 105–124.

764 Ji, L., and Peters, A.J. 2003: Assessing vegetation response to drought in the northern Great  
765 Plains using vegetation and drought indices. *Remote Sensing of Environment*, **87**, 85–  
766 98.

767 Katerji, N., and Rana, G. 2011: Crop Reference Evapotranspiration: A Discussion of the  
768 Concept, Analysis of the Process and Validation. *Water Resources Management*, **25**,  
769 1581–1600.

770 Keyantash, J., and J. Dracup. 2002: The quantification of drought: An evaluation of drought  
771 indices. *Bull. Amer. Meteor. Soc.*, **83**, 1167–1180.

772 Kim, D., and J. Rhee. 2016: A drought index based on actual evapotranspiration from the  
773 Bouchet hypothesis. *Geophysical Research Letters*, **43**, 10277–10285.

774 Kogan, F.N. 1997: Global drought watch from space. *Bulletin of the American  
775 Meteorological Society*, **78**, 621–636.

776 Labudova, L., M. Labuda, and A. Taka. 2017: Comparison of SPI and SPEI applicability for  
777 drought impact assessment on crop production in the Danubian Lowland and the East  
778 Slovakian Lowland. *Theoretical and Applied Climatology*, **128**, 491–506.

779 Leuning, A. 1995: A critical appraisal of a combined stomatal-photosynthesis model for C3  
780 plants. *Plant, Cell and Environment*, **18**, 339–335.

781 Liu, W.T., and F.N. Kogan. 1996: Monitoring regional drought using the vegetation condition  
782 index. *International Journal of Remote Sensing*, **17**, 2761–2782.

783 Lloyd-Hughes, B. 2014: The impracticality of a universal drought definition. *Theoretical and  
784 Applied Climatology*, **117**, 607–611.

785 Lobell, D.B., M. Bänziger, C. Magorokosho, and B. Vivek. 2011: Nonlinear heat effects on  
786 African maize as evidenced by historical yield trials. *Nature Climate Change*, **1**, 42–  
787 45.

788 López-Moreno, J.I., S.M., Vicente-Serrano, J. Zabalza, S. Beguería, J. Lorenzo-Lacruz, C.  
789 Azorin-Molina, E. Morán-Tejeda. 2013: Hydrological response to climate variability  
790 at different time scales: a study in the Ebro basin. *Journal of Hydrology*, **477**, 175–188.

791 Lorenzo-Lacruz, J., S.M. Vicente-Serrano, J.C. González-Hidalgo, J.I. López-Moreno, N.  
792 Cortesi. 2013: Hydrological drought response to meteorological drought at various  
793 time scales in the Iberian Peninsula. *Climate Research*, **58**, 117–131

794 Ma, M., L. Ren, F. Yuan, and Coauthors. 2014: A new standardized Palmer drought index for  
795 hydro-meteorological use. *Hydrol. Process.*, **28**, 5645–5661.

796 Martens, B., D.G. Miralles, H. Lievens, and Coauthors. 2017: GLEAM v3: satellite-based land  
797 evaporation and root-zone soil moisture. *Geoscientific Model Development*, **10**, 1903–  
798 1925.

799 McCabe, M.F., A. Ershadi, C. Jiménez, D.G. Miralles, D. Michel, E.F. Wood. 2016: The  
800 GEWEX LandFlux project: evaluation of model evaporation using tower-based and  
801 globally gridded forcing data. *Geoscientific Model Development*, **9**, 283–305.

McCabe, M.F., M. Rodell, D.E. Alsdorf, D.G. Miralles, R. Uijlenhoet, W. Wagner, W., and Coauthors. 2017: The Future of Earth Observation in Hydrology. *Hydrology and Earth System Sciences*, **21**, 3879–3914

McDowell, N., W.T. Pockman, W.T., C.D. Allen, and Coauthors. 2008: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? *New Phytologist*, **178**, 719-739.

McEvoy, D.J., J.L. Huntington, J.T. Abatzoglou, L.M. Edwards. 2012: An evaluation of multiscalar drought indices in Nevada and Eastern California. *Earth Interactions* **16**, <https://doi.org/10.1175/2012EI000447.1>

McEvoy, D.J., J.L. Huntington, J.F. Mejia, M.T. Hobbins. 2016a: Improved seasonal drought forecasts using reference evapotranspiration anomalies. *Geophysical Research Letters*, **43**, 377-385.

McEvoy, D.J., J.L. Huntington, M.T. Hobbins, and Coauthors. 2016: The evaporative demand drought index. Part II: CONUS-wide assessment against common drought indicators. *Journal of Hydrometeorology*, **17**, 1763-1779.

McKee, T.B.N., J. Doesken, and J. Kleist. 1993: The relationship of drought frequency and duration to time scales. Proc. Eight Conf. on Applied Climatology. Anaheim, CA, Amer. Meteor. Soc. 179–184.

McVicar, T.R., and D.L.B Jupp. 1998: The current and potential operational uses of remote sensing to aid decisions on Drought Exceptional Circumstances in Australia: A Review. *Agricultural Systems*, **57**, 399- 468.

McVicar, T.R., T.G. Van Niel, L.T. Li, and Coauthors. 2008: Wind speed climatology and trends for Australia, 1975-2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. *Geophysical Research Letters*, **35**, L20403.

McVicar, T.R., M.L. Roderick, R.J. Donohue, and Van Niel, T.G. 2012a: Less bluster ahead? ecohydrological implications of global trends of terrestrial near-surface wind speeds. *Ecohydrology*, **5**, 381–388.

McVicar, T.R., M.L. Roderick, R.J. Donohue, and Coauthors. 2012b: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. *J. Hydrol.*, **416–417**, 182–205.

Miralles, D. G., T.R.H. Holmes, R.A.M. De Jeu, J.H. Gash, A.G.C.A. Meesters, A.J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. *Hydrology and Earth System Sciences*, **15**, 453–469.

Miralles, D.G., C. Jiménez, M. Jung, D. Michel, and Coauthors, 2016: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets. *Hydrology and Earth System Sciences*, **20**, 823–842.

Mishra, A.K., V.P Singh, V.P. 2010: A review of drought concepts. *J. Hydrol.*, **391**, 202–216.

Morton, F.I.1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. *Journal of Hydrology*, **66**, 1-76.

Mu, Q., M. Zhao, S.W. Running. 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. *Remote Sensing of Environment*, **115**, 1781-1800.

Narasimhan, B. and R. Srinivasan. 2005: Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. *Agricultural and Forest Meteorology*, **133**, 69-88.

Otkin, J.A., M.C. Anderson, C. Hain, and Coauthors. 2016: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. *Agricultural and Forest Meteorology*, **218-219**, 230-242.

Pasho, E., J.J. Camarero, M. de Luis, and S.M. Vicente-Serrano. 2011: Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. *Agricultural and Forest Meteorology*, **151**, 1800-1811.

852 Palmer, W.C. 1965: Meteorological droughts. U.S. Department of Commerce Weather  
853 Bureau Research Paper 45, 58 pp.

854 Papagiannopoulou, C., D.G. Miralles, W.A. Dorigo, N.E.C. Verhoest, M. Depoorter, and W.  
855 Waegeman, W. 2017: Vegetation anomalies caused by antecedent precipitation in  
856 most of the world. *Environmental Research Letters*, **12**, 074016–11.

857 Penman, H.L. 1948. Natural evaporation from open water, bare soil, and grass. *Proc. Roy.  
858 Soc. London*, **A193**, 120–146.

859 Perdigao, J.C., R. Salgado, M.J. Costa, H.P. Dasari, A. Sanchez-Lorenzo. 2016: Variability  
860 and trends of downward surface global solar radiation over the Iberian Peninsula based  
861 on ERA-40 reanalysis. *International Journal of Climatology*, **36**, 3917–3933.

862 Pinzon, J.E.; and C.J. Tucker. 2014: A non-stationary 1981–2012 AVHRR NDVI3g time  
863 series. *Remote Sens.*, **6**, 6929–6960.

864 Priestley, C., and R. Taylor, 1972: On the assessment of surface heat flux and evaporation  
865 using large-scale parameters. *Monthly Weather Review*, **100**, 81–92.

866 Quiring, S. and T. N. Papakryakou. 2003: An evaluation of agricultural drought indices for  
867 the Canadian prairies. *Agricultural and Forest Meteorology*, **118**, 49–62.

868 Rosas, T., L. Galiano, R. Ogaya, J. Peñuelas, and J. Martínez-Vilalta. 2013: Dynamics of non-  
869 structural carbohydrates in three Mediterranean woody species following long-term  
870 experimental drought. *Frontiers in Plant Science*, **4**, 400,  
871 <http://doi.org/10.3389/fpls.2013.00400>

872 Rotstayn, L.D., M.L. Roderick, and G.D. Farquhar. 2006: A simple pan-evaporation model  
873 for analysis of climate simulations: Evaluation over Australia *Geophysical Research  
874 Letters*, **33**, L17715.

875 Simelton, E., E.D.G. Fraser, M. Termansen, P.M. Forster, and A.J. Dougill. 2009: Typologies  
876 of crop-drought vulnerability: an empirical analysis of the socio-economic factors that  
877 influence the sensitivity and resilience to drought of three major food crops in China  
878 (1961–2001). *Environmental Science and Policy*, **12**, 438–452.

879 Stagge, J.A., L.M. Tallaksen, L. Gudmundsson, A.F. Van Loon, K. Stahle. 2015: Candidate  
880 distributions for climatological drought indices (SPI and SPEI). *International Journal  
881 of Climatology*, **35**, 4027–4040.

882 Stahl, K., I. Kohn, L. De Stefano, and Coauthors. 2015: An impact perspective on pan-  
883 European drought sensitivity. Drought: Research and Science-Policy Interfacing -  
884 Proceedings of the International Conference on Drought: Research and Science-Policy  
885 Interfacing. 329–334.

886 Stahl, K., I. Kohn, V. Blauthut, and Coauthors. 2016: Impacts of European drought events:  
887 Insights from an international database of text-based reports. *Natural Hazards and  
888 Earth System Sciences*, **16**, 801–819.

889 Stephenson, N.L. 1990: Climatic control of vegetation distribution: the role of the water  
890 balance. *American Naturalist*, **135**, 649–670.

891 Stephenson, N.L. 1998: Actual evapotranspiration and deficit: Biologically meaningful  
892 correlates of vegetation distribution across spatial scales. *Journal of Biogeography*, **25**,  
893 855–870.

894 Tucker, C.J., C. Vanpraet, E. Boerwinkel, and A. Gaston. 1983: Satellite remote sensing of  
895 total dry matter production in the Senegalese Sahel. *Remote Sensing of Environment*,  
896 **13**, 461–474.

897 Van Loon, A.F. 2015: Hydrological drought explained. *Wiley Interdisciplinary Reviews:  
898 Water*, **2**, 359–392.

899 Van Loon, A.F., K. Stahl, G. Di Baldassarre, and Coauthors. 2016: Drought in a human-  
900 modified world: Reframing drought definitions, understanding, and analysis  
901 approaches. *Hydrology and Earth System Sciences*, **20**, 3631–3650.

902 Vicente-Serrano, S.M. 2006: Differences in spatial patterns of drought on different time  
 903 scales: an analysis of the Iberian Peninsula. *Water Resources Management*, **20**, 37-60.

904 Vicente-Serrano S.M., S. Beguería, J.I. López-Moreno. 2010: A Multi-scalar drought index  
 905 sensitive to global warming: The Standardized Precipitation Evapotranspiration Index  
 906 – SPEI. *Journal of Climate*, **23**, 1696-1718.

907 Vicente-Serrano, S.M., S. Beguería, J.I. López-Moreno, M. Angulo, A. El Kenawy, 2010b: A  
 908 new global  $0.5^{\circ}$  gridded dataset (1901-2006) of a multiscalar drought index:  
 909 comparison with current drought index datasets based on the Palmer Drought Severity  
 910 Index. *Journal of Hydrometeorology*, **11**, 1033–1043

911 Vicente-Serrano, S.M., S. Beguería and J.I. López-Moreno. 2011: Comment on  
 912 “Characteristics and trends in various forms of the Palmer Drought Severity Index  
 913 (PDSI) during 1900-2008” by A. Dai. *Journal of Geophysical Research-Atmosphere*,  
 914 **116**, D19112, doi:10.1029/2011JD016410

915 Vicente-Serrano, S.M., S. Beguería, J. Lorenzo-Lacruz, and Coauthors. 2012: Performance of  
 916 drought indices for ecological, agricultural and hydrological applications. *Earth  
 917 Interactions*, **16**, 1–27.

918 Vicente-Serrano, S.M., J.I. López-Moreno, S. Beguería, J. Lorenzo-Lacruz, C. Azorin-  
 919 Molina, and E. Morán-Tejeda. 2012b: Accurate computation of a streamflow drought  
 920 index. *Journal of Hydrologic Engineering*, **17**, 318-332.

921 Vicente-Serrano, S.M., C. Gouveia, J.J. Camarero, and Coauthors. 2013: The response of  
 922 vegetation to drought time-scales across global land biomes. *Proceedings of the  
 923 National Academy of Sciences of the United States of America*, **110**, 52-57.

924 Vicente-Serrano, S.M., C. Azorin-Molina, A. Sanchez-Lorenzo, and Coauthors. 2014:  
 925 Reference evapotranspiration variability and trends in Spain, 1961–2011. *Global and  
 926 Planetary Change*, **121**, 26-40.

927 Vicente-Serrano, S.M., J.J. Camarero, J. Zabalza, G. Sangüesa-Barreda, J.I. López-Moreno,  
 928 and C.L. Tague. 2015: The evapotranspiration deficit controls growth and net primary  
 929 production: implications for Pyrenean silver fir growth under warmer and drier  
 930 conditions. *Agricultural and Forest Meteorology*, **206**, 45-54.

931 Vicente-Serrano, S.M., and S. Beguería. 2016: Comment on “Candidate Distributions for  
 932 Climatological Drought Indices (SPI and SPEI)” by James H. Stagge et al.  
 933 *International Journal of Climatology*, **36**, 2120-2131.

934 Vicente-Serrano, S.M. 2016:Foreword: Drought complexity and assessment under climate  
 935 change conditions. *Cuadernos de Investigación Geográfica*, **42**, 7-11.

936 Vicente-Serrano, S.M., R. Nieto, L. Gimeno, and Coauthors. 2017: Recent changes of relative  
 937 humidity: regional connection with land and ocean processes. *Earth System Dynamics*,  
 938 <https://doi.org/10.5194/esd-2017-43>.

939 Wang, W., W. Xing, Q Shao. 2015: How large are uncertainties in future projection of  
 940 reference evapotranspiration through different approaches? *Journal of Hydrology*, **524**,  
 941 696-700.

942 Wang, K., Z. Li, M. Cribb. 2016: Estimation of evaporative fraction from a combination of  
 943 day and night land surface temperatures and NDVI: A new method to determine the  
 944 Priestley-Taylor parameter. *Remote Sensing of Environment*, **102**, 293-305

945 Wilhite, D. A., 1993: Drought Assessment, Management and Planning: Theory and Case  
 946 Studies. Kluwer, 293 pp.

947 Wilhite, D.A. 2000: Drought as a natural hazard: Concepts and definitions. Drought: A  
 948 Global Assessment, D. Wilhite, Ed., Vol. 1, Taylor and Francis, 3–18.

949 Will, R.E., S.M. Wilson, C.B. Zou, T.C. Hennessey. 2013: Increased vapor pressure deficit  
 950 due to higher temperature leads to greater transpiration and faster mortality during

951 drought for tree seedlings common to the forest-grassland ecotone. *New Phytologist*,  
952 **200**, 366-374.

953 Willett, K.M., R.J.H. Dunn, P.W. Thorne, and Coauthors. 2014: HadISDH land surface multi-  
954 variable humidity and temperature record for climate monitoring. *Climate of the Past*,  
955 **10**, 1983-2006.

956 Yang, Y.T., R.J. Donohue, T.R. McVicar, and M.L. Roderick. 2015: An analytical model for  
957 relating global terrestrial carbon assimilation with climate and surface conditions using  
958 a rate-limitation framework. *Geophysical Research Letters*, **42**, 9825–9835.

959 Yang, Y.T., T.R. McVicar, R.J. Donohue, Y.Q. Zhang, M.L. Roderick, F.H.S. Chiew, F.H.S.,  
960 L. Zhang and J.L. Zhang. 2017: Lags in hydrologic recovery following an extreme  
961 drought: assessing the roles of climate and catchment characteristics. *Water Resources  
962 Research*, **53**, 4821–4837.

963 Yao, Y., S. Liang, Q. Qin, and K. Wang, 2010: Monitoring drought over the conterminous  
964 United States using MODIS and NCEP Reanalysis-2 data. *Journal of Applied  
965 Meteorology and Climatology*, **49**, 1665–1680.

966 Zampieri, M., F. D'Andrea, R. Vautard, and Coauthors 2009: Hot European summers and the  
967 role of soil moisture in the propagation of mediterranean drought. *Journal of Climate*,  
968 **22**, 4747-4758.

969 Zhang, Y.Q., J.L. Peña-Arancibia, T.R. McVicar, F.H.S. Chiew, and Coauthors. 2016: Multi-  
970 decadal trends in global terrestrial evapotranspiration and its components. *Scientific  
971 Reports*, **6**, 19124, doi:10.1038/srep19124

972 Zhang, Q., D. Kong, V.P. Singh, and P. Shi. 2017: Response of vegetation to different time-  
973 scales drought across China: Spatiotemporal patterns, causes and implications. *Global  
974 and Planetary Change*, **152**, 1-11.

975 Zipper, S.C., J. Qiu, and C.J. Kucharik. 2016: Drought effects on US maize and soybean  
976 production: Spatiotemporal patterns and historical changes. *Environmental Research  
977 Letters*, **11**,094021.

978

979 FIGURE CAPTIONS  
980

981 Figure 1: Global terrestrial relationship between SEDI (and return period - 1 event in number  
982 of cases-) obtained from GEV (a) and Pearson-III (b) distributions and log-logistic  
983 distribution using the GLEAM and CRU AED. Colors represent the density of points  
984 (dark red being the highest)

985 Figure 2. Percentage of series showing absolute frequencies of SEDI values below -2.58. a)  
986 GLEAM AED, b) CRU AED

987 Figure 3: Box and whisker plot showing the Pearson correlation coefficient (r) between SEDI  
988 series calculated from GLEAM and CRU AED the entire monthly record and for each  
989 month independently. Light Horizontal line shows the threshold for positive and  
990 significant correlations ( $p < 0.05$ ), with numbers above the top whisker indicating the  
991 percentage of global terrestrial area with such correlations. The heavy line in the box  
992 represents the median, the upper and lower parts of the box denote the interquartile  
993 range and the whiskers show the 95% or 5%.

994 Figure 4: Spatial distribution of the correlations between SEDI series calculated using the  
995 GLEAM and the CRU datasets for AED for the mid-season monthly series and for the  
996 series of all months. Terrestrially white areas represent deserts/Greenland and areas in  
997 which SEDI fit has no solution

998 Figure 5: Spatial distribution of the SEDI values obtained from GLEAM and CRU AED data  
999 during the recent drought episodes that affected Russia (top-most three rows) and  
1000 southern North America (bottom-most three rows) in 2010 and 2011, respectively.

1001 Figure 6. Box-plot and whisker plot showing the Pearson correlation coefficient (r) between  
1002 the SEDI and SPEI for specific months of the year as well as for the entire record.  
1003 Light Horizontal line shows the threshold for positive and significant correlations ( $p <$   
1004 0.05), with numbers above the top whisker indicating the percentage of global  
1005 terrestrial area with such correlations. The heavy line in the box represents the median,  
1006 the upper and lower parts of the box denote the interquartile range and the whiskers  
1007 show the 95% or 5%.

1008 Figure 7: Spatial distribution of the correlations between SEDI and SPEI series for mid-  
1009 season months and for the entire record. Terrestrially white areas represent  
1010 deserts/Greenland and areas in which SEDI fit has no solution.

1011 Figure 8: Correlation between the SEDI and SPEI at different time scales (from 1- to 24-  
1012 months) for specific months and for the entire record. Light Horizontal line shows the  
1013 threshold for positive and significant correlations ( $p < 0.05$ ), with numbers above the  
1014 top whisker indicating the percentage of global terrestrial area with such correlations.  
1015 The heavy line in the box represents the median, the upper and lower parts of the box  
1016 denote the interquartile range and the whiskers show the 95% or 5%.

1017 Figure 9. SPEI time scale at which the highest correlation with the SEDI series was found for  
1018 mid-season months and for the entire record. Terrestrially white areas represent  
1019 deserts/Greenland and areas in which SEDI fit has no solution.

1020 Figure 10. Spatial distribution of the Maximum Pearson correlation coefficient (r) between  
1021 SEDI and sNDVI (left) and between SPEI and sNDVI (right) for mid-season months  
1022 and for the entire record 1981–2014.

1023 Figure 11: Density scatterplots with the spatial relationship between the sNDVI and SEDI  
1024 correlations and between the sNDVI and SPEI correlations. The scatterplots show the  
1025 results for all months and for the entire record. Blue line: linear regression, black line:  
1026 1-to-1 line. Given the large sample, and to avoid an overrepresentation of significant  
1027 correlations, the p values were obtained by means of a bootstrap sampling approach  
1028 that considers 2000 independent samples of 30 cases and p values for correlations of

1029 the samples of 30 cases were averaged. The colors of the scatterplots represent the  
1030 density of points (dark red being the highest).

1031 Figure 12: Spatial distribution of the SEDI, 3-month SPEI and sNDVI during two  
1032 extraordinary drought events recorded in the Iberian Peninsula (1995 shown in the top-  
1033 three rows) and the Sahel (1984 shown in the bottom three rows).

1034

1035  
1036

Table 1: Percentage of monthly time series of ED with no fitting solution tested with the eight probability distributions.

| Month | Log-logistic |      | GEV   |      | Log-normal |      | Pearson-III |      | Weibull |      | G. Pareto |      | Normal |      | Exponential |      |
|-------|--------------|------|-------|------|------------|------|-------------|------|---------|------|-----------|------|--------|------|-------------|------|
|       | GLEAM        | CRU  | GLEAM | CRU  | GLEAM      | CRU  | GLEAM       | CRU  | GLEAM   | CRU  | GLEAM     | CRU  | GLEAM  | CRU  | GLEAM       | CRU  |
| Jan.  | 34.6         | 15.4 | 34.6  | 15.4 | 77.9       | 68.8 | 34.6        | 15.4 | 62.4    | 38.3 | 34.6      | 15.4 | 31.6   | 12.9 | 31.6        | 12.9 |
| Feb.  | 13.9         | 2.9  | 13.9  | 2.9  | 74.5       | 67.9 | 13.9        | 2.9  | 49.4    | 30.5 | 13.9      | 2.9  | 12.1   | 1.8  | 12.1        | 1.8  |
| Mar.  | 5.2          | 1.9  | 5.2   | 1.9  | 63.9       | 66.7 | 5.2         | 1.9  | 34.2    | 22.9 | 5.2       | 1.9  | 4.8    | 1.6  | 4.8         | 1.6  |
| Apr.  | 2.5          | 0.4  | 2.5   | 0.4  | 58.0       | 63.7 | 2.5         | 0.4  | 29.5    | 17.7 | 2.5       | 0.4  | 2.2    | 0.3  | 2.2         | 0.3  |
| May   | 0.4          | 0.3  | 0.4   | 0.3  | 59.9       | 57.3 | 0.4         | 0.3  | 27.8    | 11.7 | 0.4       | 0.3  | 0.4    | 0.2  | 0.4         | 0.2  |
| Jun.  | 0.7          | 0.9  | 0.7   | 0.9  | 66.6       | 58.1 | 0.7         | 0.9  | 35.0    | 12.6 | 0.7       | 0.9  | 0.7    | 0.7  | 0.7         | 0.7  |
| Jul.  | 0.6          | 0.8  | 0.6   | 0.8  | 69.6       | 60.6 | 0.6         | 0.8  | 40.6    | 15.6 | 0.6       | 0.8  | 0.5    | 0.6  | 0.5         | 0.6  |
| Aug.  | 1.6          | 0.3  | 1.6   | 0.3  | 69.7       | 61.0 | 1.6         | 0.3  | 46.7    | 15.9 | 1.6       | 0.3  | 1.4    | 0.2  | 1.4         | 0.2  |
| Sep.  | 4.4          | 0.3  | 4.4   | 0.3  | 68.9       | 56.9 | 4.4         | 0.3  | 46.9    | 10.6 | 4.4       | 0.3  | 4.2    | 0.2  | 4.2         | 0.2  |
| Oct.  | 19.2         | 0.8  | 19.2  | 0.8  | 72.1       | 57.0 | 19.2        | 0.8  | 49.9    | 17.7 | 19.2      | 0.8  | 18.4   | 0.4  | 18.4        | 0.4  |
| Nov.  | 37.6         | 5.8  | 37.6  | 5.8  | 77.7       | 66.3 | 37.6        | 5.8  | 61.0    | 30.8 | 37.6      | 5.8  | 36.2   | 4.4  | 36.2        | 4.4  |
| Dec.  | 43.3         | 13.7 | 43.3  | 13.7 | 81.3       | 68.0 | 43.3        | 13.7 | 67.2    | 38.9 | 43.3      | 13.7 | 41.6   | 10.1 | 41.6        | 10.1 |

1037

1038

1039      Table 2: Percentage of monthly SEDI series calculated using the remaining six probability  
 1040      distributions for which the null hypothesis of normality was rejected (fail-to-reject-rate) by the  
 1041      Shapiro-Wilks test at a confidence level  $p = 0.05$ .

1042

| Month | Log-logistic |      | GEV   |      | Pearson-III |      | G. Pareto |      | Normal |      | Exponential |      |
|-------|--------------|------|-------|------|-------------|------|-----------|------|--------|------|-------------|------|
|       | GLEAM        | CRU  | GLEAM | CRU  | GLEAM       | CRU  | GLEAM     | CRU  | GLEAM  | CRU  | GLEAM       | CRU  |
| Jan.  | 75.9         | 60.0 | 68.0  | 58.6 | 65.7        | 58.2 | 20.4      | 13.1 | 35.5   | 46.6 | 11.2        | 8.2  |
| Feb.  | 74.3         | 57.6 | 68.7  | 57.1 | 66.6        | 56.7 | 22.4      | 14.7 | 38.8   | 46.7 | 10.7        | 8.8  |
| Mar.  | 86.3         | 66.3 | 79.4  | 64.4 | 77.0        | 65.2 | 24.0      | 14.3 | 50.3   | 53.4 | 14.4        | 9.2  |
| Apr.  | 89.0         | 78.1 | 81.3  | 74.2 | 79.3        | 74.6 | 22.6      | 15.4 | 51.3   | 59.3 | 16.1        | 10.2 |
| May   | 91.4         | 88.7 | 83.2  | 85.5 | 80.8        | 86.1 | 23.6      | 18.0 | 51.3   | 71.5 | 15.2        | 12.0 |
| Jun.  | 92.8         | 89.1 | 81.6  | 85.5 | 79.9        | 86.3 | 19.5      | 18.9 | 48.2   | 71.9 | 11.8        | 12.0 |
| Jul.  | 91.4         | 88.9 | 80.8  | 84.9 | 78.5        | 86.2 | 19.1      | 18.5 | 44.2   | 71.3 | 10.6        | 11.1 |
| Aug.  | 87.7         | 88.8 | 75.8  | 85.1 | 72.1        | 86.0 | 17.9      | 17.7 | 36.5   | 68.1 | 11.2        | 11.0 |
| Sep.  | 87.3         | 88.7 | 73.9  | 85.4 | 70.7        | 86.0 | 20.4      | 17.9 | 36.6   | 71.5 | 12.3        | 11.7 |
| Oct.  | 83.6         | 72.3 | 72.8  | 70.8 | 70.2        | 70.6 | 19.2      | 17.9 | 38.1   | 58.0 | 12.5        | 11.1 |
| Nov.  | 81.8         | 59.0 | 73.3  | 56.8 | 71.1        | 56.5 | 20.1      | 11.9 | 40.9   | 46.5 | 12.8        | 7.4  |
| Dec.  | 76.9         | 53.4 | 68.2  | 52.4 | 66.4        | 51.8 | 18.3      | 12.6 | 37.7   | 40.2 | 10.8        | 7.6  |

1043

1044

1045  
1046

Table 3: Percentage of global terrestrial 0.5°-degree resolution grid points at which the maximum correlation between the SEDI and SPEI is recorded corresponding to different SPEI time scales.

| SPEI Time scale (months) | All months | Jan. | Feb. | Mar. | Apr. | May  | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
|--------------------------|------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1                        | 42.0       | 21.5 | 24.5 | 31.9 | 40.7 | 42.0 | 42.0 | 38.0 | 32.9 | 33.5 | 23.4 | 24.5 | 20.2 |
| 2                        | 20.2       | 14.9 | 13.5 | 14.6 | 14.3 | 14.7 | 13.9 | 17.6 | 17.9 | 14.9 | 17.1 | 19.2 | 17.8 |
| 3                        | 9.7        | 11.9 | 8.2  | 10.1 | 8.5  | 8.3  | 9.4  | 7.6  | 9.8  | 9.6  | 9.3  | 12.1 | 13.1 |
| 4                        | 7.5        | 7.8  | 8.6  | 6.7  | 6.6  | 4.5  | 6.0  | 6.4  | 6.9  | 7.1  | 7.8  | 5.8  | 7.5  |
| 5                        | 4.3        | 5.2  | 5.3  | 5.1  | 4.5  | 4.2  | 3.6  | 4.5  | 4.7  | 4.3  | 6.3  | 4.9  | 5.8  |
| 6                        | 3.7        | 4.8  | 4.6  | 5.1  | 2.7  | 3.2  | 3.0  | 3.5  | 3.6  | 3.6  | 4.1  | 4.2  | 4.0  |
| 7                        | 2.3        | 3.1  | 4.2  | 3.8  | 3.0  | 3.1  | 2.4  | 2.6  | 2.3  | 2.7  | 2.9  | 3.3  | 3.4  |
| 8                        | 1.9        | 3.5  | 2.9  | 2.8  | 2.4  | 2.8  | 2.7  | 2.3  | 1.8  | 1.8  | 2.5  | 3.6  | 2.7  |
| 9                        | 1.3        | 2.1  | 4.4  | 2.6  | 1.8  | 2.4  | 2.2  | 2.1  | 1.7  | 1.4  | 1.5  | 1.8  | 3.4  |
| 10                       | 1.1        | 2.0  | 2.5  | 1.4  | 2.2  | 2.7  | 2.4  | 1.8  | 1.7  | 1.9  | 1.9  | 1.7  | 2.5  |
| 11                       | 0.7        | 1.6  | 2.0  | 1.5  | 1.6  | 1.5  | 1.6  | 2.3  | 1.6  | 1.7  | 1.2  | 1.6  | 1.7  |
| 12                       | 0.5        | 1.5  | 1.2  | 1.5  | 1.3  | 1.1  | 1.3  | 1.8  | 2.7  | 1.9  | 1.3  | 1.5  | 1.2  |
| 13                       | 0.3        | 1.1  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 0.8  | 1.5  | 1.3  | 1.4  | 0.9  | 1.0  |
| 14                       | 0.2        | 1.1  | 0.9  | 0.6  | 0.6  | 0.5  | 0.8  | 0.9  | 1.6  | 1.9  | 1.6  | 1.0  | 1.0  |
| 15                       | 0.3        | 1.3  | 1.2  | 0.8  | 0.5  | 0.4  | 0.8  | 0.7  | 1.3  | 1.6  | 1.7  | 1.3  | 1.2  |
| 16                       | 0.3        | 2.0  | 1.3  | 0.8  | 0.6  | 0.5  | 0.5  | 0.7  | 0.8  | 1.2  | 2.1  | 1.0  | 1.0  |
| 17                       | 0.3        | 1.5  | 1.0  | 0.6  | 0.6  | 0.5  | 0.6  | 0.5  | 0.7  | 1.0  | 2.1  | 1.5  | 1.2  |
| 18                       | 0.1        | 1.9  | 1.0  | 0.9  | 0.6  | 0.5  | 0.6  | 0.5  | 0.6  | 0.9  | 1.1  | 1.6  | 1.6  |
| 19                       | 0.4        | 1.4  | 2.2  | 0.7  | 0.7  | 0.5  | 0.7  | 0.5  | 0.4  | 0.6  | 1.0  | 1.1  | 1.6  |
| 20                       | 0.5        | 1.5  | 1.6  | 1.1  | 1.2  | 0.8  | 0.6  | 0.7  | 0.6  | 0.5  | 1.0  | 1.3  | 1.3  |
| 21                       | 0.4        | 1.9  | 1.8  | 1.6  | 0.9  | 1.1  | 0.6  | 0.6  | 0.8  | 1.0  | 0.7  | 1.0  | 1.4  |
| 22                       | 0.4        | 1.6  | 1.7  | 1.4  | 0.6  | 0.8  | 0.9  | 0.7  | 0.7  | 1.1  | 1.4  | 1.1  | 1.2  |
| 23                       | 0.5        | 1.5  | 1.4  | 1.1  | 1.0  | 1.2  | 1.1  | 1.0  | 1.1  | 1.6  | 2.9  | 1.2  | 1.7  |
| 24                       | 1.3        | 3.7  | 3.0  | 2.8  | 2.3  | 1.8  | 1.6  | 2.1  | 2.5  | 2.8  | 3.7  | 2.9  | 2.8  |

1047

1048

1049 Table 4. Percentage of the global terrestrial areas showing significant correlations between sNDVI  
1050 and SEDI and between sNDVI and SPEI

1051

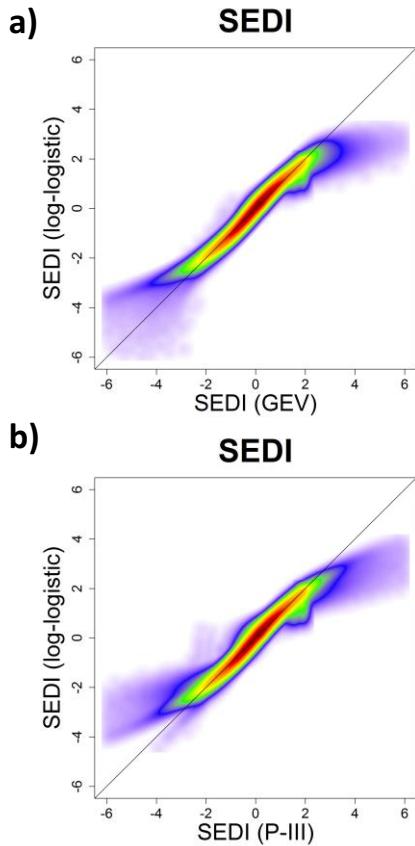
1052

1053

1054

|            | sNDVI vs.<br>SEDI | sNDVI vs.<br>SPEI |
|------------|-------------------|-------------------|
| All months | 13.09             | 19.24             |
| January    | 23.52             | 36.94             |
| February   | 22.74             | 35.68             |
| March      | 23.59             | 37.12             |
| April      | 26.67             | 38.08             |
| May        | 27.81             | 37.63             |
| June       | 24.49             | 41.22             |
| July       | 26.84             | 43.88             |
| August     | 26.21             | 46.72             |
| September  | 23.95             | 43.67             |
| October    | 25.35             | 42.92             |
| November   | 25.41             | 37.64             |
| December   | 28.93             | 39.10             |

## GLEAM

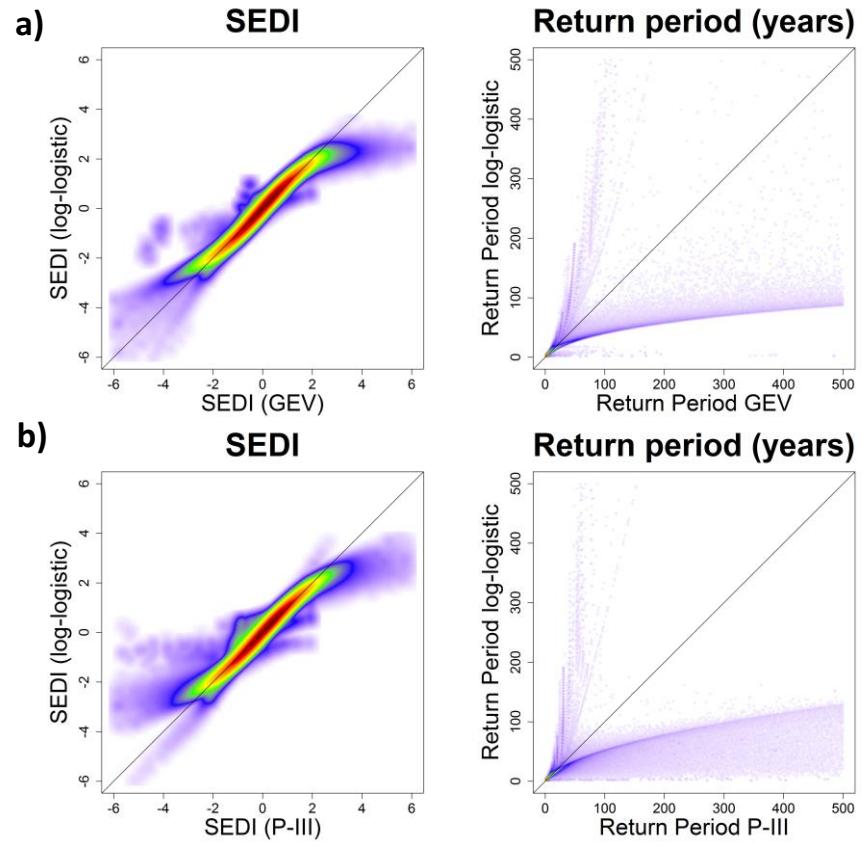


1055

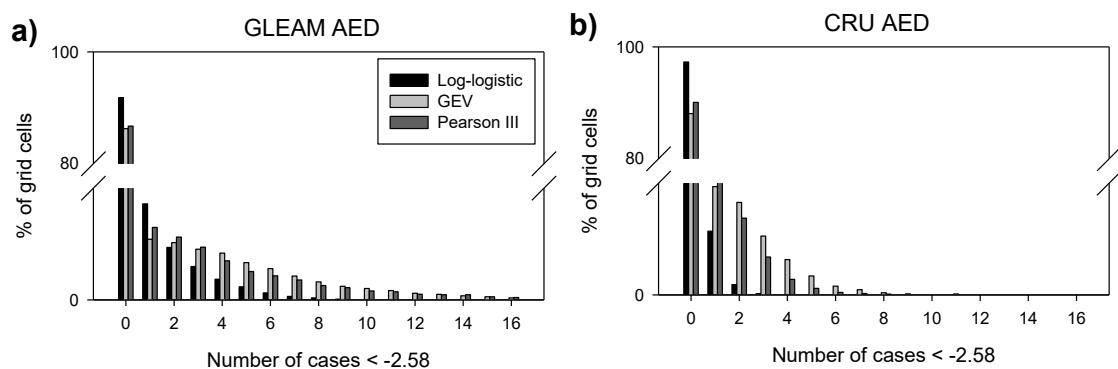
1056

Figure 1: Global terrestrial relationship between SEDI (and return period - 1 event in number of cases-) obtained from GEV (a) and Pearson-III (b) distributions and log-logistic distribution using the GLEAM and CRU AED. Colors represent the density of points (dark red being the highest)

## CRU



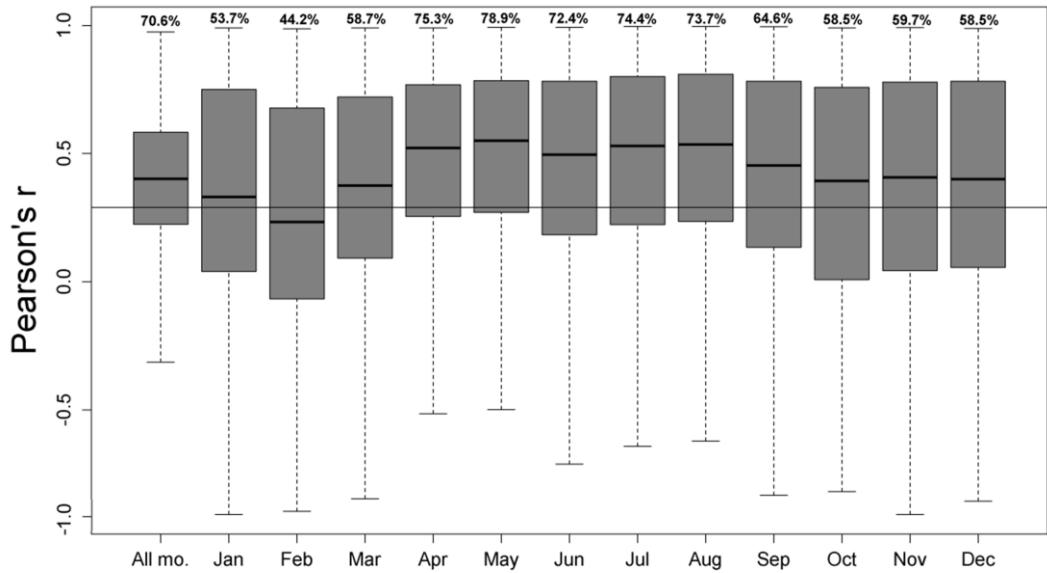
1059



1060

1061 Figure 2. Percentage of series showing absolute frequencies of SEDI values below -2.58. a)  
1062 GLEAM AED, b) CRU AED

1063



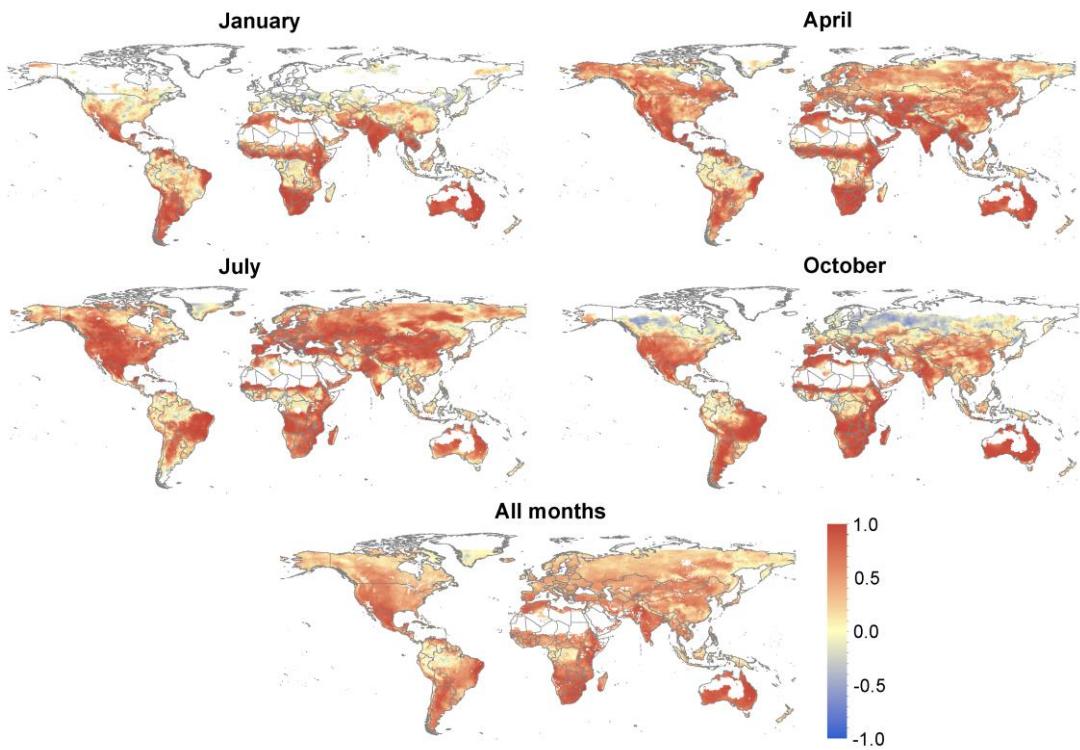
1064

1065 Figure 3: Box and whisker plot showing the Pearson correlation coefficient ( $r$ ) between SEDI  
 1066 series calculated from GLEAM and CRU AED the entire monthly record and for each month  
 1067 independently. Light Horizontal line shows the threshold for positive and significant  
 1068 correlations ( $p < 0.05$ ), with numbers above the top whisker indicating the percentage of  
 1069 global terrestrial area with such correlations. The heavy line in the box represents the median,  
 1070 the upper and lower parts of the box denote the interquartile range and the whiskers show the  
 1071 95% or 5%.

1072

1073

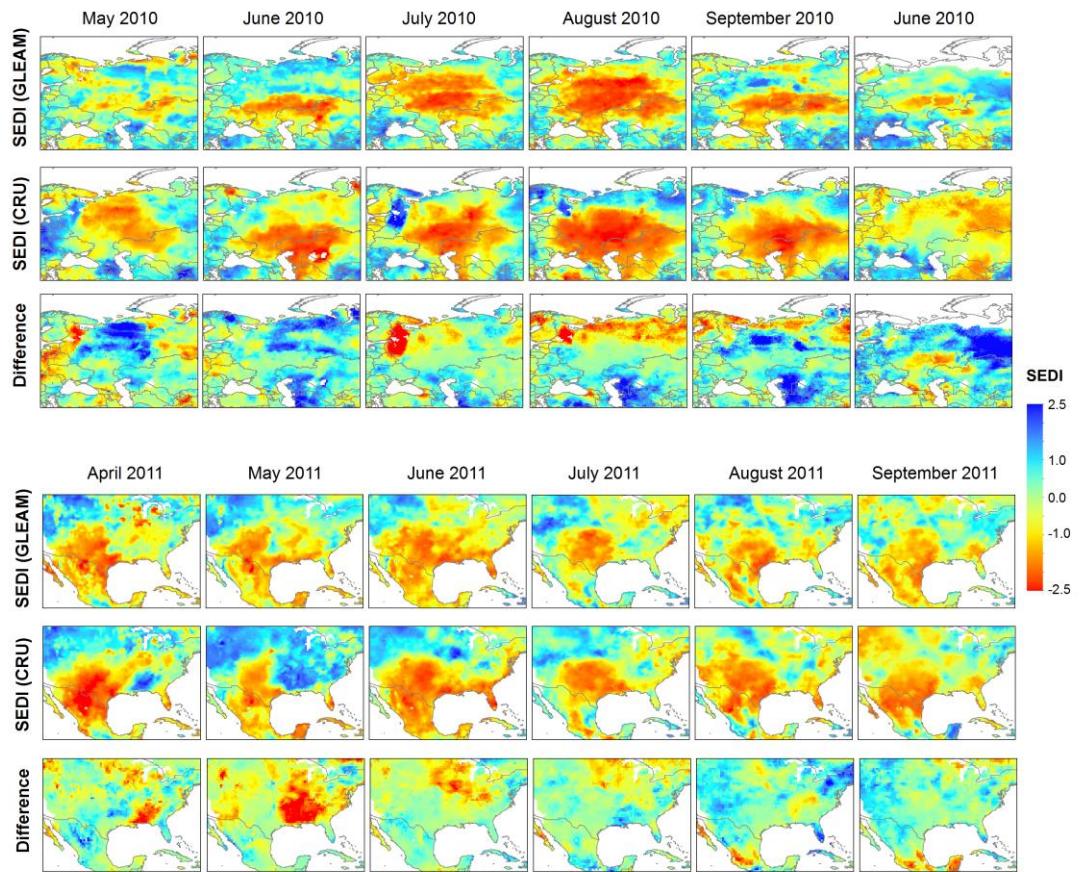
1074



1075

1076      Figure 4: Spatial distribution of the correlations between SEDI series calculated using the  
 1077      GLEAM and the CRU datasets for AED for the mid-season monthly series and for the series of  
 1078      all months. Terrestrially white areas represent deserts/Greenland and areas in which SEDI fit  
 1079      has no solution

1080



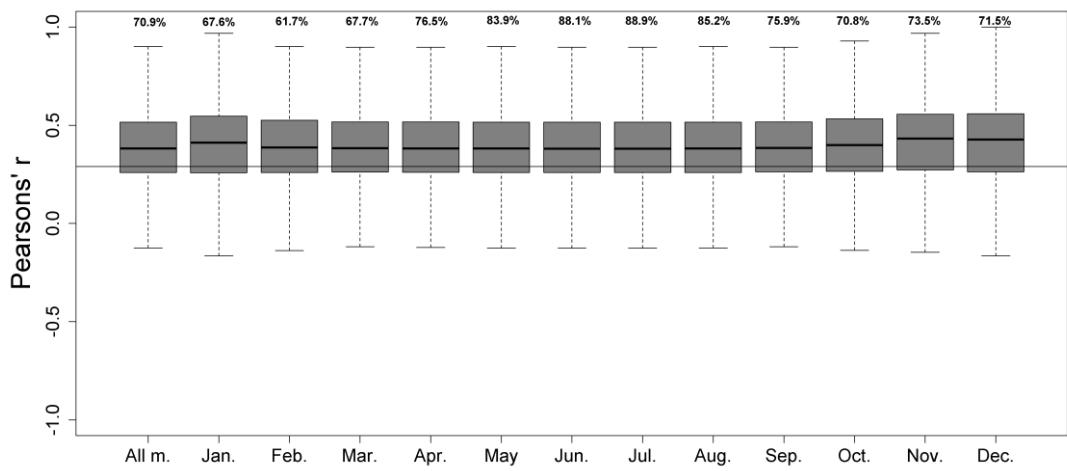
1081

1082      Figure 5: Spatial distribution of the SEDI values obtained from GLEAM and CRU AED data  
 1083      during the recent drought episodes that affected Russia (top-most three rows) and southern  
 1084      North America (bottom-most three rows) in 2010 and 2011, respectively.

1085

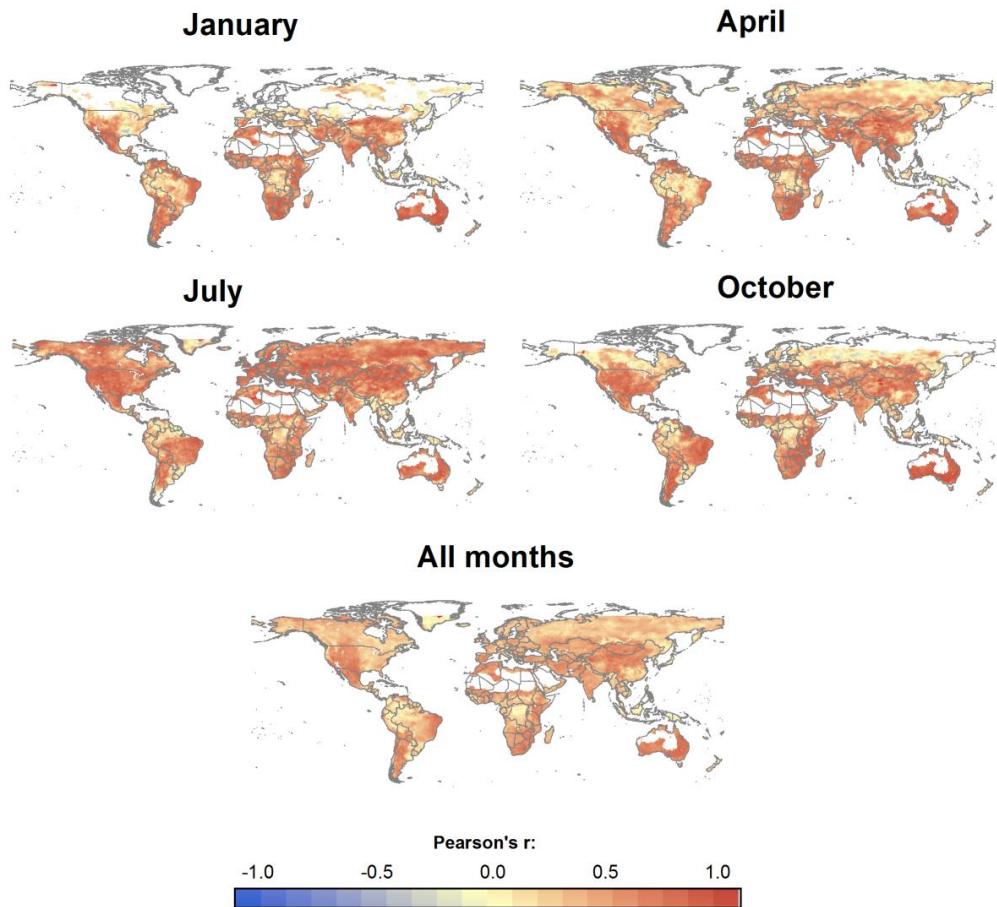
1086

1087



1088

1089 Figure 6. Box-plot and whisker plot showing the Pearson correlation coefficient ( $r$ ) between  
 1090 the SEDI and SPEI for specific months of the year as well as for the entire record. Light  
 1091 Horizontal line shows the threshold for positive and significant correlations ( $p < 0.05$ ), with  
 1092 numbers above the top whisker indicating the percentage of global terrestrial area with such  
 1093 correlations. The heavy line in the box represents the median, the upper and lower parts of the  
 1094 box denote the interquartile range and the whiskers show the 95% or 5%.

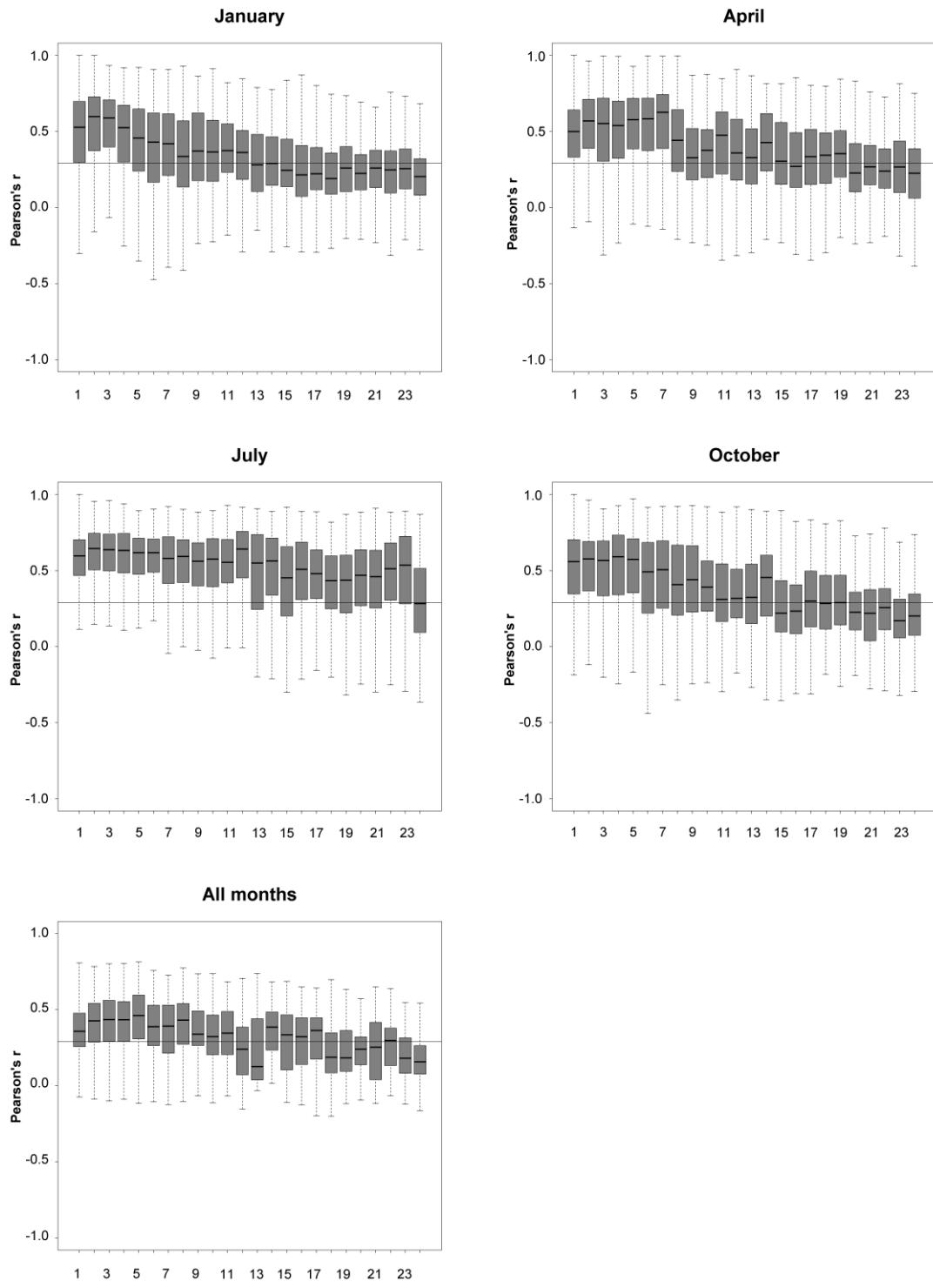


1095

1096 Figure 7: Spatial distribution of the correlations between SEDI and SPEI series for mid-season  
 1097 months and for the entire record. Terrestrially white areas represent deserts/Greenland and  
 1098 areas in which SEDI fit has no solution.

1099

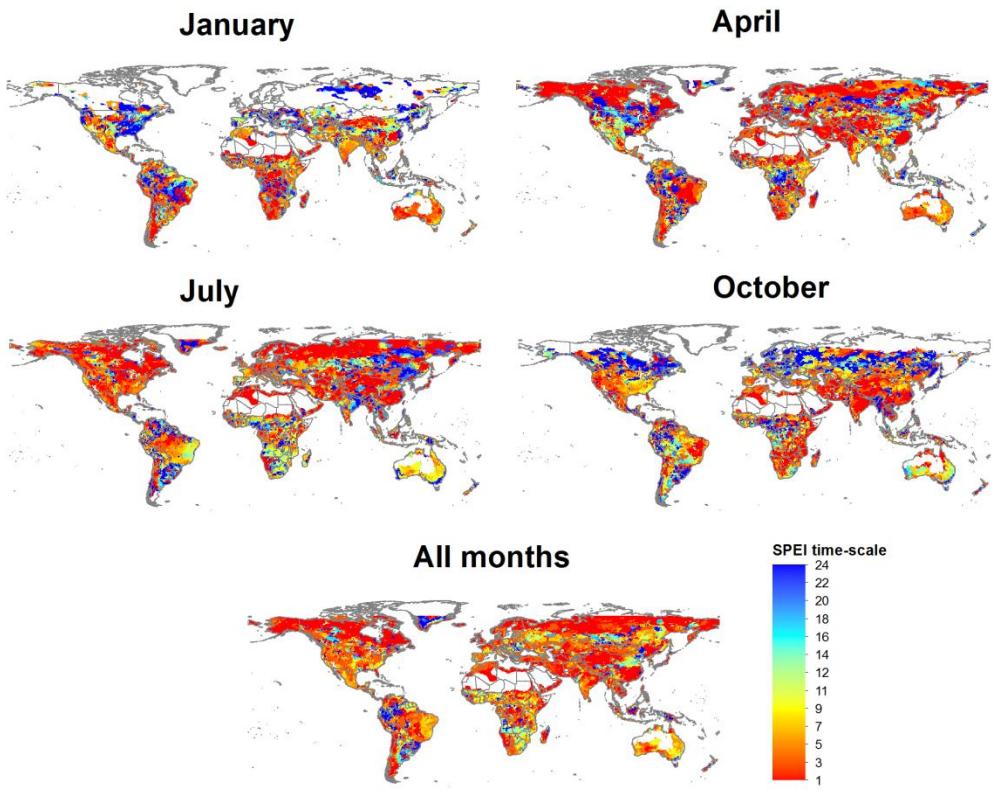
1100



1101

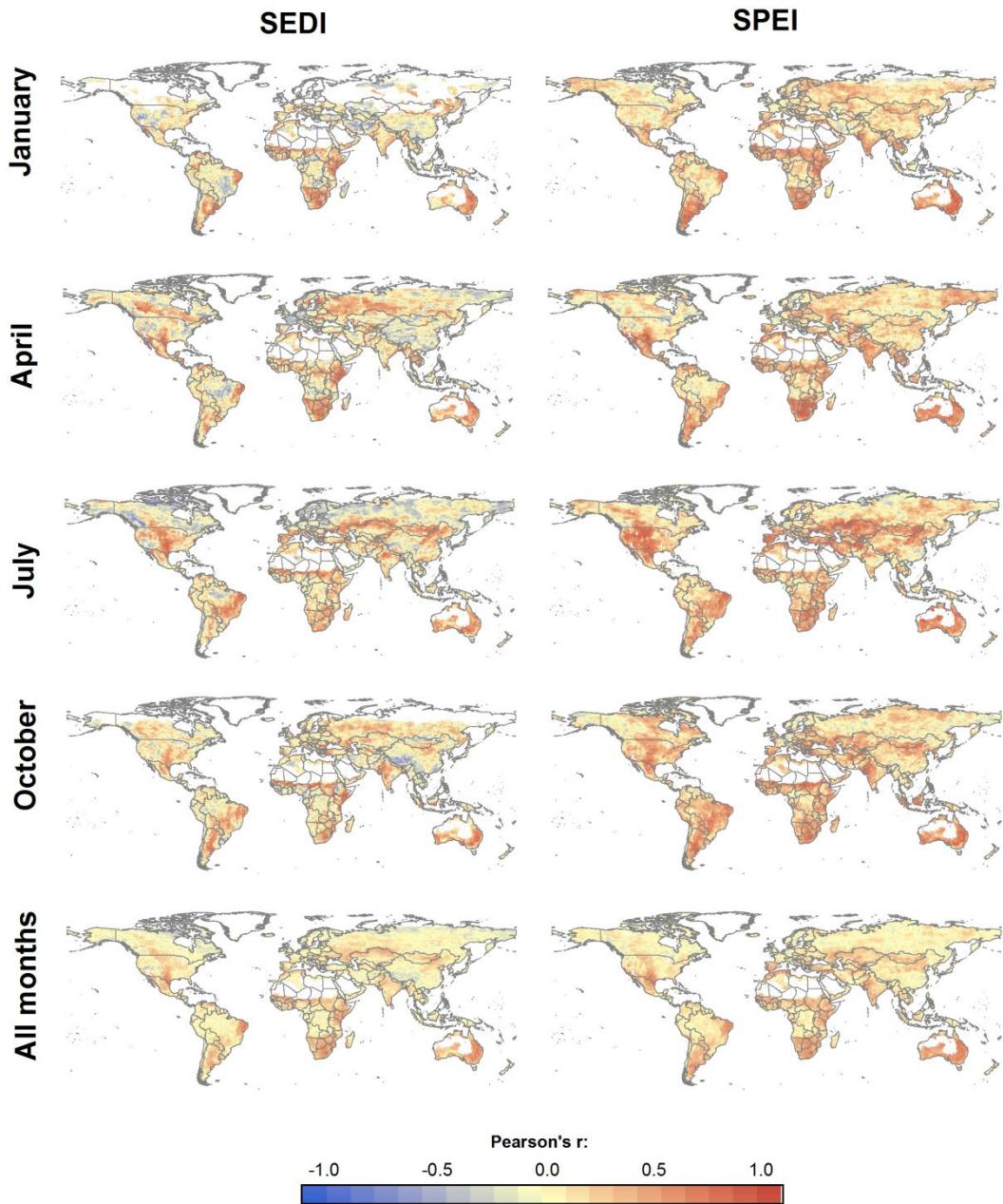
1102 Figure 8: Correlation between the SEDI and SPEI at different time scales (from 1- to 24-months)  
 1103 for specific months and for the entire record. Light Horizontal line shows the threshold for  
 1104 positive and significant correlations ( $p < 0.05$ ), with numbers above the top whisker indicating  
 1105 the percentage of global terrestrial area with such correlations. The heavy line in the box  
 1106 represents the median, the upper and lower parts of the box denote the interquartile range  
 1107 and the whiskers show the 95% or 5%.

1108



1109

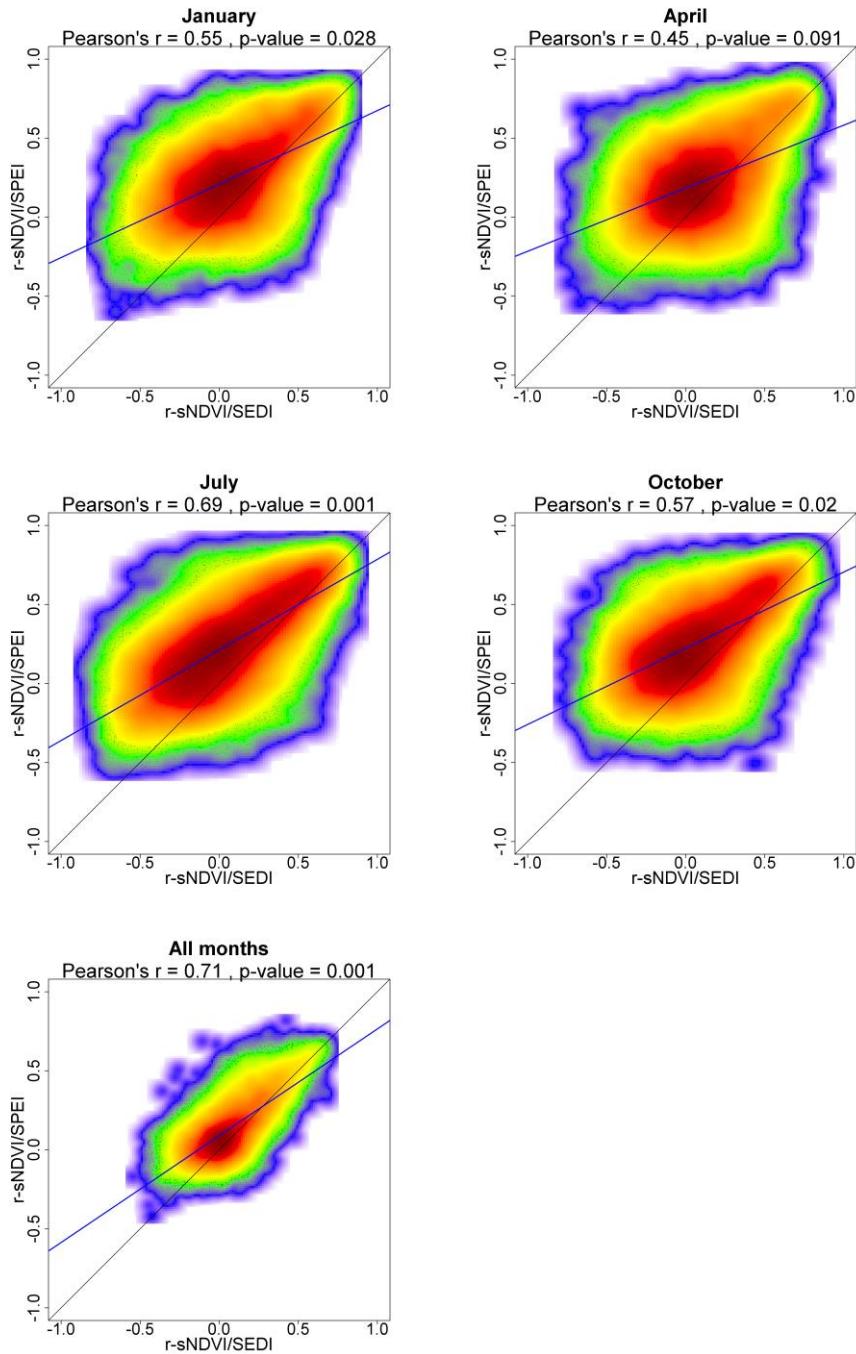
1110 Figure 9. SPEI time scale at which the highest correlation with the SEDI series was found for  
 1111 mid-season months and for the entire record. Terrestrially white areas represent  
 1112 deserts/Greenland and areas in which SEDI fit has no solution.



1113

1114 Figure 10. Spatial distribution of the Maximum Pearson correlation coefficient ( $r$ ) between  
 1115 SEDI and sNDVI (left) and between SPEI and sNDVI (right) for mid-season months and for the  
 1116 entire record 1981–2014.

1117

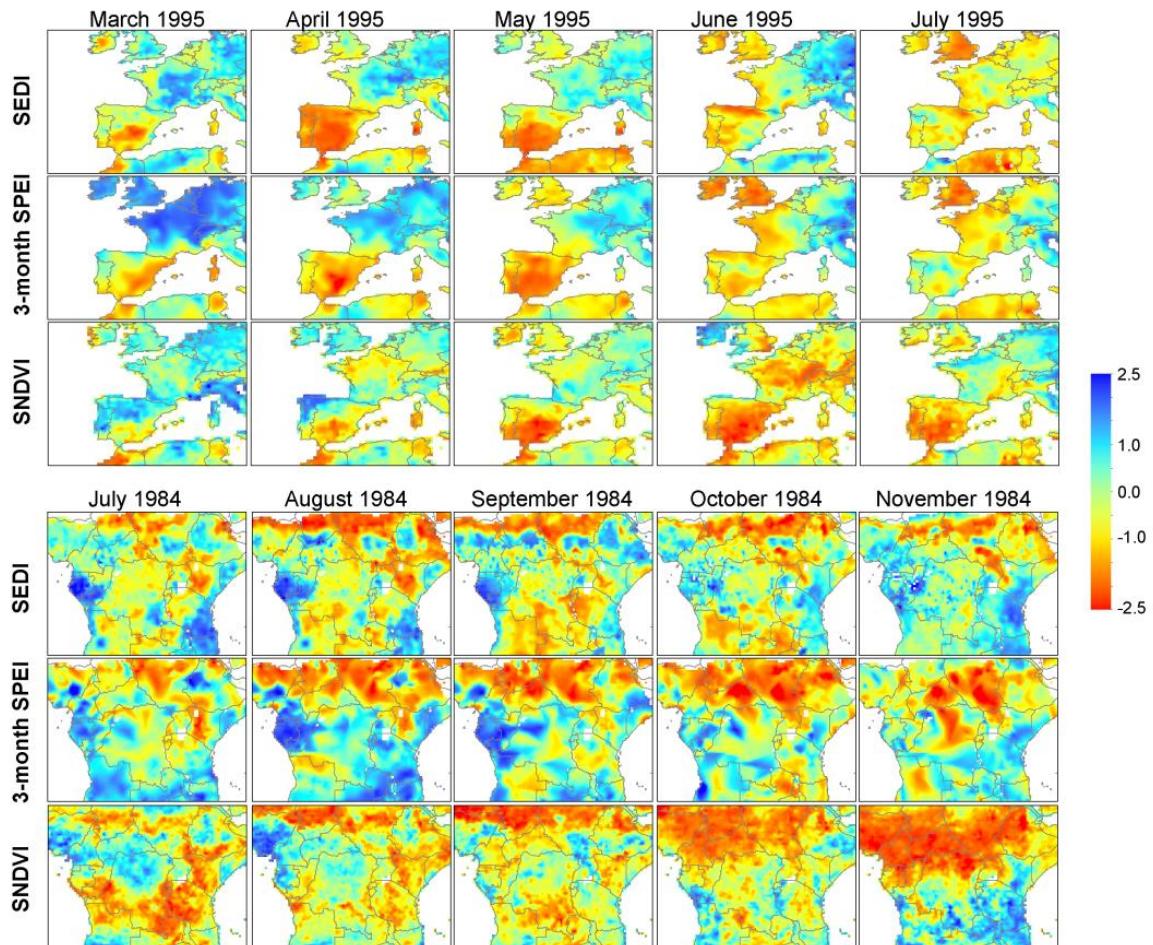


1118

1119     Figure 11: Density scatterplots with the spatial relationship between the sNDVI and SEDI  
 1120     correlations and between the sNDVI and SPEI correlations. The scatterplots show the results  
 1121     for all months and for the entire record. Blue line: linear regression, black line: 1-to-1 line.  
 1122     Given the large sample, and to avoid an overrepresentation of significant correlations, the  $p$   
 1123     values were obtained by means of a bootstrap sampling approach that considers 2000  
 1124     independent samples of 30 cases and  $p$  values for correlations of the samples of 30 cases were  
 1125     averaged. The colors of the scatterplots represent the density of points (dark red being the  
 1126     highest).

1127

1128



1129

1130      Figure 12: Spatial distribution of the SEDI, 3-month SPEI and sNDVI during two extraordinary  
 1131      drought events recorded in the Iberian Peninsula (1995 shown in the top-three rows) and the  
 1132      Sahel (1984 shown in the bottom three rows).