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As the complexity of Cyber-Physical Systems (CPS) increases, it becomes increasingly challenging to en-
sure CPS reliability, especially in the presence of software and/or physical failures. The Simplex architec-
ture is shown to be an efficient tool to address software failures in such systems. When physical failures
exist, however, Simplex may not function correctly because physical failures could change system dynam-
ics and the original Simplex design may not work for the new faulty system. To address concurrent soft-
ware and physical failures, this article presents the RSimplex architecture, which integrates Robust Fault-
Tolerant Control (RFTC) techniques into the Simplex architecture. It includes the uncertainty monitor, the
High-Performance Controller (HPC), the Robust High-Assurance Controller (RHAC), and the decision logic
that triggers the switch of the controllers. Based on the output of the uncertainty monitor, we introduce a
monitor-based switching rule in the decision logic in addition to the traditional envelope-based rule. The
RHAC is designed based on RFTCs. We show that RSimplex can efficiently handle a class of software and
physical failures.
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1 INTRODUCTION

Cyber-Physical Systems (CPS) consist of two main components: physical elements modeling the
systems to be controlled and cyber elements representing the communication links and the comp
utation software. Such systems are ubiquitous in a number of application areas, including aircraft
and air-traffic control, highway transportation, space, healthcare, medicine, and manufacturing,
to name a few. As the control missions become increasingly complex in real life, CPS architectures
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in turn become increasingly complicated, which makes it very challenging to guarantee the safety
of CPS, especially in the presence of both cyber and physical failures. So there is a great need for
tools that can handle failures in CPS.

When physical damage is coupled with cyber failures, it raises a unique challenge with respect
to system safety. Historically, Robust Fault-Tolerant Control (RFTC) theory is developed largely
independent of software assurance technologies, and vice versa. Although significant progress has
been made to address either software or physical failures, few of these approaches can work in con-
junction to counter “concurrent” software and physical failures because they are developed under
different assumptions and models. By “concurrent,” we mean that software failures and physi-
cal failures may happen at the same time. On the one hand, software assurance technologies are
model-based and require a profile of the physical dynamics. When the physical dynamics change
due to damage and failures, the pre-stored profiles will become invalid and the original assurance
approach may not be able to function correctly. On the other hand, though existing RFTC tech-
niques can efficiently compensate for physical damage, it is critical to guarantee that the control
software is not compromised. Given a complex system, it is almost implausible, if not impossible,
to overcome all potential software failures under different physical models led by physical fail-
ures. It is a prime time to develop unified models with coherent set of assumptions, supported by
integrated technologies, upon which concurrent cyber and physical failures can be addressed in a
much more effective way.

With this observation, this article tackles two issues: (i) how to detect (at least a class of) software
failures and physical failures and (ii) how to isolate or minimize the negative impact of failures
on the control system once detected. Our solution is the RSimplex (Robust Simplex) architecture
that includes a High-Performance Controller (HPC), a Robust High-Assurance Controller (RHAC),
an uncertainty monitor, and decision logic. It is assumed that, in RSimplex, software failures only
happen in the HPC, which can be any complex controller providing high levels of performance
and advanced functionalities, but which may not be (fully) verified and can experience software
faults. The other components in RSimplex must be fully verified. Under nominal operating con-
ditions, the HPC is activated. The uncertainty monitor and the decision logic are used to detect
physical and software failures, respectively. Once detected, control is switched from the HPC to the
RHAC.

To detect physical failures, the uncertainty monitor estimates the scale of uncertainty in the
system due to those failures. We show that the output of this monitor is equal to low-pass filtered
uncertainty. Based on the monitor, a monitor-based switching rule is proposed in addition to the
traditional envelope-based switching rule; this triggers the switch from the HPC to the RHAC.
To be more specific, the decision logic states that the controller must switch to the RHAC when
(i) the estimated scale of physical failures computed by the uncertainty monitor exceeds a pre-
specified threshold, or (ii) the state is on the boundary of the safety envelope and about to leave
this envelope.

A critical requisite in RSimplex is that, at the switching moment, the state must stay in the
invariant set of the RHAC. Then the RHAC can always keep the state inside this invariant set
after switching. If this invariant set is also inside the state constraint set, the RHAC will be able to
guarantee the satisfaction of the state constraints. Based on this idea, we use the invariant set of
the RHAC as the safety envelope in the switching rule. To obtain a computable invariant set, the
RHAC must provide predictable transient performance even in the presence of physical failures.
We propose two different types of RFTCs to fulfill this requirement: monitor-based RHAC and
L1-based RHAC. The former is designed based on the output of the uncertainty monitor, and the
latter is basically an £ adaptive controller (Hovakimyan and Cao 2010). We prove that, with either
RHACG, the system state will follow the state of an ideal model (which is completely known) within
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a small and uniformly bounded bias, even in the presence of consecutive physical failures. This
property enables us to compute the safety envelope based on the ideal model and the bound on the
bias. Furthermore, we present an approach to extend the size of the safety envelope using multiple
RHAC candidates. A preliminary version was presented in Wang et al. (2013) called L1Simplex.
Compared with the work in Wang et al. (2013), the physical failures are extended to be nonlinear.
In addition, the monitor-based RHAC and a novel design of the uncertainty monitor are introduced
that lead to new performance analysis. We also provide a sufficient condition to ensure the non-
emptiness of the safety envelope.

This article is organized as follows. Section 2 discusses prior approaches addressing software
and physical failures. Section 3 formulates the problem. The RSimplex architecture is presented
in Section 4. An illustrative example is presented in Section 5. Section 6 draws conclusions and
proposes future work. The proofs are in Section 7.

2 RELATED WORK

Among solutions for software reliability, two basic approaches play important roles. One is to
avoid faults during the development of software by using formal methods and model-checking
tools (Clarke et al. 1999; Baier et al. 2008). However, if the size of the system is large, it is impos-
sible to have formal verification of every component. The other approach is to design real-time
fault-tolerant software through diversity (Chen and Avizienis 1978). The Simplex architecture is
one such fault-tolerant software tool, “using simplicity to control complexity” (Sha 2001). It was
designed to tolerate specification faults, design faults, and implementation (logical) faults in the
software of any complex HPC that provides high levels of performance and advanced functional-
ities. The basic idea of Simplex is described as follows: When a software failure occurs, Simplex
switches the controller from the HPC to a High-Assurance Controller (HAC) that is fully certi-
fied and ensures safe and stable operation of the system with lower performance (Avizienis 1995;
Sha 1998). This method has been extended to the NetSimplex architecture for networked control
systems (Yao et al. 2013) and the ORTEGA scheme that runs HAC and HPC as separate tasks
in one processor (Liu et al. 2008). Further extensions include the system-level Simplex architec-
ture (Bak et al. 2009), the S3A architecture for enhanced security and robustness of CPS (Mohan
et al. 2013), and real-time reachability analysis for Simplex design (Bak et al. 2014), to name a
few.

Simplex turns out to be a very efficient tool to deal with software failures (Crenshaw et al.
2007; Seto and Marz 2000). However, when physical failures happen, Simplex architecture may
not be able to function correctly. This is because Simplex is designed based on a given model of
the physical dynamics. When the dynamics change due to physical failures, the original Simplex
design may not be suitable for the new dynamics if the safety envelope for the old model is no
longer valid. It is not clear how to design a controller switching rule and HAC that are capable of
accommodating a large family of uncertain physical models.

On the other hand, to deal with physical failures, researchers seek RFTC techniques that provide
high levels of performance and robustness in the presence of physical failures, such as Input-to-
State Stable (ISS) control (Sontag and Wang 1995), £; adaptive control (Hovakimyan and Cao
2010; Hovakimyan et al. 2011), model reference adaptive control (Astrém and Wittenmark 2013),
disturbance-observer control (Shim and Jo 2009), and internal model-based control (Harnefors
and Nee 1998), to name a few. These approaches can either limit or minimize the effect of the
physical failures. To ensure that the RFTC functions properly, however, the control software cannot
fail. Otherwise, wrong control inputs will be actuated and the system will become unstable. In
summary, prior work only focuses on addressing one type of failures, either cyber or physical. To
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guarantee safety of a complex CPS, we need novel approaches that can overcome concurrent cyber
and physical failures.

3 PROBLEM FORMULATION
3.1 Notations

We denote by R" the n-dimensional real vector space, and by R* the set of the real positive
numbers. Let R; = R* U {0}. The Euclidean norm of a vector x is denoted by ||x|| and the in-
duced 2-norm of a matrix A is denoted by ||A]|. The identity matrix is denoted as I. Given a
matrix P, Aymax(P) and Apin(P) are the maximum and minimum singular value of P, respec-
tively. The £; norm of a function x(t) is denoted by [|x||z,. The truncated L. norm of x(t) is
defined as ||x||L£?,b] = sup,, < llx(t)|l. The Laplace transform of a function x(t) is denoted as
x(s) = £[x(t)], where we simply replace the time argument “t” of the function x by “s”. Given a
function f : R" — R, Vf(x) € R™" is the gradient of f(x) at x.

3.2 System Model

This article studies fault-tolerant CPS, where the physical dynamics may change due to failures.
We assume that the physical plant under the normal condition is governed by the following state
equation:

Po = x(t) = Ax(t) + Bu(t) + fo(x, 1), (1)
x(ty) = xo,

where x : Rf — R" is the system state, u : R} — R™ is the control input, A € R™", B € R"™"™
are known matrices, xo € R” is the initial state, and f; : R” X Rar — R" is an unknown nonlinear
function describing uncertainty in the system dynamics. For the nominal plant, f;(x(t), t) should
be small.

When physical failures happen, the nominal dynamics Py will change. Without loss of general-
ity, we assume that there are totally N physical failures, and the kth physical failure occurs at time
tx, which results in the kth change in the physical dynamics. As a result, it generates a sequence
of faulty physical dynamics P, P2, . . ., Pn, where the dynamics of Py are described as follows:

Pr = x(t) = Ax(t) + Bu(t) + fi(x(t),1). (2)

The initial condition of P is x(ti). The function fi : R” X Ry — R" is unknown. Usually physical
systems have constraints on the system state, which can be described as aiTx <1fori=12,...,q
with a known vector a; € R". This constraint is called an admissible constraint. The combination
of these inequalities admits a constraint set

Q={xeR"|a/x<1,i=12,...,q}. (3)

The system is safe if the system state always stays inside Q. The safety envelope is a subset of Q to
be determined later.

The control software failures considered in this article are generic, including failures that pre-
vent the system from obtaining the appropriate control inputs on time (i.e., out of memory, large
computational delays, and generating inappropriate control signals). When the regular controller
is experiencing these software failures, it may not be able to function correctly. An intuitive solu-
tion is to have a safety controller as an alternative, which will be activated when software failures
happen, as shown in Figure 1. The resulting issues are how to detect potential software/physical
failures and how to design the safety controller. Overall, the problem we attempt to tackle is how to
co-design the control algorithm and the control software architecture such that system safety can
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Fig. 1. A control architecture with a safety controller.

be guaranteed (i.e., x(t) € Q for any t > 0, even in the presence of physical failures and software
failures).

3.3 Assumptions

There are several assumptions on the system dynamics.

AssUMPTION 3.1 (BOUNDED UNCERTAINTY). Assume that fi.(x,t) is uniformly bounded in t and

Lipschitz in x over the set x € Q for any k = 0,1,...,N; that is, there exist positive constants Iy, by
such that
I fi (x1, ) = fie (2, O < Liellxer = x2ll, (4)
I fi(0, )l < by 5)
hold for any t > 0, x1,x, € Q, andk = 0,1,...,N. Also assume that I}, and by are known.

Remark 3.1. Notice that [y and by will be much smaller than I and by, respectively, for k =
1,2,..., N because the uncertainty in the nominal plant should be much smaller than in faulty
plants.

AsSUMPTION 3.2 (BOUNDED FAILURE RATE). There exists a lower bound on the inter-failure time
intervals; that is, there exists a positive constant T such that ty1 — t; > T holds fork = 0,1,2,...,N.

Remark 3.2. This assumption implies that the dynamics cannot switch too fast. It is necessary to
ensure the existence of the solution to Equations (1) and (2). Otherwise, Zeno behavior may occur,
which is beyond the scope of this article.

ASsUMPTION 3.3. There are no sensor and actuator failures.

Remark 3.3. In this article, we only focus on the class of physical failures whose effect can be
modeled by fi such as fi(x,t) = x*sint.

3.4 An lllustrative Example

To better illustrate the problem, we consider an Inverted Pendulum (IP) as an example. The lin-
earized dynamics of the IP is described as follows:
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B 0 1 0 0 0
“p ~(Iy+mpl2)b, migl2 *p Iy+mpl2
2|0 p dp N | % wy + fo(xp, %y, 0, 0,) (6)
0, 0 0 0 1| 6, 0 R A
ép 0 —mslpbp mpglp((;wpwnp) 0 61’ mdLlp
P P P

where x;, is the cart’s position, 0, is the pendulum’s angle with respect to the vertical, g is gravita-
tional acceleration, M), is the mass of the cart, m, is the mass of the pendulum, b, is the friction of
the cart, I, is the inertia of the pendulum, [, is the length to the pendulum’s center of mass, u,, is
the force applied to cart, and d,, = I,(M,, + m,) + Mpmpl;. The function fj is the modeling error
from linearization.

This linearized model is obtained based on the assumption that sin(0), ~ 0,, cos(0,) ~ —1, and
9; ~ 0 (in this case, the modeling error f; is very small). To ensure this property, for example, 0,

can be restricted over the interval from —0.3 radians to 0.3 radians and —0.1 < ép < 0.1. Also, the
position x, usually will be restricted over a finite region. These constraints define the constraint
set Q where the state of the IP must stay.

Assume that the IP is controlled by an HPC where the control performance can be measured by
a cost function related to the states and control inputs. A software failure can be any failures that
delay and/or modify the appropriate control inputs. A physical failure, for example, can be some
damage on the wheels of the cart. Such damage will increase the friction coefficient b,. Let the

new friction coefficient be l;p. Then the faulty model can be written as

% 0 1 0 0 0
g o “Uetmoly)by ol *p Iy+myl2
|- dp dp N dp u
= P
Op 0 0 0 1| % 0
é -mylyby mygly (Mp+my) 0 myl,
P 0 @ a, 0/\% .
0 0 00
0 ~(Lp+myl2)(by—bp) 00 *p
¢, 0, 0,) + dp p )
+.ﬁ)(xpaxpa s Vp 0 O 0 0 ep
0 —mplp;bﬁ‘bp) 00 Hp
P

fi(xpsp, 0p, 0p)

4 RSIMPLEX ARCHITECTURE

This section introduces the RSimplex architecture for CPS. As shown in Figure 2, the RSimplex
architecture includes the HPC, the RHAC, the uncertainty monitor, and the decision logic:

— High-Performance Controller (HPC): The HPC (the regular controller in Figure 1) can be
any complex controller providing high levels of performance and advanced functionalities,
which is active during normal operation of the system. However, it may not be (fully) veri-
fied and may experience software faults.

— Robust High-Assurance Controller (RHAC): The RHAC is a simple and verified robust con-
troller that ensures safe and stable operation of the system but provides limited levels of
performance and reduced functionalities.

— Uncertainty Monitor: This verified monitor provides estimates of the uncertainties inside the
system with fast adaptation, which takes the form of the state predictor in the £; adaptive
control architecture.
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Fig. 2. The RSimplex architecture.

— Decision Logic: This logic, which must be verified, is responsible for switching from the
complex HPC to the verified RHAC in the event of failures.

In this CPS framework, the sensors collect data on state information and transmit them to the
controller. Under nominal operating conditions, the HPC is used, which provides desired perfor-
mance with reduced operator workload. Meanwhile, the uncertainty monitor runs in an open-loop
manner to estimate the present uncertainty. The estimate will be used as the triggering signal for
a controller switch. The associated rule is that when the estimate exceeds a prespecified time-
varying threshold, the controller must be switched from the HPC to the RHAC. The other switch-
ing rule is the traditional envelope-based rule: When the state is about to leave the safety envelope,
execution of the HPC should be terminated and the RHAC will automatically be activated. No mat-
ter which controller is activated, the control inputs generated by the activated controller will be
transmitted to the actuators for actuation.

We assume that, in RSimplex, software failures only happen in HPC. The RHAC, uncertainty
monitor, and decision logic are fully verified and free of software failures. The following subsec-
tions discuss the design of the components in RSimplex.

4.1 The Uncertainty Monitor

Let (A;, B;,C;) be the state space realization of the n X n matrix of stable and proper low-pass
filters. The monitor is designed as follows:

z(t) = Az(t) + (A,B, — B;A)x(t) — B,Bu(t) (8a)
6r(t) = Crz(t) + C,B,x(t) (8b)
z(to) = —Bzx(to), (8¢)

where z : Rf — R/ and 6 : Rf — R™ are the state and the output of the monitor, respectively.
The signal 6p(t) will be used as a measurement of the uncertainty, which, as presented in
Theorem 4.1, is equal to low-pass filtered uncertainty. Before showing such equivalence, we first
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define the uncertain signal o (¢) inside the system:

Jo(x(2), 1), t € [to, 1)

Nl ' 9
PO =N feabe@, 0, 1€l ty) ©
In(x(),0),  t€[in,+o0)
With the low-pass filter defined by (A, B;, C;), the low-pass filtered uncertainty or(t) is
2g(t) = Azzo (1) + B2o () (10a)
or(t) = Czz4(t) (10b)
z5(t) = 0 (10¢c)

THEOREM 4.1. Given the system in Equation (1), the output of the monitor in Equation (8) is equal
to the low-pass filtered uncertainty op(t) defined by Equation (10); that is, 65 (t) = op(t) for any
t>t.

Remark 4.2. Notice that the equivalence between 6¢(t) and or(t) is independent of the inputs
generated by the HPC. So, even if the HPC generates the wrong control inputs due to software fail-
ures, the uncertainty monitor can still output correct estimates of the filtered physical uncertainty.

Theorem 4.1 implies that we can monitor the low-pass filtered uncertainty or(t) through the
signal 67 (t). Once a physical failure happens that leads to a change of physical dynamics, o (t) will
become large. Then or(t) and 67 (t) become large. Based on this observation, although we cannot
directly measure the uncertainty o (t), we are able to detect severe physical failures by monitoring
6r(t). If 6p(t) exceeds a certain prespecified threshold, we understand that physical failures have
occurred, and the controller will be switched to the RHAC. The choice of the threshold will be
discussed in Section 4.2.

4.2 The Decision Logic

The controller switch can be triggered by different events. One is to check whether the output of
the HPC is generated on time and is of the correct data type. If not, a switch takes place. Even if this
requirement is met, it does not imply that the system is free of failures. We still need to monitor
the internal signals for a possible switch. RSimplex provides two logic rules, either of which may
lead to the transition from the HPC to the RHAC.

RULE I: The first rule is to switch when the signal 6¢(t) exceeds a threshold, as mentioned in
Section (4.1). By the definition of ¢ (¢) in Equation (9), we know

oI = [l fo(x(2), Il < llx(@)Il + bo, Yt € [to, t1)
oI = 11 fie(x(®), Ol < Lellx (@I + b, ¥t € [t tisr), k =1,2...,N.

Based on Equation (10), we have

t
or(t) = C, f (=B o (r)dr. (11)
0

Therefore, for any ¢t € [ty, 1),

t
n@wmemeMAWMM+mw.
0

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 4, Article 27. Publication date: July 2018.



RSimplex: A Robust Control Architecture for Cyber And Physical Failures 27:9

14
> x10" 7

low(t) = or @)l

0.5
0
0 2 4 6 8 10 12 14 16 18 20
Time
0.3 T T T T T T T T T
ol
————— [
0.2 Threshold | |
01t M' ]
el Sadd el
0 f 1 h
0 2 4 6 8 10 12 14 16 18 20
Time

Fig. 3. Signals in the uncertainty monitor.

Since of(t) = 65(t) by Theorem 4.1, we have that

t
l6r ()]l < f 1C.e* B[ (ollx(2)]] + bo)dr (12)
0

holds as long as ¢ € [0, t;). Once &5 (t) exceeds the state-dependent threshold at the right-hand
side of the preceding inequality, it implies that ¢ ¢ [0, t;) and therefore failures occur. As a result,
we can use the violation of inequality (Equation (12)) to trigger the controller switch. Obviously,
this rule is designed to detect physical failures since it is based on the size of the uncertainty.

Example 4.3. Consider the example of IP in Section 3.4. We run the uncertainty monitor where
the control inputs of the HPC are randomly generated over [0, 6]. The friction coefficient is changed
to 10 at t = 4. Figure 3 shows the history of ||or(t) — 6£(t)|| (top) and ||67(t)|| (bottom). It can be
found from the top plot that ||or(t) — ¢ (¢)]| is almost zero even under random control inputs (it is
nonzero in the plot because of the numerical error in the simulation). In the bottom plot, ||6¢()||
exceeds the threshold almost instantly after the physical failure occurs at t = 4. The accuracy of the
monitor is independent of the control input. Simulations in Section 5 also verify this observation.

RULE II: The other rule adopts the same idea as the prior work on Simplex, where the controller
switches when the state is leaving the prespecified safety envelope. However, the choice of the
envelope for RSimplex is different. Let us start the design from the invariant set of an ideal model
defined by

%id(t) = Axia(t) + Buia(t) (13a)

u;g(t) = Kxjq(t), (13b)

where xjq : Ry — R" and ujq : Rj — R™ are the ideal state and input, respectively, and K € R"™*"
is the nominal feedback ensuring that A,, = A + BK is Hurwitz. Therefore, there must exist two
positive-definite matrices P, Q € R™" such that

PAp + (Ap) TP = Q. (14)
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Fig. 4. The safety envelope of RSimplex.

Note that, compared with the plant in Equation (1), this model does not contain the uncertainty
fo(x(t), t). Thus, it is called an “ideal” model. Given this model, we can identify its invariant set as

®={xeR"|x"Px <1} (15)

Once the ideal state xjq(¢) is in this set @, it will never leave ®. The next lemma ensures that this
invariant set is inside the constraint set Q.

LEMMA 4.4 (SETO AND SHA 1999). Given the ideal model in Equation (13), ® C Q if and only if
a/Pla; <1,i=1,2,...,q.

This lemma implies that the matrix P must satisfy not only Equation (14), but a] P~'a; < 1 as well.
These constraints on P can be presented as Linear Matrix Inequalities (LMIs). How to maximize
the volume of ®, subject to these LMIs can be found in Seto and Sha (1999).

With the set ® in Equation (15), we can define the safety envelope S for RSimplex. Given a
positive constant ¢, the safety envelope is an ellipsoid obtained by shrinking ® by e:

S = {x €R" | x"Px <y and ynelia% [[x =yl > s}, (16)

where the set d® is the boundary set of ® defined by d® = {y € R" | y"Py = 1} and y < 1. The
basic idea is shown in Figure 4.

Obviously, S C @ is also an invariant set of the ideal model. Intuitively, if we can guarantee that,
at the switching moment T* (which is not necessarily ;) the state x(T*) is inside S, and

llx(2) = xia (D)l < & (17)

holds after switch, then x(¢) will always be inside ®, since x;q(¢) € S for any ¢t > T* with the initial
state x;q(T") = x(T"). How to select ¢ and enforce inequality (Equation (17)) will be discussed in
Section 4.3.

Another observation is that the constant ¢ cannot be arbitrarily large. Otherwise, the set S could
be empty. The existence of a non-empty S is established as follows:

LEmMMA 4.5. The set S is non-empty, if ¢ satisfies
1
/‘lmax (P) '

where Amax (P) is the maximum singular value of P.

&<

(18)
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Proor. The proof is straightforward and is therefore omitted. O

With the set S, we can mathematically define the envelope-based switching rule: The controller
switches when

x(t)"Px(t) =y and 2x(t)"Px(t) > 0. (19)

The first equation implies that the state is on the boundary of S, and the second inequality indicates
that the direction of the state’s movement is pointing out of S.

4.3 RHAC Design

This section introduces the design of the RHAC. As mentioned in the previous subsection, in order
to make Rule II valid, the RHAC must guarantee the satisfaction of inequality (Equation (17)) after
the switch. The following discussion will present two different types of controllers, both of which
meet this requirement.

4.3.1  Monitor-Based RHAC. The first controller is directly related to the estimates of the un-
certainty monitor. Ideally, one expects to completely cancel the impact of the uncertainty, in which
case x(t) would be exactly the same as x;4(t). However, this approach may not be practical since
the uncertainty cannot be directly measured. Instead, we can use the low-pass filtered uncertainty
6F(t), provided by the monitor in Equation (8), to partially cancel the uncertainty within the band-
width of the low-pass filter, which is similar to the idea in £; adaptive control (Hovakimyan and
Cao 2010). Following this idea, the control input of the RHAC can be defined by

u(t) = Kx(t) - 6¢(t), (20)

where the feedback gain K is defined in Equation (13). Let T* be the moment when the RHAC is
activated. Assume that at t = T* the physical dynamics are $;. Thus, the sequence of dynamics
after t = T*, which is Pj, Pj41, . .., Pn, is controlled by the RHAC. Letting

51 = ”H(S)(BF(S) - ]I)"L]Lrnax (21)
Liax = max lk7 (22)
k=0,1,....N
bmax = max by, (23)
k=0,1,....N
H(s) = (sT-Ap)7Y, (24)
F(s) = C,(sI - A,)"'B,, (25)
x T (T*)Px(T*
Pid = %, (26)

the safety of the RHAC-controlled system is established in the following theorem.

THEOREM 4.6. Consider the sequence of dynamics aftert = T*, P}, Pjs1, . . ., Pn, controlled by the
RHAC defined in Equations (8) and (20). Suppose that Assumptions 3.1 and 3.2 hold. If x(T*) € S and
the inequality

51bmax 1- 51
; 2
P e Tae(P) @
holds, then x(t) € ® and
5 il b X L X
llx(t) = xia (D)l < € = 1(Pid * B/ Lmax) (28)

1-6;
hold for any t € [T*, o).
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Fig. 5. The state trajectories of the inverted pendulum in the presence of a physical failure.

Remark 4.7. With the definition of ¢ in Equation (28), the sufficient condition in Equation (27)
in fact implies the satisfaction of inequality (Equation (18)) in Lemma 4.5. This condition can serve
as a guideline for the selection of K and the low-pass filter F(s).

Remark 4.8. The condition in Equation (27) requires d; to be small. It can always be satisfied by
increasing the bandwidth of the low-pass filter in F(s) and/or adjusting the feedback gain K that
pushes the eigenvalues of A,, away from the origin (Hovakimyan and Cao 2010). From control
design perspective, however, the bandwidth and the feedback gain cannot be too large. High filter
bandwidth may degrade the stability margin (Hovakimyan and Cao 2010). High gain K might
lead to a matrix P that makes the ellipticity of ® fairly large and therefore results in a small or
even empty S (see inequality Equation (18)). With high bandwidth and high gain, the condition
in Equation (27) may lead to a conservative design with limited robustness and a small safety
envelope.

Remark 4.9. In the current setting, we directly use the output of the uncertainty monitor to
compute the control input. A different way is to include an independent estimator in the RHAC
that has the same structure as the monitor but different parameters. The parameters in the RHAC
must satisfy the condition, while the monitor does not have to. In that case, we have more flexibility
to tune the parameters of the monitor.

Following Example 4.3, we apply the monitor-based RHAC to the system. The state trajectories
are plotted in Figure 5. We can see that, after ¢ = 4, the states slightly oscillate for a short period
because the physical failure is detected and the RHAC is turned on. But the state constraints are
still satisfied. After a short adjustment time, the states converge to the origin in the presence of
the physical failure.

4.3.2 L;-Based RHAC. This subsection introduces the £;-based RHAC. The RHAC is called
“L;-based” because it adopts an £; adaptive control architecture (Hovakimyan and Cao 2010),
which consists of four components: the state predictor, the adaptation law, the low-pass filter, and
the nominal feedback, as shown in Figure 6.
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Fig. 6. The £; adaptive control structure.

The state predictor in the RHAC is
%(t) = Ax(t) + Bu(t) + 6(t) — ax(t)
*(T) = x(T), (29)
where T* € R} is the switching moment from the HPC to the RHAC and « is an arbitrary posi-

tive constant. The signal 6(¢) is the estimate of o(t) (defined in Equation (9)), generated by the
following adaptation law

o (t) = T Projy (5(t), —%), (30)
where I' € Ry is the adaptation gain and
¥ = {0 eR" | |lo]l < po = Ai:?’;) + bmax} . (31)
The projection-based operator Projy : R” X R" — R is defined as follows:
y if f(x) <0
Projy (x,y) = y if f(x)>0and Vf(x)y <0 (32)
y - L O if £(x) > 0 and Vf (x)y > o,

where f(x) = %, and p is an arbitrarily chosen constant in (1 — p2, 1). Notice that f(x) =
1implies x € Y. We can see that if x € ®, where ® is defined in Equation (15), then the uncertainty
o(t) always stays in ¥ by Assumption 3.1. According to Pomet and Praly (1992), the projection
operator Projy can ensure 6(t) € ¥. More details on the projection-based operator can be found
in Pomet and Praly (1992).

Based on the £; adaptive control theory, the adaptive control input u,4(t) is given by
zp(t) = Afzp(t) + Bro (1)
uad(t) = Crzr(t), zr(T7) =0,

where (Ar, Br,Cr) is the state space realization of an m X n matrix of low-pass filters that are
stable and strictly proper with the transfer function

D(s) = Cp(sI - Ap) ™' B, (33)
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and zp is the state of D(s). The control input is given by

u(t) = Kx(t) = uaq(2), (34)
where the adaptive input u,q(t) partially cancels the uncertainty within the bandwidth of the low-
pass filter.

Letting

52 = ”H(S)(BD(S) - I[)”.Eleax,
the convergence of the closed-loop system after t = T* is established in the following theorem.

THEOREM 4.10. Consider the sequence of dynamics after t = T*, Pj, Pjs1, ..., PN, controlled by
the Ly-based RHAC defined in Equations (29)—(34). Suppose that Assumptions 3.1 and 3.2 hold. If
x(T*) € S and the inequality

£+ pig < ! (35)
id PN
P e (P)
holds, where
8 (pa+ 22 + | HSBD(s) (s + )l 2,2
£ = >0,
1-6
40p? + 2Py Linax 1
— 2 )
f=4ps+ a (l—e‘Z“T+l)7
and p is defined in Equation (31), then x(t) € ® and
llx(t) — xia(t)Il < & (36)

hold for any t € [T*, c0).

Remark 4.11. The reason for using the £; adaptive controller as the RHAC is that it can provide
predictable transient performance even in the presence of physical failures. Such transient per-
formance is characterized by the ideal model in Equation (13). With this property, the RHAC can
control different faulty dynamics with the same safety envelope discussed in Section 4.2. Mean-
while, the £; adaptive controller has the architectural benefit of avoiding model inversion, which
enables the system to follow a broader class of ideal models that are non-minimum phase (Che
and Cao 2012).

Remark 4.12. When the uncertainties satisfy the matching condition (i.e., fx(x,t) = B fk (x, 1),
where fk :R" xRy — R™ is unknown), Theorem 4.10 will still hold but with a slightly different
definition of §; = [|[H(s)B(D(s) — I)|l £, Lmax. With this new definition, the value of §, in the con-
dition given in Equation (35) can be rendered arbitrarily small by increasing the bandwidth of
D(s) (without the necessity of tuning K) (Hovakimyan and Cao 2010). It also implies that the error
llx(t) — x4(¢)|| can be arbitrarily small. On the other hand, however, increasing the bandwidth of
D(s) may lead to a poor stability margin as mentioned in Remark 4.8, in which case the system
may lose robustness (Cao and Hovakimyan 2010).

4.4 Safety Analysis

This Section studies the safety of the RSimplex architecture. The RSimplex running mechanism is
shown as follows.
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| Running Mechanism I for RSimplex

Monitoring the signals x(t) and 6F(t);

If x(t) satisfies the conditions in (19), go to Step 4; Otherwise, go to Step 3;
If 65 (t) violates the bound in (12), go to Step 4; Otherwise, go to Step 1;
Switch to the monitor-based RHAC (or the £;-based RHAC).

B W N =

The safety can be discussed for two cases: switches triggered by Rule I or Rule IL If the switch
is triggered by Rule I, we know that, at the switching moment, the state is inside the envelope S.
Therefore, the initial states of the system controlled by the RHAC and the ideal model are inside
S. By the definition of the ideal model, we know that the ideal state x'(t) will always stay inside
S from the switching moment. Since x(t) follows x'4() with a bias ¢ according to Theorem 4.6
(Theorem 4.10 if using £;-based RHAC), the actual state x(#) must remain inside ® and therefore
inside Q (but not necessarily inside S because of the bias ¢). When physical failures happen, even
if the software has no faults, we need to switch the controller to the RHAC in order to prevent
the state from further divergence. In this case, the switch is triggered by Rule II. Note that, at the
switching moment, the state is still inside S. We can apply the same analysis as the case of Rule I
to conclude safety of the system.

When the RHAC is activated, system stability can also be guaranteed by Theorem 4.6 or Theo-
rem 4.10. Notice that the ideal system in Equation (13) will converge to the equilibrium if A + BK
is Hurwitz. Then, by Theorem 4.6 or Theorem 4.10, the actual state will at least converge to a small
neighborhood of the equilibrium. The convergence rate can be characterized through the design
of feedback gain K in the ideal system since the transient states of the ideal system and the actual
system are very close.

4.5 Extended Safety Envelope

The previous sections propose the basic structure of the RSimplex. It guarantees safety in the pres-
ence of both physical and software failures. However, we also notice that the safety envelope might
be relatively small in some cases. Therefore, we present an approach to extend the volume of the
safety envelope. Instead of using a single robust controller as the RHAC, we consider M controller
candidates denoted by C;, i = 1,2,..., M. Each individual C; is a robust controller. All of these
controllers share the same control structure, as shown in Equations (8) and (20), but with different
parameters. To be more specific, we use the monitor-based control structure as an example, with
the understanding that the analysis also applies to the £;-based control structure. Among the M
controller candidates, an individual controller C; is defined as follows:

%i(t) = AL%;(t) — (ALB. + BLA)x(t) — B! Bu(t) (37a)
&:(t) = CL3;(t) + CLBLx(t) (37b)
%:(T*) = —BLx(T*) (37¢)
u(t) = Kix(t) — 6:(t), (37d)

where %; : Ra' — R is the state of the controller C;, T* is the moment when C; is activated, K; is
the nominal feedback gain for C;, and (AL, BL,Cl) defines the state-space realization of an m X n
matrix of the low-pass filters F;(s) = CL(sI — AL)™'BL. that are stable and strictly proper.
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Fig. 7. The combined safety envelope of the L1Simplex architecture.

As indicated in Theorem 4.6, the selection of K; and F;(s) must satisfy

”Hi(s)(BFi(s) - ]I)”£1Lmax <1 and
Afn = A + BK; is Hurwitz,

where Ly, is defined in Equation (22) and H;(s) = (sI — A?,)~%. Since Al, is Hurwitz, there must
exist two positive definite matrices P;, Q; € R™" such that

PAL, + (AL)" P = Q. (38)

Therefore, we are able to define the safety envelope S; for C;, following the steps in Section 4.2
(Equation (16)).

Then we can conclude by Theorem 4.6 that if x(T*) € S; and the system is controlled by C; after
the controller switches, we have

llx(t) = x4 < &

with a small &; > 0, where x'(¢) satisfies

Notice that with M controller candidates we have M safety envelopes. The overall envelope used
in the decision logic is

s=uMs, (39)

as shown in Figure 7. As a result, the decision logic Rule I is to switch the controller to the RHAC
when the state is on the boundary of S and about to leave S, where S is defined in Equation (39).
The second switch rule remains the same. Once the decision of switching is made, the decision
logic checks the region where the current state lies. If x(T™) € S;, then the controller switches to
C;. Safety can be guaranteed following the same reasoning in Section 4.4. The running mechanism
is stated as follows. Notice that this approach also applies to the traditional Simplex architectures
(Sha 2001).
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| Running Mechanism II for RSimplex with Extended Safety Envelope

1 | Monitoring the signals x(t) and &¢(t);

If x(t) is on the boundary of S defined in (39) and x(¢) is about to leave S, go to
Step 4; Otherwise, go to Step 3

3 | If 6F(t) violates the bound in Equation (12), go to Step 4; Otherwise, go to Step 1;
4 | Determine i such that the current state x(T%) € S;;

5 | Switch to the RHAC, C;.

5 SIMULATIONS

This section shows the simulation results with the RSimplex architecture. We consider the lin-
earized model of the short-period dynamics of an aircraft (Morelli 1998; Klein and Noderer 1994):

a(t) _ Zyg Z, a(t) 0
(Q(t)) - (Ma Mi) (q(t))+ (c) (u(t) + folx. 1)),
—

A x B

where «(t) is the angle of attack, g(t) is the pitch rate, u(t) is the elevator deflection, and fy(x, t)
describes the exogenous disturbance and model uncertainty. In the simulations, we let

fo(x,t) = 0.2sin(q(t)) a(t) + 0.2 cos(5xt) + w(t), (40)

where w(t) is the disturbance uniformly distributed over [—0.1,0.1]. So I = 0.5 and by = 0.75.
Under the nominal condition, we have

~0.1686  0.9562 0
A= (—0.4002 —0.3393) and B = (—1.5313)'

It is assumed that the uncertainties due to physical failures satisfy the matching condition. The
HPC controller is set to u = K[a, q] 7, where K = (0.0023, —0.6828) and Q = 0.1 L. Therefore,

_ {0.1416 0.0659
~10.0659 0.0807 J°

We first examine the efficiency of the uncertainty monitor and the associated switching Rule I
without actually turning on the RHAC. The low-pass filter (A,, B;,C;) is chosen as A, = —100 [,
B, = —A,, and C, = L. The time-varying threshold on 6F(t) is computed based on Equation (12).
The system runs for 10 seconds and remains stable. Figure 8 plots the history of the norm of the
filtered signal of the actual uncertainty [|or(t)|| (solid), the norm of the output of the monitor
[[6F(t)]l (dash-dot), and the threshold (dash). From the plot we can see that ||or(t)|| and ||6£(2)]|
are identical, as stated in Theorem 4.1 (in the simulation, the difference between o (t) and 6F(¢) is
less than 107!* due to the numerical methods). Another observation is that the threshold is always
greater than ||6(t)||, which is consistent with the theoretical results in Section 4.2.

We then inject a physical failure at t = 4, which changes f; to f; defined as

fi(x,t) = 0.6sin(q(t)) a(t) + 0.6 cos(60rt) + wy(2), (41)

and w () is the disturbance uniformly distributed over [-0.3, 0.3]. The system becomes unstable
(because the RHAC is off in this simulation). But ||or(t)|| and ||6F(¢)|| are still identical (their
difference in the simulation is still less than 107'*). As shown in Figure 9, the output of the monitor
[[6F ()]l exceeds the threshold right after t = 4, which indicates an instant detection of the physical
failure using Rule I. We then run this simulation 5000 times with different initial states and different
failure injection moments. In 99.9% of the cases, the failure can be detected in 0.2 seconds.
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Fig. 8. The time history of the filtered signal of
the actual uncertainty ||op(2)]| (solid), the out-
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Fig. 9. llop(t)|l (solid), [I6r(t)|l (dash-dot), and
the threshold (dash) when injecting a physical
failure that changes f to fi.

threshold (dash), under the uncertainty fq.

In the third simulation, we keep the setting in the previous simulation except fy = 0.2 cos(5rt)
and f; = 0.6 cos(3007t). The trajectories of ||or(t)|], [|6F (), and the threshold are plotted in Fig-
ure 10. We see that even when the magnitude of the uncertainty becomes larger, ||6F(t)|| is always
smaller than the threshold. This is because the uncertain signal f; is filtered by the low-pass filter
F(s), given the observation that the bandwidth of the uncertainty is higher than that of F(s). In
this case, the monitor-based Rule I fails to detect this specific physical failure.! An alternative way
to handle this type of physical failures is to set the bandwidth of F(s) high enough. In fact, even if
Rule I fails to detect the physical failure and the state diverges, the state will hit the boundary of
the safety envelope that triggers switching Rule II. Then the RHAC will be activated and drive the
state back to equilibrium. The safety can still be guaranteed by RSimplex, but the settling time is
much longer since the failure is not detected instantly.

In the next simulation, instead of physical failures, we inject a software failure at ¢t = 4 that
makes the HPC generate random control inputs. The system becomes unstable in this case. As
shown in Figure 11, op(t) and 6¢(t) in this case are still identical because such identity is inde-
pendent of the control inputs. However, ||Gr(t)|| remains bounded by the threshold despite the
software failure. It implies that the monitor-based Rule I cannot detect software failures.

Next, we turn on the switching mechanism and use the £;-based RHAC in RSimplex. The low-
pass filter in the RHAC is D(s) = sﬁgo and the adaptation gain is T' = 10°. We inject a software
failure at t; = 0.25 and two physical failures at time ¢, = 1, t3 = 2, respectively. The software failure
makes the HPC input randomly generated over [—150, 150]. The first physical failure changes f;
in Equation (40) to f; defined in Equation (41). The second physical failure changes f to f2, where

fa(x,t) = 2sin(q(t)) a(t) + 2 cos(2007t) + wy(t),

and w,(t) is uniformly distributed over [-2, 2].

The simulation result is shown in Figure 12. The blue ellipsoid is the ideal safety envelope ®,
the green ellipsoid describes the actual envelope S. The yellow curve is the trajectory of the actual
state; the diamond is the initial state, and the crosses represent the occurrence of failures (“SW”

10f course, if the magnitude of fj is large enough, ||&£ (¢) || will still exceed the threshold since F(s) is not an ideal low-pass
filter and cannot completely remove fi.
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failure whose bandwidth is higher than F(s). failure at t = 4.

SF detect
Controller 3ison =

'q(t) (deg/s)
q(t) (deg/s)

a(t) (deg)

Fig. 12. The state trajectories when experienc-
ing a software failure and two physical failures.

Fig. 13. The state trajectories in RSimplex with
an extended safety envelope.

and “PF” stand for “software failure” and “physical failure”, respectively). The circles represent the
moments when failures are detected. The software failure is detected by Rule II at ¢ = 0.56, and
the RHAC is turned on at the same moment. The first physical failure is detected right after it
happens. Notice that Rule I is not activated under this software failure. This is consistent with our
theoretical finding that the monitor is designed for the detection of physical failures. The estimate
of the uncertainty only reflects the scale of physical failures, not software failures. We can use this
property to distinguish the types of failures in the system.

After the software failure is detected, the RHAC steers the state to equilibrium. The physical
failures are compensated by the RHAC and do not affect convergence at all. The red dashed curve is
the ideal trajectory generated by the ideal model starting at the moment when the RHAC is turned
on. We can see that the actual state closely follows the ideal trajectory under the RHAC, even when
physical failures occur. Another observation is that the actual state is temporarily outside the set
S after the RHAC is on, but still inside ®. This is consistent with the theoretical results.

The next simulation studies RSimplex with the extended safety envelope. There are three con-
troller candidates in the RHAC. All of them take the monitor-based control form and share the
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Fig. 14. The state trajectories under software and physical failures, given the first physical failure injected
att = 0.6.

same low-pass filter; that is, F;(s) = F2(s) = Fs(s) = s-}—(i(())O' The difference comes from the nominal

gain: K; = [0.0023, —0.6928]7, K, = [-0.9036, —1.6927]7, and K3 = [-1.1164, —0.0601]". The ideal
safety envelope and the actual envelope are plotted in blue and green, respectively, in Figure 13.
Note that the size of the envelope is enlarged. We first consider the same software and physical
failures as those in the previous simulation. In this case, after t = 0.25 when the software fail-
ure happens, the state diverges until it hits the boundary of the ellipsoid related to Controller 3.
Then the switch is triggered by Rule II and Controller 3 is activated, which steers the state back to
equilibrium despite the physical failures.

Finally, we inject the first physical failure a little earlier (at ¢t = 0.6 instead of t = 1). We can see
from Figure 14 that, before the state hits the boundary of the envelope, the first physical failure is
already detected and the switch is triggered by Rule I. Again, it demonstrates the efficiency of the
monitor-based switching rule.

6 CONCLUSION

This article presents the RSimplex architecture for safety-critical CPS. It provides an interface to
integrate the RFTC techniques into traditional Simplex software architecture, which potentially
enables CPS to handle concurrent physical and software failures. The efficiency of RSimplex is
shown through rigorous analysis and simulations.

There are still many open problems to be addressed. We assume in this article that sensor and
actuator failure will not happen. An interesting extension will be the RSimplex that can handle
such failures. Also note that only the static state constraints a; x < 1 are considered in this work.
When physical failures become serious, these constraints will probably change. How to dynami-
cally adjust the safety envelope in response to such changes will also be studied in future work.

7 PROOFS
7.1 Proof of Theorem 4.1

Proor. Foranyt > ty, there mustexistk € {0,1,..., N} suchthatt € [t, tx1) With tnig = +o0.
Consider the system in Equation (2) over the time interval [tk tx;+1). The state trajectory x(t)
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satisfies

x(t) = AW x (1) + f teA(t_T)(Bu(T) + fi(x(r), 7))dr. (42)

I

Notice that the state Equation (2) implies fi (x(¢), t) = x(t) — Ax(t) — Bu(t). Applying this relation
to the system in Equation (10) yields for any t € [tx, tk+1)

zo(t) = ez (1) + f teAZ(t_T)BZ (x(r) — Ax(r) — Bu(r)) dr

173

t t
=M=z (1) - f e?=(""B_ (Ax(r) + Bu(r)) dr + f eI B_x(r)dr.

173 173

Using integration by parts, we have

t
2o (t) = eA= "Wz (1) — f e*(*"IB_ (Ax(r) + Bu(r)) dr

173

t
+ eAZ(t_T)BZx(T)li-:tk +f eAZ(t_T)AZBZX(T)dT

173
t
= ez (1) — f e*=("")B_ (Ax(r) + Bu(r)) dr
193
t
+ B,x(t) — e B x () + f e A B, x(1)dr (43)
23

and therefore at ty, if k # 0,

ti
2o (ty) = Atz (1) - f A= B, (Ax(r) + Bu(r)) dr

tr—1

173
+ Box(ty) — e ) B x(t_y) + f eA= (=) A_B_x(r)dr.

tre-1

Using this equation to replace z, (¢¢) in Equation (43) implies

193
zo () = eA=(7 1) (eAZ(tk_tk-l)z(,(tk_l) - f e4=(~IB_ (Ax(r) + Bu(r)) dr)

te—1

23
+ =171 (Bzx(tk) — e te) B x () + f eAZ(t"_T)AZBZx(T)dr)

tr—1

t
- f eI B (Ax(r) + Bu(r)) dt
73

t
+ Box(t) — e Bx (1) + f e=(t") A B, x(r)dr.

173
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This equation can be further simplified as:

193
zg(t)=eAZ(t‘tk‘1)za(tk_1)—f e**"DB_ (Ax(r) + Bu(r)) dr

tre—1

173
+ eAZ(t_t")BZx(tk) - eAZ(t_t"*l)Bzx(tk_l) + f eAZ(t_T)AZBZx(T)dT

-1

- f teAZ(t_T)BZ (Ax(t) + Bu(z)) dr

173

t
+ B,x(t) — e B x (1) + f e A B x(1)dr
123

t
= eAZ(t_tk*l)Zo—(tk_l) - f eAZ(t_T)BZ (AX(T) + Bu(T)) dr

1

t
- eAZ(t_t"*l)Bzx(tk_l) + f et A B x(1)dr + B,x(t).

L1

Following a similar recursive procedure, we have

t
2o (1) = eA=(0) 7 (1,) — f e*(*"IB_ (Ax(r) + Bu(r)) dr

to

t
_ eAz(tfto)Bzx(tO) +f eAz(t*T)AZBZx('[)dT + Bzx(t)

ty

t
=— (0B x(ty) + f e*=(""?) ((A,B, — B,A)x(t) — B,Bu(r)) dr + B,x(t)

= z(t) + B,x(t) 0

for any t > ¢, given z,(ty) = 0, where the last equivalence is obtained using Equation (8). Given
Equations (8b) and (10b), the proof is completed. O

7.2 Proof of Theorem 4.6

Proor. The proof is based on linear system analysis, which takes two steps: first, we assume
x(t) € @ for any t > T* and show the bound on ||x(t) — x;4(¢)||; then we show that x(¢) is always
inside @ after T*.

Step 1: Assume that x(¢) € ® holds for any t > T*. Since Theorem 4.1 shows that 6¢(t) = op(t),
we have u(t) = Kx(t) — or(t). Applying this input to the system in Equation (2), we have

X(t) = Amx(t) — Bop(t) + o (t),
where o (t) is defined in Equation (9).
We now consider e(t) = x(t) — x;q4(¢). With the preceding equation and Equation (13), the error

dynamics are given by

é(t) = Ape(t) — Bor(t) + o (t)
e(t()) =0
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which, with Laplace transform applied to both sides, implies e(s) = H(s)(I — BF(s))o (s). Therefore,
eIl .o < IH(s)(A = BE ()l £, g ()l 171

< IHE)@ = BFG) Lz, (Lmasl¥(5) g7 1 + b

< IH) @ = BF6) L2, (Emas (Iia(6) g1 + e - ) + b ).
where the second inequality is based on the assumption x(t) € ® over [T*, 00) and Assumption 3.1.
Notice that the preceding inequality implies the satisfaction of inequality in Equation (28).

Step 2: We prove x(t) € ® over [T*, 00) using a contradiction argument. Suppose that the statement
is not true. Since x(T*) = x3q(T*) € S C ®, there must exist at least a time instant ¢ after T* such
that

x"(t)Px(t) < 1, Vt € [T*, ) (44)

x"(D)Px(f) = 1. (45)
Following similar analysis as in Step 1, we know that for any t € [T*, f), the inequality
81(pid + bmax/Lmax)
1-6;
holds. Since S is an invariant set of the ideal model, ||x;q(t)|| < piq for any t € [T*, ). Therefore

(Sl (pid + bmax/Lmax)
DIl < i
(@)l < s, Pid

i o1b, ax/Lmax 1

Pid n 1bmax/Lm < ’

1-6 1-6; Amax(P)

where the last inequality comes from the inequality in Equation (27). By continuity of x(¢), the
inequality also holds for ¢ = £, which implies

xT(f)Px(f) < Amax(P)”x(E)Hz <L

This inequality contradicts the inequality of Equation (45). Thus, we conclude that x € ® for any
t>T" o

llx(t) = xa()I <

7.3 Proof of Theorem 4.10

Proor. The proof takes similar steps as that of Theorem 4.6: first, we assume x(t) € ® for any
t > T* and show the bound on ||x(#) — x;4(¢)||; then we show that x(t) is always inside ® after T*
with the parameter ¢ defined in Equation (36).

Step 1: Assume that x(t) € ® holds for any t > T*. We first derive the bound on |[[X(t) — x()]|
over t € [ty,tx+1) for any k such that tx > T*. By Equations (2) and (29), the error dynamics of
x(t) = x(t) — x(t) over [t, t41) satisfy

x(t) = —ax(t) + &6(t) (46)
with the initial state x(#x), where &(t) = 6(t) — o(t). Consider the Lyapunov function
V(x6)=x"x+T7'6"¢5
for these error dynamics. The time derivative of V satisfies
V=2%" (—ax+6&)+276" &

< —2ax% % -2I7167 &5,
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where the second inequality is obtained by the property of the projection-based operator that
ensures X' 6 + 167 & < 0. With Assumption 3.1 and the assumption x(t) € ®, we know that

le)l < 2ps and [|6(¢)]] < Lmax-
Therefore
V < —2a% %+ 4T py Linax
20| %X +T7'6T 6 |+2aT7'6" 6 + 4T py Linax
————
V(t)
—2aV(t) + 4T (2ap% + po Limax)- (47)

IA

Letting = 4T (2ap% + psLmax) and solving this differential inequality for any t € [T, t;.1)
yields

V() n (1 _ e—Za(t—T*)) + V(T*)e—Za(t—T*)
2a
DL yer,

2a

IA

IA

which means
V(i) < == + V(T). (48)
2a

For any t € [ty,tx+1) and k > j, we know that by solving the inequality in Equation (47) over
[t tres1],
V() < 2 (1 e 200 0) 4y ()¢ 200, (49)
2a
which indicates

A
2a
where the second inequality comes from Assumption 3.2. Inequalities in Equations (48) and (50)
imply

V(tes1) < 21 + V(tk)e_za(tk”_tk) < + V(tk)e_zar, (50)
[04

—2aT(k—j—-1)

n ) —2aT(k—j-1) , N 1—e
Vite) < (— +V(T ) e N
() 2a (T))e 200 1—e 2T

I/
2a1—e2al
fork =j+1,...,N. Applying this inequality to Equation (49) implies

<V(T™) +

V() < V(T*) + % (m + 1) .
Notice that
V(T) < IR+ 207 = 2p
re r*
since X(T*) = 0. Therefore,

n 1 p
v < o+ g (o 1) =

o

for t € [T*, tN), which implies

=l < 2. 51

It is easy to verify that for t > ¢y this bound still holds using similar analysis.
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We now go back to the error dynamics in Equation (46). Let 6(s) = 6(s) — o(s). The error dy-
namics are equivalent to (s + «)x(s) = 6(s). It indicates H(s)BD(s)(s + a)x(s) = H(s)BD(s)d (s),
where D(s) is the stable low-pass filter in Equation (33). Thus,

IH(s)BD(5)3 ()] -

< IIH()BD(s) (s + @)l £, IX ()1 pre.

< [[H(s)BD(s)(s + a)llzl\/? (52)

where the second inequality comes from the inequality in Equation (51).
Consider x(t) — x'4(t). Based on the ideal model (Equation (13)), we have

x(s) — x'4(s) = —=H(s)BD(s)6(s) + H(s)o (s)
= H(s)BD(s)(o(s) — 6(s)) + H(s)(I— BD(s))o (s).
Thus,
() = X 4() | v 1 < NHS)BDEEE) i1 + IHS) BDE) = Dl o)l 1. (53)

2 12

With the inequality of Equation (52), we know y; < [|[H(s)BD(s)(s + )l ¢, \/g Note that
”O.(S)Illg* 7] < Lmax”x”L‘[x}T*, o] + bmax- Then

o < IHG)(BDG) = Dllz, (Lmax X6 1+ b

1 bmaX
< 8 |lIx = x| e + 12 7,7 +
2 (|| ||££0 Il ”L 1T

max

. b
d max
<5, (le—X‘ | pir o1 + pia + :
o Linax

Applying the bounds on ; and ¥, to the inequality of Equation (53) yields the satisfaction of
inequality Equation (36).

Step 2: The proof of x(¢) € ® over [T*, o) is similar to that of Step 2 in Theorem 4.6 and is therefore
omitted. O
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