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Abstract—The estimation and prediction of State-of-
Health (SOH) and State-of-Charge (SOC) of Lithium-ion
batteries are two main functions of battery management
system (BMS). In order to reduce the computation cost
and enable deployment of BMS on low-cost hardware,
Lebesgue sampling based extended Kalman filter (LS-EKF)
is developed to estimate SOH and SOC. LS-EKF is able
to eliminate unnecessary computations, especially when
the states change slowly. In this paper, the SOH is firstly
estimated and the remaining useful life (RUL) is predicted
by LS-EKF. Then, the estimated SOH is used as the initial
battery capacity for SOC estimation and prediction. The
SOH and SOC estimation and prediction are calculated
repeatedly in the whole battery service life. The proposed
method is verified with the application to the capacity
degradation of Lithium-ion battery. The results show that
the LS-EKF based algorithm has a good performance in
SOH and SOC estimation and prediction in terms of accu-
racy and computation cost.

Index Terms—Lebesgue sampling, State of health, state
of charge, Lithium-ion battery, Extended Kalman filter.

|. INTRODUCTION

Batteries are safety critical components that provide power
to system functions including command, control, communi-
cations, and intelligence [1]. It is important to improve the
performance of battery management system (BMS) to make
battery operation safe, reliable, and cost-efficient [2], [3]. BMS
is designed to evaluate the instantaneous state-of-charge (SOC)
in the battery and at the same time to monitor the slowly
varying state-of-health (SOH).

SOC is an indicator that represents the available charge
stored in the battery compared to the full capacity charge of
the battery, given by a percentage of the current charge to the
entire charge [4]. SOH describes the physical condition of a
battery. Unlike SOC, there is no widely accepted definition
of SOH. A general definition of SOH is that it quantifies
the battery’s ability to store energy and deliver specified
performance compared to a fresh battery [5]. The total capacity
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of the battery is evaluated in terms of Amp-hours (Ah), which
basically is a dimension of electric charge.

It’s essential to accurately estimate the SOC and SOH in
order to maximize and optimize the system operation. Know-
ing SOC also helps prevent overcharge and over discharge of
batteries, which is vital for safe operation and long cycle life
of lithium-ion batteries. However, both SOC and SOH are not
directly observable, which requires estimation and prediction
algorithms to provide real-time battery states [3], [6]-[9].

The easiest way to estimate SOH is based on current integra-
tion [10], [11]. Different estimation methods are also devel-
oped, including reduced state-space electrochemical models,
artificial neural networks, and impedance spectroscopy [12]-
[15]. These methods usually require a large computational
cost, which makes them suitable for SOH estimation but not
for SOC. The reason is that SOC estimation is often integrated
with online real-time planning and control, which requires
much faster and more accurate algorithms [4], [7], [16]. There
are two main methods to estimate SOC. The first one is
Coulomb counting method, which estimates SOC directly.
However, it is sensitive to current error accumulation and
requires accurate initial condition, which may not be available
in many applications. The other method is open circuit voltage
(OCV)-SOC conversion method, which uses the one-to-one
mapping between SOC and OCV to estimate SOC. However,
OCV cannot be measured directly in practical use since it
needs a long rest time to achieve equilibrium in the battery
before each measurement. Therefore, OCV estimation is often
performed by using an equivalent circuit model (ECM) and the
measured battery terminal voltage. With the OCV estimation,
the SOC estimation can be obtained [17], [18].

Extended Kalman filter (EKF) is widely used in nonlinear
system states estimation due to its simplicity [19]. EKF
linearizes nonlinear system models, and calculates the mean
and variance values of system states based on Bayesian theory.
Traditionally, EKF is designed in Riemann sampling (RS), in
which samples are taken in a periodic way and is denoted as
RS-EKF. One major limitation of RS-EKF is its computational
cost as the algorithm is executed every time when a measure-
ment becomes available. To address this problem, Lebesgue
sampling (LS) method is introduced with the advantage of
reducing the computational cost by executing the algorithms
“only when necessary” [20]. A SOH estimation and RUL
prediction method was developed [21]. However, a BMS
requires to monitor the two interconnected states, SOH and
SOC, at the same time. To address this need, this research aims
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to integrate SOC estimation with SOH estimation and RUL
prediction in the framework of LS-EKEF, which takes advantage
of the merits of EKF and LS. In the proposed approach, SOH
is estimated first, which is then used as the initial condition for
SOC estimation. The SOC estimation is based on the online
estimation of OCV and OCV-SOC conversion. Different from
existing works, the proposed method estimates SOH and SOC
algorithm simultaneously based on LS-EKF, which is verified
with experimental results with better performance and much
faster speed in estimation.

The paper is organized as follows: Section II provides the
overview of the proposed LS-EKF. Section III illustrates the
framework of the SOC and SOH estimation method. Section
IV presents the verification of the algorithms by application to
the degradation of SOH and variation of SOC of the Lithium
ion batteries. Section V gives the concluding remarks with
some future research topics.

[I. THE PROPOSED LS-EKF METHOD

In the proposed method, SOH and SOC are estimated
simultaneously. The value of SOC Psoc can be obtained
based on Coulomb counting method as:

PSOC = % X 100% (1)
Qo
where (), is the remaining capacity at current time instant and
Qo is the total capacity. Assume the initial SOC value of the
battery is Psoc,, Eq. (1) can be described as:

idt
Psoc = Psoc, — f— 2
Qo

where i is the current, which is considered to be positive and
negative for discharge and charge, respectively.

However, this Coulomb counting method has two limita-
tions. One is that it starts from an initial SOC, which must be
known and accurate. The other one is that the error originating
from the sensor accuracy, current, and sampling frequency will
accumulate over time and this method does not have the ability
to recover from an inaccurate SOC estimation. To increase the
accuracy and robustness of SOC estimation, a model-based
SOC estimation method is developed [22], which utilizes OCV
as an internal variable to estimates the SOC from a battery
equivalent circuit model (ECM).
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Fig. 1. Scheme of SOC and SOH diagnosis and prognosis

By utilizing this OCV-SOC conversion method, this paper
develops a computational effective method to integrate the bat-
tery SOH and SOC diagnosis and prognosis in the framework
of LS-EKF, as shown in Fig. 1, in which 4(¢) and V (¢) are the
measured current and voltage. In this figure, SOC is estimated
based on OCV. As OCV measurement requires a long rest time
to achieve equilibrium in the battery, it cannot be measured
directly in practical use and needs to be estimated from battery
model and terminal voltage. With OCV being estimated, the
SOC estimation can be obtained since there exists a one-
to-one OCV to SOC mapping [18]. The OCV-based SOC
diagnosis is executed in each charge-discharge cycle with the
SOH estimation from previous cycle as the initial condition to
update the total capacity. At the end of each charge-discharge
cycle, the battery SOH capacity is estimated and used to update
the initial battery capacity for SOC estimation in the next
cycle. This way, the SOC and SOH get estimated during the
service life of the battery.

A. Lebesgue sampling method

A battery capacity degradation is used to illustrate the
differences between RS and LS sampling methods. In Riemann
sampling, samples are taken in a periodical manner, as shown
in Fig. 2 (a). The battery SOH diagnosis and prognosis
algorithm is executed at every charge-discharge cycle as long
as a new measurement (based on Coulomb counting [23])
becomes available. This method ensures the tracking accuracy
of the SOH state during the whole service life of the battery.
However, it causes unnecessary computations when the battery
SOH degradation is slow. Ideally, the number of SOH diagno-
sis and prognosis execution can be reduced when the battery
SOH degradation is slow and increased when it is fast. To solve
this problem, LS method is developed [20], [24], in which a
number of Lebesgue states L;, as shown by the horizontal
lines in Fig. 2 (b), are defined on the battery capacity axis.
The LS-based estimation algorithm is executed only when the
measured battery capacity from Coulomb counting changes
from one Lebesgue state to another, i.e., an event happens. This
philosophy significantly reduces the computation demands
by eliminating unnecessary computation, especially when the
battery capacity degradation speed is slow.

When prognosis is conducted, instead of calculating the
battery SOH degradation at each future cycle (Fig. 2(a)), LS-
based method will calculate the operation time for the battery
SOH degrading to each predefined Lebesgue state (Fig. 2(b)).
The calculated operation time reaching the Lebesgue state
defined on the failure threshold will yield the time to failure,
or RUL, directly.

Fig. 3 shows the difference between RS-based and LS-based
prognosis. The prediction by RS-EKF (Fig. 3(a)) is conducted
along the time axis, in which the state is predicted at each time
instant until it reaches the failure threshold. The prediction
horizon is the number of sampling points from current time
instant to the time instant when the failure threshold is reached.
For LS-EKF (Fig. 3(b)), the prediction is conducted along the
state axis to achieve a time distribution at each Lebesgue state.
The prediction horizon is the number of Lebesgue state from
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Fig. 2. The comparison between RS and LS. (a) RS with fixed time
interval; (b) LS with fixed Lebesgue state length

current Lebesgue state to the Lebesgue state defined on the
failure threshold. As we can see, the prediction horizon for
LS-EKF is usually much smaller than that of RS-EKF. The
worst case is that each measurement reaches a new Lebesgue
state, the prediction horizon for LS-EKF is the same as that
of RS-EKF.
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Fig. 3. The comparison between RS and LS prognosis. (a) RS progno-
sis; (b) LS prognosis.

With LS, the major difference of RS-EKF and LS-EKF are
summarized as follows: In RS-EKF, the state estimation is
conducted as long as a new measurement is available. The
RUL prediction usually has a large prediction horizon, from
the time instant when a battery degradation is detected at
very early stage to a future time instant (given by charge-
discharge cycle) that the battery degradation reaches the failure
threshold. This long-term prediction not only requires a lot
of computation resources, but also causes accumulation of
uncertainties. For LS-EKF diagnosis, the state estimation is
triggered only when an event happens. For LS-EKF prognosis,
the RUL prediction horizon is defined on the state axis and

is described by the number of Lebesgue states. This gives
us a straightforward method to conduct RUL prediction with
the advantages of requiring little computation resources and
resulting in small uncertainty accumulation.

However, the LS-based design is not intuitive compared
to the traditional RS-based design. The LS-based prediction
model in prognosis is not easy to be validated. As a result, LS-
EKF leads to immediate challenges in design of models and
algorithm, which will be addressed in the following sections.

B. LS-EKF for SOH diagnosis

EKEF has been used for state estimation and RUL prediction
in many systems, including batteries, [11] due to its low
computational requirement. Traditional EKF algorithms are
developed based on RS framework which is unfavorable
from the computation-efficiency point of view in some cases,
especially when the battery state degradation is slow. Lebesgue
sampling method is developed [20] to reduce/increase the
executions of algorithm when battery state degradation is
slow/fast. In this section, the design of LS-EKF is explained
with an example of diagnosis of battery SOH degradation.

In LS-EKEF, the general form of SOH diagnosis model is
given as [20]:

Ty = f(Z,, uey, Dy, ) +wy, 3)

where f is a nonlinear function, w, is the input, which
includes discharge current, temperature, and other environ-
mental factors that affect battery capacity degradation, &y,
is the SOH state, wy, is the Gaussian noise with covariance
Q+,, which models the uncertainties, D, = Ly, j41 — Ly, ;
is the Lebesgue state length given by the distance between
two adjacent Lebesgue states. Note that the Lebesgue states
Ly, ; are adjusted according the battery degradation speed and,
therefore, D;, is a nonlinear term. Here subscript ¢ is the
event stamp [20].

The observation model that describes the relationship be-
tween state z;, and measurements z;, is given by:

zt, = h(xe,) + vy, 4

where z;, is the measurement, which is battery capacity for
SOH estimation and terminal voltage for SOC estimation, h(-)
is the measurement function, v¢, is a zero-mean Gaussian
noises with covariance matrix R;,. Note that in our exper-
iments, the battery is tested with an Arbin system, which
provides capacity measurement via Coulomb counting. The
measurement is used to compare with the predefined Lebesgue
state Ly, ;. If the measurement remains in the same Lebesgue
state, the EKF algorithm will not be executed. Whenever the
measurement reaches a new Lebesgue state, it triggers an event
and the LS-EKF will be executed as follows.
The Jacobian of f(-) and h(-) are given by:

0 Oh
Ftk—l = _f Hy = E |i'tk\tk71 )

ox |wtk—l‘tlc—1

Like other Bayesian methods, EKF algorithm includes two
steps: the first step (prediction) is to propagate the state vector
z into the next time step by using the state transition model;
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the second step (update) is to correct the prediction from the
first step by using the measurement z. The prediction step can
be described as:

‘f;tk‘tk—l = f(j\:tk,l|tk,17utk_1,Dtk_l)

T (6)
Ftk\tk—1 = Ftk—lrtk—1\tk_1Ftk,1 + ]\/[tk—l

where T';, |, _, and My, _, are the covariance matrices of the
predicted state and the process noises.
The equations for the update step are expressed as:

Ktk- = Ptk‘tk—lH[,j; (Htk]‘—‘tk”k—lHl/j; + Ntk)71
I‘I/kllfk = (I - KtkHtk)Flk:|Lk—1 (7
'%tkltk = j"tkltk,—l + Ktk (Ztk - h’(‘itkltk—l))

where K, is the near-optimal Kalman gain, V¢, is the co-
variance matrix of the observation noises, I';, |;, is the updated
covariance estimate, ‘%tklt}c is the updated state estimate, and
I is the identity matrix. Note that the Jacobian needs to be
calculated with the predicted state at each cycle.

C. LS-EKF for SOH prognosis

As described in Section II-A, the LS-EKF based prognosis
predicts the operation time reaching each predefined Lebesgue
state and this involves a model that describes the battery
operation time as a function of battery capacity degradation.
With this understanding, the prognosis model is given as:

thr1 = gk, &1, Diy) + Tty (8)

where ), is the operation time distribution when the system
state reaches the k-th Lebesgue state Ly, ¢g is a nonlinear
function, 7, is a Gaussian noise term with covariance S, .

Since prognosis involves long-term prediction without new
measurement, there is no update step in the prognosis. There-
fore, the prognosis will only conduct the prediction based on
Eq. (8) and is implemented as:

ti—1 = 9t (t—1)k—1> Tty [tr_1s Dity)

T )
Ttk|tk,1 = Gtk—l’rtk—lltk—thkfl + Stk-,—l
where Gy, |, = % is the Jacobin of Eq. (8), Ty, s, _,

and Sy, , are the covariance matrices of the predicted time
distribution and noise term, respectively.
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Fig. 4. Conversion from state distribution to time distribution

Note that the output of diagnosis at the time instant of the
current event £y is a state distribution, which cannot be used

in LS-based prognosis since prognosis requires an initial dis-
tribution of operation time. To obtain the time distribution on
the current Lebesgue state, the state distribution is converted
to a time distribution, as shown in Fig. 4. In the figure, the
filtered SOH is the battery SOH estimation from LS-EKE. In
this conversion, the time instant of the current event ¢, is set
to be the mean of the time distribution ;. The horizontal line
Lo + 0, crosses the filtered battery SOH curve, marked as d,
in Fig. 4. The coordinates of the cross point (p; — oy, iy +04)
indicate that state value p, + o, reaches the threshold at time
instant p; —oy. The time interval between t4 and d. in Fig. 4 is
considered to be the variance of the time distribution. By this
means, the variance of state distribution o, is approximately
converted to that of the time distribution o¢. Here, piz, 05, tit,
and o, are the mean and variance of the state estimation, the
mean and variance of the time distribution, respectively.

D. LS-EKF for SOC diagnosis

This research conducts SOC estimation by using an OCV
method [25], which is based on the measurement of the
equilibrium OCV of the battery and a one-to-one mapping
between OCV and SOC [18]. Since the equilibrium OCV
cannot be measured for online use, this section develops
a method to estimate OCV by integrating battery terminal
voltage measurement and a second order ECM model as shown
in Fig. 5 [26] in the framework of LS-EKF.

\A W I
Rp; R
-Dif CcT
% | G [ Ca —o —?
w_/ ) )

DCC D) Vocr me Ver v

Fig. 5. Second order ECM for Lithium ion batteries [27].

Compared to the first-order ECM [28], this second order
model better describes the battery dynamic characterized by
hybrid pulse power characterization (HPPC) data. In this
model, Ry is the Ohmic resistance, i(t) is the discharge
(positive) or charge (negative) current, V' (¢) is the measured
voltage, Vocv is the OCV of the battery, and Vp;y and Vo
are the voltage drop caused by the ion diffusion and the charge
transfer, respectively. Note that Rp;; and Cp;y compose an
RC circuit that describes the battery behavior caused by the
ion diffusion. The second RC circuit formed by Rcr and Cop
represents the charge transfer process in the battery.

Based on this ECM model and the battery terminal voltage,
the voltage drop in discrete time domain is given as:

At

VCT(tk) =e TCT - VCT(tk — At)
+ Rer ity — At) - (1 - 677?7_;)
_ar

VDif(tk) —e TDif . VDif(tk — At)
__Ar
+ RDif Z(tk - At) . (1 —e TDif)

(10)
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where At is the sampling period, and 7o = RorCeor and
Tpif = RpifCp;s are the time constants of the two RC
circuits in the ECM model. Note that this model is only
calculated when the measured voltage reaches a new Lebesgue
state in LS framework.

The relationship between the battery terminal voltage V' and
the open-circuit voltage Vpocy is given as:

Vocov (tk) = V(tr) + Vor(ts) + Vpis(te) + Ro - i(tx) (11)

where Ry is the battery internal ohmic resistance. The non-
linearity of the model is in the OCV output calculated by Eq.
(11), in which OCV is nonlinear with respect to Vor(tr),
VDif (tk), and SOC.

The parameters in Egs. (10) and (11) can be identified by
HPPC test [29] at the beginning of service life of the battery.
To reduce the error from parameters in Eq. (11), the ECM
parameters are updated with the degradation of SOH. For
industrial applications, the influences from SOC, SOH, and
temperature need to be considered in Eqs. (10) and (11).

— Standard OCV
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®: build a Gaussian pdf for SOC based on psoc and Clsoc;
Fig. 6. SOC pdf conversion converted from estimated OCV.

The LS-EKF SOC diagnosis is then implemented as fol-
lows: With the estimation of OCYV, the SOC can be obtained
from OCV-SOC look-up table [17], [18]. Since the OCV esti-
mation from LS-EKF is given as a distribution, this involves
the conversion from OCV distribution to SOC distribution
as shown in Fig. 6. The Vpcoy is estimated in LS-EKF by
using measured voltage and Eq. (11). The estimated OCV-
DOD (depth of discharge) curve, shown in Fig. 6 (b), is
compared with the standard OCV-DOD curve shown in Fig.
6 (a) (obtained at the beginning of the battery service) to get
the estimation of DOD and SOC is obtained by (1-DOD).

As the estimated OCYV is a Gaussian distribution in LS-EKF,
the estimation of SOC is also assumed to subject to a Gaussian
distribution. First, mean (uocy) and 95% confidence interval
(CD of OCV (Clpcyvy) are calculated in LS-EKF. From these
values, the corresponding psoc and CIgoc can be obtained
on the standard OCV-SOC curve shown in Fig. 6(a). These
values are then used to build a probability density function
(pdf) of SOC, as shown in Fig. 6 (b).

[1l. EXPERIMENTAL VERIFICATION

In this section, the proposed method is demonstrated with an
application to the SOC and SOH estimation of two Sony high
drain 18650 Lithium-ion batteries with 2.25 Ah rated capacity.
In this experiment, the capacity degradation is tested by Arbin
BT2000 system under room temperature at a discharge current
of 2.25 A. The battery capacity degradation is the decrease of
the capacity with respect to charge-discharge cycles, as shown
in Fig. 7. The failure threshold for SOH is set as 0.35 Ah
and the batteries reach the threshold at the 928th and 822th
cycles, respectively. From the experimental data, an empirical
model is established and used in the diagnosis and prognosis.
In real applications, the discharge current and its duration are
recorded so that the capacity can be estimated by Coulomb
counting [30]. The same idea is used in many researches [6],
[22], [31], [32].

— Sony-HD18650-1C-004
— Sony-HD18650-1C-001

-

Capacity (Ah)

0.5

0 200 400 600 800 1000

cycle
Fig. 7. The capacity degradation of two batteries.

The SOC data are collected in each charge-discharge cycle.
Some examples of the collected data at different life stages
of the battery are shown in Fig. 8. The horizon axis is the
discharged capacity during one cycle, the vertical axis is the
measured voltage during the test. The blue, red, and black
curves show the capacity degradation trend in the initial state,
middle stage, and late stage of battery service life.

SOC curves

inital stage
middle stage

3.5

Voltage (V)

1
Capacity (Ah)

Fig. 8. V-SOC curves in different battery service life stages.

A. Parameter identification

The parameters of the second order ECM model need to
be identified to estimate SOC based on Egs. (10) and (11),
which is conducted based on HPPC test [29] at the beginning
of service life of the battery. The HPPC test consists of a
series of discharge-charge pulse current at different SOC. Each
discharge/charge pulse is 10 s with an amplitude of £1 C. A
0.05 C constant current is used to discharge the battery to the
next SOC level to conduct another HPPC test.

The HPPC test results are shown in Fig. 9. With this
data, the parameters are identified by least squares method

0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2842782, IEEE

Transactions on Industrial Electronics

~ 38 .

b

S 37L

£

< 36t

444 4445 445 4455 446 4465 447 4475 448
Time (s) x10°

_ 2} |-|

<

5o

5

O Ll

444 4445 445 4455 446 4465 447 4475 448
Time (s) x10°

Fig. 9. HPPC data for a fresh battery at room temperature.

[32], which minimizes the sum of square error between the
measured voltage and the voltage calculated by Egs. (10) and
(11). Since the dependence of parameters on SOC is negligible
[28], the data collected from SOC=50% is chosen to identify
the parameters. The results are shown in Eq. (12) and are used
in OCV-SOC estimation.

Rer = 11.7Tm&QY; o = 7.1547s
Rpiy = 20.5m8; 7piy = 7.0459s;
Ry = 44.7Tm2

12)

B. Experimental results of LS-EKF

Figs. 7 and 8 show that the battery capacity (in the whole
service life) and discharge capacity (in one discharge cycle)
decrease with the increase of charge-discharge cycles and
discharge time, respectively. To accommodate the influence of
battery capacity degradation on SOC when SOH and SOC are
integrated in BMS system, in the SOC estimation, the initial
battery capacity (Qy at each cycle must be updated based on
the posterior pdf from the SOH estimation.

1) SOH estimation by LS-EKF: To implement LS-EKF
for the battery capacity degradation, 40 uniformly distributed
Lebesgue states are initially defined in the battery’s full
capacity of 2.25 Ah with consideration of our computation
capability. With this setting, the diagnostic algorithm is exe-
cuted only when the capacity degrades from one Lebesgue
state to another. During the diagnosis process, the length
of the Lebesgue states is optimally adjusted according to
the battery SOH degradation speed. If it degrades faster, the
next Lebesgue length will be decreased, otherwise, the next
Lebesgue length will be increased [24].

In Lebesgue sampling framework, a diagnostic model is
developed as [33], [34]:

C(tis1) =C(tr) — paC(tr)’" D(tx)sgn(C(tx) — C(tk-1))
+ W(tk)

13)
where sgn(-) is a sign function and treated as positive or
negative sign when calculating the Jacobian, C is the battery
capacity, pgq and p,, are hyperparameters, which have values of
1.2 and 1.1, respectively, and the noise term w(¢) is required
to be Gaussian. Note that this model is an explicit form of Eq.
(3) for SOH diagnosis.

To illustrate the proposed algorithm, a Sony-HD18650-1C-
004 battery is used as an example. Fig. 10 shows the diagnostic
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Fig. 10. LS-EKF diagnosis for battery at the 400th cycle.

results at the 400th cycle. The mean of capacity estimation is
1.414 and the 95% CI is [1.409, 1.419]. The upper sub-figure
shows the comparison of capacity from Coulomb counting
(blue) against the estimated mean value from diagnosis (ma-
genta). The lower sub-figure shows the comparison of initial
baseline pdf (green, created from the battery capacity at the
beginning of service without degradation, which is the battery
capacity values from Arbin system in the first 50 charge-
discharge cycles) compared with the real-time estimated pdf
at the 400th cycle. Note that the diagnostic algorithm is only
executed 25 times in the past 400 cycles.

Prognosis is conducted by propagating the operating time
distribution at each Lebesgue state, among which the one on
the Lebesgue state that equals to the failure threshold is the
RUL pdf. The prediction model is given as [33], [34]:

£k+1 = fk +pp'C(tk)pt -D(tk) -exrp (—C(tk)) —‘rT(tk) (14)

where p, and p; are hyperparameters with values of 975 and
0.45, respectively, and 7(t;) is a Gaussian noise term. To use
Eq. (14) for long-term prognosis, the initial distribution of
the time distribution at the current Lebesgue state is converted
from the current battery SOH distribution, as illustrated in Fig.
4.

LS-EKF battery prognosis PDF

TTF distributions at 7|

Lebesgue states Lebesgue states

1.5¢ |

/

e 1

Normalized PDF

ZiiThreshold
1

0 100 200 300 400 500 600 700 800
cycle

Fig. 11. LS-EKF prognosis for battery at the 400th cycle.

Fig. 11 shows the SOH prognostic results at the 400th cycle.
The prediction horizon is 20 Lebesgue states. The pdf at the
failure threshold is the predicted time to failure (TTF) for this
battery with a mean value of 814.35 cycles and the RUL is
414.35 cycles. The 95% CI of the TTF distribution is [809.1
819.6], which indicates that the uncertainty accumulation is
very small due to the small prediction horizon. Compared with
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the ground truth TTF of 822, the difference between ground
truth and the prediction is 7.65 cycles.

2) SOC estimation by LS-EKF: OCV estimation model in
LS-EKF is given as follows by augmenting Eq. (11).

Vocv (ti+1) =V (k) — D(tk) - sgn(V (tk) — V(te-1))

+ Vpip(te) + Ver(te) + Ro - i(t) + wv (tk)

15)

where wy (t) is a Gaussian noise. Note that sgn(-) is a sign
function same as in Eq. (13).
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Fig. 12. Estimated OCV-SOC results by LS-EKF.

To run LS-EKF based SOC diagnosis, 40 Lebesgue states
are defined on the voltage axis. The diagnosis algorithm is
executed when an event happens (the voltage drops from one
Lebesgue state to another one). Fig. 12 shows the results in
the middle of a discharge cycle based on LS-EKF. The upper
sub-figure is the comparison of the measured voltage from
Arbin system against the OCV estimation by LS-EKF. The
magenta curve is the OCV-SOC curve calculated from Eq.
(15), in which Ver and Vp;r are calculated by Eq. (10). The
blue curve is the measured voltage. The bottom sub-figure
shows the comparison of initial baseline pdf of OCV (green,
constructed based on the first 50 measured voltage during
the first charge-discharge cycle of the battery) compared with
the real-time estimated OCV pdf (magenta). Note that the
diagnostic algorithm is executed 18 times in the past 50
sampling points, which saves 64% computation.

The mean of OCV estimation is 3.72 V and the 95% CI
is [3.7156, 3.7244] V. The corresponding CI of SOC can
be found by mapping the standard OCV to SOC, which
is obtained by Coulomb counting. CIpop and Clgoc are
[0.4115, 0.4251] and [0.5749, 0.5885], respectively.

C. Experimental results of RS-EKF

1) SOH estimation by RS-EKF: In RS-EKF, battery degra-
dation model for diagnosis and prognosis is given as:

C(t+1)=C(t) =7+ [pr- (p2 +p3 -t +pa- 1) " +wel(t)

(16)
where p = [le?,80,0.08, —0.0008,0.185], v is a hyperpa-
rameter, wo(t) is a Gaussian noise, and ¢ is the time index
given by the charge-discharge cycles. The model is obtained by
curve fitting and parameters are determined by identification.

Note that this is an explicit form of battery SOH degradation
model in the RS framework.

Fig. 13 shows the diagnostic results at the 400th cycle of
Sony-HD18650-1C-004 battery. The mean of capacity estima-
tion is 1.4269 and the 95% CI is [1.4080, 1.4459]. The upper
sub-figure is the comparison of the capacity from Arbin system
against the capacity estimation from EKF. The bottom sub-
figure shows the comparison of initial baseline pdf compared
with the real-time estimated pdf (magenta) at the 400th cycle.
Note that the diagnostic algorithm is executed 400 times in
the past 400 cycles, i.e., every time when a new measurement
becomes available.
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Fig. 13. RS-EKF SOH diagnosis for battery at the 400th cycle for Sony-
HD18650-1C-004 battery.

With an estimation of the current battery capacity as the
initial condition, the prognosis is executed to conduct the long-
term prediction and estimation of RUL. Fig. 14 shows the
expected value, upper and lower bounds of 95% CI of the
battery capacity pdf at each future cycle.

The TTF distribution from prognosis is a Gaussian one with
mean value of 806 cycles and the predicted RUL is 406 cycles.
The prediction horizon is 444 cycles, which is very large
compared to the prediction horizon of 20 Lebesgue states in
LS-EKF. The standard deviation of the TTF distribution is 18.5
cycles. The distance between the prediction and ground truth
is 16 cycles. The 95% CI of the RUL pdf is [769 843], which
indicates that the uncertainty accumulated along the prediction
horizon is very large.
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Fig. 14. RS-EKF SOH prognosis for battery at the 400th cycle.
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2) SOC estimation by RS-EKF: OCV-SOC estimation re-
sults are achieved by RS-EKF based on Egs. (10) and (11).
Fig. 15 shows the results, at the same time as in Fig. 12. The
upper sub-figure shows the comparison of measured voltage
(blue) against the estimated mean value of OCV (magenta).
The lower sub-figure shows the comparison of initial baseline
pdf compared with the real-time estimated pdf. Note that
the diagnostic algorithm is executed 50 times in the past 50
sampling data points, i.e., every time when a new measurement
becomes available.

The mean of OCV is 3.73 V and the 95% Cl is [3.70, 3.76]
V. With the same mapping method illustrated in Fig. 6, the
results show that CIpop and Clgpoc are [0.3752, 0.4407]
and [0.5593, 0.6248], respectively.
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Fig. 15. Estimated OCV-SOC results by RS-EKF.

D. Comparison of RS-EKF and LS-EKF

1) Comparison of SOH estimation: Table 1 shows the
comparison of diagnostic and prognostic results of RS-EKF
and LS-EKF for SOH. The computation time at the 400th
cycle for LS-EKF prognosis is only 6.64% of that of the RS-
EKF prognosis.

TABLE |
COMPARISON OF SOH AT THE 400TH CYCLE
Diagnosis results RS-EKF LS-EKF
Capacity estimation 1.4269 1.414
Capacity 95% CI [1.4080 1.4459] [1.409 1.419]
Execution numbers 400 (100%) 25 (6.25%)
Prognosis results RS-EKF LS-EKF
True TTF 822 822
Estimate TTF 806 814.35
95% CI of TTF [769 843] [809.1 819.6]
Prognostic horizon 444 20
Computation time (s) || 0.083668 (100%) | 0.005553 (6.64%)

The results in Table I are a snapshot of diagnosis and
prognosis at the 400th cycle. In order to compare SOH prog-
nosis in the entire battery service life in terms of prediction
accuracy, « - A matrix is introduced [35], as shown in Fig. 16
with @ = 0.3. It is clear from Fig. 16 that the mean of the
predicted RUL for LS-EKEF is as accurate as that of RS-EKF.
However, the variance of predicted RUL of RS-EKF is much

smaller as shown in Table I, which is the natural benefit from
Lebesgue sampling method: since the prediction horizon in
LS-EKF is much smaller than that of LS-EKF, the uncertainty
accumulation during the prediction process is much smaller.
Based on these advantages, LS-EKF provides strong support
for decision-making. More importantly, the LS-EKF required
less calculation sources, which makes it promising for dis-
tributed diagnosis and prognosis algorithms to be deployed on
hardware with limited computational sources.

a-L metrics with a=0.3
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Fig. 16. Prediction accuracy comparison between RS-EKF and LS-EKF.

2) Comparison of SOC estimation: Table II shows the
comparison of diagnosis of OCV from RS-EKF in Fig. 15 and
LS-EKEF in Fig. 12. Compared with RS-EKF diagnosis with
50 executions, the LS-EKF diagnosis only has 18 executions.
The computation cost is only 36% of that of the RS-EKF.

TABLE Il
COMPARISON OF OCV ESTIMATION
Diagnosis results RS-EKF LS-EKF
OCV estimation 3.7313 3.72
OCV 95% CI [3.7031 3.7595] | [3.7156 3.7244]
Execution numbers 50 (100%) 18 (36%)

The standard OCV-SOC curve and the diagnosis results
from RS-EKF and LS-EKF are shown in Fig. 17. The es-
timated OCV-SOC curves by RS-EKF (green) and LS-EKF
(magenta) are both close to the standard OCV-SOC curve
(black) compared with the measured V-SOC curve (blue). The
root mean square (RMS) error of the estimated OCV-SOC
curves from RS-EKF and LS-EKF are 0.05610 and 0.0601,
respectively, which indicates an accurate OCV-SOC curve is
achieved by LS-EKF method with less computation. Moreover,
this result shows that the SOC equivalent circuit model used
in this research is accurate enough. In the real applications,
new HPPC tests can be conducted when the battery oeprating
condition changes to accommodate the model uncertainty and
improve the robustness of the proposed algorithm.

Note that it is difficult to provide fair comparison of RS-
EKF and LS-EKF for SOH and SOC because they use different
models and different algorithm designs. Therefore, the tables
and figures in this section use some widely used criteria,
such as mean, confidence interval, and computation time for
comparison. The comparison shows that LS-EKF has much
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Fig. 17. The comparison between standard and estimated OCV-SOC
curve by LS-EKF.

fast computation speed without sacrificing the accuracy and
precision of SOH and SOC estimation.

IV. CONCLUSIONS

In order to reduce the computation of diagnosis and prog-
nosis algorithms in BMS, a new method based on EKF is
proposed in Lebesgue sampling framework. The proposed
method integrates SOC and SOH diagnosis and prognosis in
the framework of LS-EKF. In this research, the estimated SOH
is first conducted and is used to update the initial value in SOC
estimation to accommodate the limitations of existing works.

The proposed method is verified with a series of ex-
periments of Lithium-ion battery SOH and SOC estimation
with comparison against traditional RS-EKF approach. It is
demonstrated that the proposed approach is able to reduce
computation and provide reliable SOH and SOC estimation.
This proposed approach combines the advantages of EKF
and LS method, which results in low computation and small
uncertainty accumulation. The future work will study batteries
management under non-constant discharge rates, SOC increase
in practical use by short-time recharge, such as regenerative
braking in automotive industry, the influence of over-voltage
and ECM parameters changes on SOC estimation.
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