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Abstract—The estimation and prediction of State-of-
Health (SOH) and State-of-Charge (SOC) of Lithium-ion
batteries are two main functions of battery management
system (BMS). In order to reduce the computation cost
and enable deployment of BMS on low-cost hardware,
Lebesgue sampling based extended Kalman filter (LS-EKF)
is developed to estimate SOH and SOC. LS-EKF is able
to eliminate unnecessary computations, especially when
the states change slowly. In this paper, the SOH is firstly
estimated and the remaining useful life (RUL) is predicted
by LS-EKF. Then, the estimated SOH is used as the initial
battery capacity for SOC estimation and prediction. The
SOH and SOC estimation and prediction are calculated
repeatedly in the whole battery service life. The proposed
method is verified with the application to the capacity
degradation of Lithium-ion battery. The results show that
the LS-EKF based algorithm has a good performance in
SOH and SOC estimation and prediction in terms of accu-
racy and computation cost.

Index Terms—Lebesgue sampling, State of health, state
of charge, Lithium-ion battery, Extended Kalman filter.

I. INTRODUCTION

Batteries are safety critical components that provide power

to system functions including command, control, communi-

cations, and intelligence [1]. It is important to improve the

performance of battery management system (BMS) to make

battery operation safe, reliable, and cost-efficient [2], [3]. BMS

is designed to evaluate the instantaneous state-of-charge (SOC)

in the battery and at the same time to monitor the slowly

varying state-of-health (SOH).

SOC is an indicator that represents the available charge

stored in the battery compared to the full capacity charge of

the battery, given by a percentage of the current charge to the

entire charge [4]. SOH describes the physical condition of a

battery. Unlike SOC, there is no widely accepted definition

of SOH. A general definition of SOH is that it quantifies

the battery’s ability to store energy and deliver specified

performance compared to a fresh battery [5]. The total capacity
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of the battery is evaluated in terms of Amp-hours (Ah), which

basically is a dimension of electric charge.

It’s essential to accurately estimate the SOC and SOH in

order to maximize and optimize the system operation. Know-

ing SOC also helps prevent overcharge and over discharge of

batteries, which is vital for safe operation and long cycle life

of lithium-ion batteries. However, both SOC and SOH are not

directly observable, which requires estimation and prediction

algorithms to provide real-time battery states [3], [6]–[9].

The easiest way to estimate SOH is based on current integra-

tion [10], [11]. Different estimation methods are also devel-

oped, including reduced state-space electrochemical models,

artificial neural networks, and impedance spectroscopy [12]–

[15]. These methods usually require a large computational

cost, which makes them suitable for SOH estimation but not

for SOC. The reason is that SOC estimation is often integrated

with online real-time planning and control, which requires

much faster and more accurate algorithms [4], [7], [16]. There

are two main methods to estimate SOC. The first one is

Coulomb counting method, which estimates SOC directly.

However, it is sensitive to current error accumulation and

requires accurate initial condition, which may not be available

in many applications. The other method is open circuit voltage

(OCV)-SOC conversion method, which uses the one-to-one

mapping between SOC and OCV to estimate SOC. However,

OCV cannot be measured directly in practical use since it

needs a long rest time to achieve equilibrium in the battery

before each measurement. Therefore, OCV estimation is often

performed by using an equivalent circuit model (ECM) and the

measured battery terminal voltage. With the OCV estimation,

the SOC estimation can be obtained [17], [18].

Extended Kalman filter (EKF) is widely used in nonlinear

system states estimation due to its simplicity [19]. EKF

linearizes nonlinear system models, and calculates the mean

and variance values of system states based on Bayesian theory.

Traditionally, EKF is designed in Riemann sampling (RS), in

which samples are taken in a periodic way and is denoted as

RS-EKF. One major limitation of RS-EKF is its computational

cost as the algorithm is executed every time when a measure-

ment becomes available. To address this problem, Lebesgue

sampling (LS) method is introduced with the advantage of

reducing the computational cost by executing the algorithms

“only when necessary” [20]. A SOH estimation and RUL

prediction method was developed [21]. However, a BMS

requires to monitor the two interconnected states, SOH and

SOC, at the same time. To address this need, this research aims
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Fig. 9. HPPC data for a fresh battery at room temperature.

[32], which minimizes the sum of square error between the

measured voltage and the voltage calculated by Eqs. (10) and

(11). Since the dependence of parameters on SOC is negligible

[28], the data collected from SOC=50% is chosen to identify

the parameters. The results are shown in Eq. (12) and are used

in OCV-SOC estimation.











RCT = 11.7mΩ; τCT = 7.1547s

RDif = 20.5mΩ; τDif = 7.0459s;

R0 = 44.7mΩ

(12)

B. Experimental results of LS-EKF

Figs. 7 and 8 show that the battery capacity (in the whole

service life) and discharge capacity (in one discharge cycle)

decrease with the increase of charge-discharge cycles and

discharge time, respectively. To accommodate the influence of

battery capacity degradation on SOC when SOH and SOC are

integrated in BMS system, in the SOC estimation, the initial

battery capacity Q0 at each cycle must be updated based on

the posterior pdf from the SOH estimation.

1) SOH estimation by LS-EKF: To implement LS-EKF

for the battery capacity degradation, 40 uniformly distributed

Lebesgue states are initially defined in the battery’s full

capacity of 2.25 Ah with consideration of our computation

capability. With this setting, the diagnostic algorithm is exe-

cuted only when the capacity degrades from one Lebesgue

state to another. During the diagnosis process, the length

of the Lebesgue states is optimally adjusted according to

the battery SOH degradation speed. If it degrades faster, the

next Lebesgue length will be decreased, otherwise, the next

Lebesgue length will be increased [24].

In Lebesgue sampling framework, a diagnostic model is

developed as [33], [34]:

C(tk+1) =C(tk)− pdC(tk)
pnD(tk)sgn(C(tk)− C(tk−1))

+ ω(tk)
(13)

where sgn(·) is a sign function and treated as positive or

negative sign when calculating the Jacobian, C is the battery

capacity, pd and pn are hyperparameters, which have values of

1.2 and 1.1, respectively, and the noise term ω(tk) is required

to be Gaussian. Note that this model is an explicit form of Eq.

(3) for SOH diagnosis.

To illustrate the proposed algorithm, a Sony-HD18650-1C-

004 battery is used as an example. Fig. 10 shows the diagnostic

Fig. 10. LS-EKF diagnosis for battery at the 400th cycle.

results at the 400th cycle. The mean of capacity estimation is

1.414 and the 95% CI is [1.409, 1.419]. The upper sub-figure

shows the comparison of capacity from Coulomb counting

(blue) against the estimated mean value from diagnosis (ma-

genta). The lower sub-figure shows the comparison of initial

baseline pdf (green, created from the battery capacity at the

beginning of service without degradation, which is the battery

capacity values from Arbin system in the first 50 charge-

discharge cycles) compared with the real-time estimated pdf

at the 400th cycle. Note that the diagnostic algorithm is only

executed 25 times in the past 400 cycles.

Prognosis is conducted by propagating the operating time

distribution at each Lebesgue state, among which the one on

the Lebesgue state that equals to the failure threshold is the

RUL pdf. The prediction model is given as [33], [34]:

t̂k+1 = t̂k+pp ·C(tk)
pt
·D(tk) ·exp

(

−Ċ(tk)
)

+τ(tk) (14)

where pp and pt are hyperparameters with values of 975 and

0.45, respectively, and τ(tk) is a Gaussian noise term. To use

Eq. (14) for long-term prognosis, the initial distribution of

the time distribution at the current Lebesgue state is converted

from the current battery SOH distribution, as illustrated in Fig.

4.

Fig. 11. LS-EKF prognosis for battery at the 400th cycle.

Fig. 11 shows the SOH prognostic results at the 400th cycle.

The prediction horizon is 20 Lebesgue states. The pdf at the

failure threshold is the predicted time to failure (TTF) for this

battery with a mean value of 814.35 cycles and the RUL is

414.35 cycles. The 95% CI of the TTF distribution is [809.1

819.6], which indicates that the uncertainty accumulation is

very small due to the small prediction horizon. Compared with
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2) SOC estimation by RS-EKF: OCV-SOC estimation re-

sults are achieved by RS-EKF based on Eqs. (10) and (11).

Fig. 15 shows the results, at the same time as in Fig. 12. The

upper sub-figure shows the comparison of measured voltage

(blue) against the estimated mean value of OCV (magenta).

The lower sub-figure shows the comparison of initial baseline

pdf compared with the real-time estimated pdf. Note that

the diagnostic algorithm is executed 50 times in the past 50

sampling data points, i.e., every time when a new measurement

becomes available.

The mean of OCV is 3.73 V and the 95% CI is [3.70, 3.76]

V. With the same mapping method illustrated in Fig. 6, the

results show that CIDOD and CISOC are [0.3752, 0.4407]

and [0.5593, 0.6248], respectively.

Fig. 15. Estimated OCV-SOC results by RS-EKF.

D. Comparison of RS-EKF and LS-EKF

1) Comparison of SOH estimation: Table I shows the

comparison of diagnostic and prognostic results of RS-EKF

and LS-EKF for SOH. The computation time at the 400th

cycle for LS-EKF prognosis is only 6.64% of that of the RS-

EKF prognosis.

TABLE I
COMPARISON OF SOH AT THE 400TH CYCLE

Diagnosis results RS-EKF LS-EKF

Capacity estimation 1.4269 1.414

Capacity 95% CI [1.4080 1.4459] [1.409 1.419]

Execution numbers 400 (100%) 25 (6.25%)

Prognosis results RS-EKF LS-EKF

True TTF 822 822

Estimate TTF 806 814.35

95% CI of TTF [769 843] [809.1 819.6]

Prognostic horizon 444 20

Computation time (s) 0.083668 (100%) 0.005553 (6.64%)

The results in Table I are a snapshot of diagnosis and

prognosis at the 400th cycle. In order to compare SOH prog-

nosis in the entire battery service life in terms of prediction

accuracy, α - λ matrix is introduced [35], as shown in Fig. 16

with α = 0.3. It is clear from Fig. 16 that the mean of the

predicted RUL for LS-EKF is as accurate as that of RS-EKF.

However, the variance of predicted RUL of RS-EKF is much

smaller as shown in Table I, which is the natural benefit from

Lebesgue sampling method: since the prediction horizon in

LS-EKF is much smaller than that of LS-EKF, the uncertainty

accumulation during the prediction process is much smaller.

Based on these advantages, LS-EKF provides strong support

for decision-making. More importantly, the LS-EKF required

less calculation sources, which makes it promising for dis-

tributed diagnosis and prognosis algorithms to be deployed on

hardware with limited computational sources.

Fig. 16. Prediction accuracy comparison between RS-EKF and LS-EKF.

2) Comparison of SOC estimation: Table II shows the

comparison of diagnosis of OCV from RS-EKF in Fig. 15 and

LS-EKF in Fig. 12. Compared with RS-EKF diagnosis with

50 executions, the LS-EKF diagnosis only has 18 executions.

The computation cost is only 36% of that of the RS-EKF.

TABLE II
COMPARISON OF OCV ESTIMATION

Diagnosis results RS-EKF LS-EKF

OCV estimation 3.7313 3.72

OCV 95% CI [3.7031 3.7595] [3.7156 3.7244]

Execution numbers 50 (100%) 18 (36%)

The standard OCV-SOC curve and the diagnosis results

from RS-EKF and LS-EKF are shown in Fig. 17. The es-

timated OCV-SOC curves by RS-EKF (green) and LS-EKF

(magenta) are both close to the standard OCV-SOC curve

(black) compared with the measured V-SOC curve (blue). The

root mean square (RMS) error of the estimated OCV-SOC

curves from RS-EKF and LS-EKF are 0.05610 and 0.0601,

respectively, which indicates an accurate OCV-SOC curve is

achieved by LS-EKF method with less computation. Moreover,

this result shows that the SOC equivalent circuit model used

in this research is accurate enough. In the real applications,

new HPPC tests can be conducted when the battery oeprating

condition changes to accommodate the model uncertainty and

improve the robustness of the proposed algorithm.

Note that it is difficult to provide fair comparison of RS-

EKF and LS-EKF for SOH and SOC because they use different

models and different algorithm designs. Therefore, the tables

and figures in this section use some widely used criteria,

such as mean, confidence interval, and computation time for

comparison. The comparison shows that LS-EKF has much
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