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Abstract—1In computer-controlled systems model predic-
tive control (MPC) algorithms are usually implemented in
a discrete-time manner even when the plant is continuous-
time. It means that (i) the time instants to sample the states
and compute the optimal solution to a finite horizon optimal
control problem (FHOCP) must be triggered intermittently and
(ii) the computation of the control inputs, including solving
the FHOCP, should be completely discrete-time. Inappropriate
discretization may place a heavy computational burden on the
processor and possibly lead to violation of system constraints,
instability, and infeasibility of MPC. This paper presents a
discrete-time MPC algorithm, based on Lebesgue approxima-
tion, for nonlinear sampled-data systems. In this algorithm,
the sampling instants are triggered by a self-triggered scheme.
The predictive model in the FHOCP is iterated in an aperiodic
manner subject to the Lebesgue approximation model. Suffi-
cient conditions are derived on feasibility and stability of the
closed-loop systems with the guarantee of exclusion of Zeno
behavior.

I. INTRODUCTION

Model predictive control (MPC) is an efficient tool used in
a wide range of applications, such as process control, power
grids, transportation systems, and manufacturing, to name
a few. It can, to some extent, optimize the performance of
control systems subject to constraints on states and inputs. A
standard implementation of MPC predicts the (near) optimal
control inputs over a finite horizon based on a predictive
model that represents the behavior of the actual dynamical
system of interest.

In computer-controlled systems, MPC algorithms are of-
ten implemented in discrete-time. With this observation,
sampled-data MPC has been investigated where algorithms
were developed to identify the sampling time instants. Peri-
odic sampling was studied in [1], [2]. Howeyver, this approach
could be conservative in some applications since it may
trigger the computation of the solution to a finite horizon
optimal control problem (FHOCP) more frequent than nec-
essary and therefore lead to significant over-provisioning to
the processor.

As a result, event-triggered MPC algorithms were de-
veloped to address the issue where the sampling and
computation instants are determined by the occurrence of
some pre-defined events [3], [5]-[9]. Different from event-
triggering approaches, self-triggered MPC predicts the next
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the sampling instant based on the past information [10]—
[14]. All these works focus on determining the sampling/-
computation instants, while the controller itself remains to
be continuous-time. In other words, at each sampling/com-
putation time instant, the controller still needs to solve
a continuous-time FHOCP. Discretization of the FHOCP
in MPC with fixed period was considered in [15], [16]
for continuous-time linear systems. To extend to nonlinear
case, our recent work proposed a Lebesgue-approximation-
based MPC approach (LAMPC) [17] where the discretization
of the FHOCP is based on the Lebesgue-approximation
model (LAM) of the continuous-time plant [18]. Different
from periodic approaches, the LAM iterates both the pre-
dictive states and the future sampling time instants. This
aperiodic approach may potentially enlarge the predicted
horizon.

This paper extends the LAMPC approach in [17] to
nonlinear sampled-data systems with measurement noises.
We study how the noises affect accuracy of the LAM and the
performance of the MPC. In the proposed algorithm the sam-
pling time instants is triggered by a self-triggering scheme
and the LAM is used in the FHOCP as an approximation of
the continuous-time plant. Sufficient conditions on feasibility
and stability of the resulting closed-loop systems are derived.
It is shown that the system is uniformly ultimately bounded
with appropriate thresholds in the LAM.

The paper is structured as follows. Problem formulation is
presented in Section II. The LAMPC algorithm is introduced
in Section III. Section IV analyzes feasibility of our approach
and Section V discusses system stability. Simulation results
are provided in Section VI. Finally, conclusions are drawn
in Section VIL

II. PROBLEM FORMULATION

Definition 2.1: A continuous function  : Rf — Ry
belongs to class K if it is strictly increasing and «(0) = 0,
limg o a(s) = 0.

Definition 2.2: The state x(t) of a system & = f(z) is
called uniformly ultimately bounded (UUB) with ultimate
bound b if there exist positive constants b and ¢, independent
of tg > 0, and for every a € (0, c), there is T = T'(a, b) > 0,
independent of ¢, , such that || (to)|| < a implies ||z(t)]| < b
forany t > to + 7.

Consider a nonlinear continuous system:

B(t) = fla(t),u)) (1)

x(t0> = Xp



where z(t) € X C R” is the system state, u(t) € Y C R™
is the control input, and f : X x U/ — R™. The sets X and
U are the constraint sets on the state and input, respectively.
We assume f(x,u) is locally Lipschitz with respect to z,
i.e., there exists a positive constant L so that for Vz,y € X
and v € U, the following inequality holds:

||f(a:,u) -

The main idea of MPC is described as follows: At time ¢,
the system samples the state and obtains the sampled state
Z(ty). Using Z(tx) as the initial point, the controller solves
the FHOCP over the prediction horizon [t, tx + T%|, where
T}, is the horizon length, and identify the next sampling time
instant ¢ 1. Then the calculated optimal control inputs will
be applied to the plant over the time interval [k, t5+1). The
next sampling and prediction will start at ¢5 .

We assume that the sampled state contains measurement
noise, i.e.,

w)ll < Lyllz = yll

.’Z‘(tk) = x(tk) + w(tk)
where w(t;,) is the noise satisfying !
[w(te)]| < o 2

In our discrete-time MPC framework, the sampling time
instants and the calculation of the FHOCP must be discrete.
In general, the next sampling time ¢4 can be expressed as

tht1 =tk + or, 3)

where ¢ € RT is the inter-sampling time interval to
be defined. The cost function of the FHOCP at the kth
computation is

te+Tk
Hala(w) = [ L@ a)dr + Vil + T), @
ti

where & : R™ — R"™ and 4 : RT — R™ are the predictive
state and input, respectively, L : R® x R™ — R™T is the
running cost function, and Vy : R® — R* is the terminal
cost function.

The objective is to design a completely discrete-time and
cost-efficient MPC algorithm to stabilize system (1), in the
presence of measurement noises and state/input constraints.

III. LAMPC ALGORITHM

This section presents the LAMPC algorithm. To begin
with, we first define the LAM for the FHOCP: Starting at
time g,

pitl _ pi 4 gad Dl 20 ziy
T =2+ k||d”|| Ty = Z(tr)
L,
A , Di ®)
tt =t + ||dﬁ||, 19 =ty
L,

diy, = f(i}, @),

Notice that if the system is output-feedback, given an observer, Z(ty)
can be viewed as the estimate of x(tx) and w(tg) can be the estimation
error. As long as the estimation error is bounded, the results in this paper
are still applicable.

where 2%, 4i, and ﬁ}c = D(2%,4l) are the predictive state,
the predictive input, and the state-dependent discretization
level of LAM at the ith iteration, respectively. The threshold
function D : R® x R™ — R* will be discussed later.

Let NV € N be the number of iterations in the LAM. The
horizon length can be described as T}, = t§Y —t%. Using zero-
order-hold approximation Z(7) = &, and u(7) = @}, for any
T € [t tf“l), the cost function (4) can be rewritten as
gt

L(a(r), a(r))dr + Vy(@(ty)))

=0
N-1 Ny

i iy Di .
=0 k

(6)
Then we can state the FHOCP at time t;, as a discrete-time
optimal control problem:

V(:f(tk)) min [’llﬂ(f(tk)]
ukeu +=0,...,N—1
i D’
subject to @4t = &% + d},
||d33kH (7)
&y = Z(tr)
e X,i=1,..,N—1

JAIéVEXNZXf

where X; are the constraint sets on the predictive state %
and Xy is the terminal set.

Let ﬁ;c* (¢ =0,...,N — 1) be the optimal solutions and
fcz* € X; be the correspondmg optimal states. Accordingly,
dii and D} in (5) become

Dy = D(&y*,4)") and  day* = f(ay",ay").
With the optimal solution, we can define the next sampling
time instant ¢; 1, following the time iteration in (5):
ﬁO *
=t =t - (8)
IId al

The LAMPC algorithm is summarized as follows.

tkt1

TABLE I
LAMPC ALGORITHM ROUTINE

At time ¢t = ¢,

1 Sample the state and obtain Z(ty);

2 Solve the FHOCP (7) for 5;;;* and ays

3 Apply the optimal solution uk to the plant,
ie, set u(t) = 4™ over [ty, tri1);

4 Start the next sampling and computation cycle
at time 4, defined by (8);

IV. FEASIBILITY

In order to guarantee feasibility of LAMPC, the constraint
sets X; in the FHOCP must be correctly defined. Notice that



we do not have direct access to xz(t), but only access to
#%. Therefore, to ensure x(t) € X, the idea is to reduce
the constraint set X’ by certain amount to obtain X; and
hopefully a%,lc* € X can imply z(t) € X. To begin with, we
first study the error dynamics between the LAM (5) and the
continuous-time dynamics (1). Let z(t) be defined as

2(t) = &(ty,) + day (¢ —ty), Yt € [ti,trga].  (9)

Note that z(t) = &)* = Z(t),) and z(tp41) = )"

Lemma 4.1: Consider system (1) and the signal z(t), then
for any ¢ € [tg, txt1], the following inequality holds
Ly DY Ly D)™
2(t)] < ex 2 DYF el — 1 | 4 gel il

[l (t) —

(10)
where o is defined in (2).
Proof: By the definition of z(t¢), we know that z =

di* = f(&0*,a0*) for t € [ty, tg+1). Let us set the error
to be e(t) = x(t) — z(t), then we can get its dynamics as:

é(t) = fla(t), iy™) — f(@(te), "),

which leads to the inequality

Llel < el = 117 (1), 82%) — F(2(te), 83°)]
< Lyllalt) — #(t)] = Llla(t) — =(0) + =(t) — #(t)]
< Lylle(®)l + Lyll=(t) — =(t3)|
< Lylle(t)] + Ly 22" (¢ — 1)

)

< Lylle(t)|| + Lyllday™ (trs1 — )|
AO*

= Lylle(®)| + Lglld2y " | b= = Lylle®®)| + Ly D"

AO *
1z, |
Solving the inequality with ||e(t;)|| < o, we obtain

lle(®)]l < bg’*(eLf(tit’“) —1) 4+ gelrlt=te)
< bgv*(eLf(thrl—tk) _ 1) + gels (e —ty)

LfD%* Lf[)g’*
- ﬁga* el ™l — 1 | 4 gellerl
for any ¢ € [tg, tgt1]- [ |
Let
LfD(m,u) LfD(J_ u)
€= max D(x u) eT@wal — 1) + geTi@aT (11)
TEX, ucl
and
X2 X — 2 (12)

where X — 2¢ is the Pontryagin difference between X and
a ball B(2¢) centered at the origin with the radius 2e. With
the result of Lemma 4.1, if Z(tg) € X —¢, z(t) € X can be
guaranteed for any ¢ € [tg, tr11).

To ensure feasibility, we assume that for any =,y € &,
and u € U, there exists a positive constant L¢ such that

f(z,u)

w2

Ls|lz =yl

HD(ac,u)
(13)

! )Ilf w,u ||H

and there exists a function h : R™ — R™, h(0) = 0 so that

0 € int(Xf) (14)
X+ (o+e)(Ls+ 1)Vt Ccay
£ {z e Xy_1|h(z) €U} (15)
reXi+(o+e)( L+ 1)V =
T+ D(m,h(x))f(x,h(x)) € Xy. (16)

1f (z, h(z))]]

Then we construct an admissible control input for the

LAM at the (k + 1)st computation with the initial condition
j%Jrl = Z(tk+1):

. {a;*,i_m LN =2
E+1 —
h(Zpy)- i=N—1

We compute the optimal input from 0 to (N — 1) in
each computation cycle. As a result, the ith control input
calculated in the current cycle can be mapped to the (i —1)st
input in next cycle.

a7

With @, and 2) ; = Z(tj41), the LAM can generate
the states at the (k + 1)st computation cycle as & ;. Then
we will study the difference between Z;_ +1 and :%2*

Lemma 4.2: Given inequality (13), the following inequal-
ity holds

||AZ 1 Az*

it - <(o+e)(Ls+1)71 i=1,2,...,N. (18)
Proof: The proof is similar to the proof of Lemma 2
in [17] and therefore omitted due to space limit. |

With the bound in Lemma 4.2, we can define the reduced
constraint sets in the FHOCP at each iteration:

Xi 2 X—(o+e) (Z(Ls +1)P 1) ;i=1,..,N-1

p=1
(19)
Theorem 4.1: With X; and Xy defined in (19) and (14)-
(16), respectively, the FHOCP in (7) is always feasible.
Proof We will prove that if #;* € A; for i =
1,2,--- | N, there is a feasible solution of the optimization
problem in k + 1, which is 4] ; defined in (17), based on

N

the optimal solution in &, ;.

First, we show that ukJrl e U forv = 0,1,--- N —
1. Based on equation (17), @f,, = a, " € U for
i =0,1,---,N — 2 because of the feasibility of ;. By

Lemma 4.2 and ¢; < ¢, we know

&5 =1 < 0+ L + DY

Tht1

Since xk te Xy, $k+1 € X+ €(Ls + 1)N~1 holds. By
equation (15),

Ny e X+ o+ L+ )V CAy 0
and therefore i el
Next, we show that ﬂwl eX;fori=1,.--,N—1and

:E,ICVH € Xy. Because equation (20), we have i’kNH € Xy by
equation (16). Also, by Lemma 4.2, we know

|#h1 — 27N < (0 + ) (Ls + 1)



fore=1,---

141
Zi';€+17* c Xi—i—l =X — (O’ + 6) <Z(L9 + 1)1)71 + 1>

p=1

, N — 1. Also, notice that

fori=1,---,N —2and &} € X; C Xn_1. So

$hi1 € Xip1+ (0 +€)(Ls + 1)
=X = o+ (Tpo L+ 1P 4 1) = &

fori=1,---, N — 1, which completes the proof. [ ]

V. STABILITY

This section discusses stability of the closed-loop system.
Before presenting the main results, we will first define the
threshold function D(z, u) because this function will directly
affect system stability. If the threshold ﬁ}; is too large,
the LAM may significantly deviate from the actual system,
which may lead to instability.

Let
If(sz)ll log (max{ HPfL((x “))H 5} + 1) @1

where ¢ is an arbitrarily small positive constant and p is
a positive constant to be determined. Such a choice of the

D(z,u) =

threshold can avoid Zeno behavior since HIJ?((E"S))H > loggjl)
always holds and therefore tfjl —t > bggjl) according

to equation (5).
Let L(x,u) be selected such that there exist class Koo
functions 5 : R — R satisfying

Bllel) < oo, (D
A(lel) < D(z,u), and  @3)
(24)
L(z,u) pL(z,u)
Ly 1‘)g<m‘x{|f ol 5}“) =

is locally Lipschitz with respect to x with the Lipschitz
constant L. for any z € X and u € U.

Assume that besides the conditions in (15) and (16) the
function h(z) also satisfies

Vy (o 4+ DG v < -

17 (z;h(2))]] [1f (@, A ()]l
(26)

Theorem 5.1: Suppose that the hypotheses in Theorem 4.1
hold. If for any z,y € X/{0} and u € U/{0}, there exist
positive constants Ly, , p and a class Ko, function o : R — R
such that

[Vi(x) = Vi(y)| < Ly;llz—yll @7
Vi(z) <alllz]])  (28)
p< L (29)

Sy Le(Ly + 1)1 + Ly, (g + 1)V
hold, the system in (1) under the LAMPC algorithm (7) is
UUB.

Proof: Let J[j4+1|Z(tr+1)] be the cost of the FHOCP
generated by 4}, 41 in (17) with the initial condition Z(t341).

L(z,h(x)) D(z;h(z))

Consider

J[Ak+1\5€(tk+1)] -

V(x(tr))

N— -
i Dj. . _
Z (1> Ugr) Mﬁ +Vy (#04) = V(@ ()

=0
N-—-2 PN
~q ~d ~N—1 ~N-—1
=2 L (Fh, Bya) ||dzk+1u LB i) udxwl ]
=0
~ N N
+ Vi (25) = V(@) + Vi ($k+11) =V (xk+11)
0 ~0) DY~ 0 0%\ Dp~
(") ey - L (30 ") gk
N—2 Di.. N-1
im0 L (&} 41, Ujgn) Hdwk gtV (Ze1) <I>
— R DO,*
+L (37,007 rober — V@)
lldzy ||
SN-1 »N-1\ Dpg' N N1
+ L (& ) Hdi’;:rjjlll“ + Vi) = V(@)
4
0 N ﬁo,*
) (mk*, k*) Teart (30)

By inequality (26), we have ¥ < (0, because u]kv +11 =

N N-1, D(ERntan s ) (B ann)
h(xk+1 ) and irk-‘rl - xk+1 T ||f( k+11’uk+1 )H .

Therefore, the preceding inequality can be simplified as

Tlinar|#(tre)] = V(@(t) < @ = L ()7, ) 7ober-
3

Consider ®. Note that the first term in ® can be written as
N-1

N-2
N D; Liel aie1y  Dia
Z L (xk+1>“k+1) Hdﬁ:]i:lln = Z L (xk+1auk+1) Hd:ri:\l'
i=0 i=1
_ N—1 L(&y"a,") Dy~ LN %
By (), V(a(n) = NI SOy (50
Therefore,
N-1
@_ZL(‘%Z 1 aifl) D;Lc+11 +V (i_N 1)
= k410 Ph+1) Jdz g 1] F\ k41
i=1
N—1 _
L Ak Ak ﬁl* % AN, % 37
_ I’k ,U HdT f Ik . ( )
i=1

L(z,u)D(z,u)

Consider the function 7wl

of D(z,u) in (21) yields

L(z,u) pL(x,u)
L(z,u)D(z,u) _
e = M7 o (masx { £ 6} 1),

By (25) this function is locally Lipschitz. Therefore,

. Applying the definition

N 1—1 * T,
k+1’uk+1)Dk+1 _ L( L 7“1@ )D
— lldz; 25 lldz;* |
~N—1 AN ,*
+‘Vf JCk+1) Vf(l‘k )’
N-1
~Ai—1 PR — ~ N ,*
< Le||Tyqy — 2 || + Ly kaJrl k
i=1
~i—1 ATk
By Lemma 4.2, |2} — 2.7 || < (0 + &)(Ls + 1)




Therefore,

O <(0+¢) <Z_: L.(Ls + 1)1‘—1 + va(Ls + 1)N—1> .

i=1

With this inequality, (31) can be further simplified as
V(z(tr))

J[tge1|Z(r1)] =

< A0,% A0, ﬁz* .
L < LAy ) faae t (0 +e€x)0
Therefore,
V(Z(trt1)) = V(@(tr)) = min J[dgr1|2(tpq1)] — VI(2(tr))
Uk+1

0,% ~0,% f)o’*
< — ——k
= L(I’f U )udiz**u

Applying the definition of D(x, u) and € into this inequality,

+ (0 + €x)6.

V(Z(tk+1)) = V(Z(te))
0,% AO* by~
<-L (")) b
LfDO* L;DY*
+ Dg* el — 1| + el "l | 9+ o6
N 0,* 0,*
—_ l/( ~0,% A0%> L) . l) 44&4544&&41
3" ) e + Db max iy 6 0

pL(zz* “2*

)
—l—amaux{lf(2 T o0+ 200

Note that 5:2* = Z(t). Consider the case when ||Z(t)|| >
5—1( ), ie., pB(|Z(tr)|]) > 6. By inequality (22), the
precedmg 1nequah y implies

V(Z(trt1)) — VI(@(tx))
*A* 0 "*L(O*U )
< L( ~0, 0 ) Dk _ 0.% P b
B ) e Pk e
+ o LEUEN) 4 9gg

MG
_ 7“9”2* 57) (HO* PO — ol
= 0 0 k e PO —opl) +200.

ILf (&% i)l

Consider the case when ||Z(tg)|| > v~
ity (23), we know

(1 - p8)DY* > 20p8.

o (21‘:% ). By inequal-

Therefore, the preceding inequality implies

V(@(ten) = Viat) < - 5 ibatdop0 + 206
< — B(2(t) )oph + 200

To summarize, when
_ — — opl —
o)l > max {871(2),771(225), 87 (5) },

we have means

V(Z(tgs1)) — (33)

By (26), we know

Vi (&)

— Vp(#)) < — L2, h(@} ))W

I1F (23, o

Summing up the inequality above for : = 0,1, ---

= i 4 D(l‘kvh(i;@))
2 L@ M T T

=0

Vi (&) = Vp(@) < -

Thus, by the definition of V(Z(tx)),

A D)
Vi) < D Lk b)) ey V@)
<VHE) = Vyan) <ol ®)l) (G4

holds, which, together with inequality (33), implies that Z(¢y,)
will be uniformly ultimately bounded. By Lemma 4.1, we
know that z(¢) will also be UUB. |

VI. SIMULATION

This section shows how the LAMPC works on a nonlinear
system with measurement noises. We consider the crane
model in [19] with the excitation angle ¢ and the horizontal
trolley position p:

p(t) = v(t)
o(t) = u(t)
(t) = w(t)
w(t) = —gsin(p(t)) — u(t)cos(d(t)) — bw(?),

where © = (p,v,6,w) " is the state and u is the control
input. The control input must satisfy —0.5 < w(t) < 0.5.
Besides, we use the parameters m = 1kg, L = 1m,b = 0.2J
and g = 9.81m/s%. The measurement noise w(t;) satisfies
lw(te)|| < 0.05.

The running cost function and the terminal cost function
are defined as

L(z,u) = [f(z,u)| - (|2 + [u[ + 1), Vi(z) = 5|z,

The threshold function D(xz,u) is defined by equation (21).
The BARON solver [20] is used to solve the nonlinear
FHOCP.

Figure 1 plot the state and input trajectories of the system.
It is obvious that the system converges to a small neigh-
borhood of the origin and the constraints are not violated.
Figure 2 plots the trajectory of V(Z(t;)). We can see that
V (barxz(ty)) keeps decreasing until being close to zero. This
is consistent to the theoretical results. Figure 3 shows the
history of the inter-sampling time intervals generated by
the self-triggered scheme (top) and the length of prediction
horizons at each sampling instants (bottom). It is clear that
those intervals are time-varying until the state stays around
the steady state. Also notice that they are strictly greater than
Zero.

VII. CONCLUSIONS

This paper presents the LAMPC algorithm for nonlinear
continuous-time systems with measurement noises. A self-
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The history of V' (Z(tx))

triggered method is used to trigger the sampling and compu-
tation and the LAM is designed to discretize the FHOCP.

We

show that with appropriate design of the threshold

function in the LAM, even when the sampled state contains
measurement noises, the LAMPC can still guarantee the
system to be UUB. As mentioned in context, this work can be
applied to output-feedback systems as long as the observer is
well designed such that the error between the estimated state
and the actual state is uniformly bounded as stated in (2).
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