
Lebesgue-Approximation-Based Model Predictive Control for Nonlinear

Sampled-Data Systems with Measurement Noises

Lixing Yang, Xiaofeng Wang

Abstract— In computer-controlled systems model predic-
tive control (MPC) algorithms are usually implemented in
a discrete-time manner even when the plant is continuous-
time. It means that (i) the time instants to sample the states
and compute the optimal solution to a finite horizon optimal
control problem (FHOCP) must be triggered intermittently and
(ii) the computation of the control inputs, including solving
the FHOCP, should be completely discrete-time. Inappropriate
discretization may place a heavy computational burden on the
processor and possibly lead to violation of system constraints,
instability, and infeasibility of MPC. This paper presents a
discrete-time MPC algorithm, based on Lebesgue approxima-
tion, for nonlinear sampled-data systems. In this algorithm,
the sampling instants are triggered by a self-triggered scheme.
The predictive model in the FHOCP is iterated in an aperiodic
manner subject to the Lebesgue approximation model. Suffi-
cient conditions are derived on feasibility and stability of the
closed-loop systems with the guarantee of exclusion of Zeno
behavior.

I. INTRODUCTION

Model predictive control (MPC) is an efficient tool used in

a wide range of applications, such as process control, power

grids, transportation systems, and manufacturing, to name

a few. It can, to some extent, optimize the performance of

control systems subject to constraints on states and inputs. A

standard implementation of MPC predicts the (near) optimal

control inputs over a finite horizon based on a predictive

model that represents the behavior of the actual dynamical

system of interest.

In computer-controlled systems, MPC algorithms are of-

ten implemented in discrete-time. With this observation,

sampled-data MPC has been investigated where algorithms

were developed to identify the sampling time instants. Peri-

odic sampling was studied in [1], [2]. However, this approach

could be conservative in some applications since it may

trigger the computation of the solution to a finite horizon

optimal control problem (FHOCP) more frequent than nec-

essary and therefore lead to significant over-provisioning to

the processor.

As a result, event-triggered MPC algorithms were de-

veloped to address the issue where the sampling and

computation instants are determined by the occurrence of

some pre-defined events [3], [5]–[9]. Different from event-

triggering approaches, self-triggered MPC predicts the next

Lixing Yang and Xiaofeng Wang are with the Department of Electrical
Engineering at the University of South Carolina, Columbia, SC, 29208,
email: lixing@email.sc.edu, wangxi@cec.sc.edu. The authors gratefully
acknowledge the partial financial support of the National Science Foundation
(IIS-1525900 and ECCS1739886).

the sampling instant based on the past information [10]–

[14]. All these works focus on determining the sampling/-

computation instants, while the controller itself remains to

be continuous-time. In other words, at each sampling/com-

putation time instant, the controller still needs to solve

a continuous-time FHOCP. Discretization of the FHOCP

in MPC with fixed period was considered in [15], [16]

for continuous-time linear systems. To extend to nonlinear

case, our recent work proposed a Lebesgue-approximation-

based MPC approach (LAMPC) [17] where the discretization

of the FHOCP is based on the Lebesgue-approximation

model (LAM) of the continuous-time plant [18]. Different

from periodic approaches, the LAM iterates both the pre-

dictive states and the future sampling time instants. This

aperiodic approach may potentially enlarge the predicted

horizon.

This paper extends the LAMPC approach in [17] to

nonlinear sampled-data systems with measurement noises.

We study how the noises affect accuracy of the LAM and the

performance of the MPC. In the proposed algorithm the sam-

pling time instants is triggered by a self-triggering scheme

and the LAM is used in the FHOCP as an approximation of

the continuous-time plant. Sufficient conditions on feasibility

and stability of the resulting closed-loop systems are derived.

It is shown that the system is uniformly ultimately bounded

with appropriate thresholds in the LAM.

The paper is structured as follows. Problem formulation is

presented in Section II. The LAMPC algorithm is introduced

in Section III. Section IV analyzes feasibility of our approach

and Section V discusses system stability. Simulation results

are provided in Section VI. Finally, conclusions are drawn

in Section VII.

II. PROBLEM FORMULATION

Definition 2.1: A continuous function α : R
+
0 → R

+
0

belongs to class K∞ if it is strictly increasing and α(0) = 0,

lims→∞ α(s) = ∞.

Definition 2.2: The state x(t) of a system ẋ = f(x) is

called uniformly ultimately bounded (UUB) with ultimate

bound b if there exist positive constants b and c, independent

of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) ≥ 0,

independent of t0 , such that ‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b
for any t ≥ t0 + T .

Consider a nonlinear continuous system:

ẋ(t) = f(x(t), u(t)) (1)

x(t0) = x0

where x(t) ∈ X ⊂ R
n is the system state, u(t) ∈ U ⊂ R

m

is the control input, and f : X × U → R
n. The sets X and

U are the constraint sets on the state and input, respectively.

We assume f(x, u) is locally Lipschitz with respect to x,

i.e., there exists a positive constant Lf so that for ∀x, y ∈ X
and u ∈ U , the following inequality holds:

‖f(x, u)− f(y, u)‖ ≤ Lf‖x− y‖.

The main idea of MPC is described as follows: At time tk,

the system samples the state and obtains the sampled state

x̄(tk). Using x̄(tk) as the initial point, the controller solves

the FHOCP over the prediction horizon [tk, tk + Tk], where

Tk is the horizon length, and identify the next sampling time

instant tk+1. Then the calculated optimal control inputs will

be applied to the plant over the time interval [tk, tk+1). The

next sampling and prediction will start at tk+1.

We assume that the sampled state contains measurement

noise, i.e.,

x̄(tk) = x(tk) + w(tk)

where w(tk) is the noise satisfying 1

‖w(tk)‖ ≤ σ. (2)

In our discrete-time MPC framework, the sampling time

instants and the calculation of the FHOCP must be discrete.

In general, the next sampling time tk+1 can be expressed as

tk+1 = tk + φk, (3)

where φk ∈ R
+ is the inter-sampling time interval to

be defined. The cost function of the FHOCP at the kth

computation is

J [û|x̄(tk)] =

∫ tk+Tk

tk

L(x̂, û)dτ + Vf (x̂(tk + Tk)), (4)

where x̂ : R+ → R
n and û : R+ → R

m are the predictive

state and input, respectively, L : R
n × R

m → R
+ is the

running cost function, and Vf : Rn → R
+ is the terminal

cost function.

The objective is to design a completely discrete-time and

cost-efficient MPC algorithm to stabilize system (1), in the

presence of measurement noises and state/input constraints.

III. LAMPC ALGORITHM

This section presents the LAMPC algorithm. To begin

with, we first define the LAM for the FHOCP: Starting at

time tk,

x̂i+1
k = x̂i

k + dx̂i
k

D̂i
k

‖dx̂i
k‖

, x̂0
k = x̄(tk)

ti+1
k = tik +

D̂i
k

‖dx̂i
k‖

, t0k = tk

dx̂i
k = f(x̂i

k, û
i
k),

(5)

1Notice that if the system is output-feedback, given an observer, x̄(tk)
can be viewed as the estimate of x(tk) and w(tk) can be the estimation
error. As long as the estimation error is bounded, the results in this paper
are still applicable.

where x̂i
k, ûi

k, and D̂i
k = D(x̂i

k, û
i
k) are the predictive state,

the predictive input, and the state-dependent discretization

level of LAM at the ith iteration, respectively. The threshold

function D : Rn × R
m → R

+ will be discussed later.

Let N ∈ N be the number of iterations in the LAM. The

horizon length can be described as Tk = tNk −t0k. Using zero-

order-hold approximation x̂(τ) = x̂i
k and û(τ) = ûi

k for any

τ ∈ [tik, t
i+1
k), the cost function (4) can be rewritten as

J [ûk|x̄(tk)] =

N−1∑

i=0

∫ ti+1
k

ti
k

L(x̂(τ), û(τ))dτ + Vf (x̂(t
N
k))

=

N−1∑

i=0

L(x̂i
k, û

i
k)(t

i+1
k − tik) + Vf (x̂

N
k)

=

N−1∑

i=0

L(x̂i
k, û

i
k)

D̂i
k

‖dx̂i
k‖

+ Vf (x̂
N
k).

(6)

Then we can state the FHOCP at time tk as a discrete-time

optimal control problem:

V (x̄(tk)) = min
ûi
k
∈U, i=0,...,N−1

J [ûk|x̄(tk)]

subject to x̂i+1
k = x̂i

k + dx̂i
k

D̂i
k

‖dx̂i
k‖

x̂0
k = x̄(tk)

x̂i
k ∈ Xi, i = 1, ..., N − 1

x̂N
k ∈ XN = Xf

(7)

where Xi are the constraint sets on the predictive state x̂i
k

and XN is the terminal set.

Let ûi,∗
k (i = 0, ..., N − 1) be the optimal solutions and

x̂i,∗
k ∈ Xi be the corresponding optimal states. Accordingly,

dx̂i
k and D̂i

k in (5) become

D̂i,∗
k = D(x̂i,∗

k , ûi,∗
k) and dx̂i,∗

k = f(x̂i,∗
k , ûi,∗

k).

With the optimal solution, we can define the next sampling

time instant tk+1, following the time iteration in (5):

tk+1 = t1,∗k = tk +
D̂0,∗

k

‖dx̂0,∗
k ‖

. (8)

The LAMPC algorithm is summarized as follows.

TABLE I

LAMPC ALGORITHM ROUTINE

At time t = tk,

1 Sample the state and obtain x̄(tk);

2 Solve the FHOCP (7) for x̂i,∗
k and ûi,∗

k ;

3 Apply the optimal solution û0,∗
k to the plant,

i.e, set u(t) = û0,∗
k over [tk, tk+1);

4 Start the next sampling and computation cycle

at time tk+1 defined by (8);

IV. FEASIBILITY

In order to guarantee feasibility of LAMPC, the constraint

sets Xi in the FHOCP must be correctly defined. Notice that

we do not have direct access to x(t), but only access to

x̂i
k. Therefore, to ensure x(t) ∈ X , the idea is to reduce

the constraint set X by certain amount to obtain Xi and

hopefully x̂1,∗
k ∈ X1 can imply x(t) ∈ X . To begin with, we

first study the error dynamics between the LAM (5) and the

continuous-time dynamics (1). Let z(t) be defined as

z(t) = x̄(tk) + dx̂0,∗
k (t− tk), ∀t ∈ [tk, tk+1]. (9)

Note that z(tk) = x̂0,∗
k = x̄(tk) and z(tk+1) = x̂1,∗

k .

Lemma 4.1: Consider system (1) and the signal z(t), then

for any t ∈ [tk, tk+1], the following inequality holds

‖x(t)− z(t)‖ ≤ εk , D̂0,∗
k



e

Lf D̂
0,∗
k

‖dx̂
0,∗
k

‖ − 1



+ σe

Lf D̂
0,∗
k

‖dx̂
0,∗
k

‖ ,

(10)

where σ is defined in (2).

Proof: By the definition of z(t), we know that ż =
dx̂0,∗

k = f(x̂0,∗
k , û0,∗

k) for t ∈ [tk, tk+1]. Let us set the error

to be e(t) = x(t)− z(t), then we can get its dynamics as:

ė(t) = f(x(t), û0,∗
k)− f(x̄(tk), û

0,∗
k),

which leads to the inequality

d

dt
‖e(t)‖ ≤ ‖ė(t)‖ = ‖f(x(t), û0,∗

k)− f(x̄(tk), û
0,∗
k)‖

≤ Lf‖x(t)− x̄(tk)‖ = Lf‖x(t)− z(t) + z(t)− x̄(tk)‖

≤ Lf‖e(t)‖+ Lf‖z(t)− z(tk)‖

≤ Lf‖e(t)‖+ Lf‖dx̂
0,∗
k (t− tk)‖

≤ Lf‖e(t)‖+ Lf‖dx̂
0,∗
k (tk+1 − tk)‖

= Lf‖e(t)‖+ Lf‖dx̂
0,∗
k ‖

D̂0,∗
k

‖dx̂0,∗
k ‖

= Lf‖e(t)‖+ Lf D̂
0,∗
k .

Solving the inequality with ‖e(tk)‖ ≤ σ, we obtain

‖e(t)‖ ≤ D̂0,∗
k (eLf (t−tk) − 1) + σeLf (t−tk)

≤ D̂0,∗
k (eLf (tk+1−tk) − 1) + σeLf (tk+1−tk)

= D̂0,∗
k



e

Lf D̂
0,∗
k

‖dx̂
0,∗
k

‖ − 1



+ σe

Lf D̂
0,∗
k

‖dx̂
0,∗
k

‖

for any t ∈ [tk, tk+1].
Let

ε = max
x∈X , u∈U

D(x, u)

(

e
LfD(x,u)

‖f(x,u)‖ − 1

)

+ σe
LfD(x,u)

‖f(x,u)‖ (11)

and

X1 , X − 2ε (12)

where X − 2ε is the Pontryagin difference between X and

a ball B(2ε) centered at the origin with the radius 2ε. With

the result of Lemma 4.1, if x̄(t0) ∈ X − ε, x(t) ∈ X can be

guaranteed for any t ∈ [tk, tk+1).
To ensure feasibility, we assume that for any x, y ∈ X ,

and u ∈ U , there exists a positive constant Ls such that
∥
∥
∥
∥
D(x, u)

f(x, u)

‖f(x, u)‖
−D(y, u)

f(y, u)

‖f(y, u)‖

∥
∥
∥
∥
≤ Ls‖x− y‖

(13)

and there exists a function h : Rn → R
m, h(0) = 0 so that

0 ∈ int(Xf) (14)

Xf + (σ + ε)(Ls + 1)N−1 ⊂ XU

, {x ∈ XN−1|h(x) ∈ U} (15)

x ∈ Xf + (σ + ε)(Ls + 1)N−1 ⇒

x+
D(x, h(x))f(x, h(x))

‖f(x, h(x))‖
∈ Xf . (16)

Then we construct an admissible control input for the

LAM at the (k+1)st computation with the initial condition

x̂0
k+1 = x̄(tk+1):

ûi
k+1 =

{

ûi,∗
k , i = 0, 1, ..., N − 2

h(x̂i
k+1). i = N − 1

(17)

We compute the optimal input from 0 to (N − 1)th in

each computation cycle. As a result, the ith control input

calculated in the current cycle can be mapped to the (i−1)st

input in next cycle.

With ûi
k+1 and x̂0

k+1 = x̄(tk+1), the LAM can generate

the states at the (k + 1)st computation cycle as x̂i
k+1. Then

we will study the difference between x̂i−1
k+1 and x̂i,∗

k .

Lemma 4.2: Given inequality (13), the following inequal-

ity holds

‖x̂i−1
k+1− x̂i,∗

k ‖ ≤ (σ+ εk)(Ls+1)i−1, i = 1, 2, ..., N. (18)

Proof: The proof is similar to the proof of Lemma 2

in [17] and therefore omitted due to space limit.

With the bound in Lemma 4.2, we can define the reduced

constraint sets in the FHOCP at each iteration:

Xi , X − (σ+ε)

(
i∑

p=1

(Ls + 1)p−1 + 1

)

, i = 1, ..., N−1.

(19)

Theorem 4.1: With Xi and Xf defined in (19) and (14)-

(16), respectively, the FHOCP in (7) is always feasible.

Proof: We will prove that if x̂i,∗
k ∈ Xi for i =

1, 2, · · · , N , there is a feasible solution of the optimization

problem in k + 1, which is ûi
k+1 defined in (17), based on

the optimal solution in k, ûi,∗
k .

First, we show that ûi
k+1 ∈ U for i = 0, 1, · · · , N −

1. Based on equation (17), ûi
k+1 = ûi+1,∗

k ∈ U for

i = 0, 1, · · · , N − 2 because of the feasibility of ûi,∗
k . By

Lemma 4.2 and εk ≤ ε, we know

‖x̂N−1
k+1 − x̂N,∗

k ‖ ≤ (σ + ε)(Ls + 1)N−1.

Since x̂N,∗
k ∈ Xf , x̂N−1

k+1 ∈ Xf + ε(Ls + 1)N−1 holds. By

equation (15),

x̂N−1
k+1 ∈ Xf + (σ + ε)(Ls + 1)N−1 ⊆ XU (20)

and therefore ûN−1
k+1 ∈ U .

Next, we show that x̂i
k+1 ∈ Xi for i = 1, · · · , N − 1 and

x̂N
k+1 ∈ Xf . Because equation (20), we have x̂N

k+1 ∈ Xf by

equation (16). Also, by Lemma 4.2, we know

‖x̂i
k+1 − x̂i+1,∗

k ‖ ≤ (σ + ε)(Ls + 1)i

for i = 1, · · · , N − 1. Also, notice that

x̂i+1,∗
k ∈ Xi+1 = X − (σ + ε)

(
i+1∑

p=1

(Ls + 1)p−1 + 1

)

for i = 1, · · · , N − 2 and x̂N,∗
k ∈ Xf ⊆ XN−1. So

x̂i
k+1 ∈ Xi+1 + (σ + ε)(Ls + 1)i

= X − (σ + ε)
(
∑i

p=1(Ls + 1)p−1 + 1
)

= Xi

for i = 1, · · · , N − 1, which completes the proof.

V. STABILITY

This section discusses stability of the closed-loop system.

Before presenting the main results, we will first define the

threshold function D(x, u) because this function will directly

affect system stability. If the threshold D̂i
k is too large,

the LAM may significantly deviate from the actual system,

which may lead to instability.

Let

D(x, u) =
‖f(x, u)‖

Lf

log

(

max

{
ρL(x, u)

‖f(x, u)‖
, δ

}

+ 1

)

(21)

where δ is an arbitrarily small positive constant and ρ is

a positive constant to be determined. Such a choice of the

threshold can avoid Zeno behavior since
D(x,u)
‖f(x,u)‖ ≥ log(δ+1)

Lf

always holds and therefore ti+1
k − tik ≥ log(δ+1)

Lf
according

to equation (5).

Let L(x, u) be selected such that there exist class K∞

functions β : R → R satisfying

β(‖x‖) ≤
L(x, u)

‖f(x, u)‖
, (22)

γ(‖x‖) ≤ D(x, u), and (23)

(24)

L(x, u)

Lf

log

(

max

{
ρL(x, u)

‖f(x, u)‖
, δ

}

+ 1

)

(25)

is locally Lipschitz with respect to x with the Lipschitz

constant Lc for any x ∈ X and u ∈ U .

Assume that besides the conditions in (15) and (16) the

function h(x) also satisfies

Vf

(

x+ D(x,h(x))f(x,h(x))
‖f(x,h(x))‖

)

− Vf (x) ≤ −L(x,h(x))D(x,h(x))
‖f(x,h(x))‖ .

(26)

Theorem 5.1: Suppose that the hypotheses in Theorem 4.1

hold. If for any x, y ∈ X/{0} and u ∈ U/{0}, there exist

positive constants LVf
, ρ and a class K∞ function α : R → R

such that

|Vf (x)− Vf (y)| ≤ LVf
‖x− y‖ (27)

Vf (x) ≤ α(‖x‖) (28)

ρ <
1

∑N−1
i=1 Lc(Ls + 1)i−1 + LVf

(Ls + 1)N−1
(29)

hold, the system in (1) under the LAMPC algorithm (7) is

UUB.

Proof: Let J [ûk+1|x̄(tk+1)] be the cost of the FHOCP

generated by ûi
k+1 in (17) with the initial condition x̄(tk+1).

Consider

J [ûk+1|x̄(tk+1)]− V (x̄(tk))

=

N−1∑

i=0

L
(
x̂i
k+1, û

i
k+1

) D̂i
k+1

‖dx̂i
k+1‖

+ Vf

(
x̂N
k+1

)
− V (x̄(tk))

=

N−2∑

i=0

L
(
x̂i
k+1, û

i
k+1

) D̂i
k+1

‖dx̂i
k+1‖

+ L
(
x̂N−1
k+1 , ûN−1

k+1

) D̂N−1
k+1

‖dx̂N−1
k+1 ‖

+ Vf

(
x̂N
k+1

)
− V (x̄(tk)) + Vf

(
x̂N−1
k+1

)
− Vf

(
x̂N−1
k+1

)

+ L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖
− L

(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖

=

∑N−2
i=0 L

(
x̂i
k+1, û

i
k+1

) D̂i
k+1

‖dx̂i
k+1‖

+ Vf

(
x̂N−1
k+1

)

+L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖
− V (x(tk))






Φ

+ L
(
x̂N−1
k+1 , ûN−1

k+1

) D̂N−1
k+1

‖dx̂N−1
k+1 ‖

+ Vf (x̂
N
k+1)− Vf (x̂

N−1
k+1)

︸ ︷︷ ︸

Ψ

− L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖
. (30)

By inequality (26), we have Ψ ≤ 0, because ûN−1
k+1 =

h(x̂N−1
k+1) and x̂N

k+1 = x̂N−1
k+1 +

D(x̂N−1
k+1 ,ûN−1

k+1)f(x̂
N−1
k+1 ,ûN−1

k+1)
‖f(x̂N−1

k+1 ,ûN−1
k+1)‖

.

Therefore, the preceding inequality can be simplified as

J [ûk+1|x̄(tk+1)]− V (x̄(tk)) ≤ Φ− L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖
.

(31)

Consider Φ. Note that the first term in Φ can be written as

N−2∑

i=0

L
(
x̂i
k+1, û

i
k+1

) D̂i
k+1

‖dx̂i
k+1‖

=

N−1∑

i=1

L
(
x̂i−1
k+1, û

i−1
k+1

) D̂i−1
k+1

‖dx̂i−1
k+1‖

.

By (7), V (x̄(tk)) =
∑N−1

i=0

L(x̂i,∗
k

,û
i,∗
k)D̂i,∗

k

‖dx̂i,∗
k

‖
+ Vf

(

x̂N,∗
k

)

.

Therefore,

Φ =

N−1∑

i=1

L
(
x̂i−1
k+1, û

i−1
k+1

) D̂i−1
k+1

‖dx̂i−1
k+1‖

+ Vf

(
x̂N−1
k+1

)

−

N−1∑

i=1

L
(

x̂i,∗
k , ûi,∗

k

)
D̂

i,∗
k

‖dx̂i,∗
k

‖
− Vf

(

x̂N,∗
k

)

. (32)

Consider the function
L(x,u)D(x,u)

‖f(x,u)‖ . Applying the definition

of D(x, u) in (21) yields

L(x,u)D(x,u)
‖f(x,u)‖ =

L(x, u)

Lf

log

(

max

{
ρL(x, u)

‖f(x, u)‖
, δ

}

+ 1

)

.

By (25), this function is locally Lipschitz. Therefore,

Φ ≤

N−1∑

i=1

∣
∣
∣
∣

L(x̂i−1
k+1,û

i−1
k+1)D̂

i−1
k+1

‖dx̂i−1
k+1‖

−
L(x̂i,∗

k
,û

i,∗
k)D̂i,∗

k

‖dx̂i,∗
k

‖

∣
∣
∣
∣

+
∣
∣
∣Vf

(
x̂N−1
k+1

)
− Vf

(

x̂N,∗
k

)∣
∣
∣

≤
N−1∑

i=1

Lc

∥
∥
∥x̂i−1

k+1 − x̂i,∗
k

∥
∥
∥+ LVf

∥
∥
∥x̂N−1

k+1 − x̂N,∗
k

∥
∥
∥ .

By Lemma 4.2,

∥
∥
∥x̂i−1

k+1 − x̂i,∗
k

∥
∥
∥ ≤ (σ + εk)(Ls + 1)i−1.

Therefore,

Φ ≤(σ + εk)

(
N−1∑

i=1

Lc(Ls + 1)i−1 + LVf
(Ls + 1)N−1

)

︸ ︷︷ ︸

θ

.

With this inequality, (31) can be further simplified as

J [ûk+1|x̄(tk+1)]− V (x̄(tk))

≤− L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖
+ (σ + εk)θ.

Therefore,

V (x̄(tk+1))− V (x̄(tk)) = min
ûk+1

J [ûk+1|x̄(tk+1)]− V (x̄(tk))

≤ −L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖
+ (σ + εk)θ.

Applying the definition of D(x, u) and εk into this inequality,

V (x̄(tk+1))− V (x̄(tk))

≤− L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖

+



D̂0,∗
k



e

Lf D̂
0,∗
k

‖dx̂
0,∗
k

‖ − 1



+ σe

Lf D̂
0,∗
k

‖dx̂
0,∗
k

‖



 θ + σθ

=− L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖
+ D̂0,∗

k max

{
ρL(x̂0,∗

k
,û

0,∗
k)

‖f(x̂0,∗
k

,û
0,∗
k)‖

, δ

}

θ

+ σmax

{
ρL(x̂0,∗

k
,û

0,∗
k)

‖f(x̂0,∗
k

,û
0,∗
k)‖

, δ

}

θ + 2σθ

Note that x̂0,∗
k = x̄(tk). Consider the case when ‖x̄(tk)‖ ≥

β−1(δ
ρ
), i.e., ρβ(‖x̄(tk)‖) ≥ δ. By inequality (22), the

preceding inequality implies

V (x̄(tk+1))− V (x̄(tk))

≤− L
(

x̂0,∗
k , û0,∗

k

)
D̂

0,∗
k

‖dx̂0,∗
k

‖
+ D̂0,∗

k

ρL(x̂0,∗
k

,û
0,∗
k)

‖f(x̂0,∗
k

,û
0,∗
k)‖

θ

+ σ
ρL(x̂0,∗

k
,û

0,∗
k)

‖f(x̂0,∗
k

,û
0,∗
k)‖

θ + 2σθ

=−
L(x̂0,∗

k
,û

0,∗
k)

‖f(x̂0,∗
k

,û
0,∗
k)‖

(

D̂0,∗
k − D̂0,∗

k ρθ − σρθ
)

+ 2σθ.

Consider the case when ‖x̄(tk)‖ > γ−1(2σρθ
(1−ρθ

). By inequal-

ity (23), we know

(1− ρθ)D̂0,∗
k > 2σρθ.

Therefore, the preceding inequality implies

V (x̄(tk+1))− V (x̄(tk)) ≤−
L(x̂0,∗

k
,û

0,∗
k)

‖f(x̂0,∗
k

,û
0,∗
k)‖

σρθ + 2σθ

≤− β(‖x̄(tk)‖)σρθ + 2σθ.

To summarize, when

‖x̄(tk)‖ > max
{

β−1(2
ρ
), γ−1(2σρθ

(1−ρθ
), β−1(δ

ρ
)
}

,

we have means

V (x̄(tk+1))− V (x̄(tk)) < 0. (33)

By (26), we know

Vf

(
x̂i+1
k

)
− Vf (x̂

i
k) ≤ −L(x̂i

k, h(x̂
i
k))

D(x̂i
k, h(x̂

i
k))

‖f(x̂i
k, h(x̂

i
k))‖

.

Summing up the inequality above for i = 0, 1, · · · , N − 1,

Vf

(
x̂N
k

)
− Vf (x̂

0
k) ≤ −

N−1∑

i=0

L(x̂i
k, h(x̂

i
k))

D(x̂i
k, h(x̂

i
k))

‖f(x̂i
k, h(x̂

i
k))‖

.

Thus, by the definition of V (x̄(tk)),

V (x̄(tk)) ≤
N−1∑

i=0

L(x̂i
k, h(x̂

i
k))

D(x̂i
k, h(x̂

i
k))

‖f(x̂i
k, h(x̂

i
k))‖

+ Vf

(
x̂N
k

)

≤ Vf (x̂
0
k) = Vf (x̄(tk)) ≤ α(‖x̄(tk)‖) (34)

holds, which, together with inequality (33), implies that x̄(tk)
will be uniformly ultimately bounded. By Lemma 4.1, we

know that x(t) will also be UUB.

VI. SIMULATION

This section shows how the LAMPC works on a nonlinear

system with measurement noises. We consider the crane

model in [19] with the excitation angle φ and the horizontal

trolley position p:

ṗ(t) = v(t)

v̇(t) = u(t)

φ̇(t) = ω(t)

ω̇(t) = −gsin(φ(t))− u(t)cos(φ(t))− bω(t),

where x = (p, v, φ, ω)> is the state and u is the control

input. The control input must satisfy −0.5 ≤ u(t) ≤ 0.5.

Besides, we use the parameters m = 1kg, L = 1m, b = 0.2J
and g = 9.81m/s2. The measurement noise w(tk) satisfies

‖w(tk)‖ ≤ 0.05.

The running cost function and the terminal cost function

are defined as

L(x, u) = |f(x, u)| · (|x|+ |u|+ 1), Vf (x) = 5|x|.

The threshold function D(x, u) is defined by equation (21).

The BARON solver [20] is used to solve the nonlinear

FHOCP.

Figure 1 plot the state and input trajectories of the system.

It is obvious that the system converges to a small neigh-

borhood of the origin and the constraints are not violated.

Figure 2 plots the trajectory of V (x̄(tk)). We can see that

V (barx(tk)) keeps decreasing until being close to zero. This

is consistent to the theoretical results. Figure 3 shows the

history of the inter-sampling time intervals generated by

the self-triggered scheme (top) and the length of prediction

horizons at each sampling instants (bottom). It is clear that

those intervals are time-varying until the state stays around

the steady state. Also notice that they are strictly greater than

zero.

VII. CONCLUSIONS

This paper presents the LAMPC algorithm for nonlinear

continuous-time systems with measurement noises. A self-

Fig. 1. The state and input trajectory generated by LAMPC

Fig. 2. The history of V (x̄(tk))

triggered method is used to trigger the sampling and compu-

tation and the LAM is designed to discretize the FHOCP.

We show that with appropriate design of the threshold

function in the LAM, even when the sampled state contains

measurement noises, the LAMPC can still guarantee the

system to be UUB. As mentioned in context, this work can be

applied to output-feedback systems as long as the observer is

well designed such that the error between the estimated state

and the actual state is uniformly bounded as stated in (2).

REFERENCES

[1] F. A. Fontes, “A general framework to design stabilizing nonlinear
model predictive controllers,” Systems & Control Letters, vol. 42,
no. 2, pp. 127–143, 2001.

[2] M. Rubagotti, D. M. Raimondo, A. Ferrara, and L. Magni, “Robust
model predictive control with integral sliding mode in continuous-time
sampled-data nonlinear systems,” IEEE Transactions on Automatic

Control, vol. 56, no. 3, pp. 556–570, 2011.
[3] F. D. Brunner, W. Heemels, and F. Allgöwer, “Robust event-triggered

MPC for constrained linear discrete-time systems with guaranteed
average sampling rate,” IFAC-PapersOnLine, vol. 48, no. 23, pp. 117–
122, 2015.

[4] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Novel event-
triggered strategies for model predictive controllers,” in Proceedings

of the 50th IEEE Conference on Decision and Control and European

Control Conference. IEEE, 2011, pp. 3392–3397.

Fig. 3. The inter-sampling time intervals and the prediction horizons

[5] A. Ferrara, G. P. Incremona, and L. Magni, “Model-based event-
triggered robust MPC/ISM,” in Proceedings of European Control

Conference. IEEE, 2014, pp. 2931–2936.
[6] D. Lehmann, E. Henriksson, and K. H. Johansson, “Event-triggered

model predictive control of discrete-time linear systems subject to
disturbances,” in Proceedings of European Control Conference (ECC).
IEEE, 2013, pp. 1156–1161.

[7] H. Li and Y. Shi, “Event-triggered robust model predictive control of
continuous-time nonlinear systems,” Automatica, vol. 50, no. 5, pp.
1507–1513, 2014.

[8] J. Sijs, M. Lazar, and W. Heemels, “On integration of event-based
estimation and robust MPC in a feedback loop,” in Proceedings of the

13th ACM international conference on Hybrid systems: computation

and control. ACM, 2010, pp. 31–40.
[9] J. B. Berglind, T. Gommans, and W. Heemels, “Self-triggered MPC

for constrained linear systems and quadratic costs,” IFAC Proceedings

Volumes, vol. 45, no. 17, pp. 342–348, 2012.
[10] F. D. Brunner, W. Heemels, and F. Allgöwer, “Robust self-triggered

MPC for constrained linear systems,” in Proceedings of European

Control Conference. IEEE, 2014, pp. 472–477.
[11] A. Eqtami, S. Heshmati-alamdari, D. V. Dimarogonas, and K. J. Kyri-

akopoulos, “Self-triggered model predictive control for nonholonomic
systems,” in Proceedings of 2013 European Control Conference.
IEEE, 2013, pp. 638–643.

[12] T. Gommans and W. Heemels, “Resource-aware MPC for constrained
nonlinear systems: A self-triggered control approach,” Systems &

Control Letters, vol. 79, pp. 59–67, 2015.
[13] E. Henriksson, D. E. Quevedo, H. Sandberg, and K. H. Johansson,

“Self-triggered model predictive control for network scheduling and
control1,” Proceedings of the 8th IFAC Symposium on Advanced

Control of Chemical Processes, vol. 45, no. 15, pp. 432–438, 2012.
[14] P. Sopasakis, P. Patrinos, and H. Sarimveis, “MPC for sampled-data

linear systems: Guaranteeing constraint satisfaction in continuous-
time,” IEEE Transactions on Automatic Control, vol. 59, no. 4, pp.
1088–1093, 2014.

[15] M. Farina and R. Scattolini, “Tube-based robust sampled-data MPC
for linear continuous-time systems,” Automatica, vol. 48, no. 7, pp.
1473–1476, 2012.

[16] X. Wang and L. Yang, “Sporadic model predictive control using
Lebesgue approximation,” in Proceedings of American Control Con-

ference. IEEE, 2017, pp. 5768–5773.
[17] X. Wang and B. Zhang, “Lebesgue approximation model of

continuous-time nonlinear dynamic systems,” Automatica, vol. 64, pp.
234–239, 2016.

[18] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-
time iteration algorithm for nonlinear MPC in the microsecond range,”
Automatica, vol. 47, no. 10, pp. 2279–2285, 2011.

[19] M. Tawarmalani and N. V. Sahinidis, “A polyhedral branch-and-cut
approach to global optimization,” Mathematical Programming, vol.
103, no. 2, pp. 225–249, 2005.

