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Future global productivity will be 
affected by plant trait response to 
climate
Nima Madani   1,2, John S. Kimball1,2, Ashley P. Ballantyne   2, David L. R. Affleck3, Peter M. 
van Bodegom4, Peter B. Reich5,6, Jens Kattge   7,8, Anna Sala9, Mona Nazeri10, Matthew O. 
Jones1, Maosheng Zhao11 & Steven W. Running1,2

Plant traits are both responsive to local climate and strong predictors of primary productivity. 
We hypothesized that future climate change might promote a shift in global plant traits resulting 
in changes in Gross Primary Productivity (GPP). We characterized the relationship between key 
plant traits, namely Specific Leaf Area (SLA), height, and seed mass, and local climate and primary 
productivity. We found that by 2070, tropical and arid ecosystems will be more suitable for plants with 
relatively lower canopy height, SLA and seed mass, while far northern latitudes will favor woody and 
taller plants than at present. Using a network of tower eddy covariance CO2 flux measurements and 
the extrapolated plant trait maps, we estimated the global distribution of annual GPP under current 
and projected future plant community distribution. We predict that annual GPP in northern biomes 
(≥45 °N) will increase by 31% (+8.1 ± 0.5 Pg C), but this will be offset by a 17.9% GPP decline in the 
tropics (−11.8 ± 0.84 Pg C). These findings suggest that regional climate changes will affect plant trait 
distributions, which may in turn affect global productivity patterns.

Climate change is expected to significantly influence global species distributions in the next decades1,2, which 
raises the question of how these changes may affect dominant plant community traits and ecosystem productivity. 
The response of species to climate change can vary from extinction to resilience3. However, plant species may also 
adapt to climate change by altering their physical traits3 or by relocating to regions with more suitable environ-
mental conditions4,5. Increases in shrub dominance in the tundra6 and declines in taller, larger diameter trees 
in California in the last century, inducing a shift toward oak dominance over historic pine dominance7, provide 
recent examples of such changes.

Temperature, water supply and solar radiation are primary climatic factors constraining ecosystem produc-
tivity at global scales8,9 such that each or a combination of these factors limits vegetation growth within global 
biomes defined by species with distinctive traits and/or life history strategies. From the ecosystem process per-
spective, vegetation productivity has increased in recent decades8,10. Plant productivity may be enhanced through 
direct fertilization effects from increasing atmospheric CO2 concentrations11,12. However, concomitant changes 
in temperature and rainfall can also alter productivity by extending the growing season in cold regions, while 
limiting productivity in warmer and drier regions13. A key, unresolved question is how changes in precipitation 
and temperature will affect species functional traits and what impact changes in traits and plant communities will 
have on patterns of global productivity.
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Plant traits have been shown to provide important information about ecosystem structure and productivity14. 
Plants have distinctive strategies that manifest as functional traits adapted to local habitats and environmental 
conditions15,16, and yet trade-offs among functional traits can reveal and influence ecosystem processes14,17–19. 
Leaf traits such as leaf nitrogen content (N) and SLA (the ratio of leaf area per unit dry mass, m2 kg−1) influence 
canopy photosynthetic capacity20 and have been shown to improve understanding of key ecosystem processes 
such as GPP21,22. SLA, vegetation height, and seed mass are among the most widely used plant traits in ecological 
studies and can explain species distributions16,23,24. The leaf-height-seed (LHS) relationship was proposed to help 
explain species co-existence strategies: while height and seed mass reflect capabilities to cope with environmental 
disturbance, SLA distinguishes between competitors and stress-tolerators16. The LHS relationship is also related 
to ecosystem function. Leaves with higher SLA generally have higher nutrient (N) concentrations15,17,19, leading 
to higher carbon assimilation22 and respiration25. Species with higher seed mass are generally found in more pro-
ductive regions26–28 and can tolerate a higher degree of stresses, while species with lower seed mass need relatively 
less energy for seed production29. Taller trees tend to have greater access to light, deploy more canopy leaf area 
and have higher leaf nitrogen content30,31.

Despite the influence of morphological plant traits on ecosystem properties and function, their role in global 
ecosystem process models is often neglected or not properly captured21. Many global models use generalized 
plant functional type (PFT) categories to explain differences in ecosystem function22. While these functional 
types are distinguishable using physical plant traits23, large variability in ecosystem function within individual 
PFT classes22,32 suggests that such broad categories are insufficient in modeling ecosystem processes such as pro-
ductivity. Such uncertainty may contribute to the large range of estimated global annual GPP (106–175 Pg C yr−1) 
from different models33–36. However, recent attempts to map global plant traits23, the effect of future climate con-
ditions on community trait patterns37, and incorporation of plant trait information into earth system models38,39 
have improved our understanding of climate impacts on plant community patterns and ecosystem productivity.

In this research we characterize the relationships between bioclimatic variables and plant traits using a global 
plant trait database (TRY)40. Specifically, we analyze relationships between gridded bioclimatic factors related to 
precipitation and temperature, and selected key dominant community plant traits. Via analyses of annual GPP 
derived from 164 globally distributed carbon flux towers, we show that ecosystem productivity is significantly 
related to the plant trait observations. We then use selected bioclimatic variables41 from 17 global Earth System 
Models (ESMs) of the Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison 
Project Phase 5 (CMIP5) based on the Representative Concentration Pathway (RCP) 8.542 for the year 2070 to 
predict changes in key plant traits under projected future climate change. We find that changes in ecosystem suit-
ability favor plants with certain functional traits, and that projected climate change will impact both productivity 
and underlying community dominant functional traits.

Results and Discussion
We used a Generalized Additive Model (GAM)43 to explain variability in species trait observations (Figure S2) 
relative to selected bioclimatic variables. The bioclimatic variables selected are based on stepwise variable selec-
tion and the best performance [Akaike’s Information Criterion (AIC)44 and lowest Root Mean Squared Errors 
(RMSE)] indicated from a leave-one-out cross validation analysis. Among the 19 available climatic variables 
analyzed from the WorldClim database41, SLA is mainly explained by annual average precipitation, maximum 
temperature of the warmest month and minimum temperature of the coldest month. Based on covariate analysis 
of the global GAM, SLA is proportional to precipitation (P) except for moist climates (P > ~1000 mm yr−1) where 
SLA is relatively insensitive to further P increases. SLA increases with maximum temperature of the warmest 
month, except for regions with warmer temperatures exceeding 35 degrees Celsius, which includes arid environ-
ments. However, SLA is inversely proportional to the minimum temperature of the coldest month. For example, 
tundra vegetation in arctic regions with cold winters shows higher SLA than temperate evergreen forests (Fig. 1).

Plant height increases with annual precipitation and levels off under wetter conditions above 2000 mm yr−1. 
Plant height also increases with the maximum temperature of the warmest month, approaching greatest height 
near 22 °C (tropical regions) and decreasing in areas with very warm temperatures (above 25 °C). Trees also 
inhabit boreal forests and other areas with cold winters, but canopy height generally increases as the minimum 
temperature of the coldest month rises (Fig. 1b). Seed mass is most responsive to annual precipitation and the 
mean temperature of the warmest annual quarter. The log10 of seed mass increases from low to moderate precip-
itation levels, but declines under higher rainfall amounts (exceeding ~2700 mm yr−1). The mean temperature of 
the warmest quarter, which generally represents the growing season, has a positive relationship with seed mass 
except for regions with very warm summer temperatures (exceeding ~25 °C) that are associated with lower seed 
mass plants (Fig. 1c).

The GAM results explain 68.2%, 66.2% and 45.5% of the variance among the SLA, height, and seed mass 
observations at the global scale (see Table S3 for regression coefficients of the smoothed functions used in the 
GAM). Using the global extrapolated plant trait information, we show global distribution of plant traits (Fig. 2). 
High stress areas (deserts and arid regions) are associated with plants with lower height, which is consistent 
with reported negative effects of low moisture availability on plant height45. These areas are also inhabited by 
plants with lower seed mass, which can promote seed dispersal16. Temperate evergreen trees that have high can-
opy height can enhance their water use efficiency by having low SLA, while also having a longer foliar life span 
and lower autotrophic respiration cost46. Plants in tropical biomes have relatively high values of the three traits, 
though this region is dominated by plants with greater height and seed mass.

In order to evaluate how vegetation structure and ecosystem productivity may respond as a result of future cli-
mate change, we projected the GAM simulated plant traits using climate variables derived from 17 CMIP5 ESMs 
(Table S2) for the year 2070 based on the RCP8.5 greenhouse gas concentration trajectory42. GAM simulations 
were run on climate variables from each of the 17 ESMs and their ensemble mean. The standard deviation of the 
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resulting GAM outputs derived from 17 ESM climate projection was used as a metric of uncertainty in the model 
projections. Based on the ensemble projection, boreal and arctic regions show the largest change in plant traits 
relative to other global biomes, with increases in SLA (+10–20%), canopy height (+20–30%), and seed mass 
(+25–200%) (Fig. 3). Our results also indicate that in the future, tropical regions may be inhabited by plants with 
an average 1 m2 kg−1 (−10%) lower SLA, 5.3 m (−12.5%) lower canopy height, and 0.15 mg (−9.1%) lower log10 
seed mass relative to current conditions. These potential changes would not only affect large scale distributions of 
functional plant traits, but may also affect ecosystem productivity.

We use the GAM framework to explain spatial variation in annual GPP measured from 164 globally distrib-
uted flux towers as a function of the selected key plant traits. The resulting model explains 66.4% of the variance 
in annual GPP among tower sites, resulting in model RMSE performance of 403 g C m−2 yr−1 (Figure S7). Model 
validation using leave-one-out cross validation indicates RMSE performance of 431 g C m−2 yr−1. The GPP model 
RMSE uncertainty is within approximately 32% of the estimated annual carbon flux. The partial correlation func-
tion plots show positive relationships between annual GPP and canopy height and seed mass (Fig. 4). Our results 
also show that seed mass (r2 = 0.48, p < 0.0001) followed by height (r2 = 0.2, p < 0.0001), and SLA (r2 = 0.13, 
p = 0.0003) are the best predictors in explaining the variability in ecosystem productivity. Canopy height differen-
tiates between forest and grassland areas, while seed mass distinguishes between plants in more productive (heav-
ier seeds) to less productive regions (lighter seeds)26,27. Annual GPP is generally higher in forests than in grassland 
(high SLA) biomes even though the photosynthetic capacity of forests may be lower22. Likewise, while plants with 

Figure 1.  The estimated global relationships between the selected key plant trait and best performing climatic 
predictor variables. Smoothed functions were determined from fitted generalized additive models describing 
relationships between selected climate drivers and key global plant traits, including SLA (a) canopy height 
(b) and seed mass (c). The models were developed from climate variables and global plant trait observations 
including 1178, 329 and 520 data points for SLA, seed mass, and height, respectively. Shaded areas denote 95% 
confidence intervals, while gray dots represent partial residuals.
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higher SLA tend to have higher leaf nitrogen content and higher photosynthetic capacity14, the total productivity 
of grasslands with high SLA is generally less than forested regions with generally lower SLA (e.g. boreal forests).

We used the predicted plant trait maps under future (2070) climate conditions to estimate the potential ecosys-
tem productivity response to these changes. Our estimation of current global GPP indicates that terrestrial eco-
systems can acquire 134.19 ± 14.3 PgC yr−1, while our near future (2070) model projections show a 7.92 ± 1.66% 
decline in global GPP to 123.56 ± 13.4 PgC yr−1. This decline coincides with larger offsetting regional changes in 
productivity. By 2070, annual GPP above 45 degrees N is expected to increase by 31% (+8.1 ± 0.5 Pg C) from cur-
rent conditions due to greater dominance of trees and shrubs in northern temperate and boreal zones. However, 
the productivity increase in northern latitudes will be more than offset by a 17.9% GPP decline in the tropics 
(−11.8 ± 0.84 PgC yr−1) as a result of new environmental conditions that will be suitable for trees with shorter 
height and lower SLA.

With warmer temperatures in arctic and boreal regions, the length of the growing season is expected to 
increase, relaxing cold temperature constraints in Arctic ecosystems and promoting higher productivity8,47. These 
changes also favor greater leaf area and canopy height, thus promoting a general increase in woody shrubs and 
trees, consistent with reported northern greening trends indicated from long-term satellite observation records48 
and increased tundra shrub abundance6. Our results are also consistent with paleo data records showing that 
during the Pliocene era, when average global temperatures were as high as what is projected for the near future, 
the high arctic was a suitable habitat for vascular tree species, including larch, spruce, cedar, alder and birch49. 
Greater tree and shrub dominance in the tundra zone may promote increases in above ground carbon storage 
over the long-term compared to current conditions. Greater tree and shrub dominance may also alter the land 
surface albedo in ways that promote further temperature and productivity increases50.

Figure 2.  Global distribution of the estimated key plant traits. The global distribution of key plant traits (a) 
Specific Leaf Area (SLA), (b) Height, and (c) Seed Mass (SM)) represent dominant overstory condition derived 
from global plant trait observations40 and gridded climate variables41. Gray margins show latitudinal averages 
for each trait. The figure was created using the rasterVis library81 in R77.
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Warmer temperatures and less precipitation in the tropics indicated from the CMIP5 projections are predicted 
to lead to shorter trees with lower SLA (Fig. 3) consistent with the strong effect of moisture on plant height and 
on leaf traits related to water conservation. These results are consistent with reported decreases in SLA of tropical 

Figure 3.  Potential changes in key plant traits as a result of projected near-term climate change. GAM projected 
changes in SLA (a), canopy height (b) and seed mass (c) under future (year 2070) climate conditions represented 
by the ensemble mean of 17 CMIP5 climate models and RCP 8.5 scenario relative to current conditions; the 
standard deviation in estimated plant traits derived from each of the 17 climate model outputs is also shown. Gray 
margins show latitudinal averages (%) for each trait. The figure was created using the rasterVis library81 in R77.

Figure 4.  Relationships between annual GPP and the estimated key plant traits. The smoothed functions 
derived from the fitted generalized additive models (GAMs) show the GPP response to variations in the 
physical plant traits (summary statistics for the smoothed GAM functions are in Table S5). Shaded areas 
represent the 95% confidence intervals of the functional relationships. Black dots represent partial residuals.
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forests as a result of recent environmental change51. The projected changes in plant height and SLA favor lower 
canopy water losses from transpiration, which may have a profound effect on the seasonal water cycle of the 
Amazon forests as the start of the rainy season is partly due to water transpired by trees52. Recent drought events 
in tropical forests have significantly affected ecosystem productivity34 and increased the mortality of trees53. Our 
results show the projected changes in GPP and underlying plant traits for the Amazon tropical forests are sig-
nificantly larger than other tropical forests in Africa and Southeast Asia. The variable response of these tropical 
ecosystems is consistent with regional differences in hydroclimatic controls on productivity and associated plant 
community adaptations to drought54.

Our results indicate that tropical forests will sequester less carbon in the future than they do now due to shifts 
in plant community structure driven by a warmer and drier climate (Fig. 5). Our GPP estimates for current cli-
mate conditions are in the mid-range of other global GPP estimates derived from multiple models (106–175 Pg 
C yr−1)33–36. However, our GPP estimate is about 20% larger than the average annual productivity level indicated 
from a satellite remote sensing data record (MODIS-MOD17)34 and 10% higher than the productivity level indi-
cated from a flux tower up-scaled data record (GPP-MTE)55 (Figures S7 and S8). We compared our projected 
future GPP with GPP outputs from five CIMP5 models (Table S8) derived with and without considering CO2 
fertilization effects (Figure S11). In this study, we did not account for the influence of rising atmospheric CO2 
levels on plant productivity, and our trait based GPP focus reflects underlying shifts in plant traits in response to 
climate. The lack of a direct CO2 fertilization effect in our predictions may partially account for the lower trait 
based annual GPP under future climate conditions (123.56 ± 13.4 Pg C) relative to the average CMIP5 outputs 
that represent CO2 fertilization (155.24 ± 27.5 Pg C). However, our projected future GPP is about 16.7% higher 
than CIMP5 model GPP estimates that do not consider CO2 fertilization. The long-term effect of atmospheric 
CO2 increases on productivity are not well understood, and ongoing studies, including Free Air CO2 Enrichment 
(FACE) experiments, indicate a non-uniform plant response to CO2 increases56,57. However, the plant trait rela-
tionship with local climate15,58–60, and the alteration of plant species ranges and structural traits as a result of 
recent climate change has been observed61. In arid lands for example, it has been reported that certain shrubs can 
reduce their size during dry climate conditions62. These trait specifications coincide with changes in productivity 
in arid regions, and contribute to inter-annual variability of the global carbon cycle63.

We found that potential shifts in the geography of plant traits strictly as a result of changing climate conditions 
and habitat suitability contribute to both enhanced ecosystem productivity at higher latitudes, and reduced pro-
ductivity over lower latitudes. The net effect of these changes with respect to uncertainty in our trait based GPP 
estimate is a relatively small reduction in global productivity under projected near-term climate change, which 
represents a departure from a generally increasing productivity trend since the mid-1970’s64.

Plant productivity has been used as a biospheric indicator of ecosystem goods and services65. The estimated 
shift in GPP patterns indicates potential shifts in ecosystem services for much of the global human population. 
The recent 2015–2016 extensive drought in Somalia that affected about 3.2 million people due to food insecurity 
and caused an estimated 766,000 displacements66 alludes to potential future climate related food insecurity crises 
at global scales. Based on the current global population distribution67, approximately 2.6 billion people are located 
in areas with projected increases in GPP and could potentially benefit from associated increases in ecosystem 
goods and services. However, areas with more than five percent projected reduction in GPP are currently inhab-
ited by 4.6 billion people. These areas face potentially higher sustainability risks and security risks exacerbated by 
both greater ecosystem stress and projected population increases under near future climate.

This study includes several simplifying assumptions that contribute to uncertainty in the model predictions. 
Potential sources of model uncertainty include our use of a relatively small set of general plant traits to represent 

Figure 5.  Difference in predicted annual GPP between future and current climate conditions. (a) The map 
shows the projected (year 2070) GPP difference from the current productivity estimates, where GPP is 
estimated using a generalized additive model and plant traits as explanatory variables, and GPP records from 
164 global flux tower sites. (b) Mean latitudinal distribution (solid line) of the estimated GPP differences 
between future (2070) and current conditions; gray shading denotes the standard deviation among GPP models 
estimated using traits predicted from the 17 different climate model projections. Average GPP decreases at low 
to mid-latitudes, while higher latitude ecosystems show general productivity increases under projected future 
climate conditions. Figure 5a was created using the rasterVis library81 in R77.
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changes in plant community characteristics over a global domain. Our approach is also based on the assumption 
of stable trait-environment relationships for both spatial and future projections, which may not hold. Under cli-
mate change, species may go extinct or adapt to fill new environmental spaces beyond their current niche37, which 
may in turn alter relationships between plant traits and environmental conditions. Our future trait projection 
model approach also neglects intraspecific variability and species turnover68 and plant physiological responses 
and successional processes to changes in climate, which may further affect ecosystem processes including pro-
ductivity. The use of seed mass (SM) as a driving variable to predict productivity is based on the observed strong 
empirical correlation between SM and GPP, even though SM is more likely to be a response variable rather than 
a physical driver of productivity changes. Despite these uncertainties, our results indicate that climate change has 
the potential to alter plant community structure and the global magnitude and distribution of ecosystem produc-
tivity. These changes will influence potential climate feedbacks, plant-animal interactions and ecosystem services. 
The findings and resulting data products from this research also provide spatially explicit plant trait information 
that may help to better inform the representation of plant traits in global ecosystem models that extend beyond 
general assumptions of biome level homogeneity.

Methods
We used 19 climatic variables from WorldClim database41 to explain spatial variability in three major physical 
plant traits informed by the global plant traits database (TRY)40. Key plant traits from TRY used in our study 
included SLA (m2 kg−1), tree height (m) and seed mass (mg). The selected WorldClim climatic variables are 
derived from global average long term (1950–2000) monthly precipitation and mean daily minimum and max-
imum air temperatures from global weather station records41. The climatic variables analyzed included: annual 
mean temperature and mean diurnal range, Isothermality, temperature seasonality, maximum temperature of the 
warmest month, minimum temperature of the coldest month, temperature annual range, mean temperature of 
wettest quarter, mean temperature of driest quarter, mean temperature of warmest quarter, mean temperature of 
coldest quarter, annual precipitation, precipitation of wettest month, precipitation of driest month, precipitation 
seasonality, precipitation of wettest quarter, precipitation of driest quarter, precipitation of warmest quarter and 
precipitation of coldest quarter.

The WorldClim variables are mapped to a global grid at 30 arc-second resolution. These data are spatially 
interpolated from 47,554 and 24,542 global weather stations for precipitation and temperature, respectively, and 
have been used extensively for analyzing species habitat relationships and ecological studies (e.g.69–73). In this 
dataset, current climate is characterized by the average of monthly climatic variables from 1950–2000.

We used 204,504 global observations of key plant traits (Figure S1) representing dominant vegetation type 
characteristics from the TRY database40. TRY database covers a high fraction of the most frequent or dominant 
species available in sPlot74, the largest repository for plant community data in the world. To ensure that the trait 
observations represent global biomes, we used the site level documentation provided in the global plant traits 
database including woodiness and growth form information to select dominant species traits representing site 
level plant functional type (PFT) categories that matched collocated general PFT classes represented within a 
global land cover classification (MODIS MOD12 land cover product75). This global selection process resulted in 
10,327 SLA observations from 2,343 dominant species, 5,417 plant height observations from 2,188 species, and 
2000 seed mass observations from 1,275 species (Table S1, Figure S2) including 6 observations for crops. In the 
case of multiple observations per location, we used weighted median values of observations based on their func-
tional types, which resulted in 952 observations of seed mass, 1,042 observations of SLA and 1,028 observations 
of canopy height.

We used a Generalized Additive Model (GAM) framework43 to describe spatial patterns of plant traits within 
global biomes, and validated the models using a leave-one-out cross validation method. We assumed that temper-
ature and precipitation are effective proxies for respective energy and water constraints to vegetation processes, 
and can explain global variability in functional plant traits. We used the visreg library76 in the R programing 
environment77 to show the relationship between response and explanatory variables in our global GAM. This 
process revealed the relationship between each explanatory and response variable while other covariates were 
held fixed. The difference between a generalized linear model (GLM) and the GAM approach is that the GAM 
adds smoothed non-parametric functions to the parametric part of a GLM43, allowing for greater flexibility and 
improved fit78 in the model structure:

θµ = + + + + …⁎g X f X f X f X( ) ( ) ( ) ( ) (1)i i i i i1 1 2 2 3 3

where µi ≡ E (Yi) and the response variable Yi follows an exponential family distribution; Xi is the ith row of the 
model matrix, and θ is a corresponding parameter vector; fi are smoothed functions of the covariates in Xi. 
Because the PFTs are distinguishable using physical plant traits23, we used PFT as a dummy variable in the GAM. 
In order to minimize co-linearity effects in the regression models, among predictor variables with more than 70% 
correlation, only one variable was retained, and the rest were excluded from the models. In addition to climatic 
variables, we used soil attributes including soil organic carbon, clay and silt content, and soil pH to test their pre-
dictive power in explaining the variance in trait data, and tested the traits models with and without using the soil 
attribute data. We optimized the models using stepwise variable selection by means of the AIC to choose the best 
explanatory variable for prediction of the selected plant traits (Table S4). In order to reduce overfitting of the 
regression models, we reduced the number of nods in the smoothed functions and used a restricted maximum 
likelihood estimator.

Future climate projections are available for climatic variables downscaled from global ESM climate simu-
lations from the recent IPCC CMIP579 assessment. We used future ESM climate projections from the RCP 8.5 
of the A2 emission scenario42 (Table S2), where the future climate conditions represent model averages for the 
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2061–2080 time period centered on year 2070. We used fitted models of the plant traits spanning all vegetated 
land areas to create global maps of the selected plant traits under current climate (Figure S3), and projected future 
climate conditions based on each of 17 CMIP5 climate models and their ensemble mean (Figure S5).

We used daily GPP measurements from 164 flux towers from the global FLUXNET network (Table S5) to 
calculate the annual GPP climatology (g C m−2 yr−1) for sites representing major global biomes (Figure S4). We 
explained spatial variability in annual GPP from multi-year observations across the tower sites, using the extrap-
olated trait maps for current and future climate conditions as explanatory variables (Table S6, Figure S7), and 
predicted the global annual GPP based on the plant trait distributions (Figure S8) using the GAM. Areas having 
less than 50 mm of annual precipitation and representing deserts and other barren land were eliminated from the 
analysis. We also compared the GPP estimates derived from the predicted plant traits information with alternative 
GAM based GPP predictions derived using only the climate variables (Table S7). Additionally, we compared our 
GAM predicted annual GPP results with two other global productivity datasets for model verification, including 
the average annual MODIS MOD17A3 (Collection 5) GPP data record derived at 1-km spatial resolution for the 
2000–2014 period34 and a global tower observation up-scaled GPP record derived at 0.5 degree spatial resolution 
from 2000–2011 (MTE GPP)55. We also calculated the annual GPP spatial means for each 0.05-degree latitudinal 
bin from these global datasets, while the GPP estimates for future climate conditions were compared against 
alternative global GPP projections obtained from five CMIP5 global ESMs (Table S8) derived with and without 
considering CO2 fertilization effects.

We acquired global human population data from the NASA Socioeconomic Data and Applications Center 
(SEDAC)80. The SEDAC data provide human population estimates for the year 2000 in each grid cell over the 
global domain with a 2.5 arc-minute (~0.04 degree) spatial resolution. We classified our global GPP estimates into 
two regions representing grid cells with at least 5% increase and more than 5% decrease in productivity under 
projected future (2070) conditions. We then determined the human population densities within each region.

Data availability.  All data used in this research are publicly available from the cited literature. Results and 
data products generated from this research are publicly available for download from NTSG and the University of 
Montana or through contact with the corresponding author.
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