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a b s t r a c t

We assessed whether a complex, process-based ecohydrological model can be appropriately parame-
terized to reproduce the key water flux and storage dynamics at a long-term research catchment in the
Scottish Highlands. We used the fully-distributed ecohydrological model EcH2O, calibrated against long-
term datasets that encompass hydrologic and energy exchanges, and ecological measurements. Applying
diverse combinations of these constraints revealed that calibration against virtually all datasets enabled
the model to reproduce streamflow reasonably well. However, parameterizing the model to adequately
capture local flux and storage dynamics, such as soil moisture or transpiration, required calibration with
specific observations. This indicates that the footprint of the information contained in observations varies
for each type of dataset, and that a diverse database informing about the different compartments of the
domain, is critical to identify consistent model parameterizations. These results foster confidence in
using EcH2O to contribute to understanding current and future ecohydrological couplings in Northern
catchments.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical models are crucially important in the environmental
sciences: models can complement and integrate theory and
empirical data by incorporating testable hypotheses and by
extending knowledge at spatial and/or temporal scales inaccessible
to current observation methods. In particular, process-based
models seek to explicitly represent the “state variables and fluxes
that are theoretically observable and can be used in the closure of
assumed forms of the laws of conversation of mass, energy, and mo-
mentum at temporal scales characterizing the underlying physical
processes” (adapted from Fatichi et al., 2016). In contrast to con-
ceptual and empirical approaches, physically-based models facili-
tate investigation of specific variables at local, process-specific
scales (e.g., Endrizzi et al., 2014; Manoli et al., 2017; Niu and
Phanikumar, 2015; Pierini et al., 2014). Additionally, a fully-
distributed description of the simulation domain opens the
ppel), d.tetzlaff@igb-berlin.de
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possibility for tracking intra-system patterns and dynamics (e.g.
Maxwell and Condon, 2016; Pierini et al., 2014), a task much less
accessible to coarser spatial representations (i.e., lumped or semi-
distributed models). Combining these two methodological
choices with physically-based, fully-distributed models is thus a
way to disentangle feedbacks and non-linear dynamics across
fundamentally different processes (e.g. Drewry et al., 2010; Tague,
2009), and better predict system behaviour outside recorded
environmental conditions (Seibert, 2003; Uhlenbrook et al., 1999).
These tools are of particular relevance for the emerging field of
critical zone science (National Research Council, 2012), which seeks
integrated understanding of ecological, geological, geomorpho-
logical and pedological processes within a framework of hydro-
logical partitioning (Brooks et al., 2015).

Within the field of hydrology the issue of appropriate model
complexity is a focus of ongoing discussion. The corollary of
expanding process-based approaches towards an “universal
model” is an inevitable increase in complexity as explicit de-
scriptions of additional system characteristics are added (e.g.
topography, soil texture, tree height, canopy density etc.) (Band
et al., 2001; Maxwell and Condon, 2016). Arguing that many of
these numerous parameters cannot be appropriately measured,
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some fear that evolution of complexmulti-disciplinarymodels only
layer up unavoidable uncertainty and are prone to equifinality,
whereby several combinations of parameter values erealistic or
note yield comparable performance (e.g. Beven and Binley, 1992;
Beven and Freer, 2001; McDonnell et al., 2007).

The utility of measurements to help constrain the model solu-
tion space and identify feasible model configurations has been an
increasingly central issue in hydrological model calibration. Suffi-
ciently informative observations are necessary to ensure that the
goodness of model-data fit attained effectively translates into
physically-sound information for the internal model parameters;
i.e., getting the right answers for the right reasons (Beven and
Binley, 1992; Kirchner, 2006). The problem of equifinalityea
particular case of underdetermination (Duhem, 1954)eis apparent
when stream discharge is the only monitored variable available for
calibration. Unfortunately, this remains the most common situa-
tion. The widespread use of streamflow time series to calibrate and
validate models has spurred the development of elaborate single
and multiple-criteria goodness-of-fit metrics (Kling et al., 2012;
Krause et al., 2005; Legates and McCabe, 1999; Madsen, 2003;
van Werkhoven et al., 2009) and calibration algorithms (Duan
et al., 1992; Gupta et al., 1998; Sorooshian and Dracup, 1980; Tang
et al., 2007; Tolson and Shoemaker, 2007) directed toward
extracting a maximum of information content from this type of
data (He et al., 2015; Rouhani et al., 2007; Shafii et al., 2017).

However, the information contained in streamflow time series is
often insufficient to inform the parameterization of physically
based models. Parameter values that represent physical properties
of the catchment are usually poorly identified and become very
sensitive to boundary conditions (Maneta et al., 2007). The situa-
tion deteriorates as more complex models incorporate increasingly
detailed descriptions of catchment functioning. To constrain pa-
rameters of components associated with different subdomains of
the model (ecological, surface, subsurface, etc.) it is desirableebut
often impracticaleto diversify data sources (Fang et al., 2013;
Larsen et al., 2016; Rajib et al., 2016; Thorstensen et al., 2015).
Combining different types of observations reduces information
redundancy and provides direct insights into the different groups of
physical processes represented in the model (Clark et al., 2011;
Fatichi et al., 2016). A data-extensive approach to model calibra-
tion makes the choice of performance metrics easier because the
information contained in observations is more directly related to
the model compartment being calibrated (e.g. Birkel et al., 2014).
Information diversity, however, brings other issues related to the
assimilation of observations with diverse characteristics during
calibration: some are technical e.g. combining spatio-temporal
scales and associated uncertainties, while others are more funda-
mental to modelling, e.g. parameters compensating for model im-
perfections (Clark and Vrugt, 2006), or overlapping constraints and
thus, possibly “pulling” the model in different directions
(Efstratiadis and Koutsoyiannis, 2010). In other research fields, this
approach is exemplified by the current efforts and associated
challenges in assimilating multiple types of carbon cycle data to
optimise Earth system models (Kaminski et al., 2013; Peylin et al.,
2016).

The ecohydrology of high-latitude, energy-limited landscapes
has traditionally been understudied despite the global ecological
importance of this region. Since studies of plant-water couplings
across disciplines gained momentum in the late 90s (Bonell, 2002),
research efforts in ecohydrology have been primarily conducted in
environments where water scarcity (Newman et al., 2006) or per-
manent presence (e.g., wetlands (Rodriguez-Iturbe et al., 2007))
makes hydrology an obvious, critical control upon how plants
distribute and compete. Only recently, efforts have been directed
towards understanding the specific ecohydrological processes of
boreal, energy-limited regions (e.g. Cable et al., 2014) While there
have been process-based model developments dedicated to the
hydrology of high-latitude environments (e.g. Endrizzi et al., 2014;
Kuchment et al., 2000; Lindstr€om et al., 1997; Pomeroy et al., 2007),
most model applications in these regions lack an explicit imple-
mentation of vegetation dynamics (e.g. Ala-aho et al., 2017a), and
thus, cannot finely capture ecosystem imprints on water parti-
tioning at the catchment scale.

High-latitude regions comprise mixed temperate forests, boreal
forests and tundra, covering nearly 20% of the continental land
mass (Tetzlaff et al., 2015a). These regions are subject to rapid
climate change, with significant regional to global-scale implica-
tions (Hinzman et al., 2013), including shifts in precipitation regime
and snow-mediated water balance (Bintanja and Andry, 2017;
Jim�enez Cisneros et al., 2014) and associated implications for
runoff generation (Peterson et al., 2002; Zhang et al., 2014). While
such environmental change has been observed to alter water
pathways and flow regimes (Dye and Tucker, 2003; McClelland
et al., 2006; Tetzlaff et al., 2013) and ecosystem dynamics (Naito
and Cairns, 2015; Piao et al., 2008), further work is needed to
identify the underlying mechanisms. Reasons for the limited un-
derstanding so far lie in the fine-scale landscape heterogeneity and
the implications for spatial variation in energy inputs, as well as the
logistical difficulties of collecting data in comparatively remote
areas (Pomeroy et al., 2013; Tetzlaff et al., 2013), and the alarming
recent decline in long-term monitoring of northern catchments
(Laudon et al., 2017). However, we need to understand such pro-
cesses and the related uncertainties of water cycling in these re-
gions, while ongoing/projected biome shifts (e.g., (Beck et al., 2011;
Williams et al., 2007)) call for particular scrutiny of ecosystem in-
fluence on water availability (Law, 1956) and vice-versa.

In this study, our main aim was to investigate to what extent a
data-extensive approach to calibration can constrain the range of
behavioural configurations of a highly-parameterized, physically-
basedmodel, such that the achieved parameter sets can be used as
falsifiable hypotheses of the internal functioning of the catch-
ment. For this, we used a distributed ecohydrologic model (EcH2O,
see (Maneta and Silverman, 2013) that integrates a kinematic
hydrologic and energy balance model, with a vegetation dynamics
model. The model is calibrated using several combinations of data
types covering a range of ecohydrological variables collected at a
long-term experimental northern montane catchment. We ask
the following questions through our modelling experiments, 1)
what are the physical insights gained across ecohydrological
processes? 2) how valuable are the information contents brought
by the different constraining datasets? Addressing these ques-
tions will help building a robust ecohydrological modelling
framework dedicated to critical zone functioning in high-latitude
environments.

2. Material and methods

2.1. Study site

The Bruntland Burn (Fig. 1) is a small catchment (3.2 km2)
located in the eastern Scottish Highlands (57�80N 3�200W). It is a
headwater of the River Dee, which provides drinking water for the
city of Aberdeen (250,000 people), ecosystem services such as an
Atlantic salmon fishery, and has EU conservation designations. The
region receives around 1100mm of average annual precipitation
(P), distributed quite evenly throughout the year, although
NovembereFebruary and JuneeAugust are usually wettest and
driest periods, respectively. Less than 5% of P occurs as snowfall.
The climatic water balance is energy-limited, with 400mm of
annual Potential Evapotranspiration (PET). The mean annual



Fig. 1. Bruntland Burn catchment, showing (a) topography, stream network, and the monitoring locations and associated instrumentation: stream gauge (triangle), soil moisture
sensors (diamonds and circle), square for sapflow transpiration (square and circle), and micrometeorology (including net radiation, star). The conceptualization used for simulations
(b-f, 30� 30m2 resolution) comprises (b) pedology, aggregated from the Hydrology of Soil Types (HOST) classes, and (cef) the pixel fraction covered by the four considered
vegetation types (in addition to scree/bare soil, not shown).
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temperature (T) is 7 �C with no monthly-averaged T below 0 �C in a
transitional temperate/boreal oceanic climate.

The local topography reflects glacier retreat, with a wide valley
bottom (~220m.a.s.l.) surrounded by steeper slopes reaching up to
560m.a.s.l. (Fig. 1a). This slope gradient is reflected by widespread
glacial drift deposits (60% of the catchment) with depths ranging
from ~40m in the valley bottom to ~5m on steeper slopes. These
deposits are mostly saturated and form significant groundwater
reservoirs that sustain stream base flow and maintain wet condi-
tions in the valley bottom (Soulsby et al., 2016). The pedology
comprises deep (0.5e4m), organic-rich soils (histosols: peat and
gley) in the riparian area bordering the stream channel network
(Fig. 1b). These soils are persistently saturated and rapid overland
flow is the dominant runoff generation mechanism following
rainfall events (Tetzlaff et al., 2014). Hillslopes are characterized by
shallower, freely-draining podzols (spodosols) overlying moraines
and marginal ice deposits, while thin regosols (rankers) dominate
above 400m.a.s.l. Where the drift is thin or absent (Fig. 1b). These
hydropedological units are somewhat reflected in the vegetation
cover (Fig. 1cef). Podzols and rankers predominantly support
heather shrublands (Calluna vulgaris and Erica spp.), though this
land cover is the result of overgrazing by red deer (Cervus elaphus)
and sheep. Scots pine trees (Pinus sylvestris), the naturally-
occurring vegetation, is confined to the northern steep hillslopes
and to plantation stands near the catchment outlet. Riparian gley
soils are characterized by herbaceous cover (Molinia caerulea), the
latter being also found as secondary species in the peat where bog
mosses (Sphagnum spp.) dominate the land cover.

2.2. The ecohydrological model EcH2O

Weused a new formulation of the spatially-distributed, process-
based model EcH2O (Maneta and Silverman, 2013). Here, EcH2O
couples a two-layer (canopy and understory) vertical energy
balance scheme (Fig. 2a), a kinematic hydrologic module solving
vertical and lateral water transfers (Fig. 2b), and a transpiration-
based simulator of carbon uptake and allocation for plant growth
(Lozano-Parra et al., 2014; Maneta and Silverman, 2013). The rea-
sons for choosing EcH2O lie in its original development aimed at
filling a research gap between hydrology-focused catchment
models and land surface models (LSMs) simulating biophysical and
biogeochemical cycles in the critical zone. While catchment models
provide a fit-for-purpose conceptualization of water pathways, in
most cases they lack a process-based representation of energy
balance and plant-water interactions. On the other hand, most
state-of-art LSMs have historically been developed as surface
components of climate models, to be run over large regions or
continents. Despite the recent advances in representing land pro-
cesses such as vegetation phenology and carbon/nutrient cycles,
hydrology remained simplistic in most LSMs; overland flow rout-
ing, channel routing, and lateral subsurface flow are typically
neglected or highly simplified (see Fan (2015) for a further dis-
cussion). Without these components, it is not possible to study the
ecohydrological effects of upstreamwater subsidies, and the spatial
organization of catchments imprinted by the water redistribution
network. This is especially critical for studies in small catchments at
high spatial resolution, like the one studied here. Finally, the
parsimonious implementation of EcH2O was preferred over other
recent, potentially more sophisticated, ecohydrological models
(e.g., Fatichi et al., 2012; Maxwell and Condon, 2016).

EcH2O's calculation of energy and water fluxes, water storage
dynamics and vegetation states is made at time steps subordinated
to that of the meteorological forcing. The atmospheric boundary
conditions for each time step are: Precipitation (P), incoming
shortwave radiation (RSW), downwelling longwave radiation (RLW),
T (maximum Ta,max, minimum Ta,min, and average Ta,mean during the
time step period), relative humidity (hr) and wind speed (Wxy).
New developments that we implemented in EcH2O are



Fig. 2. Schematics of the processes taken into account in a) the energy balance and b) the hydrologic modules of the EcH2O model.
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documented in the Appendices, to complement other model details
described elsewhere (Lozano-Parra et al., 2014; Maneta and
Silverman, 2013). Here, we provide a brief summary of the model
philosophy and main features.

The spatial domain of EcH2O is mapped on a regular grid defined
by that of the input digital elevation data. Each cell of the domain
can have multiple vegetation covers (including bare soil). The en-
ergy and the water balance is solved for each cover and integrated
over the cell area according to the fraction of the cell they occupy.
The energy balance equations are solved at the top of the canopy
(see Appendix A1 for details) and then at the soil or snowpack
surface. Turbulent fluxes (momentum, heat, and vapour) are
resolved using a first-order, local closure approximation under
gradient similarity theory, valid for small eddies and neutral
stratification conditions.

Canopy interception is simulated using a linear bucket approach.
The partition of P and throughfall between the solid (snow) and
liquid components during a time step is done according to the
minimum and maximum air T during the time step, and to a snow-
rain transition T threshold. Snowpack melt and liquid throughfall
feed surface ponding which infiltrates following a Green and Ampt
approximation of the Richard's equation (Mays, 2010). All ponded
water at the end of each time step becomes overland flow, i.e., run-
on to the downstream cell where it can reinfiltrate or, in turn,
generate further overland flow. This calculation cascade follows the
local drainage direction until the remaining surface water reaches
the outlet or a channel cell. Flow in a channel is routed using a 1D
solution for a kinematic wave (see Appendix A2 for details).

The soil is divided into three hydraulic layers: the shallow
topsoil where soil evaporation takes place, the intermediate layer
which typically shares the bulk of the roots with the topsoil, and the
bottom layer where groundwater can be transferred laterally to the
downstream cell or seep into the stream. Vertical water redistri-
bution is based on the theory that only soil moisture in excess of
field capacity (gravitational water) can move under gravity to
deeper soil layers or laterally to the next cell downstream. Diffusive
effects driven by local pressure gradients are therefore assumed to
be negligible, and water below field capacity is retained by the soil
and only removed by evapotranspiration.

Simulation of vegetation dynamics are adapted from the 3-PG
and TREEDYN3 models (Bossel, 1996; Landsberg and Waring,
1997; Peng et al., 2002), with differentiated carbon allocation and
growth schemes for ligneous and herbaceous species (Lozano-Parra
et al., 2014). A Jarvis-type model is used to simulate the response of
canopy conductance to environmental drivers (Cox et al., 1998;
Jarvis, 1976).

2.3. Model setup and landscape characterization

All simulations were performed at a 30� 30m2 resolution. A
LiDAR-derived 1� 1m2 DEM (Lessels et al., 2016) was used to
delineate the catchment boundary, and further processed with the
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PCRaster tool suite (http://pcraster.geo.uu.nl/) to obtain local slopes
and local drainage direction; the latter was determined for each cell
using the steepest descent among the eight adjacent cells (D8 al-
gorithm, Fairfield and Leymarie, 1991). The model was run at daily
time steps. Simulations covered a 64-month-long time period from
June 2011 to September 2016, with the period from June 2011 to
October 2012 used for model spin-up and therefore, discarded from
the analysis (see Sect. 2.5).

P, Ta,mean, Ta,min, Ta,max, hr, and Wxy data were collected at three
meteorological stations installed in the catchment in different
landscape positions: valley bottom, bog, and hilltop (Fig. 1a) and
used from July 2014. Prior to that period, P was interpolated using a
square elevation inverse distance-weighted algorithm applied to
five Scottish Environment Protection Agency (SEPA) rain gauges
located around the Bruntland Burn catchment within 10 km,
similarly to (Birkel et al., 2011), while Ta,mean, hr andWxy fields were
taken from the Balmoral station (~5 km NW) as available from the
Centre for Environmental Data Analysis (CEDA) (Met Office, 2017).
Ta,min and Ta,max (prior to July 2014), RSW and RLW (whole study
period) were retrieved from the ERA-Interim climate reanalysis
(Dee et al., 2011). Finally, we took into account altitudinal effects on
P and T by respectively assuming a 5.5% increase of P every
100m.a.s.l. as measured along a hillslope covering 200m elevation
difference (Ala-aho et al., 2017b), and a decrease of 0.6 �C/
100m.a.s.l based on the moist adiabatic temperature lapse rate
(Goody and Yung, 1995).

Soil hydrological properties weremapped by splitting themodel
domain into four hydropedological units aggregated from the soil
classes defined by the Hydrology of Soil Types (HOST) (Fig. 1b)
(Tetzlaff et al., 2007). Energy-related soil characteristics were
considered as spatially uniform. Five land cover types were
considered: Scots pine stands, heather moorland, peat moss,
grassland and bare rock/scree. Vegetation fraction of Scots pine in
each cell (Fig. 1c) was estimated by aggregating a 1� 1m2-reso-
lution LiDAR canopy cover measurements conducted over the
catchment to the 30� 30m2 grid used for simulations. For the
other vegetation fractions, we additionally used the soil
Table 1
Calibrated parameter types and their allowed ranges of variation during calibration, for ea
for sampling).

Parameter

Name Description

Soil-distributed

Dsoil Total soil depth (m)
DL1 Depth of the 1st hydrological layer (m)
DL2 Depth of the 2nd hydrological layer (m)
Н Porosity (m3.m�3)
Khx Saturated horizontal hydraulic conductivity (m.s�1) z

Khratio Ratio of vertical-to-horizontal hydraulic conductivity (�) z

lBC Brooks-Corey exponent parameter (�)
jae Air-entry pressure head (m)
qr Residual soil moisture
kroot Exponential root profile (m�1)

Vegetation-distributed

gsmax Maximal stomatal conductance (m.s�1) z

CWSmax Maximum interception storage per unit LAI (m) z

Topt Optimal photosynthesis temperature (�C)
jd Soil water potential halving stomatal conductance (-m)
c Sensitivity of stomatal conductance to soil water potential (�)
Kbeer Light attenuation coefficient (�)
classification, extensive land use mapping and aerial imagery
(Tetzlaff et al., 2007). Heather was assumed to occupy 95% of the
treeless surface of podzols and rankers, except for the steep
northern rocky hillslopes (40% cover in treeless areas), a few
sparsely vegetated moorlands on the west hillslopes (20% cover in
treeless areas) and the gley (5% cover) (Fig. 1d). Peat moss was
assumed to occupy 90% of an extensive raised peat bog in the NW
parts of the catchment (see Fig. 1 in (Sprenger et al., 2017), and 70%
of the remaining peat soils (Fig. 1e). In the latter areas, Molinia
grasses compete (30% cover) with peat moss, while grasslands are
dominant on gley soils (95% of the tree-and-shrub-free surface) and
in patches of managed lands near the catchment outlet (Fig. 1f).

The list of model parameters calibrated in this study is given in
Table 1. We selected 16 types of parameters, based on a preliminary
sensitivity analysis following (Morris, 1991) performed with the
calibration dataset described in section 2.4. As shown in Table 1, 10
parameters are soil-dependent and 6 are vegetation-specific. Since
we considered 4 soil types and 4 vegetation types, the total number
of calibrated variables was 64 (10 � 4 þ 6 � 4). The uncalibrated
model parameterization, including initial conditions, was prescribed
based on literature values and expert knowledge (Supplementary
Table S1).
2.4. Calibration and evaluation datasets

A specific advantage of the Bruntland Burn experimental
catchment is the length and diversity of data records across eco-
hydrological processes which is unusual for northern regions. We
made use of 10 datasets for the calibration as summarized in Fig. 3.
Daily discharge at the catchment outlet (Fig. 1a) was derived from
15-min stage height records (Odyssey capacitance probe, Christ-
church, New Zealand) using a rating curve calibrated for a stable
stream section.

Soil moisture data was collected at 15-min intervals at four lo-
cations: three of them along a transect representative of the main
hydropedological units epodzol, gley and peate on heather
(Tetzlaff et al., 2014), and one plot in a Scots pine forest (Wang et al.,
ch of their four components: soil units or vegetation types (z: logarithmic scale used

Calibration range

Peat Gley Podzol Ranker

0.8e8 0.8e8 0.65e4 0.65e4
0.02e0.25 0.02e0.25 0.01e0.2 0.01e0.2
0.02e0.25 0.02e0.25 0.01e0.2 0.01e0.2
0.7e0.98 0.4e0.9 0.3e0.6 0.3e0.6
10�7e0.01 10�5e10�3 10�4e0.1 10�4e0.1
10�3e0.4 10�3e0.6 10�3e0.6 10�3e0.6
3e12 3e12 3e12 3e12
0.05e0.8 0.05e0.8 0.05e0.8 0.05e0.8
0.02e0.2 0.02e0.2 0.02e0.2 0.02e0.2
5e40 5e40 5e40 5e40

Pine Heather Peat moss Grass

0.003e0.05 0.003e0.05 0.003e0.05 0.003e0.05
10�4e0.005 10�4e0.005 10�4e0.005 10�4e0.005
6e24 6e24 6e24 6e24
0.5e8 0.5e8 0.5e8 0.5e8
0.5e5 0.5e5 0.5e5 0.5e5
0.3e0.6 0.3e0.6 0.3e0.6 0.3e0.6

http://pcraster.geo.uu.nl/


Fig. 3. Temporal window eat daily resolutione covered by each of the considered data
sets (black), used to constrain the model during the calibration period (orange) after
leaving at least a full year of spinup for simulations (green), and then to evaluate the
calibrated model (blue). Note the shortness of some data sets (e.g. transpiration) ex-
plains the (partial or total) overlap between some calibration and evaluation periods.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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2017a) (Forest site B, Fig. 1a). We used time domain reflectometry
(TDR) soil moisture probes (model CS616, Campbell Scientific, Inc.
USA) located 0.1, 0.2 and 0.4m beneath the surface ecorresponding
to the main soil horizons (Geris et al., 2015)eexcept in the peat
where only two probes were present, at depths of 0.1 and 0.2m.
Additionally, each group of probes was replicated at the same
depths but ~2m apart. These TDR sensors were calibrated using
laboratory analyses of gravimetric soil water content and bulk
density, from samples collected at each horizon (Geris et al., 2015).
Finally, a single daily, vertically-averaged volumetric water content
value was used for calibration and evaluation of the EcH2O model.

Scots pine transpiration (Tp) was measured between July and
September 2015 at Forest site A and between April and September
2016 at Forest site B (Fig. 1a), using 32 sets of Granier-type thermal
dissipation sap flow sensors (Dynamax Inc., Houston, USA) installed
on 10 and 14 trees in the Forest sites A and B, respectively, with 2-
to-4 sensors per tree depending on the stem size (10e32 cm in
diameter). Average stand-scale pine transpiration was derived us-
ing a sapwood-area-to-tree-diameter relationship estimated from
incremental wood cores sampling in surrounding trees at the end
of the study period (see (Wang et al., 2017a) for more details), and
then daily averaged. Net radiation (Rn) was measured every
15min at the three meteorological stations (Fig. 1a), and then daily
averaged.

Finally, to provide a novel independent verification of the
model's ability to represent seasonal storage dynamics, we
compared modelled and empirical-based estimates of catchment-
scale saturation area from June 2011 to September 2014. A con-
ceptual rainfall-runoff model that linked antecedent wetness and
soil moisture to saturation area was used to estimate the extent of
saturation in the catchment. This model was previously calibrated
against maps of measured saturation area extent and isotopic
tracers measurements (Ali et al., 2014; Birkel et al., 2010). These
estimates were compared with saturation extent in EcH2O, which
was defined as the proportion of cells in the domain where the
volumetric water content in the top hydraulic layer exceeded 99% of
soil porosity.
2.5. Model-data fusion method

We sampled the parameter space by conducting 100,000 Monte
Carlo simulations using uniform parameter distributions with
prescribed bounds based on literature values and prior experience
(Table 1). Each run spanned the entire 64-month simulation period,
but the first 16 months of each runwere used to spin-up the model
and stabilize water storages and flux simulations (notably soil
moisture and stream discharge). After discarding the spin-up
period, the calibration dataset was split whenever possible into
two non-overlapping periods, one for calibration and one for
evaluation (Fig. 3). However, this was not possible for the transpi-
ration dataset (3 and 6 months long) or for the net radiation at the
hilltop weather station (15 months long), and no split-sample
evaluation was performed for these variables. For each simula-
tion, the goodness-of-fit (GOF) for the calibration and for the
evaluation datasets was quantified. We used the mean absolute
error (MAE) for stream discharge, because other metrics based on
squared model-data difference, such as root mean square error
(RMSE) and Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe,
1970), are known to overemphasize the constraint brought by
high-flow measurements and neglects low-flow portions of the
dataset (Krause et al., 2005; Legates andMcCabe,1999). In addition,
high flow measurements typically carry more uncertainty and in
our system flow conditions vary over several orders of magnitude
(see Sect. 3). Conversely, all other observables (volumetric water
content, pine transpiration and net radiation) comparatively
display a much more compact and symmetric distribution, with
median values close to mean values. RMSE has been recommended
when no information is given on model error distributionethe
latter is then conservatively assumed as being Gaussiane(Chai and
Draxler, 2014), which is why we chose this metric in this case. For
cross-variable evaluations of model performance after calibration,
the fit between the respective dispersion of model and data time
series was quantified using Pearson's correlation coefficient r,
complemented by the dataset-normalized RMSE extended to all
variables, where model-data biases are notably taken into account.

To investigate the extent to which each type of measurement is
capable of informing the calibration of a wide range of model pa-
rameters, we assessed multiple calibration scenarios each using a
different subset of the 10 datasets for a multi-variable, multi-site
calibration run as described in (Ala-aho et al., 2017b). In this
method the GOF functions are used as informal measures of the
likelihood. The GOF for each dataset was calculated for 100,000
Monte Carlo runs (MAE for streamflow, RMSE for the other out-
puts), and the dataset-specific empirical cumulative distribution
function (CDF) of these was determined. Next, these CDFs were
used to identify the 30 “best” model runs. The method iteratively
identifies the quantile threshold common to all corresponding
GOF's CDFs, below which the GOF of exactly 30 model runs simul-
taneouslymeets the calibration target for the objectives. In the case
of using only one dataset as a constraint, this is equivalent to
finding the 30 smallest values for MAE or RMSE. Although it re-
mains an aggregative approach to the multi-objective problem
(Cohon, 1978), this simple method advantageously avoids having to
combine the different GOFs into a single numerical objective
function. Note also that likelihood estimates are not used to guide
the exploration of the model parameter space, which eliminates
potential search biases if the characteristics of the model error re-
siduals are incorrectly specified in the likelihood function. Overall,
all this has five important advantages: 1) no need to choose pooling
weights to combine the individual objective into a single function,
2) results are less sensitive to the choice of factors used to scale
observations in dimensional GOF functions, 3) no compensatory
effects between well-performing and poorly-fitted runs can occur,
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4) less risk that potentially 'good' sections of the parameters space
may be left unexplored if the specification of model errors are
incorrect, and 5) independence of runs make the process trivially
parallelizable. The first three of these advantages address some of
the classical shortcomings in aggregated objective functions
(Efstratiadis and Koutsoyiannis, 2010). The last two relax some of
the disadvantages associated with more formal Markov Chain-
based search methods.

Lastly, predictive uncertainty (PU) was taken as the 90%-spread
for each simulated daily values across the 30 best runs (thus,
avoiding making assumptions about the output distribution), then
averaged over the whole simulation period (excluding the initial
spin-up). Depending on the analysis being carried out (see Sect. 3
and 4), this uncertainty is kept dimensional (Eq. (1a)) or normalized
(Eq. (1b)):

PU ¼ 1
Neval

XNeval

i¼1

M95ðtiÞ �M5ðtiÞ; (1a)

PU* ¼ 1
Neval

XNeval

i¼1

M95ðtiÞ �M5ðtiÞ
hjMðtiÞjibest runs ; (1b)

where M95ðtiÞ, M5ðtiÞ, and hjMðtiÞj i are respectively the 95th-
percentile, the 5th-percentile and average absolute value for the i-th
time step in the evaluation period.

3. Results

3.1. Simulation of multiple data time series

The model captures well the main characteristics of the stream
hydrograph for the 45 months period (Oct 2012eJune 2016) shown
in Fig. 4. Moderate and high flow conditions are well reproduced,
with a slight underestimation of low flows during summers,
especially in 2013 and 2015. The simulation of the hydrograph
shows minor differences when the model was calibrated using the
entire suite of observations versus using only streamflow data, with
Fig. 4. Time series of (a) measured precipitation, and stream discharge, with (b)
normal and (c) logarithmic scale the data in black and in colour the average of the 30
best and 90%-spread interval for two types of calibration: (green) using only stream
discharge and (yellow) when simultaneously constraining the model against all
datasets. (For interpretation of the references to colour in this figure legend, the reader
is referred to the Web version of this article.)
modified Kling-Gupta Efficiency (KGE) scores (Kling et al., 2012)
over the evaluation period (Fig. 3) ranging from 0.60 to 0.95 across
these best runs (not shown). In both calibration cases, the 90%-
spread interval shows that the dispersal among the 30 best runs
remains similarly small with respective PU values of 0.023 and
0.041m3 s�1.

Fig. 5 shows the time series of volumetric soil water content (q)
in the shallow subsurface at the four monitored sites (shown in
Fig. 1a). At each location, the depth-averaged measured data (see
sect. 2.4) is compared to thickness-weighted averages of simulated
q in the two upper layers of EcH2O in three calibration scenarios:
using the local soil moisture dataset, using all four soil moisture
datasets, and constraining against all datasets. The model generally
provides consistent results in the peat in terms of timing and
amplitude of q dynamics (Fig. 5a). However, simulated soil moisture
is often too prompt in rewetting the peat in autumn, while it dis-
plays an unrealistic drying event in the summer of 2015. Similar
observations can be made about the gley (Fig. 5b) where the model
tends to underestimate the annual amplitude because simulated
soil saturation is reached at lower volumetric water contents than
observed. In both peat and gley locations, the different calibration
scenarios display a very similar average behaviour across best runs,
but the 90%-spread interval among time series grows significantly
when adding more constraints, with predictive uncertainties of
0.04, 0.11, and 0.22m3m�3 (peat) and 0.02, 0.08, and 0.25m3m�3

(gley) when respectively calibrating using q measurements in peat,
all q data, and all datasets. At the podzol at the upslope end of the
transect, the model satisfactorily captures soil moisture dynamics
at daily-to-seasonal time scales (Fig. 5c). High-frequency peaks of q
tend, however, to be underestimated by EcH2O, this discrepancy
becoming more marked when adding more constraints in the
calibration. Similar behaviour occurs in the podzolic soil at Forest
site B (Fig. 5d): while the simulated high-frequency dynamics
Fig. 5. Time series of profile-averaged soil volumetric water (aec) in the transecte(a)
peat plot, b) gley plot and c) podzol ploteand (d) at Forest site B, showing data in black
and in colour the average of the 30 best runs and 90%-spread interval for three types of
calibration: (green) using only the plotted quantities, (pink) using all soil moisture
datasets and (yellow) using all collected datasets. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)
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are consistent with the measurements, the model markedly un-
derestimates long-term q variations. In both podzol locations, the
increase in predictive uncertainty as constraints are diversified is
less marked than in the valley bottom (peat and gley).

Summer pine transpiration is well simulated by EcH2O at both
Forest sites A and B (Fig. 6). This is particularly true when cali-
brating the model against local and all-transpiration datasets.
Adding all other constraints leads EcH2O to underestimate some
peak values at Forest site B (Fig. 6b), while in this configuration the
baseline transpiration becomes underestimated at Forest site A
(Fig. 6a).

Fig. 7 compares measured net radiation to the simulated top-of-
canopy valueeaveraged over vegetation and bare soil fractionseat
the three weather stations. In all shown cases, the temporal dy-
namics of the seasonal signal are well reproduced by the model, as
Fig. 6. Time series of measured and simulated pine stand transpiration at (a) Forest
site A and b) Forest site B, showing data in black and in colour the average of the 30
best runs and 90%-spread interval for three types of calibration: (green) using only the
plotted quantities, (pink) using all soil moisture datasets and (yellow) using all
collected datasets. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 7. Time series of measured and simulated net radiation at the 3 weather stations:
a) Valley bottom, b) Bog and c) Hilltop, showing data in black and in colour the average
of the 30 best runs and 90%-spread interval for three types of calibration: (green) using
only the plotted quantities, (pink) using all soil moisture datasets and (yellow) using all
collected datasets. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
are the day-to-day fluctuations, with a very small dispersal among
best runs (PU< 5.5Wm�2). However, EcH2O tends to underesti-
mate net radiation at all three sites, which may indicate an over-
estimation of soil temperatures to compensate for potentially low
evaporative losses (see Eq. (A1) and discussion in sect. 4.1). This
feature is especially marked at the heather-dominated hillslope
location (Fig. 7c) where the simulated summer net radiation is only
half of the observed values.
3.2. Overall performance and uncertainty reduction

The model performances are summarized using heat maps in
the dual space of calibration scenarios and simulated variables
(Fig. 8), quantifying model-data correlation (rm,o, Fig. 8a) and data-
average-normalized RMSE across the evaluation period (RMSE*m;o,
Fig. 8b). In these plots, the columns qall, Tpall, Rnall and All show the
metrics averaged over one type of output or all outputs. The most
notable feature in these plots is that stream discharge is well
reproduced regardless of the datasets used for calibration, with
rm,o > 0.89 (p< .001) in all cases and RMSE*m;o values between 0.53
and 0.68. Secondly, the temporal dynamics of volumetric water
content is generally best captured in the podzolic soils (podzol at
transect and Forest site B, Fig. 8a), while the lowest RMSE*m;o for soil
moisture (q) are found in the peat (Fig. 8b). Soil moisture is
reasonably simulated in the gley only when the corresponding
dataset is included in the calibration, although model-data
Fig. 8. Heat map of model-data fit over the evaluation period, as measured by (a) the
Pearson's correlation coefficient and (b) normalized root mean square error averaged
over the 30 best runs. The horizontal axis gives the variable or group or variables
evaluated, depending on the dataset or combination of datasets used as a constraint
over the calibration period (vertical axis).
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correlation there remains low in most cases. Similarly, it is found
that accurate simulation of transpiration is achieved only when the
observations of transpiration are included in the calibration (rows
TpForestA, TpForestB, Tpall and All). Fourth, the scores for net radiation
are somewhat insensitive to the calibration scenarios, with good
temporal dynamics but high RMSE*m;o due to the recurrent under-
estimation by the model mentioned in 3.1.

For most individual observables (column 1 to 5, 7 to 8, and 10 to
12) the all-datasets calibration scenario (last row) yields the high-
est scores, surpassed only by the scores of each simulated state
calibrated against its direct observation (diagonals of Fig. 8). The
improved model-data fit with more constraints becomes clearer
when the average scores over observable types are considered
(column 1, 6, 9, and 13). Finally, using all datasets as a simultaneous
constraint yields the lowest overall model-data misfit across ob-
servables (bottom right square in Fig. 8b, as compared to the rest of
the last column).

The impact of different calibration scenarios on individual and
overall predictive uncertainty of simulations, i.e., the average 90%-
spread interval among best runs (PU*, normalized as defined in Eq.
1b), is shown in Fig. 9 efollowing the same layout of Fig. 8. When
the model is calibrated against individual datasets, PU� values for
corresponding observables remain below 0.5 (diagonals in Fig. 9)
and generally below 1 when simulating other variables (off-diag-
onal squares), even if the latter is not included in the calibration
(e.g., uncertainty of qpeat when calibrating against streamflow
onlye1st row and 2nd column). Notable exceptions are streamflow
where PU� remains above 1 whenever discharge is not included in
the calibration, and simulated pine transpiration, for which this
feature is even more marked. A smaller overall predictive uncer-
tainty is found for the all-dataset calibration scenario (PU* ¼ 0.65),
as it is the only casewhere large individual reductions in simulation
dispersal are simultaneously achieved for streamflow, soil mois-
ture, net radiation, and to a smaller extent, pine transpiration
(Fig. 9, last row).

3.3. Parameter values

Fig. 10 shows the selected parameter values across the best
runs within the prescribed sampling interval, displaying only 5
Fig. 9. Relative predictive uncertainty PU*, computed for each observable as the daily
90%-spread interval across the 30 best runs divided by the inter-run mean, then
averaged over the evaluation period (Eq. (1b)). The horizontal axis gives the variable or
group or variables evaluated, depending on the dataset or combination of datasets
used as a constraint over the calibration period (vertical axis).
calibration scenarios; grouping all datasets of a same type and the
“all-datasets constraint” case. Calibrated soil depths show consis-
tent results, with deep (4e6m) soils in the valley bottom and
shallower podzol and rankers (~2m), somewhat reflected in the
depth of the two upper hydraulic layers (top row). Porosity takes
markedly different values across soil types, from 0.85 in the peat,
0.5e0.7 in the gley down to 0.35e0.5 on the hillslope. This spatial
variability is somewhat mirrored by an increasing saturated hori-
zontal hydraulic conductivity Khx over several orders of magnitude,
from 10�5m s�1 in the peat to nearly 0.01m s�1 in the rankers.
Other hydrological parameters such as air entry pressure (jae),
residual soil moisture (qr) and anisotropy Kratio) mostly displays
similar values across soil types and calibration scenarios, centred in
the sampling intervals. The same applies for vegetation parameters
such as optimal photosynthesis temperature (Topt), soil water po-
tential control on stomatal closure jd, and maximum stomatal
conductance (gsmax). The light extinction coefficient (KBeer) of
heather and peat moss displays distinctively higher, well-
constrained values when pine transpiration is used as a
constraint. For pine trees, the sensitivity of stomatal conductance to
soil water content (c) is much lower in the all-datasets calibration
case, while canopy interception capacity (CWSmax) becomes much
higher than in other cases.

3.4. Independent evaluation at catchment scale

The empirically-based estimate of catchment-wide saturated
area fraction (Areasat) is compared to the simulations provided by
the 30 best parameters sets in five calibration scenarios (using each
data type, plus the full suite of measurements) in Fig. 11. In all cases,
the model broadly reproduces the observed temporal dynamics
reasonably well, but apart from the peaks, the simulated saturation
extent is generally overestimated. Slight differences appear be-
tween scenarios, with higher Areasat values associated with the
highest predictive uncertainty (24%) when only soil moisture is
used as a constraint (VWSCall), while the stream discharge con-
straints brings the narrowest range of simulated Areasat between
best runs (PU¼ 17%).

4. Discussion

4.1. Insights into ecohydrological processes

This study shows the ability of a process-based model to
consistently simulate not only water storages and fluxes in the
critical zone at local-to-catchment scales, but also energy balance
and ecohydrological couplings in a comprehensive model evalua-
tion exercise. These are very encouraging results for the prospect of
explicitly incorporating vegetation dynamics into a mechanistic
description of catchment water partitioning, and towards improved
prediction of the functional changes that catchments in northern
latitude are likely to experience in the coming decades.

The most robustly simulated observable was stream discharge,
with 90% of all optimisation-selected runs (30 for each of the 14
calibrations scenarios, 12 of the latter excluding discharge mea-
surements) showing modified KGE scores between 0.67 and 0.87
across the simulation period (11/2012e06/2016, excluding spin-up,
not shown). In particular, the model was able to capture well
extreme events such as the 200-year return period flood during the
winter 2015e2016. Note that the kinematic approximation for
groundwater and stream routing in EcH2O neglects diffusive water
redistribution through pressure gradients. Therefore, this model-
data consistency points at a reasonable adequacy of using a
gravity-driven conceptualization of the Bruntland Burn catchment
at the spatio-temporal scales considered. This hypothesis is



Fig. 10. Calibrated value of the constrained parameters, showing the individual and average value, and the interquartile range across the 30 best runs for each parameter
component, as indicated by the colour code, and five different calibration case (symbols): against each data type (including all corresponding datasets) and all datasets together.
Horizontal dashed lines indicate the allowed range of variation, and the asterisk that a logarithmic scale was used for sampling. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 11. Time series of saturated area at the catchment scale, comparing an indepen-
dent data-driven estimate (Ali et al., 2014) (black) to simulation outputs using pa-
rameters sets from different calibration cases (average and 90%-spread interval).
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consistent with strong topographic gradients in the catchment and
the wet, low energy hydroclimate, which both sustain a quasi-
permanently saturated valley bottom (Tetzlaff et al., 2014) and
generally high water tables even on the steeper hillslopes
(Blumstock et al., 2015). These settings result in a flashy response of
the stream network to run-off events (Soulsby et al., 2015), gener-
ally driven by saturation overland flow from the peat and gleys, but
in larger storm events the podzolic soils also connect to the satu-
rated areas (Tetzlaff et al., 2014).

The general hydrological behaviour, which is broadly repre-
sentative of other northern/boreal catchments (Tetzlaff et al.,
2015b), contrasts with semiarid regions, which are characterized
by a more transient hydraulic connection and disconnectionwithin
hillslopes and between hillslopes and the channel during dry
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periods. Although bedrock topography remains critical to under-
stand shallow subsurface flows inwater-limited environments (e.g.
Jobb�agy et al., 2011; Maneta et al., 2008), diffusive effects by local
pressure gradients are also highly relevant, reducing the spatial
extent for which local measurements are representative, and
limiting the propagation of information from the location where
fluxes are measured to the location where model parameters need
to be identified (Maneta and Wallender, 2013).

More detailed insights into storage dynamics were provided by
including volumetric water content for the upper half-meter of soil
profile into the calibration, at the four monitored locations across
the main hydropedological units. A good model-data fit was ach-
ieved in most cases (Fig. 5); EcH2O overall managed to capture the
very different dynamics between locations across almost 13 data-
years, including the variability within the same podzolic soil unit
(i.e., with a common set of parameters) at two contrasting sites
(Fig. 5c and d). Further, the calibration yields a depth of about 2m of
a “hydrologically-active” profile on the hillslope, which is much
deeper than typical soil depth estimates from geophysical methods
(Soulsby et al., 2016) but consistent with the hypothesis that
groundwater recharge on the hillslope and downhill movement
actively contributes to saturation overland flow through exfiltra-
tion in the valley bottom (Ala-aho et al., 2017a; Birkel et al., 2011).
We note, nonetheless, that the riparian areas are the most chal-
lenging locations when attempting to capture soil moisture dy-
namics. In part, this reflects the very small variability measured,
though the modelled q remained too “reactive” as compared to the
damped variability in themeasurements (Fig. 5a and b). In addition,
the gley porosity remained underestimated, leading to unrealistic
saturated conditions outside the summer. It might also explainwhy
the simulated gley soil seemed slightly too deep while it should be
shallower than in the peat areas, as the model likely compensated
in order to close the water balance in the valley bottom.

The other notable model-observation mismatch was the un-
derestimation of the seasonal amplitude of net radiation at the
hilltop site, a location mostly covered by heather shrubs (Fig. 1).
Using independent estimates of transpiration and total evapo-
transpiration (ET) on a heather plot near the podzol transect in the
same catchment (Wang et al., 2017b), a preliminary analysis hinted
at an underestimation of transpiration and overestimation of soil
evaporation in the EcH2O model (not shown). By contrast, net ra-
diation was well simulated in the riparian areas, suggesting an
accurate estimation of energy conversion from radiative to turbu-
lent fluxes such as soil evaporation and sensible heat. Further
modelling-measurement comparison studies focusing on evapo-
rative processes will help better constraining the energy balance on
the catchment hillslopes (Gong et al., 2016; Larsen et al., 2016).

It is uncommon in catchment-scale calibration studies to use
direct measurements of plot-scale tree transpiration (Du et al.,
2014; Wei et al., 2016). This is not only because this type of mea-
surements is rarely available, but also because most current hy-
drologic models cannot single out the transpiration fraction of
evapotranspiration (M�endez-Barroso et al., 2014; Paniconi and
Putti, 2015). The inclusion of an ecohydrological observable such
as plot-scale transpiration of Scots pine, introduced direct knowl-
edge of the exchanges between the physical and ecological com-
ponents of the catchment, and reduced the number of possible
internal model configurations that were consistent with observed
soil moisture and streamflow. The calibrated model reproduced the
major features of the transpiration time series surprisingly well,
which increases our confidence that the internal water and energy
exchanges at Bruntland Burn were adequately captured. At Forest
site B, the simulated transpiration remained very similar across
calibration scenarios over the summer 2016 (Fig. 6b), while soil
moisture wasmore sensitive to the data used to calibrate the model
(Fig. 5d). This is consistent with results reported using a data-
oriented approach (Wang et al., 2017a), which showed weak con-
trols of soil moisture on pine transpiration outside infrequent dry
periods in this humid catchment.

4.2. Information content brought by the different observations

The multiplicity of datasets of this study, used in different
combinations for model calibration and evaluation, brings novel
insights in how informative and representative these measured
quantities are for improving ourmodelling approach. This may help
with the design of more efficient data collection campaigns. In the
following we first discuss the spatio-temporal footprint, related to
how time- and/or location-specific the measured signal is. The
issue subsequently discussed is the behavioural footprint, i.e. how
specific to some processes the retrieved information content is.

Streamflow was simulated reasonably well in all reported cases
(Fig. 8), but with a substantially higher predictive uncertainty
whenever discharge data was not included in the calibration
(Fig. 9). Streamflow is well-known to integrate information of many
catchment-scale processes (Beven and Binley, 1992), but this
knowledge is too ambiguous to determine the exact catchment
configuration that produces the observed signal. This is because
streamflows integrate downstream following a convergent
network towards a unique outlet, but the divergent nature of an
upstream network makes it impossible to uniquely backtrack the
locations where the flowwas generated (Kirchner et al., 2001). This
has two consequences: streamflow can be well simulated with
numerous alternative model parameterizations (physically-
consistent or not) (Kirchner, 2006), and the spatio-temporal and
behavioural footprints are large and therefore less informative of
individual processes happening at specific locations in the catch-
ment (Guse et al., 2016). This was illustrated in the predictive un-
certainties of the simulated catchment states: using only discharge
as the calibration constraint yielded the most variable results for
simulated soil moisture in the gley and net radiation (Fig. 9).

Some variables were only well-simulated when the model was
calibrated against observations of that type, which indicates a more
restricted behavioural and spatio-temporal footprint of the infor-
mation. For instance, soil moisture in the gley displayed a signifi-
cantly higher (up to ten-fold) model-observation mismatch
whenever qgley was not part of the calibration constraints, even if
other q dataset were included in the calibration (Fig. 8b, 3rd col-
umn), therefore exhibiting a very localized spatial footprint.
Moisture in podzols, on the other hand, displayed slightly more
homogeneous performances across calibration scenarios (Fig. 8b,
4th and 5th columns), indicating that having two different podzolic
soil moisture locations in this study additionally increased the
spatial footprint of the associated calibration constraints. Transpi-
ration in Scots pine stands (Tp) was also characterized by poor
model-data fits unless the calibration scenarios involved a tran-
spiration dataset (Fig. 8). Performances remained consistent when
using data from Forest site B to calibrate Tp at Forest site A and vice-
versa, even when the two sites cover different growing seasons
(2015 and 2016). It indicates that in this catchment the Tp datasets
has a narrow behavioural footprint but a more extensive spatial and
temporal footprint. Conversely, this footprint of Tp datasets made
them ill-suited as sole constraints to calibrate the model across
processes, as seen for example from soil moisture goodness-of-fit
(Fig. 8) and predictive uncertainty (Fig. 9).

The above considerations highlight the benefits of combining
streamflow observations with other types of information that have
a more specific footprint, such as measurements of volumetric
water content and transpiration (Du et al., 2014). Compared to
using streamflow alone, adding the two latter types of variables
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improved model calibration by increasing model-data fit scores
(Fig. 8) and by reducing the dispersion among best runs (Fig. 9).
These enhanced performances were, moreover, generalizable to
using a diversified combination of observations in the calibration,
as seen from the improved overall model-data fit and low predic-
tive uncertainty across model outputs. It supports a mitigation of
the equifinality problem as the increased number of scale- and/or
process-specific “diagnostics” (Clark et al., 2011) helped discarding
unfeasible model configurations that may otherwise have given
high performance scores.

However, we have also observed that the predictive uncertainty
of some outputs (the case for peat and gley soil moisture) can in-
crease substantially when themodel was calibratedwith increasing
amounts of information. This may be an indication that with the
catchment functioning hypothesis embedded in the model, the
datasets have overlapping footprints that inform the calibration
process with conflicting or inconsistent information. Note that such
conflicts only occurred for individual outputs, as the overall un-
certainty across all outputs was indeed lowest when using the full
of datasets in the calibration (Fig. 9, bottom-right square).

The Monte Carlo approach adopted in this study uses the GOF as
an informal measure of the likelihood of each of these parameters.
After the best parameters are selected, the likelihood measure is
not further used and the spread across best runs shown in Fig. 10
cannot be interpreted as a probability distribution. This avoids
having to make assumptions about the structure of model residual
errors, which inmore formal statistical frameworks determine how
the parameter space is sampled. If these assumptions are incorrect,
some 'good' sections of the parameter space may end up being
excluded from the search. Note that parameters with good per-
formance have been found in the entire range of “permitted”
parameter values. Also as a result, in our methodology all the
selected parameter values contribute the same to the predictive
spread, and their average does not necessarily represent better the
hydrologic behaviour of a given catchment unit. In fact, from Fig. 10
no single combination of parameters can be picked to represent
better the average behaviour of the predictive ensemble. For this,
interpreting parameter means in terms of the hydrologic behaviour
of the catchment behaviour can easily be misleading. However, the
fact that the mean value of the parameters (Fig. 10) is often not at
the centre of the feasible search space (or of the interquartile range)
indicates that some values in the allowed range are more preferred
than others, and that the information contained in the alternative
calibration datasets informs these preferences differently. Under-
standing the mechanisms by which the parameters are nudged in a
specific direction when calibrated with a specific dataset is desir-
able, but also difficult and complicates any meaningful interpreta-
tion of the differences between mean parameter values.

5. Conclusions

In the growing field of critical zone modelling, a process-based
description of energy-plant-water relationships is a promising ba-
sis for a mechanistic understanding of vegetation influence on
water pathways and stores, and projecting their responses to
environmental change. More generally, these types of interdisci-
plinary models are increasingly needed in critical zone studies,
where water is a fundamental medium for energy and material
cycles in a wide range of processes at multiple time scales (White
et al., 2015) likely to be altered over time (Godd�eris and Brantley,
2013). Although the problem of equifinality is exacerbated with
the increasing complexity of models, using multiple measurements
informative of the range of processes implemented in the models
can assist in constraining models to a limited subset of feasible
configurations. When this is achieved, newer more integrated
models offer an opportunity for deeper process insight. We
demonstrated this by applying the fully-distributed model EcH2O
to a small northern headwater catchment, using different combi-
nations of 10 datasets relative to 4 types of ecohydrological pro-
cesses (discharge, soil moisture, pine stand transpiration and
above-canopy net radiation). While EcH2O was able to perform
well for single objectives when calibrated against individual data-
sets, constraining its overall behaviour with multiple datasets in a
rigorous multi-objective calibration experiment yielded an
improved cross-output average model performance and smaller
overall predictive uncertainty. The resulting model configuration
also reproduced the main features of the temporal dynamics of an
independent estimate of catchment-scale saturated area fraction.
Successful comparison against this independent dataset indicated
that the internal transient storage dynamics were generally
captured correctly by the model. We also discussed the informa-
tional footprint resulting from each dataset across scales (spatio-
temporal footprint) and processes (behavioural footprint). This
modelling experiment increases our confidence that a data-
intensive calibration approach constrains the set behavioural
model configurations in an effective way, i.e., that our approach
allows for broadly getting “the right answers for the right reasons”
(Kirchner, 2006). Among other approaches, ongoing model exten-
sions to include tracking of stablewater isotopes (2H and 18O) fluxes
and water age across ecohydrological compartments will provide
means to test this further. The experiments to date provide a
foundation for using EcH2O to project the impact of climate vari-
ability on catchment functioning in sensitive high-latitude systems.
Acknowledging that we have applied EcH2O in a location where
snowfall is quite modest, a critical next step will be to conduct
simulations in snowier catchments. More generally, we intend to
assess the reciprocal links between ecosystem functioning, land
cover change and the mediating role of vegetation in buffering
atmospheric impacts on water fluxes and storage.

Software availability

The source code of the EcH2O model (cþþ programming lan-
guage) is available at https://bitbucket.org/maneta/ech2o, while
the associated documentation, compiled binaries and case study
files can be found at http://hs.umt.edu/RegionalHydrologyLab/
software/default.php. The Python routine and dataset used for
calibration are available upon request to the authors.
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AppendixRecent developments in EcH2O model

In the following equations, the parameters calibrated in this
study (Table 1) are highlighted in bold font.
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A1. Canopy processes

Canopy-level processes link the radiation budget (solar radia-
tion, incoming longwave, and outgoing longwave radiation) to
conductive energy transfers (sensible heat), evaporative losses
from the canopy (evaporation of intercepted water and plant
transpiration), soil water availability, and soil water potential en-
ergy. The core of the canopy processes is a set of 3 equations (en-
ergy balance, soil water balance, and soil water potential energy)
and 3 unknowns (canopy temperature Tc, plant-available soil
moisture Stþ1, and soil matric potential, jsoil), solved for each
vegetation type present in the grid cell:

ðStþ1 � SÞðh� qrÞZr95
Dt

� LETðTc;jsoilÞ
rwlv

¼ 0

jae

ðStþ1ÞlBC
� jsoil ¼ 0

NRðTcÞ þ HðTcÞ þ LETðTc;jsoilÞ þ LE ¼ 0

(A.1)

The topmost equation in (A.1) is the water balance in the root
zone after infiltration has been accounted for in the initial soil
moisture, where St is the weighted average degree of soil saturation
in the soil over Zr95 at the beginning of the time step, Stþ1, is the
weighted average degree of soil saturation over Zr95 at the end of
the time step. In both cases, the weights for the saturation averages
are given by the fraction of roots in each layer of the soil. Addi-
tionally, h is soil porosity, qr is residual moisture content, Zr95 is the
total soil depth of the layers containing 95% of roots,Dt is the size of
the time step, rw is density of liquid water, lv is latent heat of
vaporization, and LETðTc;jsoilÞ is a function calculating latent heat
consumed for transpiration, which is dependent on the tempera-
ture of the canopy and the soil water potential. The second equation
in (A.1) is the Brooks and Corey prognostic equation, where jae is
the soil air entry pressure, jsoil is soil matric potential, and lBC is the
pore size index (Brooks and Corey exponent parameter). The lower
equation in (A.1) is the energy balance in the canopy as described in
Maneta and Silverman (2013), but reproduced here for complete-
ness. This equation assumes that the available radiative energy (NR)
will be consumed as sensible heat (H), as latent heat from tran-
spiration (LET), or as latent heat from evaporation of intercepted
water (LE):

NRðTcÞ ¼ RSW ð1� acÞð1� expð�Kbeer � LAIÞÞ þ εcRLW � εcsT4c ;

(A.2)

HðTcÞ ¼ racaðTa � TcÞ
ra

; (A.3)

LETðTc;jsoilÞ ¼
raca

�
ea � e*shr

�
gðra þ rsðjsoilÞÞ

; (A.4)

LE ¼
raca

h
ea � e*c

�
hr þ ð1�hrÞ�CWS

CMSmax

�i
g� ra

; (A.5)

where RSW is incoming solar radiation, ac is the effective canopy
albedo, Kbeer is a light extinction coefficient as per Beer's law, LAI is
leaf area index, εc is the canopy emissivity, RLW is downwelling long
wave radiation, s is the Stefan-Boltzmann constant, Tc is the
effective canopy temperature, ra is density of air at air temperature
Ta, ca is the heat capacity of air, ea is air vapour pressure at Ta, e*c is
the canopy saturation vapour pressure at Tc, hr is air relative hu-
midity, g is the psychrometric constant, ra is aerodynamic
resistance, rs is stomatal resistance, CWS is the current amount of
canopy water storage, and CWSmax is the maximum canopy storage
allowed by unit LAI. See Maneta and Silverman (2013) for addi-
tional details on the calculation of these quantities.

The current calculation of stomatal resistance differs from the
original formulation in that the efficiency factor that provided the
stomatal dependency on soil moisture has been changed to a de-
pendency on soil water potential. The new stomatal resistance
formulation and the soil water potential efficiency factor are:

rs ¼ ½gsmax$LAI$f ðRSW Þ$f ðTaÞ$f ðvpdÞ$f ðjsoilÞ��1

f ðjsoilÞ ¼
1

1þ
�
jsoil
jd

�c
(A.6)

inwhich jd is the soil water potential at which 0.5 efficiency for soil
water potential is achieved, and c is a function shape parameter.
Other efficiency factors are calculated as in Maneta and Silverman
(2013).
A2. Soil hydrology

The soil hydrology component has been improved over the
original formulation in Maneta and Silverman (2013) by including
a vertical soil water redistribution model with three hydraulic
layers. The topmost layer receives infiltration from the surface, its
soil moisture content controls infiltration rates in the Green and
Ampt infiltration equation, and is also the only layer from which
evaporation occurs. The middle layer typically contains most of
the root system and therefore its moisture controls the hydrologic
limitation to transpiration. The deepest layer transfers gravita-
tional water laterally using the original kinematic wave formu-
lation. The condition at the bottom of the third layer can now be
impervious (no flow) or can leak at a rate given by a bedrock
leakance parameter.

As in the original formulation, only water in excess of field ca-
pacity can move by gravity. When soil water exceeds field capacity
in the topmost or second layer, the water excess (gravitational
water) moves downward to the next layer at a rate determined by
the linearized unsaturated hydraulic conductivity function

KðqÞ ¼ KhxKhratioLb

 
q�qr
qfc�qr

!
, where Khx is the saturated horizontal

hydraulic conductivity, Khratio is the anisotropy ratio, while Lb is a
bedrock leakance parameter set to 1 for layers 1 and 2, and that can
vary between 0 (no flow) and 1 (free gravitational drainage) for soil
hydraulic layer 3. Water leaking through the bedrock leaves the
domain.

Horizontal water transfers to the downstream cell only occur in
the third soil hydraulic layer following the linearized kinematic
wave formulation described in Maneta and Silverman (2013).
When the storage capacity of the bottom layer is exceeded, satu-
ration excess water is transferred to themiddle layer, increasing the
middle layer moisture content. If the middle layer saturates, satu-
ration excess is transferred to the topmost layer, increasing the
topmost layer moisture content. If the topmost layer saturates,
saturation excess produces return flow to the surface (seepage
face). Return flow is added to the pool of ponded water that gen-
erates overland flow the following time step.
A3. Channel routing

Channel flow is simulated using a 1D solution of the kinematic
wave equation. The equation is solved for stream discharge, using a
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power function (A ¼ aQb) to relate cross-section flow area to
stream discharge:

vQ
vx

þ abQb�1vQ
vt

� qbf � qovl ¼ 0; (A.7)

where Q [L3T�1] is stream discharge, qbf [L2T�1] are groundwater
contributions to streamflow per unit length of channel, qovf [L

2T�1]
are overland flow contributions to streamflow per unit length of
channel, and x [L] and t [T] are distance in the flow direction and
time, respectively.

Using Manning's equation to approximate flow velocity, and
assuming rectangular channel cross-sections, parameters a and b

can be determined to be

"
nP2=3ffiffi

S
p
#3=5

and b ¼ 3
5, in which n [TL�1/3] is

Manning's roughness coefficient, P [L] is the channel wetted
perimeter, approximated by channel width, and S is the streambed
slope. Equation (A.7) is solved using a first-order implicit finite-
difference scheme and is unconditionally stable.

A4. Exponential root profile

The new model formulation requires the fraction of roots in
each soil layer, f L1;2;3root , to be specified. In this paper, we have
assumed an exponential root profile modulated by a single
parameter kroot:

f L1root ¼ 1� expðkroot � DL1Þ
1� expðkroot � DsoilÞ

f L2root ¼ expðkroot � DL1Þ � expðkroot � ðDL1 þ DL2ÞÞ
1� expðkroot � DsoilÞ

f L3root ¼ 1� f L1root � f L2root

; (A.8)

where Dsoil is the total depth of the soil hydrologically active layer,
and DL1;2 are the depth of layers 1 or 2.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.envsoft.2018.01.001.
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