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Intelligent Mortality Reporting With FHIR

Ryan A. Hoffman
and May D. Wang

Abstract—One pressing need in the area of public health
is timely, accurate, and complete reporting of deaths and
the diseases or conditions leading up to them. Fast Health-
care Interoperability Resources (FHIR) is a new HL7 in-
teroperability standard for electronic health record, while
Sustainable Medical Applications and Reusable Technolo-
gies (SMART)-on-FHIR enables third-party app development
that can work “out of the box.” This paper demonstrates the
feasibility of developing SMART-on-FHIR applications that
enables medical professionals to perform timely and accu-
rate death reporting within multiple different USA State ju-
risdictions. We explored how the information on a standard
certificate of death can be mapped to resources defined in
the FHIR standard Draft Standard for Trial Use Version 2 and
common profiles. We also demonstrated analytics for poten-
tially improving the accuracy and completeness of mortality
reporting data.

Index Terms—Biomedical informatics, health information
management, public healthcare.

[. INTRODUCTION

HERE are approximately 56 million deaths per year world-

wide [1], with 2.6 million happening in the United States
of America (USA) [2]. Accurate and timely mortality reporting
is essential for gathering this important public health data in
order to formulate emergency response to epidemics and new
disease threats, to prevent communicable diseases such as flu,
and to determine vital statistics such as life expectancy, mortal-
ity trends, etc. However, accurate collection and aggregation of
high-quality mortality data remains an ongoing challenge pri-
marily due to issues such as the average low frequency with
which physicians perform death certification (on the order of
1-2 times a year), inconsistent training in determining the causes
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of death, complex data flow among the funeral home, the cer-
tifying physician and the registrar, and non-standard practices
of data acquisition and transmission [3], [4]. In addition, the
US National Center for Health Statistics (NCHS) aggregates
mortality data from the 57 reporting jurisdictions around the
country, where the precise regulations and local laws of each
reporting jurisdiction differ [5]. Current efforts towards mortal-
ity reporting standardization using technologies such as Clini-
cal Document Architecture (CDA) [6], [7] and Health Level 7
(HL7) V2 [8] have some shortcomings in integrating with large-
scale web services, and Integrating the Healthcare Enterprise
(IHE) have limited adoptions that result in the non-optimal flow
of information among various providers and registrars. Thus,
the emerging solutions are (1) to use the new meaningful use
of electronic health records (EHR) as the government requires
healthcare institutions to show at least partial support of patient-
facing application programming interfaces (APIs) for sharing
data, interoperability and clinical decision support [9]; and (2)
to develop a death decision support system capable of assisting
the physician in determining the appropriate cause of death to
put on the death certificate in a standardized format.

In this article, we designed and developed a platform that
utilizes the new HL7 health standard Fast Healthcare Interop-
erability Resources (FHIR) to access EHR data. FHIR aims to
streamline and standardize healthcare communication in elec-
tronic death reporting using a resource-centric approach (as op-
posed to document-centric) to specify data elements. It adopts
existing technologies such as RESTful (REpresentational State
Transfer) APIs, OAuth security, and XML (Extensible Markup
Notation)/JSON (JavaScript Object Notation) data to form an
application platform [10]; it uses APIs to work with current
EHR systems and supports the addition of data analytics [11],
[12]; and it is vendor-neutral and scalable. Specifically, FHIR
can pre-populate sections of the death certificates to provide
information from the decedent’s health history. Also, it can in-
corporate data-driven analytics to provide mortality decision
support for physicians in reporting the causes of death. Ulti-
mately, the accurate and timely reporting will provide valuable
mortality information for registrars, public health departments,
and other authorized parties in deciding public policies. We
have presented a preliminary version of this work at the IEEE
Biomedical and Health Informatics (BHI) conference in Febru-
ary 2017 [13]. In this article, we report the complete system.

Il. WEB APPLICATION DESIGN

To enable timely, accurate, and complete capture of the
chain of diseases or conditions leading to death, we developed
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Fig. 1. Proposed infrastructure for death reporting application. A user’s

existing EHR system with compatible FHIR interface can directly launch
the application with patient context. The application can contact an in-
ternal or external analytics server for decision support and other tools,
before packaging the death certificate object and sending it.

SMART-on-FHIR-based mortality reporting system consisting
of two parts as shown in Fig. 1 architecture diagram: the
SMART-on-FHIR compliant EHR server, and the application
server. First, we developed a SMART-on-FHIR JavaScript client
library (https://github.com/smart-on-thir/client-js) being tested
over a virtual FHIR server. Using this library and HTML
(Hypertext Markup Language) JavaScript, we implemented a
web application that securely accesses the FHIR server using
OAuth2 authentication. Then we developed interactive visual-
ization of a large portion of the decedent’s health history by
using simple RESTful interfaces to UMLS (Unified Medical
Language System) and data mining functionality. The applica-
tion’s graphical user interface (GUI) is broken into sequential
pages, with each page addressing a section of the death cer-
tificate to assist in determining the causes of death. Because
US mortality reporting has adopted the ICD-10 standard since
1999, by using UMLS Metathesaurus, our application enables
crosswalk among medical event coding systems, and allows in-
teroperability among records retrieved from a variety of coding
systems and downstream analytics.

To aid in GUI prototyping, we used synthetic patient data
available in the Cerner SMART-on-FHIR app development
sandbox (https://code.cerner.com). As shown in Fig. 2, dis-
eases and conditions displayed on the timeline are spaced
logarithmically, with the axis anchoring at the time of death.
The interactive patient history timeline is generated using
the D3 and D3-tip visualization libraries (https://d3js.org,
https://github.com/Caged/d3-tip). This enables simultaneous vi-
sualization of events occurring around the time of death, along
with relevant context from the patient’s more distant history.
The events shown on this timeline are generated using Condi-
tion resources accessible through the FHIR server. In addition,
scrolling adjusts the scaling to allow users to focus on distant
past or recent events. The bottommost section is designed to
recreate the familiar-to-users appearance of the cause-of-death
field layout in the US Standard Certificate of Death, with a
chain of one or more causes occurring as consequences of one
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Fig.2. Prototype application user interface. The web-based application
runs in the user’s browser. The app pulls patient information and notes
from the EHR to provide context. Conditions are laid out on a timeline,
alongside proposed sequential linkages between those events. Several
conditions are selected. The user can edit, add, or remove conditions.

another. Buttons are provided to access additional pages with
fields such as injury information, the provider’s information,
and submission / download controls.

The application can be downloaded from http://miblab.
bme.gatech.edu/software. In addition, we include the output of
the application after initial processing of the Cerner sandbox
test patient “Joe Smart” as a supplementary file "sample.json”
for this article.

[ll. REPRESENTING DEATH CERTIFICATE DATA IN FHIR

Unlike the older HL7 CDA document standard, FHIR docu-
ments are modular compositions of full EHR Resources, which
can be readily split apart and incorporated into another interoper-
able system. FHIR documents are a Bundle of resources, where
the first entry in the Bundle is a Composition that contains a
human readable summary of the Bundle’s contents. Additional
Resources are then added to the bundle to support the infor-
mation contained in the document. A significant milestone in
developing a FHIR-based electronic death record (EDR) is the
mapping of all elements in a death certificate to FHIR Resources
and common profiles. Our mapping is: (i) easy to use so that
application developers can get what various Resource elements
are used for; (ii) scalable and modular so that the rich variation
in data elements in different USA State’s health agencies can be
represented by an interoperable set of Resources, contained in a
Bundle; (iii) idiomatically correct so that potential users do not
misuse the standard fields; and (iv) designed with stakeholders’
current data practices in mind to mirror existing processes wher-
ever feasible so that the integration friction is minimized and
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Resource-level mapping overview. (Left) The U.S. Standard Certificate of Death is overlaid with colored blocks representing mapped FHIR

resources, to be bundled into a death certificate document (Right). The exact number of Conditions will vary with the circumstances of death, and
specific observations may be specified by public health reporting jurisdictions.

TABLE |
DEATH RECORD LAYOUT IN MULTIPLE CAUSE-OF-DEATH MORTALITY DATA FROM NCHS

Type Information Included
Demographics Age, Gender, Residence, Death Time, etc.

Underlying Cause of Death  Cause of death coded according to ICD and several other coding systems.
Conditions A maximum of 20 conditions that correlate with the death

Race and Ethnicity

The reported race for States that are reporting single race or the bridged race for States that are reporting multiple race.

TABLE Il
FREQUENT SEQUENCE COUNT OF DIFFERENT LENGTHS

Length  Count
2 22,450
3 29,344
4 7,661
5 405
6 4
=7 0

more adoption is accomplished. In this application profiling, we
mapped death certificate data to FHIR Draft Standard for Trial
Use (DSTU) 2 resources and data elements because it has much
wider acceptance over the newer Standard for Trial Use (STU)
3 version at the time of development.

We used the standard FHIR metaphor of a “document” to
represent a death certificate object. As illustrated in Fig. 3,

we profiled a FHIR document with a defined mini-
mum set of resources to represent death certificate data
elements. To maximize its usefulness and to enable interop-
erability before electronic death reporting systems are truly or
fully FHIR-enabled, we have completed a mapping of this pro-
file FHIR resource data elements to known standard HL7 Vital
Records Domain Analysis Model (VR DAM) section on mor-
tality reporting. The complete mapping table is available as a
supplementary file “mapping.xlsx” for this article.

Some death certificate data elements map very naturally and
directly to FHIR Resources (e.g., the decedent name and address
map directly to a FHIR Patient). Others require more careful
thought and design. For example, to choose between FHIR
Patient.contacts or RelatedPersons in representing the dece-
dent’s family members, assuming both representations are com-
plete, are able to represent all of the data elements from the U.S.
Standard Certificate of Death and the HL7 VR DAM without ex-
tension, and are easy to understand, the deciding factor becomes
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TABLE Il
RULES FROM 2012 NCHS MORTALITY DATA

Rule Count  Percent
Unspecified mental and behavioral disorder due to use of tobacco -> Chronic obstructive pulmonary disease, unspecified 99587  391%
Unspecified mental and behavioral disorder due to use of tobacco -> Malignant neoplasm of bronchus or lung, unspecified 72211 2.83%
Atherosclerotic heart disease -> Cardiac arrest, unspecified 70490 2.77%
Rheumatic heart disease, unspecified -> Atherosclerotic heart disease 62927 2.47%
Rheumatic heart disease, unspecified -> Cardiac arrest, unspecified 56497 2.22%
Atherosclerotic heart disease -> Acute myocardial infarction, unspecified 45916 1.80%
Atherosclerotic heart disease -> Congestive heart failure 45721 1.79%
Unspecified mental and behavioral disorder due to use of tobacco -> Atherosclerotic heart disease 44285 1.74%
Rheumatic heart disease, unspecified -> Congestive heart failure 42919 1.68%
Unspecified mental and behavioral disorder due to use of tobacco -> Rheumatic heart disease, unspecified 38518 1.51%
Congestive heart failure -> Cardiac arrest, unspecified 35406 1.39%
Rheumatic heart disease, unspecified -> Unspecified diabetes mellitus without complications 34966 1.37%
Unspecified diabetes mellitus without complications -> Atherosclerotic heart disease 33793 1.33%
Chronic obstructive pulmonary disease, unspecified -> Respiratory failure, unspecified 32287 1.27%
Rheumatic heart disease, unspecified -> Acute myocardial infarction, unspecified 32042 1.26%
Hyperlipidemia, unspecified -> Rheumatic heart disease, unspecified 31846 1.25%
Chronic obstructive pulmonary disease, unspecified -> Cardiac arrest, unspecified 30581 1.20%
Rheumatic heart disease, unspecified -> Chronic obstructive pulmonary disease, unspecified 29440 1.16%
Unspecified diabetes mellitus without complications -> Rheumatic heart disease, unspecified 29211 1.15%
Rheumatic heart disease, unspecified -> Stroke, not specified as hemorrhage or infarction 28401 1.11%

“idiomatic FHIR correctness” — i.e., which choice most clearly
follows from the originally intended uses. The contacts field of
a FHIR Patient is intended primarily to enable contacting the
patient or his/her decision-makers in a clinical setting, whereas
RelatedPerson resources are sources of patient information with
non-healthcare relationships to the patient.

Another informative example is the choice between a collec-
tion of Observation resources or Questionnaire/Questionnair-
eResponse resources to represent the demographics and medical
history sections of the death certificate (shown in green in
Fig. 3). Using questionnaire to represent a list of questions
on a physical death certificate form is attractive. However, we
used Observations instead because the variations in lists of med-
ical history questions and valid responses among different US
State reporting jurisdictions makes it infeasible to develop a
single comprehensive Questionnaire for the entire US. If each
jurisdiction were using a unique, “flat” Questionnaire to repre-
sent their set of questions and answers, it would complicate the
processes of designing decision support systems in US interop-
erable across 57 State jurisdictional boundaries.

[V. SEQUENTIAL PATTERN MINING ANALYTICS

As illustrated in Fig. 1, with FHIR-based platform in place,
using data-driven analytics to extract possible causes of death
can help accomplish timely, accurate mortality reporting. Thus,
we have tried sequential pattern mining on one year of US
public causes of death data from the National Center for Health
Statistics in US National Vital Statistics System (NVSS) to
derive a list of frequent sequences of events (i.e., diseases and
conditions) that may have led to death.

The temporal models commonly seen in the literature are
sequence analysis [15]-[19] and association rule mining [18],
[20], [21]. Sequential Pattern Mining (SPM) seeks temporal re-
lationships among a sequence of events [22], [23] with multiple
algorithmic approaches such as AprioriAll [24], SPADE [25],

PrefixSpan [26], and MEMISP [27]. In diseases modeling with
multiple patient conditions, Association Rule Mining (ARM)
[23] only outputs rules like “[Condition 1, Condition 2]”, mean-
ing that Condition 1 is likely to coexist with Condition 2 for some
confidence. It doesn’t take temporal relations into consideration.
On the other hand, SPM outputs an ordered list of sequences
relate to the target outcome with rules such as “Condition 1 ->
Condition 2, which means that if we observe Condition 1, we
can assert that Condition 2 will possibly follow Condition 1.
SPM was applied successfully to clinical data [28], [29] rang-
ing from heart disease prediction [30], healthcare auditing [31],
neurological diagnosis [32], and violent death reporting [33].
Thus, we chose SPMs to discover the most probable sequence
of events that lead to a death to help certifying physicians in
filling out death certificates.

A. SPM Problem Formulation

Through the National Vital Statistics System (NVSS), the
National Center for Health Statistics aggregates data from death
certificates reported by 57 vital records jurisdictions across the
United States [14]. Each record in this data set contains a list
of ordered conditions (up to 20 conditions) that could lead to
a person’s death as the causes of death recorded by physicians,
medical examiners, and coroners, and other details such as the
demographics, race and ethnicity. The available fields are shown
in Table I.

In SPM, support of a candidate pattern is the proportion of
sequences in the data that exhibit the pattern [34]. The relative
support of a rule R in the set of sequences D is defined as the
percentage of sequences that contain this rule, i.e.,

{S|S € D&R C S}|

rel_support(R) = D] ,

where | - | is the cardinality of a set. SPM aims to discover
sequential patterns that have support larger than a pre-specified
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minimum support (e.g., the support is a number between 0 and
1 and we can specify the minimum support of a pattern of in-
terest). If we use C = [C1, C2, ..., CK], K = 20 to represent
20 unique underlying conditions/diseases as the causes leading
to death, under a pre-specified minimum support requirement,
SPM will discover all valid sequential patterns S = <sl1, s2,
..., sT> that can occur. More specifically, we used one SPM
approach BI-Directional-Extension-based frequent closed se-
quence mining (BIDE) proposed by Wang et al. [35]. Closed
frequent sequences are those sequences that are not subsets of
other frequent sequences having equal support. Because con-
ventional sequence mining algorithms must maintain a list of
discovered closed sequences, while using the patterns to de-
termine whether new sequences are promising to be closed, it
cannot scale up in both time and storage for the number of
frequent closed sequences. Thus, the BIDE approach was de-
veloped by Wong ef al. to find all the frequent closed sequences
without candidate maintenance.

In our project, under given outcomes (i.e., mortality) and co-
morbidities, we applied BIDE to find the list of most frequent
sequence conditions § = <y, $2, ..., s> that can occur. Us-
ing 2012’s Multiple Cause-of-Death Mortality Data from the
NVSS public that contains 2,547,864 deaths, we set the mini-
mum support to be approximately 2 x 10> (equivalent to 50
occurrences for this data set). We identified a total of 59,864
frequent closed sequences of length-2 or greater for the most
frequent sequences of diseases or conditions before people’s
deaths as shown in Table II. We present the top 20 sequences of
length-2 in Table III for illustration. The full table is available
as supplementary file “patterns.xIsx” in this article.

To use these analytics for FHIR-enabled mortality reporting,
a lookup table service with simple CGI-based API is developed
to access the full results, where a user can review the most
frequent patterns present in a given patient’s history as illustrated
in orange in Fig. 2.

V. CONCLUSION AND FUTURE WORK

This work demonstrates the feasibility of using the SMART-
on-FHIR application framework in order to improve the time-
liness and accessibility of public health morality reports. This
platform is able to incorporate intelligent analytics to further
improve the accuracy of death reporting. Future work includes:
(i) using alternative data sets, and more complete patient infor-
mation made accessible though the interoperability of FHIR,
to construct more personalized and precise analytics systems;
and (ii) developing precise FHIR resource profiles to concisely,
completely, and flexibly represent death certificate data.
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