

1 Optimizing turbulent inflow conditions for large-eddy
2 simulations of the atmospheric boundary layer

3 Giacomo Lamberti^{a,*}, Clara García-Sánchez^b, Jorge Sousa^a, Catherine Gorlé^a

4 ^a*Stanford University, Y2E2 Building, 473 Via Ortega, Stanford, CA, 94305*

5 ^b*Carnegie Institution for Science, 260 Panama St, Stanford, CA, 94305*

6 **Abstract**

7 Large-eddy simulations (LES) of the atmospheric boundary layer (ABL)
8 require the specification of a turbulent inflow condition with appropriate turbu-
9 lence intensities and length scales. When using a synthetic turbulence generator,
10 the statistics obtained downstream of the inlet might deviate considerably from
11 the intended values. In the present work we propose a fully automated approach
12 to modify the input parameters for the turbulence generator such that the de-
13 sired turbulence statistics are obtained at the downstream location of interest.
14 The method employs a gradient-based optimization in combination with the
15 divergence-free version of the digital filter method developed by Xie and Castro
16 [1, 2]. A sensitivity analysis showed that the spanwise and vertical Reynolds
17 stresses and length scales are the most influential input parameters. Hence, the
18 optimization adjusts these parameters until the desired turbulence statistics are
19 obtained downstream in the domain. The results demonstrate the promising
20 capabilities of the method: the mean velocity profile is correctly maintained
21 using an appropriate wall function, while the optimization results in Reynolds
22 stresses, integral length-scales and turbulence spectra that compare well to ABL
23 wind tunnel measurements.

24 **Keywords:** large-eddy simulations, atmospheric boundary layer, synthetic
25 turbulence generator, gradient-based optimization

^{*}Corresponding author

Email addresses: giacomo@stanford.edu (Giacomo Lamberti), gsclara@stanford.edu
(Clara García-Sánchez), jsousa@stanford.edu (Jorge Sousa), gorle@stanford.edu
(Catherine Gorlé)

26 **1. Introduction**

27 Computational fluid-dynamics (CFD) is increasingly employed in the wind
28 engineering practice, and could, for example, represent a powerful tool for es-
29 timating mean and peak pressure distributions on buildings. An important
30 challenge is that atmospheric boundary layer (ABL) simulations are influenced
31 by uncertainties in the inflow boundary conditions and the turbulence model,
32 which can strongly impact the accuracy of the results. For Reynolds-averaged
33 Navier-Stokes (RANS) simulations, both these types of uncertainties have been
34 shown to significantly affect the results [3, 4]. When using well-resolved large-
35 eddy simulations (LES), which solve the filtered Navier-Stokes equations and
36 only require a model for the subgrid-scale turbulence, the uncertainty related
37 to the turbulence model can be reduced. However, the influence of the inflow
38 boundary conditions is not eliminated. The remaining challenge is the definition
39 of a turbulent inflow boundary condition that accurately represents the ABL
40 flow in terms of the mean velocity, the turbulence intensities, and the turbulence
41 length scales.

42 The methods to generate a turbulent inflow condition are generally classi-
43 fied in two categories: precursor methods and synthetic turbulence generators.
44 Precursor or recycling methods employ either a separate simulation or a region
45 upstream of the domain of interest to generate the turbulent inflow condition
46 [5–11]. These methods resolve upstream roughness elements in the simulations
47 to generate turbulence characteristic of an ABL. The computational cost of
48 this approach presents a limitation for practical wind engineering applications.
49 Moreover, the resulting boundary layer characteristics will depend on the cho-
50 sen roughness configuration, providing only indirect control over the turbulence
51 statistics. When the initial configuration does not provide the desired Reynolds
52 stresses and integral length-scales, a time-consuming trial and error approach
53 that involves modifying the roughness configuration and re-meshing the domain
54 is required. Sensitivity or uncertainty quantification (UQ) studies to assess the
55 influence of the inflow turbulence characteristics on the solution would require

56 repeating this procedure for each inflow condition of interest.

57 Synthetic turbulence generators represent an efficient alternative, providing
58 full control over the turbulence statistics near the inflow boundary at a lower
59 computational cost. They can be further classified as digital filter methods,
60 random field generation (RFG) methods, or synthetic eddy methods (SEM),
61 which each have their strengths and weaknesses. Several variants of digital
62 filter methods, which produce coherent structures in space and time by filter-
63 ing a random velocity field, were specifically developed for ABL applications
64 [1, 2, 9–12]. Their main limitation is that they do not automatically generate
65 a divergence-free velocity field; corrections need to be applied to avoid spu-
66 rious pressure fluctuations in the domain [2]. The RFG methods generate a
67 turbulent flow field that is guaranteed to be divergence-free, but their draw-
68 back is that the resulting velocity field is characterized by Gaussian spectra and
69 therefore not representative of an ABL [10, 13]. As a result, modifications to
70 provide desired turbulence spectra and correlations are required [14, 15]. The
71 SEM methods, which produce velocity fluctuations based on the superposition
72 of eddies [9, 11, 16–19], also do not guarantee a divergence-free velocity field.
73 Finally, an important shared limitation of all digital filter methods is that the
74 generated turbulent velocity field is not a solution of the system of equations
75 being solved. As a result, the specified inflow statistics will develop towards an
76 equilibrium condition downstream of the inlet, and the final result will depend
77 on the subgrid model, the wall model, and the discretization used. It is not
78 uncommon to observe a strong decrease in the turbulence intensity between the
79 inlet and the downstream location of interest [20, 21]. The problem is simi-
80 lar to the horizontal inhomogeneity observed in RANS simulations of the ABL
81 [22, 23], but the solution is more involved because of the complex interaction
82 between the wall model, the subgrid model, and the numerics. For example,
83 modifications to the wall function can improve the performance in terms of the
84 mean velocity profile, but the decay in the turbulence intensity remains.

85 The objective of this study is to develop a method that efficiently overcomes
86 this problem and enables simulations of wind loading on buildings in a variety

87 of turbulent ABL conditions. We employ the divergence-free turbulent inflow
88 condition developed by Xie and Castro [2], which uses the mean velocity profile,
89 Reynolds stress profiles and turbulence length scales as input parameters. This
90 boundary condition is combined with a gradient-based optimization algorithm
91 to find the values for these input parameters that result in the desired turbulence
92 statistics at our downstream location of interest. The approach was designed to
93 not require the representation of any upstream roughness elements, such that
94 the target ABL characteristics can be achieved with minimal user intervention.

95 The method is tested on an experiment performed in the ABL wind tunnel
96 of the Polytechnic University of Milan [24]. We perform simulations of this
97 neutral wind tunnel ABL, using the grid resolution, wall model, and subgrid
98 model that will be employed in future simulations of a high-rise building. A
99 baseline simulation, using the target turbulence statistics as input parameters,
100 is used to demonstrate the turbulence decay. Subsequently, a sensitivity anal-
101 ysis is performed to inform the formulation of the objective function for the
102 optimization algorithm. Finally, the performance of the optimization algorithm
103 is tested, comparing the final results to the experimental data in terms of the
104 mean velocity, Reynolds stress and length scale profiles, and in terms of power
105 spectral densities.

106 In the following, the wind tunnel experiment used for validation is summa-
107 rized first. In section 3, the LES set-up is presented, and section 4 presents the
108 baseline simulation results and sensitivity analysis. In section 5 the formula-
109 tion of the objective function and the results of the optimization are discussed.
110 Conclusions and plans for future work are presented in section 7.

111 **2. Wind tunnel experiment**

112 The ABL facility of the Polytechnic University of Milan is a closed circuit
113 wind tunnel with a 35m long, 14m wide and 4m high test section. Spires and
114 roughness elements are situated upstream in the test section to generate the
115 desired neutral ABL (Figure 1 on the left). The models are placed at a distance
116 of 10m from the inlet, in the center of a turntable of radius 6.5m, to enable tests

117 for different wind directions. Several tests were performed with the roughness
 118 configuration shown in Figure 1. First, the ABL in absence of a building model
 119 was characterized on a plane normal to the ABL mean flow direction at the cen-
 120 ter of the turntable using 3D hot-wire measurements with a sampling frequency
 121 of 2000Hz [25]. Subsequently, several experiments to measure the wind pressure
 122 on a high-rise building model were performed [25].

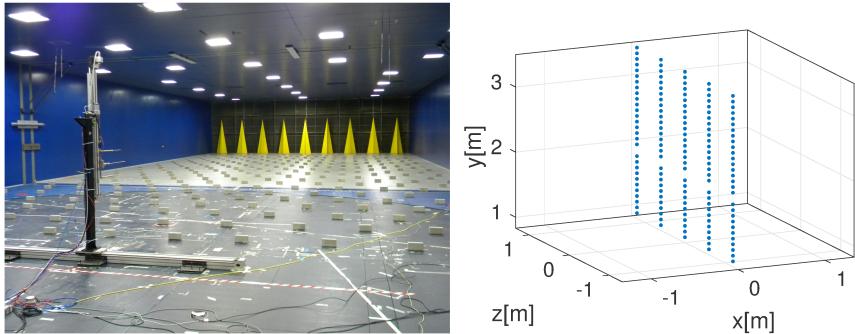


Figure 1: Experimental setup of the ABL wind tunnel of the Polytechnic University of Milan (left); coordinates of the 280 measurement points on a spanwise-vertical plane at the center of the turntable (right).

123 In the present work we focus on the experiment performed without the model
 124 to test the capabilities of our inflow generation framework. The experimental
 125 data consists of 20 second time-series of the three components of velocity at
 126 280 points distributed on a plane in the middle of the turntable. The spanwise
 127 resolution of the measurements is 0.6m, while the vertical one is 43.7mm below
 128 0.75m and 87.5mm above (Figure 1 on the right). The resulting mean velocity
 129 profiles obtained at five spanwise locations are shown in Figure 2 (top-left). On
 130 average, they represent a neutral ABL log law with a friction velocity u_* of
 131 0.49m/s and a roughness height z_0 of 3.2mm. The corresponding profiles for
 132 the streamwise Reynolds stress component $\overline{u'^2}$ and the streamwise turbulence
 133 length-scale xL_u , are shown in Figure 2 (top-right and bottom).

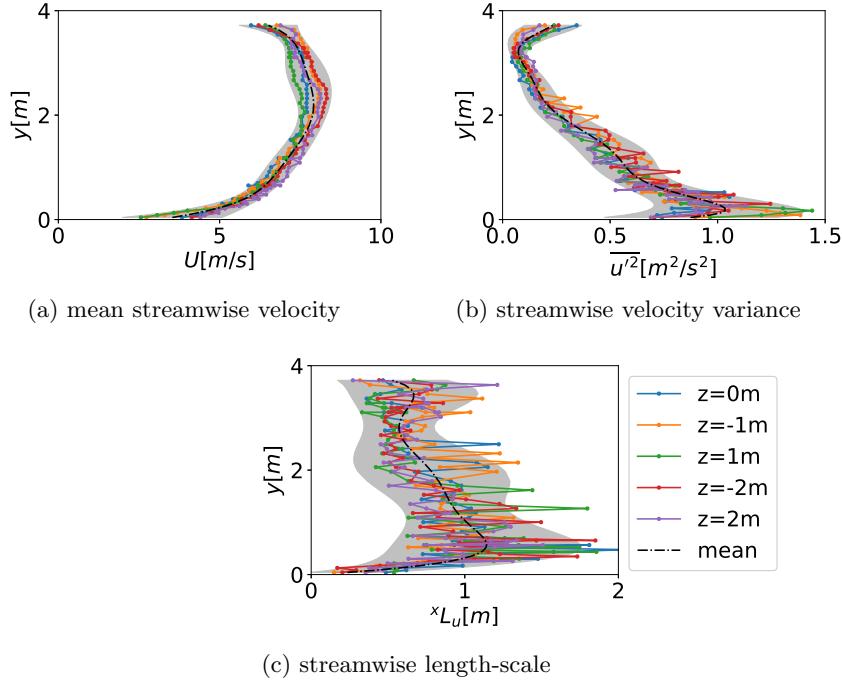


Figure 2: Spanwise-averaged (dash-dotted line) and spanwise variation (gray region) of the wind tunnel ABL measurements.

134 The plots show a spanwise variability in the profiles. Throughout the re-
 135 mainder of this paper, a polynomial fit to the average of the spanwise profiles
 136 is plotted using a dash-dotted line; the spanwise variability is represented using
 137 a gray shaded region defined by polynomial fits to the minimum and maximum
 138 values measured. The gray region will be used as the target region for the sim-
 139 ulation results. Profiles for the other Reynolds stress components and length
 140 scales showed similar variability and are presented in the following sections for
 141 comparison to the data. In addition, velocity spectra will be used for comparison
 142 with the simulation results.

143 **3. LES set-up**

144 We use the pisoFOAM solver of OpenFOAM v4.0 to solve the filtered in-
 145 compressible Navier-Stokes equations for a neutral ABL flow with the standard

146 Smagorinsky model ($C_s = 0.17$). All the simulations are performed using the
147 Extreme Science and Engineering Discovery Environment (XSEDE) resources
148 [26]. The following sections describe the computational domain and mesh, the
149 boundary conditions, and the discretization and solution procedure.

150 *3.1. Computational domain and mesh*

151 The computational domain is 10m in the streamwise direction (x), 4m in the
152 vertical direction (y) and 3m in the spanwise direction (z). It is smaller than
153 the actual wind tunnel to limit the computational cost, but sufficiently large to
154 achieve our objective of testing the inflow boundary condition. The mesh counts
155 ~ 5 million hexahedral cells, which includes refinements near the ground wall,
156 where the minimum cell resolution is 12.5mm in the horizontal and 6.25mm in
157 the vertical, resulting in a mean y^+ of ~ 100 .

158 *3.2. Boundary conditions*

159 The upper wall of the wind tunnel is not included in the simulations; instead
160 we impose a slip boundary condition at the top. At the lower wall, a rough-
161 wall logarithmic wall function is employed. The formulation is similar to the
162 wall function commonly used in RANS simulations of the ABL [23, 27], but it
163 is applied to the instantaneous flow field [28, 29]; it is designed to guarantee
164 horizontal homogeneity of the ABL mean velocity profile.

165 The left and right boundaries are periodic, and the outlet is a pressure-
166 outlet. At the inlet we impose the logarithmic mean velocity profile from the
167 experiment. Synthetic turbulence is inserted just downstream of the inlet at the
168 inflow generation plane, using the digital filter method developed by Xie and
169 Castro [1, 2]. By imposing the turbulent velocity field on a plane inside the
170 domain, it passes through the PISO (Pressure Implicit with Splitting of Operator)
171 algorithm, and is adjusted to become divergence-free [2]. This eliminates
172 non-physical pressure fluctuations that would otherwise be observed, which is
173 especially important when estimating peak pressure loads on buildings. Figure
174 3 shows the location of the plane inside the domain, together with iso-surfaces

¹⁷⁵ of the second invariant of the velocity gradient tensor Q [30], colored by values
¹⁷⁶ of velocity magnitude.

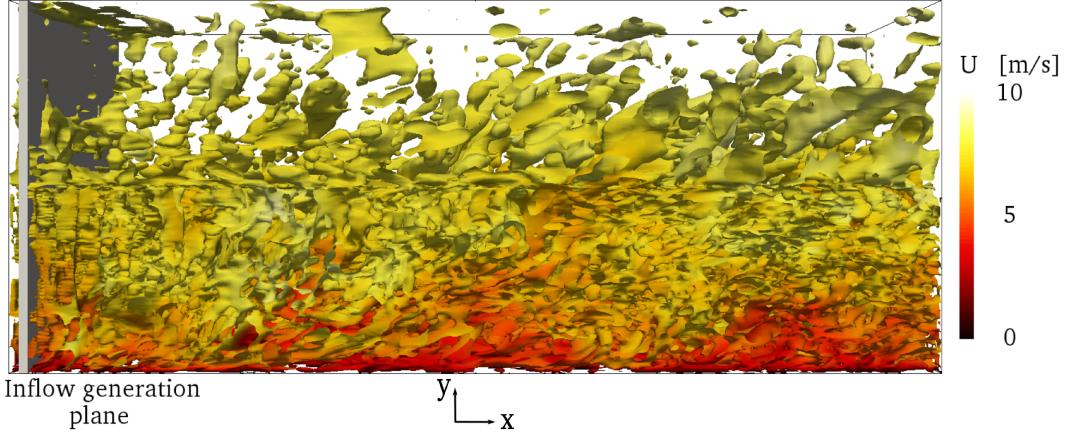


Figure 3: Generation of synthetic turbulence in the LES. Iso-surfaces of the second invariant of the velocity gradient tensor Q colored by values of velocity magnitude.

¹⁷⁷ The turbulent velocity field imposed by the digital filter method is defined
¹⁷⁸ as follows:

$$u_i = U_i + a_{ij}u_{*,j}, \quad (1)$$

¹⁷⁹ where U_i is the mean velocity, a_{ij} the Cholesky decomposition of the Reynolds
¹⁸⁰ stress tensor and $u_{*,j}$ is a fluctuation with a zero-mean and an exponential
¹⁸¹ spatial and temporal correlation. The matrix a_{ij} is a function of the specified
¹⁸² Reynolds stress profiles as a function of height; since the flow is homogeneous
¹⁸³ in the spanwise direction, the relevant Reynolds stress components are the nor-
¹⁸⁴ mal stresses ($\overline{u'^2}$, $\overline{v'^2}$ and $\overline{w'^2}$), and the streamwise-vertical shear stress ($\overline{u'v'}$).
¹⁸⁵ The fluctuation $u_{*,j}$ is the filtered random field, which introduces the coherent
¹⁸⁶ structures. It requires the specification of the integral length scales, which are
¹⁸⁷ assumed to be constant with height, and are thus obtained from averaging the
¹⁸⁸ experimental values along the height.

¹⁸⁹ Since the spatial resolution of the hot-wire measurements is insufficient to
¹⁹⁰ compute 2-point correlations, we rely on Taylor's hypothesis [31] to compute

191 the streamwise integral length-scales:

$$^x L_u = U T_u, \quad ^x L_v = U T_v, \quad ^x L_w = U T_w, \quad (2)$$

192 where U is the streamwise component of the mean velocity and T_u , T_v and T_w
193 are the integral time-scales. We then approximate the vertical and spanwise
194 length-scales as follows [24]:

$$^y L_u = 0.2^x L_u = ^y L_v = ^y L_w \quad (3)$$

195

$$^z L_u = 0.3^x L_u = ^z L_v = ^z L_w \quad (4)$$

196 In summary, the turbulent velocity field of Equation 1 will be a function
197 of the mean logarithmic velocity profile, four Reynolds stress profiles and three
198 averaged time-scales.

199 *3.3. Discretization and solution procedure*

200 We differentiate the momentum equation using a central scheme and inte-
201 grate in time using a backward Euler method with a time step of ~ 0.002 s. The
202 resulting mean Courant number is less than 0.2, while the maximum varies be-
203 tween 1 and 2 throughout the simulation. In the baseline simulation of Section
204 4 we averaged statistics over a period of more than $40t_*$ after an initializa-
205 tion period of $12.5t_*$, where $t_* = \delta/u_*$ and δ is half of the domain height [2].
206 Subsequent simulations were initialized from the baseline result to accelerate
207 the convergence, but the initialization period of $12.5t_*$ was maintained. The
208 simulations are stopped when the maximum difference in the Reynolds stresses
209 calculated at a $\sim 4t_*$ interval is less than 3%. The resulting simulated time is
210 between 150-200s.

211 **4. Baseline simulation results and sensitivity analysis**

212 *4.1. Streamwise inhomogeneity in the baseline simulation*

213 We first performed a simulation imposing the desired mean velocity profile
214 and turbulence statistics as inflow parameters, to verify the streamwise evolution
215 of the flow statistics. All the profiles shown represent the variation over height

216 of the statistics of interest 5m downstream of the inlet at the mid spanwise
 217 location. Figure 4 shows that the mean velocity profile is maintained throughout
 218 the domain. This is a result of the formulation of the rough-wall logarithmic
 219 wall function, which is consistent with the ABL mean velocity profile imposed
 220 at the inlet.

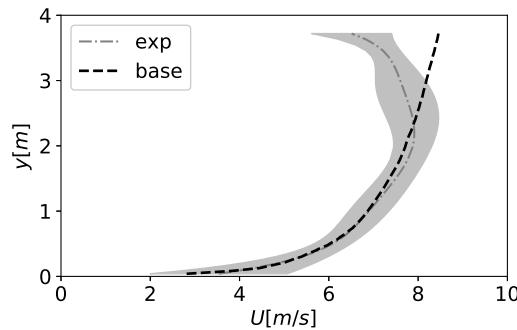


Figure 4: Comparison of the experimental mean velocity profile with the mean velocity profile computed by the baseline simulation 5m downstream of the inlet.

221 In contrast, Figure 5 shows that 5m downstream of the inflow generation
 222 plane (i.e. at the intended location of the building model in future LES) a de-
 223 crease in turbulence kinetic energy of up to 50% is observed. This demonstrates
 224 the limitation of synthetic turbulence generators: since the imposed turbulent
 225 velocity field is not a solution of the system of equations being solved, the spec-
 226 ified inflow statistics will develop towards an equilibrium condition that depends
 227 on the subgrid model, the wall model, and the discretization used.

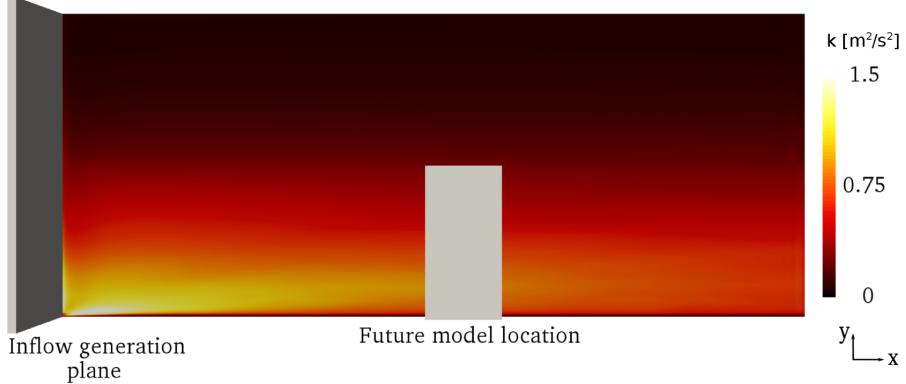


Figure 5: Decay of turbulence kinetic energy in the LES.

228 The turbulence decay can be seen in more detail in Figure 6, where the
 229 profiles of turbulence kinetic energy and Reynolds stresses 5m downstream of
 230 the inlet are compared with the spanwise-averaged wind tunnel profiles (i.e. the
 231 profiles imposed at the inflow). At 5m from the inlet, the streamwise velocity
 232 variance is up to $\sim 60\%$ lower than the one imposed at the inflow and $\sim 50\%$ lower
 233 on average. The vertical and spanwise components are decreased up to $\sim 60\%$
 234 and $\sim 50\%$ respectively; the average decay is $\sim 45\%$ for the vertical component
 235 and $\sim 20\%$ for the spanwise component. We note that the Reynolds stresses
 236 plotted in Figure 6, and in the remainder of the paper, are the resolved stresses;
 237 the subgrid components are not considered because they are negligibly small.

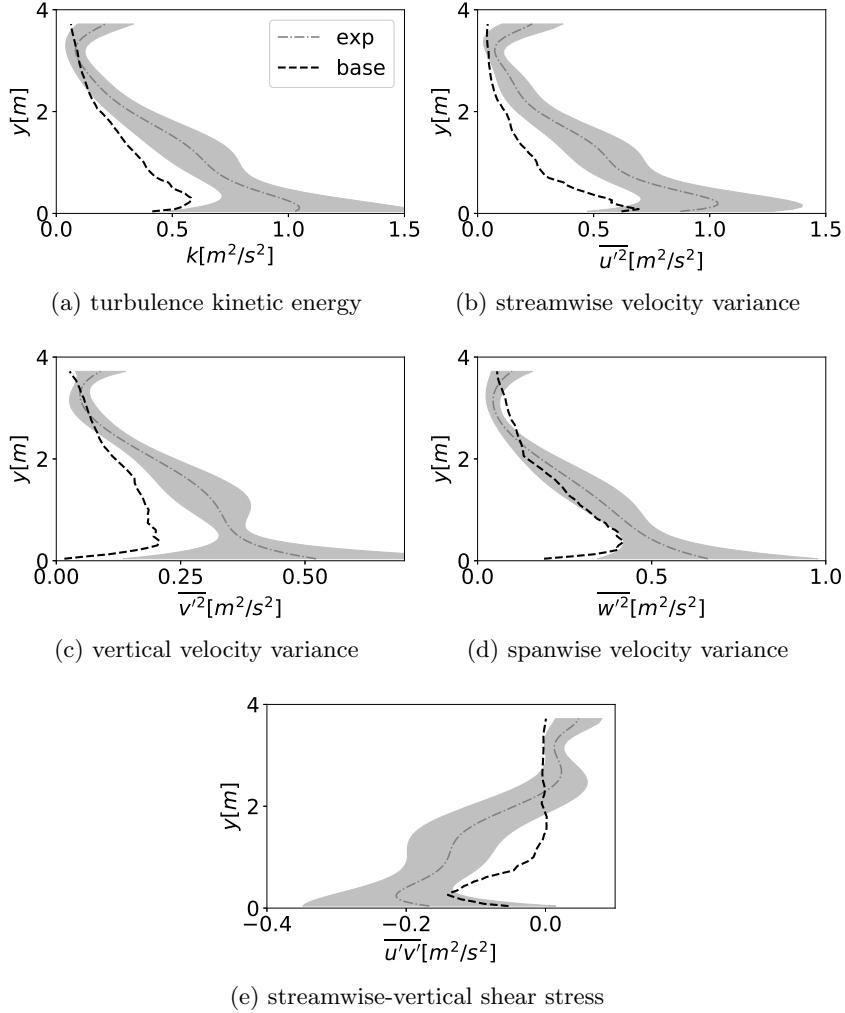
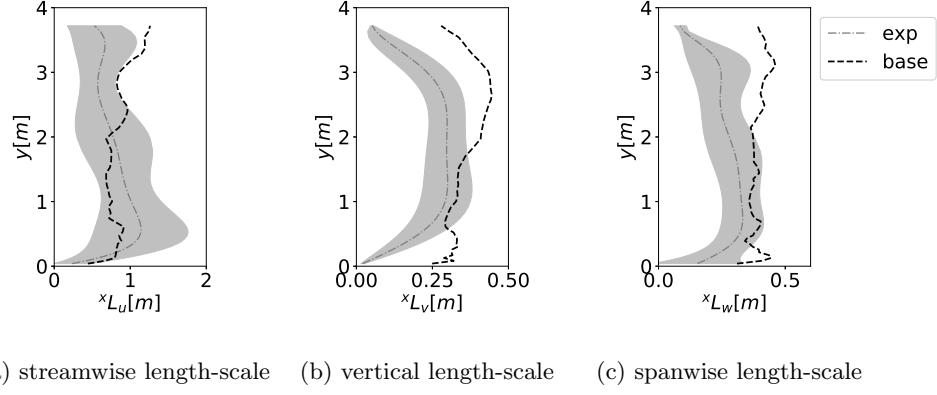



Figure 6: Comparison of the experimental turbulence kinetic energy and Reynolds stress profiles with the corresponding profiles computed by the baseline simulation 5m downstream of the inlet.

238 Figure 7 shows that the streamwise inhomogeneity in the integral length
 239 scales is smaller than that in the Reynolds stresses. The streamwise length
 240 scale modeled by the baseline LES is inside the gray target region up to 3m
 241 height, and quite close to the spanwise-averaged measurement. The vertical and
 242 spanwise components are overestimated, especially near to the ground. This is
 243 likely related to the fact that we specify a constant profile over height for the

²⁴⁴ turbulence length-scales at the inflow.

(a) streamwise length-scale (b) vertical length-scale (c) spanwise length-scale

Figure 7: Comparison of the experimental integral length scales with the length scales computed by the baseline simulation 5m downstream of the inlet.

²⁴⁵ 4.2. Sensitivity analysis

²⁴⁶ To mitigate the effect of the observed turbulence decay on the quantities of
²⁴⁷ interest, an optimization problem can be formulated to find the input parameters
²⁴⁸ that will produce the desired turbulence statistics at the location of interest. To
²⁴⁹ support the formulation of an effective objective function, we first performed a
²⁵⁰ sensitivity analysis to identify the influence of the different input parameters on
²⁵¹ the quantities of interest.

²⁵² The inflow algorithm is a function of the mean velocity profile, four Reynolds
²⁵³ stress profiles and three integral time-scales. The baseline simulation confirmed
²⁵⁴ that we can maintain the mean velocity profile by modifying the wall functions;
²⁵⁵ hence, there is no need to change the logarithmic profile at the inflow generation
²⁵⁶ plane. In addition, the shear stress $\overline{u'v'}$ will adjust automatically to changes in
²⁵⁷ the normal components $\overline{u'^2}$ and $\overline{v'^2}$, following the realizability constraint $(\overline{u'v'})^2$
²⁵⁸ $\leq \overline{u'^2} \overline{v'^2}$ [32]. Based on these considerations, the input mean velocity and
²⁵⁹ shear stress are not included in the sensitivity study. Hence, six additional LES
²⁶⁰ simulations were performed, increasing the remaining parameters by a factor of
²⁶¹ two one at a time. For the Reynolds stresses this implies that the x -coordinate
²⁶² of the parametrization points of the Bezier curves was increased by a factor of

263 two (see Section 5.1).

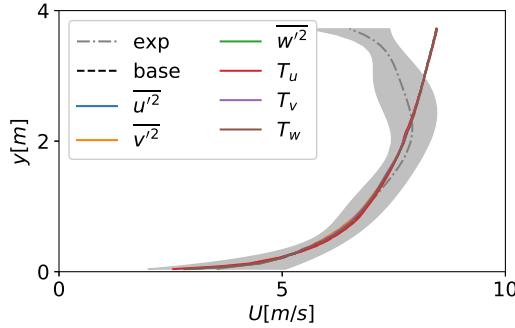


Figure 8: Influence of the inflow parameters on the mean velocity 5m downstream of the inlet. The inflow parameters are doubled one at a time; the legend indicates the doubled parameter.

264 Figure 8 shows the mean velocity profiles resulting from the six LES simulations compared to the baseline; the legend in the plot indicates which of the 265 input parameters has been doubled. As expected, the profiles at the building 266 location collapse to the baseline result: the only input parameter that matters 267 for the mean velocity is the logarithmic inlet profile. 268

269 Figure 9 shows that the input parameters $\bar{u'^2}$, T_v and T_w have a relatively 270 small effect on the turbulence kinetic energy and Reynolds stresses at the 271 target location. Doubling the integral time-scale T_u at the inlet causes an even 272 stronger turbulence decay than the one experienced by the baseline simulation, 273 but when doubling the inflow $\bar{v'^2}$ and $\bar{w'^2}$, the resulting profile of the turbulence 274 kinetic energy falls completely inside the target region. The influence of 275 individual spanwise and vertical Reynolds stress components is stronger on their 276 respective values further downstream, and they have a similar effect on $\bar{u'^2}$. In 277 particular, when doubling $\bar{v'^2}$ at the inflow, the corresponding component at 278 the building location is on average $\sim 60\%$ higher than the baseline result, while 279 $\bar{u'^2}$ and $\bar{w'^2}$ experience an average increase of $\sim 40\%$ and $\sim 15\%$ respectively. 280 When doubling $\bar{w'^2}$ at the inflow, the corresponding values at the downstream 281 building location increase by $\sim 50\%$ on average compared to the baseline simulation. 282 The resulting values exceed the target values, indicating that the imposed

283 perturbation might be too large. The streamwise and vertical Reynolds stress
 284 components also increase by $\sim 45\%$. As expected, the effect on the shear stress
 285 is similar to that on the streamwise and vertical velocity variance.

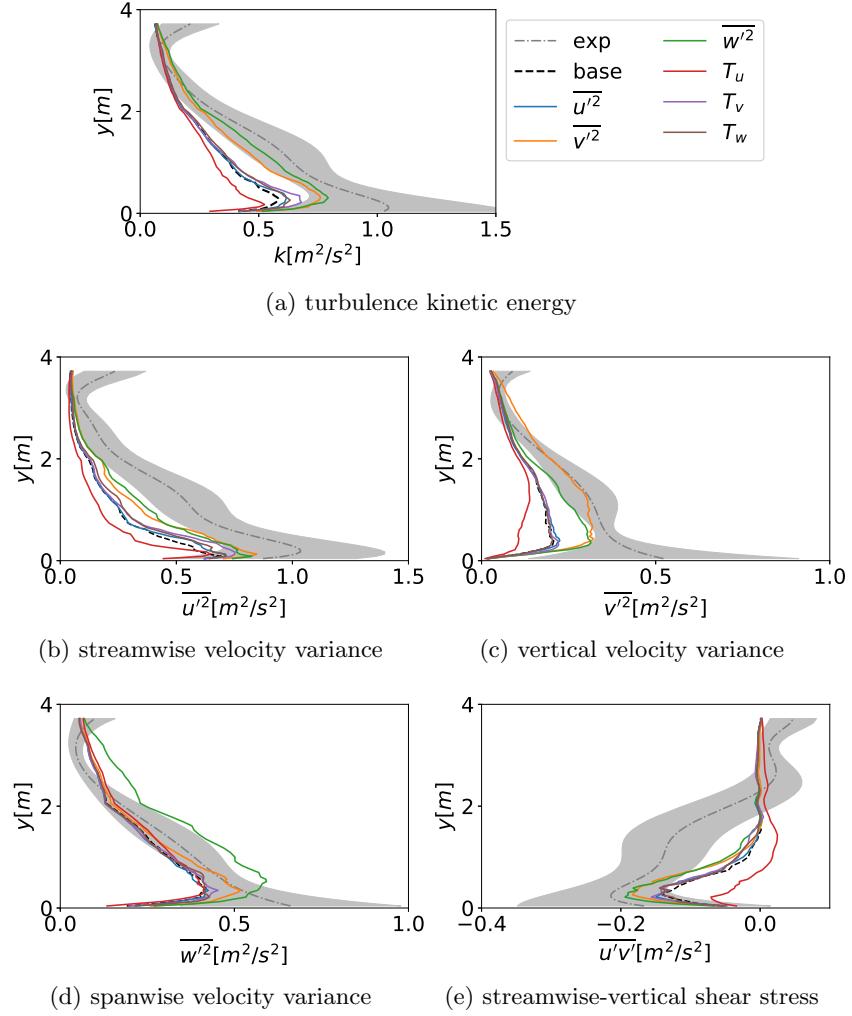
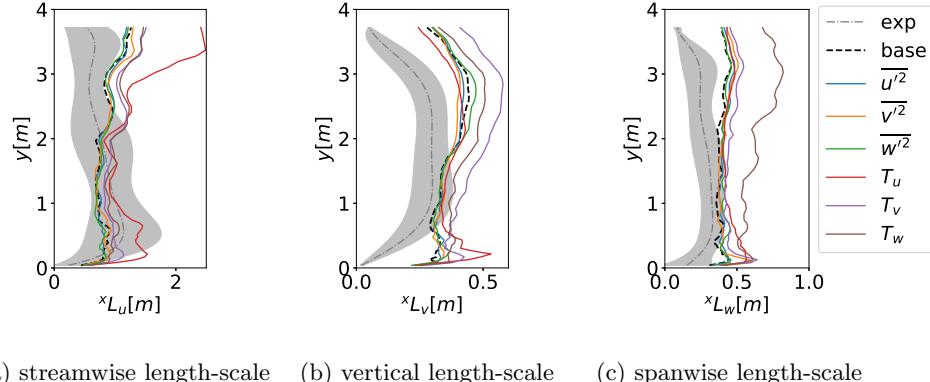



Figure 9: Influence of the inflow parameters on the Reynolds stresses 5m downstream of the inlet. The inflow parameters are doubled one at a time; the legend indicates the doubled parameter.

(a) streamwise length-scale (b) vertical length-scale (c) spanwise length-scale

Figure 10: Influence of the inflow parameters on the integral length scales 5m downstream of the inlet. The inflow parameters are doubled one at a time; the legend indicates the doubled parameter.

286 The downstream length-scale profiles are most sensitive to changes in their
 287 corresponding time- or length-scales at the inflow, as shown in Figure 10. The
 288 streamwise component increases by $\sim 50\%$ on average when doubling T_u ; increas-
 289 ing T_v causes a $\sim 28\%$ mean increase in the vertical length-scale; doubling T_w
 290 produces an average $\sim 60\%$ increase on the spanwise length-scale at the building.
 291 This trend is less consistent close to the wall, where the vertical length scale is
 292 more strongly affected by the streamwise value at the inlet, while the spanwise
 293 length scale is sensitive to both the streamwise and the vertical component.

294 The integral length-scales represent the size of the largest eddies, while the
 295 Reynolds stresses quantify the intensity of fluctuations. The result of the sen-
 296 sitivity analysis suggests an interaction between the Reynolds stresses and the
 297 turbulence length-scales. However, to perform the optimization, we modify the
 298 input Reynolds stresses that have a smaller influence on the target length-scales
 299 (i.e. $\overline{v'^2}$ and $\overline{w'^2}$), and the input length-scales that have a smaller effect on
 300 the target Reynolds stresses (i.e. T_v and T_w). These input variables thus sup-
 301 port performing the optimization for the Reynolds stresses and the length scales
 302 independently.

303 **5. Gradient-based optimization**

304 We implemented a gradient-based optimization algorithm because the sen-
305 sitivity analysis confirmed that the turbulence statistics change monotonically:
306 higher Reynolds stresses or integral time scales at the inflow generation plane
307 will result in higher Reynolds stresses or integral time scales at the future build-
308 ing location. The algorithm dynamically adjusts the input parameters of the
309 synthetic turbulence generator, until the statistics at the location of interest are
310 sufficiently close to the wind tunnel measurements. In the following we first
311 describe the parameterization of the Reynolds stress profiles that will be used
312 for the optimization. Subsequently we discuss the definition of the objective
313 function.

314 *5.1. Bezier parametrization*

315 We parametrize the input Reynolds stresses using Bezier curves [33], to
316 control the shape of the profiles throughout the optimization steps. A Bezier
317 curve is defined by a number of control points; the curve passes through the
318 first and last point, while it gets attracted by the intermediate points. Figure 11
319 shows the input Reynolds stresses $\bar{v'^2}$ and $\bar{w'^2}$ resulting from the parametrization
320 with 8 control points; the control points are more concentrated in the region
321 below 0.5m, where the profiles experience the highest variation.

322 The optimization algorithm acts on the x -coordinate of the control points,
323 except for the first and last one, which are fixed: the points are moved back and
324 forth along the x -axis depending on the gradient of the objective function.

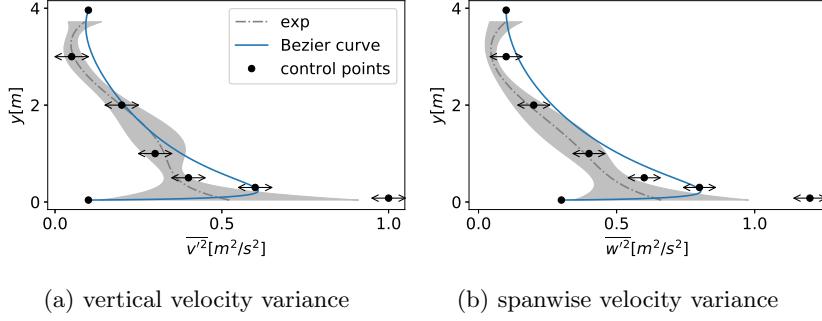


Figure 11: Parametrization of the input Reynolds stresses with Bezier curves.

325 5.2. *Objective functions*

326 The sensitivity study showed that the Reynolds stresses at the building can
 327 be increased by increasing $\overline{v'^2}$ and $\overline{w'^2}$ at the inflow. Therefore, we opt for a
 328 multi-objective optimization procedure, in which the decision variables are the
 329 profiles of $\overline{v'^2}$ and $\overline{w'^2}$ at the inflow generation plane. This should enable higher
 330 turbulence intensities at the downstream location, while maintaining integral
 331 length scales similar to the baseline result. Going one step further, we can
 332 also try to obtain better integral length scales by selecting the input T_v and
 333 T_w as additional decision variables. The input T_u was not included because it
 334 also affects the Reynolds stresses; we choose to separate the optimization of the
 335 integral length-scales from the optimization of the Reynolds stresses.

336 To solve the resulting multi-objective algorithm we rely on the scalarization
 337 technique, which is the simplest way of solving a multi-objective problem [34].
 338 In the scalarization technique the objective functions are weighted and combined
 339 into a single objective function. The resulting function is a linear combination of
 340 the least-squares differences between the statistics obtained by the LES, and the
 341 corresponding target experimental values. Considering the Reynolds stresses as

342 our quantities of interest, the objective function assumes the following form:

$$f_p\left(\overline{(v'(y_p)^2)_i}, \overline{(w'(y_p)^2)_i}\right) = \frac{1}{2}\gamma_u\left(\overline{(u'(y_p)^2)_b} - \overline{(u'(y_p)^2)_{exp}}\right)^2 + \frac{1}{2}\gamma_v\left(\overline{(v'(y_p)^2)_b} - \overline{(v'(y_p)^2)_{exp}}\right)^2 + \frac{1}{2}\gamma_w\left(\overline{(w'(y_p)^2)_b} - \overline{(w'(y_p)^2)_{exp}}\right)^2, \quad (5)$$

343 where y_p is the height of the p th Bezier point, and γ_u , γ_v and γ_w are the weights.

344 The subscripts $(\cdot)_i$, $(\cdot)_b$ and $(\cdot)_{exp}$ indicate the Reynolds stresses at the inflow
 345 generation plane, at the future building location, or the target values from the
 346 experiment respectively. The weights need to sum to 1 and be strictly positive
 347 [34]; we chose them depending on the importance of each normal Reynolds stress
 348 relative to the turbulence kinetic energy, thus $\gamma_u = 0.5$, $\gamma_v = 0.2$ and $\gamma_w = 0.3$.
 349 We treat the 6 intermediate control points as independent; hence, we solve 6
 350 optimization problems in parallel (i.e. one for each y_p value).

351 When we add the integral time-scales as quantities of interest, the objective
 352 function is completely analogous, but there is no vertical variation in this case:

$$f_T\left(T_{v,i}, T_{w,i}\right) = \frac{1}{2}\gamma_u\left(T_{u,b} - T_{u,exp}\right)^2 + \frac{1}{2}\gamma_v\left(T_{v,b} - T_{v,exp}\right)^2 + \frac{1}{2}\gamma_w\left(T_{w,b} - T_{w,exp}\right)^2, \quad (6)$$

353 where the weights are the same as before.

354 6. Results

355 In the following section we present the results of the two approaches de-
 356 scribed above, i.e. we solve two different optimization problems: one that min-
 357 imizes the objective function of Equation 5 and another that minimizes both
 358 the objective functions of Equations 5 and 6.

359 6.1. Optimization of input Reynolds stresses

360 To compute the gradient from two non-trivial solutions at the start of the
 361 optimization, we employ the baseline result and perform an additional simula-
 362 tion doubling the input parameters that are decision variables, i.e. $\overline{v'^2}$ and $\overline{w'^2}$.
 363 We will refer to the baseline simulation as *step0* of the optimization and to the

364 additional simulation as *step1*. The input profiles of mean velocity, streamwise
 365 velocity variance and shear stress are obtained from the measurements and never
 366 modified by the code. The same holds for the input integral time-scales, which
 367 are specified as the average of the corresponding measurement over height. We
 368 ran one step of the optimization, which will be referred to as *step2*; the resulting
 369 input profiles for all three steps are plotted in Figure 12.

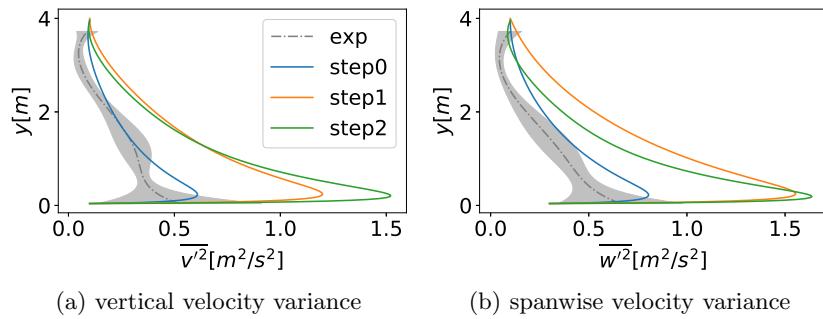


Figure 12: Input Reynolds stresses modified by the optimization.

370 The analysis of the results at the location of interest focuses on the Reynolds
 371 stresses and length scales; similarly to the sensitivity analysis, the mean velocity
 372 profile was not affected by the Reynolds stresses at the inflow.

373 Figure 13 shows the turbulence kinetic energy and Reynolds stresses at
 374 the future building location for the different steps. The results for *step0* are
 375 those from the baseline simulation. For *step1* the turbulence kinetic energy and
 376 Reynolds stresses $\bar{u'^2}$ and $\bar{v'^2}$ at the location of interest are already within the
 377 gray zone representing the spanwise variation of the measurements over most of
 378 the domain height. The values for $\bar{w'^2}$ become too high at the building location,
 379 the maximum discrepancy from the upper bound of the target region is $\sim 28\%$
 380 and the average is $\sim 14\%$. This explains why in *step2*, the input profile of $\bar{v'^2}$
 381 remains basically unchanged above 1m height, while $\bar{w'^2}$ is decreased to a value
 382 in between *step0* and *step1*. Near the ground, the optimization algorithm results
 383 in the strongest increase for both input Reynolds stresses, since the turbulence
 384 decay is stronger in this region.

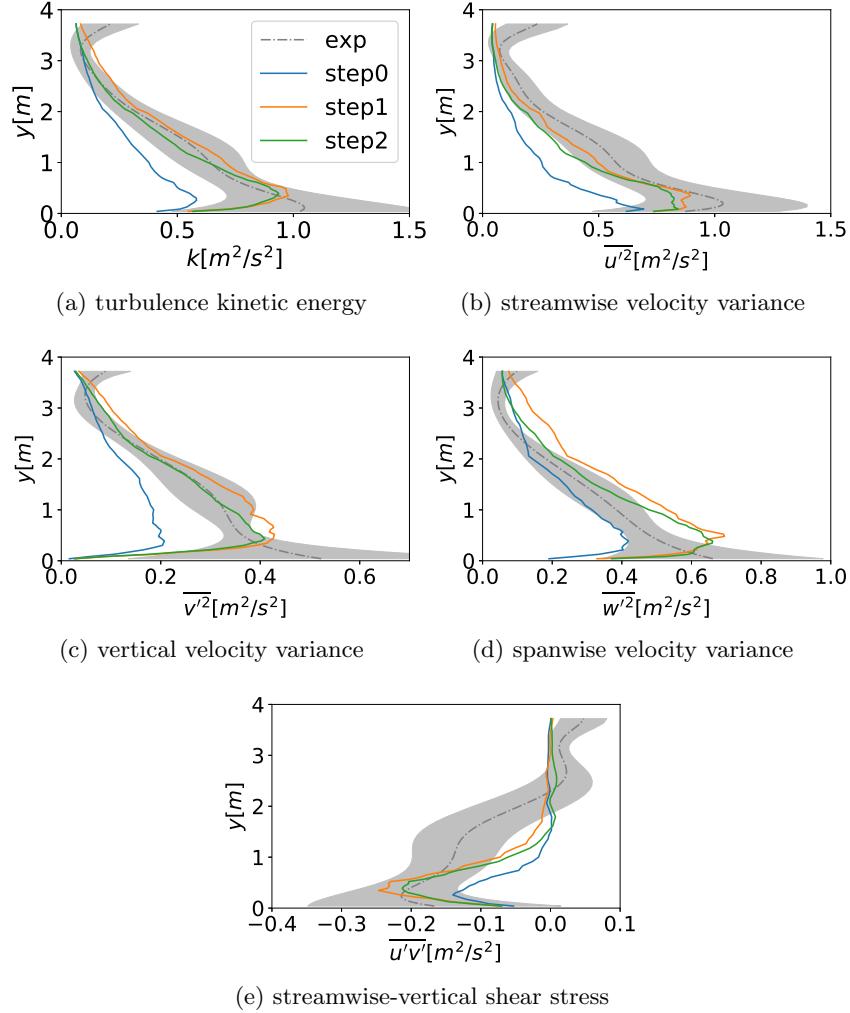
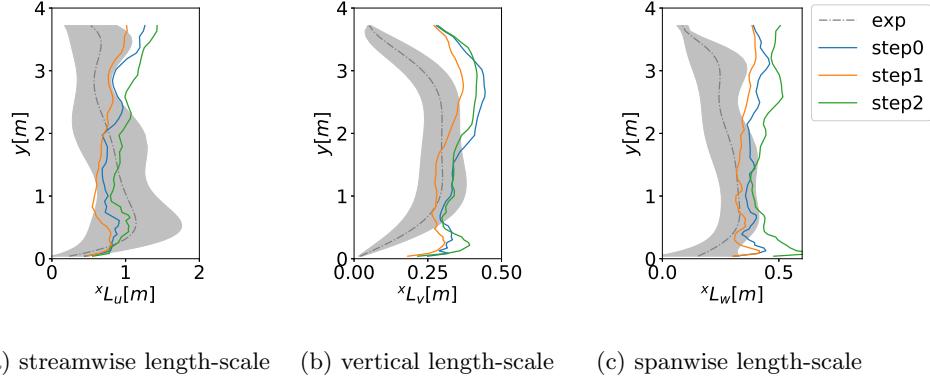



Figure 13: Reynolds stresses 5m downstream of the inlet as a result of the optimization.

385 The results show that only one step in the optimization is required to reach
 386 a level of turbulence kinetic energy at the building location that is very close to
 387 the spanwise-averaged profile of the experiment. $\overline{v'^2}$ is now entirely inside the
 388 gray region that represents the spanwise variation of the experiment, while $\overline{u'^2}$
 389 satisfies the requirement below 1m and above 1.8m. In the region in between,
 390 the discrepancy from the lower bound of the target region is $\sim 7\%$ on average.
 391 The wall-normal stress ($\overline{w'^2}$) remains slightly too high around $y = 0.5m$; here

392 the maximum discrepancy from the upper bound of the target region is $\sim 12\%$.
393 The result for the shear stress is similar to that for the streamwise component:
394 it falls inside the target region below $1m$ and above $1.8m$ height.

395 Figure 14 shows the effect of the optimization on the integral length scales.
396 For the streamwise component the profile modeled by the simulation of *step2*
397 is very close to the spanwise-averaged measurement below $y = 2.5m$, which
398 is the region of interest for the future simulation with the high-rise building.
399 Above this height the average deviation between the simulated profile and the
400 upper bound of the gray region is $\sim 8\%$. The vertical component is within the
401 gray region that represents the spanwise variation of the experiment between
402 $y = 0.5m$ and $y = 2m$, but deviates more significantly close to the ground
403 and above $2m$, where the average discrepancy is more than 50% . The spanwise
404 integral length-scale is characterized by a similar behavior. The discrepancy
405 close to the ground is most likely caused by the fact that the inflow generation
406 algorithm requires specifying a constant value for the integral length-scales over
407 height. As a result, the integral length-scales imposed near the ground at the
408 inflow are larger than the length-scales obtained in the wind tunnel, and the
409 optimization process can not compensate for this difference. For the vertical
410 and spanwise length scales, the agreement with the measurement deteriorates
411 between step 1 and step 2, which motivates including the length scales in the
412 objective function for the optimization.

(a) streamwise length-scale (b) vertical length-scale (c) spanwise length-scale

Figure 14: Modeled integral length-scales 5m downstream of the inlet as a result of the optimization.

413 Figures 15 presents the spectra of the three velocity components at the
 414 downstream location of interest at 1m and 2m height. At both heights, the
 415 highest frequency captured by the hot-wires is 1000Hz, while the LES resolves
 416 scales below 50Hz, as evident from the energy decay above this frequency. In
 417 the range of resolved scales, the LES spectra agree well with the experiment,
 418 and the turbulence is resolved into the inertial sub-range. The optimization
 419 process is shown to improve the energy content in the LES, in particular in the
 420 inertial sub-range. The observations for the large-scale portion of the spectra
 421 are consistent with the results for the Reynolds stresses: the power spectrum
 422 of the spanwise velocity fluctuations reaches a higher energy content compared
 423 to the experiment, while the streamwise and vertical components are slightly
 424 underestimated.

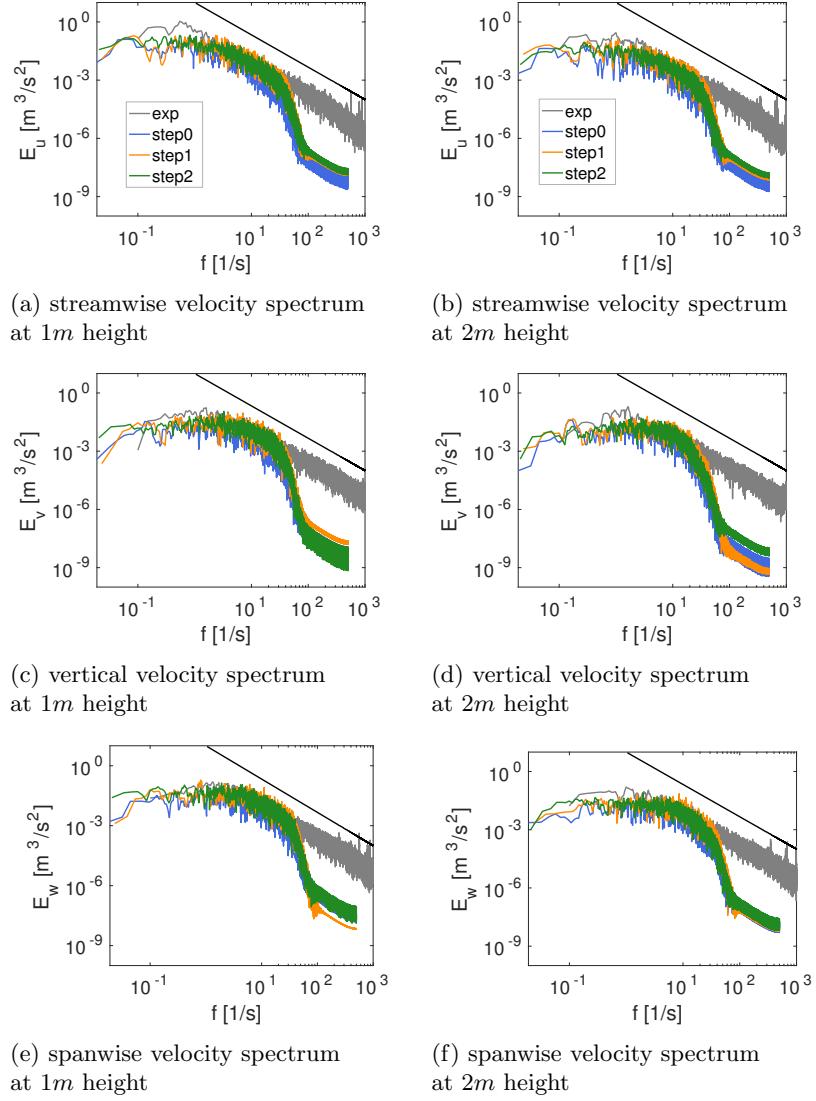


Figure 15: Modeled power spectrum, 5m downstream of the inlet, as a result of the optimization.

425 *6.2. Optimization of input Reynolds stresses and time scales*

426 When solving the optimization problem that minimizes both the objective
 427 functions of Equations 5 and 6, the input Reynolds stresses of the optimization
 428 step are exactly the same as before, while the input time scales are different.
 429 In this case we relied on the results of the sensitivity analysis to compute the

430 gradients of the integral time scales; by combining the information from the
431 baseline and the two simulations in which we doubled T_v or T_w we can compute
432 the new input integral time-scales using Equation 6.

433 Figure 16 compares the results of the two optimization problems for the
434 Reynolds stresses, showing that the results are very similar. This is as expected,
435 since the sensitivity analysis showed a small influence of the parameters T_v or
436 T_w on the Reynolds stresses.

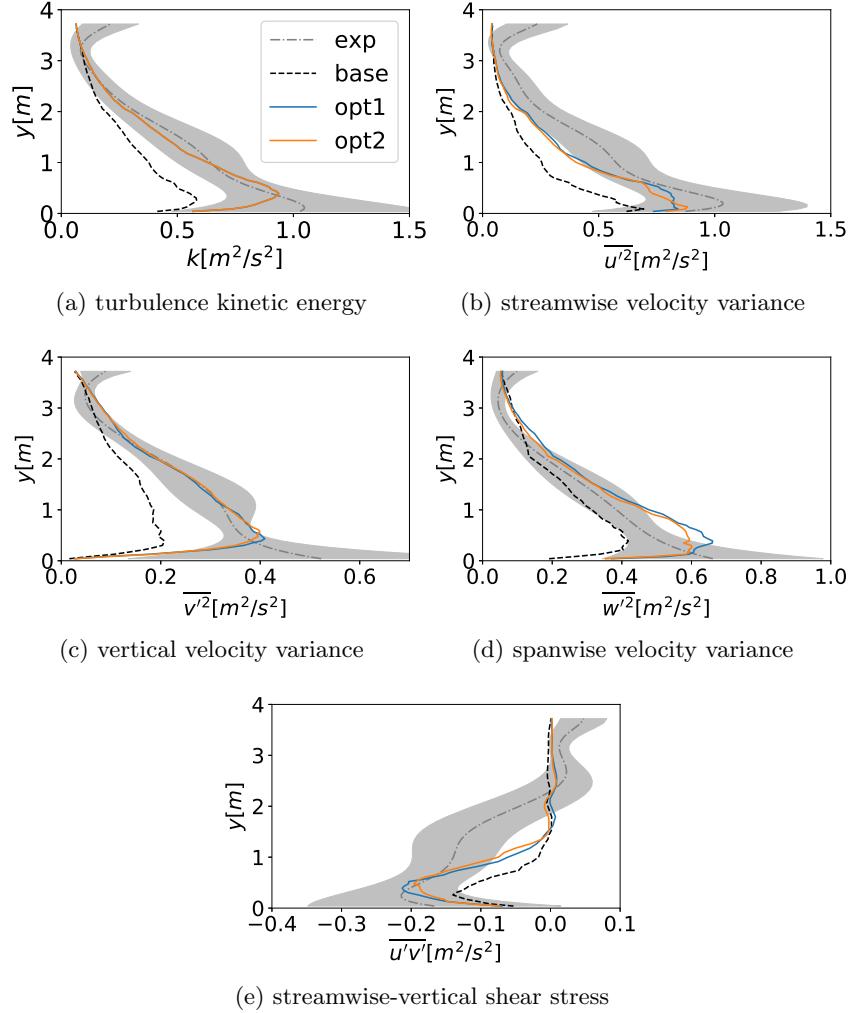
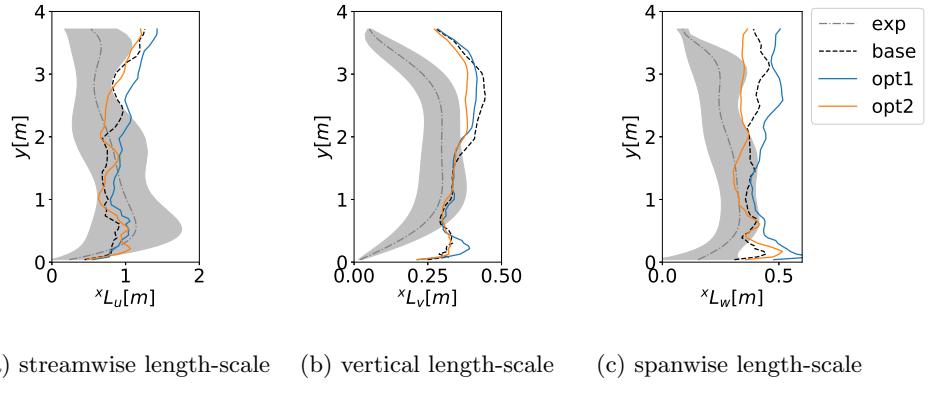



Figure 16: Modeled Reynolds stresses 5m downstream of the inlet as a result of the second optimization problem.

437 Figure 17 presents the turbulence length-scales at the building location,
 438 showing that the second optimization problem performs slightly better. The
 439 streamwise length scale is improved on the top part of the domain: it is out-
 440 side the gray region just above 3m and the error is very small. The spanwise
 441 length-scale is closer to the spanwise-averaged measurement and almost every-
 442 where inside the target region. The vertical component of the integral length

443 scale is very similar, but shows a slight improvement close to the wall. The
 444 results demonstrate that including the length scales in the objective function
 445 can improve the comparison with the experimental data. However, the fact that
 446 the input value for the length scale is constant with height limits the control in
 447 terms of reproducing the shape of the profile obtained from the experiment.

(a) streamwise length-scale (b) vertical length-scale (c) spanwise length-scale

Figure 17: Modeled integral length-scales 5m downstream of the inlet as a result of the second optimization problem.

448 7. Conclusions and future work

449 The definition of an appropriate turbulent inflow condition is essential when
 450 performing large-eddy simulations of surface layer phenomena. Digital filter
 451 methods can efficiently generate a representative velocity field with structures
 452 that are coherent in space and time, but their drawback is that this velocity
 453 field is not a solution of the system of equations being solved. As a result, the
 454 specified inlet ABL evolves throughout the domain, often resulting in too low
 455 turbulence intensities at downstream locations of interest. The objective of this
 456 study was to develop an efficient method to overcome this problem and enable
 457 LES of surface layer wind phenomena with a variety of incoming turbulence
 458 characteristics.

459 The proposed framework is formulated to obtain user-specified Reynolds
 460 stresses and turbulence length scales at a downstream location of interest in
 461 the computational domain; it does not attempt to solve the complex problem

462 of horizontal homogeneity that affects LES of ABL flows. The method is based
463 on the divergence-free inflow condition developed by Xie and Castro [2], and
464 incorporates a gradient-based optimization procedure to determine the input
465 parameters that will result in the desired turbulence statistics at the location
466 of interest. The method has been tested on simulations of a boundary layer
467 generated in the ABL wind tunnel of the Polytechnic University of Milan. The
468 location of interest was defined 5m downstream of the inlet, which corresponds
469 to the location of a high-rise building model in future LES studies.

470 First, a sensitivity analysis was performed to identify the most influential
471 parameters in the synthetic turbulence generator. In terms of the Reynolds
472 stresses, the inlet values for $\overline{v'^2}$ and $\overline{w'^2}$ were found to have a significant effect
473 on the turbulence intensities at the downstream location of interest. In terms
474 of the length scales, the sensitivity analysis showed a dominant influence of the
475 inlet values for T_v and T_w on the target integral length scales. Subsequently,
476 this information was used to implement and test two different optimization
477 approaches.

478 The first approach solves a multi-objective optimization algorithm that ad-
479 justs the inlet values for $\overline{v'^2}$ and $\overline{w'^2}$ to obtain the target Reynolds stresses at
480 the downstream location of interest. The results show that the mean veloc-
481 ity profile downstream of the inflow is not affected by the change in the input
482 Reynolds stresses and turbulence length scales. This is a result of the formu-
483 lation of the rough-wall logarithmic wall function, which is consistent with the
484 ABL mean velocity profile imposed at the inlet. For the Reynolds stress profiles
485 the optimized result compares considerably better to the measurements than
486 the baseline simulation. After one step in the optimization a maximum dis-
487 crepancy of $\sim 12\%$ is found in the spanwise Reynolds stress component near
488 0.5m height. The effect of the input $\overline{u'^2}$ and $\overline{v'^2}$ on the integral length-scales is
489 relatively small, but the agreement with the experimental data does deteriorate
490 after one step of the optimization.

491 The second approach was implemented to overcome this problem: the op-
492 timization problem for the Reynolds stresses is identical as before, but an ad-

493 ditional objective function is incorporated to obtain the target length scales at
494 the downstream location of interest by adjusting the input values for T_v and
495 T_w . The results show an improvement in the predicted turbulence scales at the
496 building location, but the vertical and spanwise length scales continue to be over
497 predicted below 0.5m height. This is likely related to the fact that the input for
498 the inflow length scale is a constant value over the height of the ABL, thereby
499 not allowing to reproduce the shape of the experimental profile.

500 In summary, the proposed method provides an efficient way to design a LES
501 of the ABL that provides user-specified turbulence statistics at a downstream lo-
502 cation of interest in the domain. Future improvements to the code will primarily
503 focus on a more accurate representation of the length scales. One could imple-
504 ment different inlet zones over the height of the surface layer, each with their
505 own length scale. This would enable optimizing the length scales at different
506 heights, similar to the process for optimizing the Reynolds stress profiles. We
507 will also perform additional steps in the optimization to verify if the solution
508 can be further improved, and implement an automatic stopping criteria that
509 balances computational cost and maximum allowed discrepancy to the target
510 profiles. Finally, the method will be used to quantify the effect of the turbulence
511 intensities and length scales at the building site on the prediction of mean and
512 peak wind pressure distributions, and the LES results will be compared against
513 wind tunnel experiments.

514 8. Acknowledgements

515 This material is based upon work supported by the National Science Foun-
516 dation under Grant Number 1635137, and used the Extreme Science and En-
517 gineering Discovery Environment (XSEDE), which is supported by National
518 Science Foundation grant number CI-1548562.

519 The authors would like to acknowledge Dr. Luca Amerio, Dr. Stefano
520 Giappino, Dr. Paolo Schito and Prof. Alberto Zasso, who performed the wind
521 tunnel experiment at the Polytechnic University of Milan and provided the data

⁵²² for the numerical validation. We also thank Prof. Zheng-Tong Xie and Prof.
⁵²³ Ian P. Castro for sharing the algorithm of the digital filter method.

524 [1] Z. T. Xie and I. P. Castro. Efficient generation of inflow conditions for large
525 eddy simulation of street-scale flows. *Flow, turbulence and combustion*,
526 81(3):449–470, 2008.

527 [2] Y. Kim, I. P. Castro, and Z. T. Xie. Divergence-free turbulence inflow con-
528 ditions for large-eddy simulations with incompressible flow solvers. *Com-
529 puters & Fluids*, 84:56–68, 2013.

530 [3] C. Gorlé, C. Garcia-Sánchez, and G. Iaccarino. Quantifying inflow and rans
531 turbulence model form uncertainties for wind engineering flows. *Journal of
532 Wind Engineering and Industrial Aerodynamics*, 144:202–212, 2015.

533 [4] C García-Sánchez, G Van Tendeloo, and C Gorlé. Quantifying inflow un-
534 certainties in rans simulations of urban pollutant dispersion. *Atmospheric
535 environment*, 161:263–273, 2017.

536 [5] T. S. Lund, X. Wu, and K. D. Squires. Generation of turbulent inflow data
537 for spatially-developing boundary layer simulations. *Journal of Compu-
538 tational Physics*, 140(2):233–258, 1998.

539 [6] K. Nozawa and T. Tamura. Large eddy simulation of the flow around a low-
540 rise building immersed in a rough-wall turbulent boundary layer. *Journal of
541 Wind Engineering and Industrial Aerodynamics*, 90(10):1151–1162, 2002.

542 [7] K. Liu and R. H. Pletcher. Inflow conditions for the large eddy simulation
543 of turbulent boundary layers: a dynamic recycling procedure. *Journal of
544 Computational Physics*, 219(1):1–6, 2006.

545 [8] T. Tamura. Towards practical use of les in wind engineering. *Journal of
546 Wind Engineering and Industrial Aerodynamics*, 96(10):1451–1471, 2008.

547 [9] G. R Tabor and M.H. Baba-Ahmadi. Inlet conditions for large eddy simu-
548 lation: a review. *Computers & Fluids*, 39(4):553–567, 2010.

549 [10] A. K. Dagnell and G. T. Bitsuamlak. Computational evaluation of wind
550 loads on a standard tall building using les. *Wind and Structures*, 18(5):567–
551 598, 2014.

552 [11] X. Wu. Inflow turbulence generation methods. *Annual Review of Fluid*
553 *Mechanics*, 49:23–49, 2017.

554 [12] S. J. Daniels, I. P. Castro, and Z.T. Xie. Peak loading and surface pressure
555 fluctuations of a tall model building. *Journal of Wind Engineering and*
556 *Industrial Aerodynamics*, 120:19–28, 2013.

557 [13] A Smirnov, S Shi, and I Celik. Random flow generation technique for
558 large eddy simulations and particle-dynamics modeling. *Journal of Fluids*
559 *Engineering*, 123(2):359–371, 2001.

560 [14] SH Huang, QS Li, and JR Wu. A general inflow turbulence generator
561 for large eddy simulation. *Journal of Wind Engineering and Industrial*
562 *Aerodynamics*, 98(10-11):600–617, 2010.

563 [15] H. Aboshosha, A. Elshaer, G. T. Bitsuamlak, and A. El Damatty. Con-
564 sistent inflow turbulence generator for les evaluation of wind-induced re-
565 sponses for tall buildings. *Journal of Wind Engineering and Industrial*
566 *Aerodynamics*, 142:198–216, 2015.

567 [16] N. Jarrin, S. Benhamadouche, D. Laurence, and R. Prosser. A synthetic-
568 eddy-method for generating inflow conditions for large-eddy simulations.
569 *International Journal of Heat and Fluid Flow*, 27(4):585–593, 2006.

570 [17] N. Jarrin. *Synthetic inflow boundary conditions for the numerical simula-*
571 *tion of turbulence*. PhD thesis, University of Manchester, 2008.

572 [18] R. Laraufie, S. Deck, and P. Sagaut. A dynamic forcing method for un-
573 steady turbulent inflow conditions. *Journal of Computational Physics*,
574 230(23):8647–8663, 2011.

575 [19] R. Poletto, T. Craft, and A. Revell. A new divergence free synthetic eddy
576 method for the reproduction of inlet flow conditions for les. *Flow, turbulence*
577 *and combustion*, 91(3):519–539, 2013.

578 [20] A. Keating, U. Piomelli, E. Balaras, and H.J. Kaltenbach. A priori and a
579 posteriori tests of inflow conditions for large-eddy simulation. *Physics of*
580 *Fluids*, 16(12):4696–4712, 2004.

581 [21] N Jarrin, R Prosser, J-C Uribe, S Benhamadouche, and D Laurence. Re-
582 construction of turbulent fluctuations for hybrid rans/les simulations using
583 a synthetic-eddy method. *International Journal of Heat and Fluid Flow*,
584 30(3):435–442, 2009.

585 [22] B. Blocken, T. Stathopoulos, and J. Carmeliet. Cfd simulation of the atmo-
586 spheric boundary layer: wall function problems. *Atmospheric Environment*,
587 41:238–252, 2007.

588 [23] A. Parente, C. Gorle, J. van Beeck, and C. Benocci. A comprehensive
589 modelling approach for the neutral atmospheric boundary layer: consistent
590 inflow conditions, wall function and turbulence model closure. *Boundary*
591 *Layer Meteorology*, 140(3):411–428, 2011.

592 [24] L. Amerio. Numerical and experimental analysis of peak pressure loads on
593 rectangular building. 2014.

594 [25] L. Amerio and A. Zasso. Experimental investigation on the time-space dis-
595 tribution of peak pressure events on high-rise building façades. *Submitted*,
596 2017.

597 [26] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
598 V. Hazlewood, S. Lathrop, G. D. Lifka, D. and Peterson, et al. Xsede: accel-
599 erating scientific discovery. *Computing in Science & Engineering*, 16(5):62–
600 74, 2014.

601 [27] PJ Richards and RP Hoxey. Appropriate boundary conditions for compu-
602 tational wind engineering models using the $k - \epsilon$ turbulence model. *Journal*
603 *of wind engineering and industrial aerodynamics*, 46:145–153, 1993.

604 [28] Meng Wang and Parviz Moin. Dynamic wall modeling for large-eddy sim-
605 ulation of complex turbulent flows. *Physics of Fluids*, 14(7):2043–2051,
606 2002.

607 [29] A Dagnew and Girma T Bitsuamlak. Computational evaluation of wind
608 loads on buildings: a review. *Wind Struct*, 16(6):629–660, 2013.

609 [30] V. Holmén. Methods for vortex identification. *Master’s Theses in Mathe-*
610 *matical Sciences*, 2012.

611 [31] G. I. Taylor. The spectrum of turbulence. In *Proceedings of the Royal*
612 *Society of London A: Mathematical, Physical and Engineering Sciences*,
613 volume 164, pages 476–490. The Royal Society, 1938.

614 [32] U. Schumann. Realizability of reynolds-stress turbulence models. *The*
615 *Physics of Fluids*, 20(5):721–725, 1977.

616 [33] J. Sousa and G. Paniagua. Entropy minimization design approach of su-
617 personic internal passages. *Entropy*, 17(8):5593–5610, 2015.

618 [34] M. Caramia and P. Dell’ Olmo. Multi-objective optimization. *Multi-*
619 *objective Management in Freight Logistics: Increasing Capacity, Service*
620 *Level and Safety with Optimization Algorithms*, pages 11–36, 2008.