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We study a model of fermions on the square lattice at half-filling
coupled to an Ising gauge theory, that was recently shown in Monte
Carlo simulations to exhibit Z2 topological order and massless Dirac
fermion excitations. On tuning parameters, a confining phase with
broken symmetry (an antiferromagnet in one choice of Hamiltonian)
was also established, and the transition between these phases was
found to be continuous, with co-incident onset of symmetry break-
ing and confinement. While the confinement transition in pure gauge
theories is well understood in terms of condensing magnetic flux ex-
citations, the same transition in the presence of gapless fermions is
a challenging problem owing to the statistical interactions between
fermions and the condensing flux excitations. The conventional sce-
nario then proceeds via a two step transition, involving a symmetry
breaking transition leading to gapped fermions followed by confine-
ment. In contrast, here, using quantum Monte Carlo simulations, we
provide further evidence for a direct, continuous transition and also
find numerical evidence for an enlarged SO(5) symmetry rotating be-
tween antiferromagnetism and valence bond solid orders proximate
to criticality. Guided by our numerical finding, we develop a field
theory description of the direct transition involving an emergent non-
abelian (SU(2)) gauge theory and a matrix Higgs field. We contrast
our results with the conventional Gross–Neveu–Yukawa transition.

C lassical and quantum phase transitions have traditionally
been studied in the framework of the Landau-Ginzburg-

Wilson paradigm. Phases are distinguished on the basis of
whether they preserve or break global symmetries of the Hamil-
tonian. Two distinct phases can be separated by a continuous
phase transition only when one of them breaks a single sym-
metry which is preserved in the other.

More recently, studies of correlated quantum systems have
led to many examples of important physical models display-
ing phase transitions which do not fit this familiar paradigm.
We can have continuous quantum phase transitions between
phases which break distinct symmetries (1). And upon al-
lowing for topological order, several new types of quantum
phase transitions become possible. We can have continuous
phase transitions between a phase with topological order to
a phase without topological order, both of which preserve all
symmetries: the earliest example of this is the phase transi-
tion in the Ising gauge theory in 2+1 dimensions described
by Wegner (2). We can also have continuous quantum transi-
tions between phases with distinct types of topological order,
and many examples are known in fractional quantum Hall
systems (3, 4). We can have a continuous transition from a
phase with topological order to one with a broken symmetry
(5–7). Finally, we can have phase transitions between a Dirac

semimetal and various gapped states, including a symmetric
gapped state without topological order dubbed symmetric
mass generation (8–13)

Theories of these novel transitions all involve quantum
field theories with deconfined emergent gauge fields. The
presence of the gauge fields reflects the long-range quantum
entanglement near the critical point: this entanglement is not
easily captured by the symmetry-breaking degrees of freedom,
or their fluctuations. The gauge theories have varieties of
Higgs and confining phases, and transitions between these
phases allow for the transitions described above.

In the present paper, we will present a novel example
of a deconfined critical point, between a deconfined phase
with topological order and a confining phase with broken
symmetry. The deconfined phase has Z2 topological order, but
in contrast to conventional topologically ordered states which
are gapped, it also features gapless fermionic excitations, whose
gaplessness is protected by the symmetries of the underlying
Hamiltonian. This is an example of a ‘nodal’ Z2 topological
order, that has been invoked in the context of the square
lattice antiferromagnet (14), and in the Kitaev model on the
honeycomb lattice (15). Here, we will augment the model
to include both spin and charge conservation leading to a
larger number of Dirac fermions (four flavors of complex two
component fields) which can be simulated without a sign
problem. Thus, we will be studying how the confinement
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transition in a gauge theory is modified by the presence of
gapless charged fermions.

The confining phase, in the formulation used in our pa-
per, is an insulator on the square lattice at half-filling with
two-sublattice antiferromagnetic (AFM) order, similar to that
found in a cuprate compound like La2CuO4. The topologi-
cally ordered phase is also at half-filling. This phase can be
considered as a toy model of a ‘pseudogap’ phase relevant
to the doped cuprate superconductors, although our analysis
will be restricted to half-filling. We will argue that there is a
direct transition between the insulating antiferromagnet and
the phase with topological order, and present a critical field
theory with an emergent non-abelian SU(2) gauge field.

Emergent symmetries will also play an in important role in
the analysis of our deconfined critical point. These are sym-
metries which are not present in the underlying Hamiltonian,
or in the non-critical phases, but which become asymptoti-
cally exact at long distances and times in the critical regime.
An emergent SO(5) symmetry was proposed (16–18) for the
deconfined critical point between the insulating AFM and va-
lence bond solid (VBS) states on the square lattice: numerical
computations on lattice models have observed such enhanced
symmetries (19–23). We will present numerical evidence for
the same SO(5) symmetry between the AFM and VBS order
parameters in our model. This emergent symmetry is intrigu-
ing, because neither of the two phases near the transition
(OSM or AFM) involves actual long-range VBS order, and
yet VBS fluctuations become as strong as AFM fluctuations
at the critical point. As we shall see later, this feature arises
naturally in our formulation of the critical theory.

We shall study a model introduced in recent quantumMonte
Carlo (QMC) studies (24, 25). The model can be considered
as an effective theory of electrons (c) on the square lattice.
The model is expressed as an Ising lattice gauge theory (ILGT)
coupled to ‘orthogonal’ fermions (f). The QMC studies showed
that this model exhibits a topological ordered ‘orthogonal
semi-metal’ (OSM) phase: this phase hase a Z2 topological
order, and massless Dirac fermion excitations which carry Z2
electric charges and also the spin and electromagnetic charges
of the underlying electrons (c). The charges carried by these
fermions are identical to the ‘orthogonal fermions’ introduced
in Ref. (26), and so we have adopted their terminology. The
previous studies also presented evidence for a confining AFM
phase, along with a possible direct and continuous phase
transition between the OSM and AFM phases. However the
underlying mechanism of this transition was not understood.

Our QMC simulation finds numerical evidence for an emer-
gent SO(5) symmetry, rotating between AFM and VBS orders,
at criticality. We contrast this finding with the more standard
Gross–Neveu–Yukawa (GNY) universality class, where such
an enlarged symmetry is absent. Guided by the numerical
results, we conjecture that the critical theory describing the
confinement transition is given by a two-color (SU(2)) quan-
tum chromodynamics (QCD) with Nf = 2 flavors of Dirac
fermions coupled to a near critical matrix Higgs field. The
Higgs mechanism is shown to naturally allow access to both
the confined and deconfined phases, using a single tuning pa-
rameter. The mechanism described here resembles the theory
of symmetric mass generation (SMG) (12, 13) in some respects,
but differs in the representation of the Higgs field under the
gauge group. While SMG required Higgs fields transforming
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Fig. 1. Lattice model – the fermions fr,α reside on the square lattice sites (blue cir-
cles) and the Ising gauge fields, σzr,η reside on the bonds (green squares). The Ising
gauge field determines the sign of the hopping amplitude along the corresponding
bond.

in the fundamental representation, so the Higgs phase was
free of topological order, here we will employ a Higgs field in
the adjoint representation, and the Higgs phase will therefore
inherit a Z2 topological order along with gapless fermions.

Model, symmetries and phase diagram

Model. We consider the HamiltonianH = HZ2 +Hf , illustrated
in Fig. 1. The ILGT part of the Hamiltonian (2) reads,

HZ2 = −J
∑
�

∏
b∈�

σzb − h
∑
b

σxb . [1]

Here, σzb and σxb are the conventional Pauli matrices, � labels
the square lattice elementary plaquettes and b = {r, η̂} denotes
the square lattice bonds with r = {rx, ry} being the lattice
site and η̂ = x̂/ŷ. The fermionic part of the Hamiltonian is
given by,

Hf = −t
∑
r,η̂,α

σzr,η̂f
†
r+η̂,αfr,α+h.c.+U

∑
r

(
n↑r −

1
2

)(
n↓r −

1
2

)
,

[2]
where, the operator f†r,α creates an ‘orthogonal fermion’ (26)
at site r with spin polarization α and nr =

∑
α
f†αfα = n↑r+n↓r

is the fermion density.
By itself, this model cannot be a complete representation

of the spin and charge excitations of a lattice electron model,
like the Hubbard model. This is because it is not possible to
write down a gauge-invariant electron operator, cr, in terms
of the fr and the σr,η̂. We need another bosonic degree of
freedom which carries a Z2 electric charge. We will introduce
such a degree of freedom later in the section on the critical
theory; but for now, we assume that this boson is gapped in
all the phases we study below, and we will not include it in
our numerical study of H.

As we demonstrate below, by varying the strength of the on-
site Hubbard interaction term, in Eq. 2, we map a more generic
phase diagram, compared to the ones obtained in Refs. (24, 25).
Furthermore, this extension allows us to test the stability of
the OSM confinement transition, and to compare its critical
properties with the more standard GNY and three dimensional
classical Ising universality classes.
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Symmetries. The global and local symmetries of the Hamil-
tonian will play an important role in our analysis. First, the
Hamiltonian is invariant under global SUs(2) rotations cor-
responding to spin rotation symmetry. Second, because we
restrict ourselves to half-filling, our model is also invariant un-
der the particle-hole (PH) transformation fα → (−1)rx+ryf†α.
Finally, combining PH symmetry with the Uc(1) symmetry
corresponding to particle number conservation forms an en-
larged SUc(2) pseudo-spin symmetry rotating between charge
density wave (CDW) and superconducting order parameters
(27).

Partial particle-hole (PH) symmetry, acting only on one
of the spin species, maps between the charge, nr, and the
spin, Szr = n↑r − n↓r , operators. Consequently, partial PH
symmetry interchanges between the symmetries SUs(2) and
SUc(2) and, when these symmetries are broken, between AFM
and BCS/CDW orders respectively. The Hubbard term in
Eq. (2) explicitly breaks partial PH symmetry, since under the
symmetry action repulsive interaction is mapped to attractive
interaction, U → −U (28).

The correspondence of our model to lattice gauge theories
(LGT) is manifest in the extensive number of local Ising sym-
metries generated by the operators Gr = (−1)nr

∏
b∈+r σ

x
b ,

with +r denoting the set of bonds emanating from the site r.
The eigenvalues, Qr = ±1, of Gr are conserved quantities and
within the Hamiltonian formalism of LGT (29) are identified
with the static background Z2 charge.

The Hilbert space then decomposes into a direct sum of
subspaces labeled by the Z2 charge configuration Qr, and
comprises quantum states that obey an Ising variant of Gauss’
law Gr = Qr. For a uniform charge configuration, we can
distinguish between two possibilities: an even LGT, Q = 1,
with no background charge and an odd LGT, Q = −1 with a
single Z2 background charge at each site. We note that partial
PH symmetry maps Q→ −Q.

Gauss’s law can be either explicitly enforced (25), or al-
ternatively, it is generated dynamically at sufficiently low
temperatures (24). In the numerical computation below, we
will consider both options depending on numerical convenience.
The zero temperature universal properties of our model, which
are the focus of this study, do not depend on the above choice.

Phase diagram. We now determine the general structure of
the zero temperature phase diagram (see Fig. 2a) by studying
several limiting cases. For concreteness, we consider negative
values of J (the case J > 0 is discussed in Ref. (25)) and set
−t = |J |. All other energy scales are measured in units of |J |.
We will only consider the odd LGT case, which, as we explain
in the following, is compatible with repulsive Hubbard interac-
tions, U > 0. The corresponding results for the even LGT can
be easily obtained by applying a partial PH transformation
with the appropriate identification of symmetries and order
parameters, as discussed above.

We first consider the strong coupling limit h� t, U, |J |. In
the extreme limit h→∞, the ILGT ground state is given by
the product state |Ψσ

conf〉 =
∏
b
|σxb = 1〉, as follows directly

from minimizing the transverse field term in Eq. (1). In
the above limit, we can safely neglect quantum fluctuations
and substitute σxb = 1 in the Ising Gauss’s law. This yields
the relation Qr = (−1)nr such that the local fermion parity,
(−1)nf , becomes a conserved quantity, identified with the
background Ising charge, Qr.

Following the standard LGT analysis (29), we now estab-
lish the effective interaction between a pair of Ising charge
excitations in the strong coupling limit. To comply with Ising
Gauss’s law, a string of flipped Ising gauge field, σxb = −1,
must connect any pair of Ising charges. The energy cost asso-
ciated with each spin flip is proportional to h, and thus the
interaction potential grows linearly with the separation giving
rise to confinement.

The repulsive Hubbard interaction favors single on-site
occupancy and consequently gaps even parity (doublons and
holons) states. The resulting low energy sector is an odd
LGT with a emergent Gauss law constraint Gr = −1. This
leaves the on-site fermion spin as the only remaining dynamical
degree of freedom. Reintroducing quantum fluctuations, at
large but finite transverse field h, allows for virtual hopping
processes. Similarly to the super-exchange mechanism, such
fluctuations induce an effective AFM Heisenberg interaction
proportional to t2/h . The zero temperature ground state
will then spontaneously break the spin rotational symmetry,
SUs(2), by forming a Néel AFM state.

Next, we examine the weak coupling limit J � t, h, U .
Here, minimizing the Ising flux term in Eq. (1) (for negative
J) realizes a uniform π–flux state, |Ψσ

de-conf〉 =
∏

� |Φ� = −1〉,
where Φ� =

∏
b∈� σ

z
b is the Ising flux threading the elemen-

tary plaquette, �. Crucially, the single-particle spectrum of
the π–flux lattice hosts a pair of gapless Dirac fermions (30).
In the resulting phase, the matter fields are deconfined, since,
in contrast to the confining phase, gauge field fluctuations me-
diate only short-range a attractive interaction with a vanishing
string tension. The deconfined phase hosts fractionalized exci-
tations carrying long-range entanglement (31). We note that
a π–flux phase can be stabilized even if J is positive by taking
the large hopping amplitude t limit (24, 25).

The gapless deconfined phase resembles the well-known gap-
less Z2 spin liquid, using the condensed matter theory (CMT)
parlance (14, 32). However, there is one crucial difference: in
our case the fermionic matter fields carry in addition to the
SU(2) spin charge (similarly to conventional spinons) an U(1)
electromagnetic charge. This makes our model more closely
related to an orthogonal-metal construction (26), where the
fractionalization pattern involves decomposing the physical
fermion into a product of a fermion carrying both spin and
charge and an Ising spin. Both slave particles carry an Ising
gauge charge. We, therefore, dub this phase by the name
orthogonal semi-metal (OSM).

Due to the vanishing density of states at half-filling, the
Dirac phase is stable against AFM order for weak Hubbard
interactions, U � t. However, a transition to an AFM∗ phase
is expected at sufficiently large coupling. Here, the asterisk
expresses the fact that the gauge theory remains deconfined in
the AFM∗ phase. This situation should be contrasted with the
confined phase, where along with AFM symmetry breaking
order, the gauge sector is confined.

Phase transitions. The different phases of our model are clas-
sified according to the presence or absence of topological order
and conventional symmetry breaking AFM order. Thus, the
associated phase transitions are expected to involve either
confinement or symmetry breaking or both.

More specifically, the phase transition between the decon-
fined Dirac phase and the AFM∗ phase is solely marked by the
rise of AFM order, while the Ising gauge field sector remains
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Fig. 2. (a) Phase diagram of the ILGT coupled to fermions. Red arrows point to parameter cuts studied in the figures below. (b-c) Simulation of the OSM confinement transition,
carried out at U = 0.25 as a function of h. (b) The onset of AFM order is located by a curve crossing analysis of the susceptibility ratio λAFM and (c) the confinement transition
is located from the divergence of the Ising flux susceptibility, χB .

deconfined. Therefore, the transition belongs to the conven-
tional chiral GNY universality class (33–36). On the other
hand, across the transition between the confined AFM and
AFM∗ phases the gapped fermions are only spectators and the
transition is signaled by the emergence of topological order in
the AFM∗ phase. Thus, the phase transition corresponds to
the standard confinement transition of the pure Ising gauge
theory, which belongs to the three dimensional classical Ising
model universality class (the spin-wave (Goldstone) modes are
not expected to modify the universality class of this transition,
as can be seen by the methods of Ref. (37)).

The most interesting phase transition, which is the subject
of this study, is between the deconfined Dirac phase and the
confined AFM. Previous numerical simulations (24, 25) and
new results shown below have found evidence for a single and
continuous phase transition involving both symmetry breaking
and confinement. Gaining a better analytic and numerical
understanding of this transition is the main subject of the
remainder of this paper.

Quantum Monte Carlo

Methods. The ILGT coupled to fermions is free of the numer-
ical sign-problem for arbitrary fermion density (here we are
interested only in the half-filled case) (24, 25). This allows us
to study our model using an unbiased and a numerically exact
(up to statistical errors) QMC simulations. We employ the
standard auxiliary-field QMC algorithm (38, 39) using both
single spin-flip updates and global moves inspired by the worm
algorithm (25). In all cases, we set the imaginary time Trotter
step to be |t|∆τ = 1/12, a value for which the discretization
errors are controlled. In what follows, we set t = J = −1 and
explore the phase diagram as a function of h and U . Unless
otherwise stated, we also explicitly impose Gauss’s law con-
straint. Further technical details of our numerical scheme as
well as additional numerical data can be found in SI Appendix
A, SI Appendix B and SI Appendix C.

Observables. We probe the VBS and AFM order parameters
using the bond kinetic energy, Dx/y, and the fermion spin, Sγ ,
operators, respectively. Their corresponding lattice definitions
at finite wave vector, q, are given by,

Dη(q) =
∑
r,α

eiq·r
(
σzr,ηf

†
r+η,αfr,α + h.c

)
Sγ(q) =

∑
r,α,β

eiq·rf†r,ατ
γ
αβfr,β

[3]

where, τγαβ are the usual Pauli matrices.
On the π-flux square lattice, the set of fermion bilinears

appearing in Eq. 3 form a five component super-vector that
transforms as a fundamental under SO(5) rotations. Within
this formalism, the competition between AFM and VBS fluc-
tuations is explicitly manifest (16, 17).

To study fluctuations, we use the imaginary time static
susceptibility, which for a generic operator, O, is defined

by χO(q) = 1
βL2

〈(∫ β
0 dτ O(q, τ)

)2
〉
. Here, expectation

values are defined with respect to the thermal density ma-
trix, β = 1/T is the inverse temperature T ,and L is
the linear system size. The ordering wave vector associ-
ated with AFM (VBS) order (along the x̂/ŷ bonds) equals
GAFM(VBS) = {π, π}({π, 0}/{0, π}).

To locate the onset of AFM order, we use the renor-
malization group (RG) invariant ratio λAFM = 1 −
χS (GAFM)/χS (GAFM −∆q), with |∆q| = 2π/L being the
smallest wave vector on our finite lattice. λAFM approaches
unity deep in an AFM phase and vanishes when the sym-
metry is restored (40). For a continuous transition, curves
of λAFM corresponding to different Euclidean space-time vol-
umes are expected to cross at the critical coupling. Antic-
ipating the emergence of strong VBS fluctuations at crit-
icality, we also define the analogous RG ratio, λVBS =
1− χD (GVBS)/χD (GVBS −∆q).

For pure lattice gauge theories, it is standard to probe con-
finement via the Polyakov loop (41). In the presence of matter
fields, the Polyakov loop no longer sharply defines confinement
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Fig. 3. Signature of an SO(5) symmetry. (a) A clear curve crossing is observed in the susceptibility ratio RSO(5) across the OSM confinement transition for U = 0.25 as a
function of h. (b) Joint probability distribution P(Dx,Sz) of the VBS and AFM order parameters at criticality. P(Dx,Sz) exhibits a circular symmetry (c) Susceptibility ratio
RSO(5) across the AFM transition for h = 0.1 as a function of U . The absence of curves crossing rules out the emergence of an SO(5) symmetry at the GNY transition.

due to charge screening. In principle, one can detect the rise
of topological order by extracting the topological contribu-
tion to the entanglement entropy (42, 43) or by measuring
the Fredenhagen-Marcu (44, 45) order parameter. However,
such probes are difficult to reliably scale with system size in
fermionic QMC simulations. In our analysis, we detect the
thermodynamic singularity associated with the confinement
transition by probing the expected divergence of the Ising
flux susceptibility, χB = ∂〈Φ〉/∂J , with Φ being the Ising flux
density defined above (25).

Numerical Results. Our first task is to determine numerically
the phase diagram shown in Fig. 2a. We exemplify our analysis
by studying the OSM confinement transition. For concreteness,
we fix U = 0.25, and drive the transition by increasing the
strength of the transverse field, h. In our finite size scaling
analysis, we consider linear system sizes up to L = 18. We
further assume relativistic scaling and accordingly consider
inverse temperatures that grow linearly with the system size,
β = L.

In Fig. 2b, we track the evolution of λ AFM as a function
of h. We observe a clear curve crossing that varies very
little with system size and strongly indicates a continuous
transition. The crossing point marks the rise of AFM order
and allows us to estimate the critical coupling, h AFM

c (U =
0.25) = 0.69(2). Moving to the IGLT sector, in Fig. 2c, we
depict the Ising flux susceptibility, χB , across the confinement
transition. With increase in the system size, χB displays a
progressively diverging and narrowing peak. We use the peak
position to estimate the critical coupling of the confinement
transition to be hconf

c = 0.69(2). This value coincides, within
the error bars, with the emergence of AFM order, found above,
suggesting that symmetry breaking and confinement occur
simultaneously.

We employ a similar analysis to determine the rest of the
phase boundaries appearing in Fig. 2a. We find that the critical
confinement line separating the AFM and AFM∗ phases meets
with the AFM transition line separating the OSM and the
AFM∗ phases at a tricritical point. The two critical lines then

merge into a single line corresponding to the OSM confinement
transition.

We now test the emergence of enlarged symmetries in
the OSM confinement transition. In the presence of an
SO(5) symmetry, the scaling dimension of the VBS and
AFM order parameters must coincide (19). As a direct
consequence, similarly to λAFM, the susceptibilities ratio,
RSO(5) = χAFM(GAFM)/χVBS(GVBS) becomes a renormaliza-
tion group (RG) invariant.

In Fig. 3a, we depict the susceptibility ratio, RSO(5), as a
function of h, across the confinement transition, for different
system sizes. Indeed, we find that all curves cross at a single
point, independent of the space-time volume. We use the
crossing point to pin down the critical coupling, hSO(5)

c =
0.69(2), in excellent agreement with the above calculations,
using other observables. We note that this result is a necessary
but not a sufficient condition for the emergence of an SO(5)
symmetry. Nevertheless, it serves as a non-trivial test for this
effect.

To further illustrate the emergence of an SO(5) symmetry,
in Fig. 3b, we depict a two dimensional histogram approx-
imating the joint probability distribution of the VBS and
AFM order parameters at criticality. We note that due to
algorithmic limitations, in computing the AFM histogram,
one must simulate the constraint-free model. Doing so, only
slightly shifts the critical coupling and as explained above,
it does not affect critical properties. Remarkably, the joint
distribution exhibits a circular form, which provides further
indication for the emergence of an SO(5) symmetry. We have
also verified, using a similar analysis, that the joint probability
distribution of the VBS order along the x and y directions
affords an emergent, SO(2), rotational symmetry at criticality,
see SI Appendix B.

To better appreciate the above result, it is instructive to ap-
ply the susceptibility ratios analysis on the more conventional
GNY transition. To that end, we investigate the transition
between the OSM phase and the AFM∗phase. We fix h = 0.1,
and cross the AFM transition by increasing U . The results
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Fig. 4. Finite size scaling analysis of (a) λAFM (b) λVBS (c) χAFM and (d) χVBS. In
all cases, curve collapse is obtained using the critical coupling hc = 0.69, the
correlation length exponent ν = 0.58. The same anomalous exponent η = 1.4 is
used to scale both the AFM and VBS fluctuations.

of this analysis are shown in Fig. 3c. In stark contrast to
the confinement transition, we find no evidence for a curve
crossing. Thus, we can deduce that the putatively continuous
OSM confinement transition must belong to a universality
class that is distinct from the conventional GNY transition.
This conclusion is one of our main results.

Motivated by the above results, we now extract the crit-
ical properties of the OSM confinement transition from the
numerical data. The dimensionless susceptibility ratios are
expected to follow a simple scaling form λAFM/VBS(h, L) =
λ̃AFM/VBS(δhL1/ν), where δh = h − hc defines the quantum
detuning parameter from the critical coupling hc, and ν is the
correlation length exponent. In Figs. 4a and 4b we present the
universal scaling functions λ̃AFM/VBS obtained from a curve
collapse analysis using hc = 0.69(2) and ν = 0.58(1).

In the presence of SO(5) symmetry, the AFM and VBS
order parameters are expected to share the same anoma-
lous exponent η. We assume the standard scaling form
χVBS/AFM = L2−ηχ̃VBS/AFM(δhL1/ν), where χ̃VBS/AFM are the
universal scaling functions of the VBS and AFM order pa-
rameters. In Figs. 4c and 4d we depict the universal scaling
functions χ̃VBS/AFM using our previous estimates for hc and ν
and the same anomalous exponent η = 1.4(1). The increased
system size and improved methodology used is this work al-
lowed for a more reliable determination of critical exponents,
compared to the ones appearing in Ref. (25).

In the above scaling analysis, we found that curves corre-
sponding to the smallest system sizes deviate from the expected

universal curve. These scaling violations are most likely at-
tributed to non-universal corrections to scaling that may be
sizable at small system sizes. Nevertheless, we note that the
critical regime over which we obtain a nearly perfect curve
collapse systematically increases with the systems size.

We note that although the AFM and VBS exponents co-
incide, the scaling functions, χ̃VBS/AFM, in Figs. 4c and 4d do
not appear to be the same. The theory to be presented in
the section below requires these functions to be the same at
leading order, with differences only appearing upon considering
corrections to scaling. This feature needs to be understood
better in future work.

Critical theory of the confinement transition

Previous work. It is useful to first recall other theories of con-
finement transitions out of a state with Z2 topological order
(46). The confinement transition of the even ILGT without dy-
namical matter was already described by Wegner (2), which he
showed was in the (inverted) Ising universality class. The odd
ILGT without dynamical matter has a confinement transition
to a state with VBS order, and the square lattice critical point
is described by a deconfined U(1) gauge theory (5, 7, 47). This
can be understood by viewing the Z2 gauge theory of the topo-
logical state as a compact U(1) gauge theory in which a charge
2 Higgs field has condensed (48). Then the uncondensing of the
Higgs field leads to a confining phase of the U(1) gauge theory,
across a critical point where the U(1) gauge fields are decon-
fined: the background Z2 electric charges of the odd ILGT
suppress the U(1) monopoles at the critical point, leading
to deconfinement. This furnishes an example of an enlarged
gauge group appearing at the confinement-deconfinement crit-
ical point of a Z2 gauge theory. Analogously, we will see that
for our problem of confinement of ILGT coupled to massless
fermions, enlarging the gauge group can account for this tran-
sition as well. However, here we will need to introduce an
SU(2) gauge symmetry as described below.

Fractionalization and Higgs field: parton construction. The
f fermions that appear in the Ising gauge theory can be
constructed via the following ‘parton’ construction by frac-
tionalizing the physical, gauge invariant degrees of freedom.
Notice, the gauge invariant operators in that model are purely
bosonic, and include the spin S and psuedospin I generators.
The latter include the U(1) charge operators Iz, and I± that
create/destroy charged bosons. These can be decomposed into
partons as follows. First define:

Xr =
(

fr↑ −f†r↓
fr↓ f†r↑

)
[4]

The spin and psuedospin rotations act via multiplication of
SU(2) matrices to the right or left: X → UsX[Ups]†. Then
the physical operators are:

Sr = 1
4Tr{X†rτXr}; Ir = 1

4Tr{XrµX†r} [5]

Here we are using the convention for spin/pseudospin Pauli
matrices τ/µ from Eq. (3). Clearly there is a Z2 gauge redun-
dancy in this definition corresponding to changing the sign of
the fermion operators. Thus a minimal parton Hamiltonian
will have hopping of f fermions mediated by an Ising (Z2)
gauge field, as in to our starting model. However, in order

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Gazit et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

to accomplish the observed transition we will need a different
set of variables. To this end, define a fermion matrix field Yr
which is superficially similar to the Xr above, however which
only carries the spin quantum number. The psuedospin is
assumed to be carried by a triad of bosonic matrix fields Ĥa,
a = 1, 2, 3 each of which is a 2× 2 matrix. This can also be
written as Ĥa =

∑3
b=1 Habµ

b = ~Ha ·~µ. In terms of these fields
we can decompose the physical operators as:

Sr = 1
4Tr{Y †r τYr}; Iar = 1

4Tr{YrĤarY
†
r } [6]

While spin rotations are implemented as before Y → UsY ,
psuedospin rotations only act on Ĥa which transforms as
a vector. This decomposition though has additional gauge
freedom, for instance we can simultaneously rotate:

Yr → Yr [Ugr ]† ; Ĥar → Ugr Ĥar [Ugr ]† [7]

which leaves the physical operators invariant. Therefore this
decomposition has an SU(2) gauge redundancy. Therefore the
effective theory will now involve Y fermions coupled to an
SU(2) gauge field. We can readily recover the Z2 Dirac phase
as follows. Consider a Higgs transition in which the fields Hab

acquire an expectation value:

〈Hab〉 = H0δab . [8]

Then, Ĥa = H0µ
a and Eq. (6) reduces to Eq. (5). We will

later see that the dynamics at the transition will naturally
favor such a Higgs condensate.

Fractionalization and Higgs field: Rotating reference frame
construction. An alternate derivation of the fractionalized de-
grees of freedom can be obtained by first expanding the Hilbert
space of the model to include electron excitations cα. We can
then show that the AFM and VBS order parameters of the
possible confining phases, and the orthogonal fermions fα of
the Z2 deconfined phase, all emerge by transforming the un-
derlying gauge-invariant electrons, cα, to a rotating reference
frame under SUc(2).

A similar approach was adopted in Refs.(49, 50) which
considered phases with Z2 topological order in which there
are dynamical fermions carrying Z2 gauge charges and the
global Uc(1) charge (Uc(1) is a subgroup of SUc(2)), but these
fermions are spinless under SUs(2). The transition of these
phases to confining Fermi liquids (which can be unstable to
superconductivity) was described by embedding the Z2 gauge
theory in a SU(2) gauge group. This larger gauge group was
needed for a proper description of the confining phase in terms
of composites of the fractionalized degrees of freedom (51). It
was introduced by transforming to a ‘rotating reference frame’
under SUs(2). In the topological phase, the SU(2) gauge
invariance was broken down to Z2 by condensing a SO(3)
Higgs field which was neutral under Uc(1) and SUs(2).

In our case, we transform to a rotating reference frame
under SUc(2) by writing (52, 53)(

cr,↑
c†r,↓

)
= Rr

(
fr,↑
f†r,↓

)
[9]

where Rr is a position and time dependent SU(2) matrix which
performs the transformation to a SUc(2) rotating reference

frame. This definition immediately introduces a SUg(2) gauge
invariance because the r.h.s. is invariant under

Rr → Rr U
g
r ,

(
fr,↑
f†r,↓

)
→ [Ugr ]†

(
fr,↑
f†r,↓

)
, [10]

where Ugr is an arbitrary spacetime-dependent SUg(2) matrix,
as in Eq. (6). The definition in Eq. (9) shows that Rr trans-
forms as a SUc(2) fundamental under left multiplication, and
a SUg(2) fundamental under right multiplication. Note that
in this SUg(2) gauge theory formulation, and unlike the Z2
gauge theory in Eq. (2), at this point the f fermions do not
carry a SUc(2) charge; they only carry a SUg(2) charge, and
the SUc(2) charge has been transferred from the f to the R.

We now want to obtain an OSM state, proximate to confin-
ing AFM/VBS states, from the SUg(2) gauge theory defined
by Eq. (9). Condensing the R boson would completely Higgs
SUg(2), and so we assume that R remains gapped across the
transition. But we can break SU(2) down to Z2 by condensing
a matrix Higgs field, Hab, which is composed of a pair of R
bosons:

Hab ∼ Tr
(
µaRµbR†

)
, [11]

where a, b = 1, 2, 3. This is an alternative interpretation of the
Higgs field Hab introduced in the previous subsection. Eq. (11)
is the analog of the paired condensate of ‘slave’ bosons carrying
U(1) gauge charges in the OM construction of Ref. (26). Hab

transforms as spin-one under the SUg(2) gauge and SUc(2)
pseudo-spin symmetries via a left and right multiplications,
respectively.

Now introducing a Higgs condensate as in Eq. (8) breaks
the gauge SUg(2) down to Z2. It also ties together the global
SUg(2)× SUc(2) transformations to a diagonal subgroup, so
that the f fermions effectively acquire a SUc(2) index. These
are precisely the characteristics of the observed OSM phase.

We note that the Higgs field in Eq. (11) is the only possible
R pair without spatial gradients. Other possibilities for R
pair Higgs fields are either trivial (Tr

(
RR†

)
= 2) or vanish

identically (Tr
(
µaRR†

)
= Tr

(
RµbR†

)
= 0). We can also

make Higgs fields from pairs of the f fermions, as was done
recently in Ref. (54). Such Higgs fields carry only SUg(2)
charges, and their condensation leads to topologically ordered
phases with fermionic excitations with global SUs(2) charges
only: these are not orthogonal fermions, and so condensation
of the f pair Higgs field does not lead to an OSM.

Critical theory. We can now write down a continuum theory
for a phase transition out of the OSM phase by assembling
the degrees of freedom described above in a SUg(2) gauge
theory. First we take the continuum limit of the (f↑, f†↓)
fermions moving in a π flux background to a obtain two-
components Dirac spinors, ψv, which carry a valley index
v = 1, 2 and a fundamental SUg(2) gauge charge (index not
explicitly displayed). The fermions also carry a SUs(2) charge,
but its action is clearer in a Majorana fermion representation
(18, 54). Minimally coupling these fermions to a SUg(2) gauge
field, we obtain two-color QCD coupled to Nf = 2 flavors of
Dirac fermions in three space-time dimensions. This theory
was examined recently by Wang et al. (18), and following
them we dub it QCD3(Nf = 2).

Wang et al. noted that QCD3(Nf = 2) has a global SO(5)
symmetry, and that a gauge-invariant fermion bilinear trans-
forms as an SO(5) vector. Tracing this fermion bilinear back
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D R A F
T

H = 0

O S M

H = 0

C o n fi n e d + A F M

m 2

m 2
c

Fi g. 5. Hi g g s  m e di at e d c o n fi n e m e nt tr a n siti o n.  F or p o siti v e  Hi g g s  m a s s, m 2 > 0 ,

t h e  Hi g g s fi el d i s g a p p e d.  T h e eff e cti v e fi el d t h e or y i s t h e n  Q C D3 (N f = 2 ),  w hi c h

c o n fi n e s a n d s p o nt a n e o u sl y br e a k s c hir al s y m m etr y, l e a di n g t o a n i n s ul at or  wit h  A F M

or d er.  C o n v er s el y, f or m 2 < 0 , t h e  Hi g s s fi el d c o n d e n s e s a n d r e d u c e s t h e S U g ( 2 )

g a u g e s y m m etr y d o w n t o Z 2 gi vi n g ri s e t o t h e  O S M.

t o t h e l a t ti c e f e r mi o n s, f α , t h e y n o t e d t h a t t hi s S O ( 5 ) o r d e r
p a r a m e t e r i s p r e ci s el y t h e c o m p o si t e of t h e 3 - c o m p o n e nt  A F M
o r d e r p a r a m e t e r a n d t h e 2 - c o m p o n e nt  V B S o r d e r p a r a m e t e r.
A c o n fi ni n g p h a s e of  Q C D 3 i s e x p e c t e d t o b r e a k t h e S O ( 5 )
s y m m e t r y, a n d s o  w e h a v e a c hi e v e d o u r ai m of  w ri ti n g d o w n
a t h e o r y  w hi c h i s p r o xi m a t e t o c o n fi ni n g p h a s e s  wi t h  A F M o r
V B S o r d e r.  We h a v e al s o o b t ai n e d a n u n d e r s t a n di n g of t h e
e vi d e n c e f o r S O ( 5 ) s y m m e t r y i n o u r n u m e ri c s.

Fi n all y,  w e c o m bi n e  Q C D 3 ( N f = 2 ) wi t h a p h e n o m e n o-
l o gi c al a c ti o n f o r H t o o b t ai n o u r t h e o r y f o r t h e t r a n si ti o n
b e t w e e n t h e  O S M a n d  A F M p h a s e s.

S = d 3 x

N f

v = 1

ψ̄ v /D a ψ v −
1

2
Tr D H

a H
T

D H
a H

+
1

2
m 2 Tr [H T H ] + κ d e t H +

1

4
λ Tr [H T H ]2

+
1

4
λ Tr [ (H T H ) 2 ] +

1

4
f 2

µ ν .

[ 1 2]

H e r e a c
µ r e p r e s e nt s t h e S U ( 2 ) g a u g e fi el d, a n d t h e c o v a ri-

a nt d e ri v a ti v e of t h e  Di r a c f e r mi o n s i s d e fi n e d a s , /D a =
γ µ i ∂µ + a c

µ τ c ,  w h e r e τ c a r e t h e  P a uli  m a t ri c e s. Si mi-

l a rl y, t h e c o v a ri a nt d e ri v a ti v e of t h e  Hi g g s fi el d r e a d s, D H
a =

∂ µ + a c
µ O c ,  w h e r e O c a r e t h e g e n e r a t o r s of S O ( 3 ) r o t a ti o n s.

Fi n all y, t h e l a s t t e r m i s t h e s t a n d a r d  M a x w ell t e r m,  wi t h f c
µ ν

b ei n g t h e n o n- a b eli a n fi el d s t r e n g t h.  N o t e t h a t all t e r m s i n
E q. ( 1 2 ) r e s p e c t t h e gl o b al S O ( 5 ) s y m m e t r y.

T h e t r a n si ti o n b e t w e e n  O S M a n d  A F M p h a s e s i s d e s c ri b e d
b y t u ni n g t h e  Hi g g s  m a s s, m 2 , a s s h o w n i n  Fi g. 5 .  F o r n e g a ti v e
m 2 , t h e  Hi g g s fi el d i s c o n d e n s e d a s i n  E q. (8 ), a n d  w e o b t ai n
a n  O S M p h a s e a s d e s c ri b e d a b o v e.  N o t e t h a t t h e ψ v f e r mi o n s
r e m ai n  m a s sl e s s e v e n  w h e n t h e  Hi g g s fi el d i s c o n d e n s e d.  T hi s
i s b e c a u s e t h e r e i s n o all o w e d t ri-li n e a r  Y u k a w a t e r m b e t w e e n
t h e  Hi g g s b o s o n a n d t h e f e r mi o n s; s u c h a  Y u k a w a t e r m i s
f o r bi d d e n b y S U c ( 2 ) s y m m e t r y, a s t h e  m a t ri x  Hi g g s fi el d H
c a r ri e s a S U c ( 2 ) c h a r g e,  w hil e t h e f e r mi o n s ψ d o n o t.  T hi s
f e a t u r e i s i n c o nt r a s t t o e a rli e r t h e o ri e s of p h a s e s  wi t h Z 2

t o p ol o gi c al o r d e r ( 4 9 , 5 0 , 5 4 ),  w h e r e t h e  Y u k a w a t e r m  w a s
s y m m e t r y all o w e d, a n d l e d t o a g a p i n t h e f e r mi o n s p e c t r u m
w h e n t h e  Hi g g s fi el d  w a s c o n d e n s e d.

F o r p o si ti v e m 2 ,  w e c a n n e gl e c t t h e  m a s si v e  Hi g g s fi el d, a n d
t h e n  E q. ( 1 2 ) r e d u c e s t o  Q C D 3 ( N f = 2 ) .  F o r s u ffi ci e ntl y l a r g e
N f ,  Q C D3 ( N f ) d e fi n e s a d e c o n fi n e d c o nf o r m al fi el d t h e o r y,

wi t h n o n- t ri vi al s c ali n g di m e n si o n s t h a t c a n b e c o m p u t e d i n a
1 / N f e x p a n si o n.  H o w e v e r, i t i s e x p e c t e d t h a t t h e r e i s a c ri ti c al
N c

f s u c h t h a t f o r N f < N c t h e t h e o r y i s c o n fi ni n g.  T h e  m o s t
r e c e nt l a t ti c e  Q M C c al c ul a ti o n ( 5 5 ) e s ti m a t e s N c

f = 4 − 6 .
F o r N f = 2 ,  w hi c h i s r el e v a nt t o o u r c a s e, a cl e a r ‘ c hi r al’
s y m m e t r y b r e a ki n g  w a s o b s e r v e d, c o r r e s p o n di n g t o a b r e a ki n g
of S O ( 5 ) s y m m e t r y i n o u r l a n g u a g e. ∗ T h e r ef o r e, i n  E q. ( 1 2 ),
t h e  Hi g g s t r a n si ti o n p r o vi d e s a  m e a n s t o si m ul t a n e o u sl y d ri v e
c o n fi n e m e nt a n d s y m m e t r y b r e a ki n g u si n g a si n gl e t u ni n g
p a r a m e t e r c o r r e s p o n di n g t o t h e  m a s s- s q u a r e d of t h e  Hi g g s
fi el d.  O n c e  w e a r e i n t h e S O ( 5 )- b r o k e n r e gi m e, o t h e r i r r el e v a nt
o p e r a t o r s ( n o t s h o w n i n  E q. ( 1 2 ) )  will b e c o m e i m p o r t a nt, a n d
w e a s s u m e t h e s e s el e c t t h e  A F M o r d e r o b s e r v e d, r a t h e r t h a n
t h e  V B S o r d e r.

Fi n all y  w e t u r n t o t h e c ri ti c al p oi nt b e t w e e n t h e  O S M a n d
A F M p h a s e s.  We a s s u m e t h a t t hi s i s d e s c ri b e d b y t h e S O ( 5 )-
s y m m e t ri c d e c o n fi n e d c ri ti c al t h e o r y i n  E q. ( 1 2 ) af t e r t h e  Hi g g s
m a s s  m a s s m 2 h a s b e e n t u n e d t o i t s c ri ti c al v al u e.  T h e i d e a i s
t h a t t h e a d di ti o n al c o nt ri b u ti o n s of t h e c ri ti c al  Hi g g s  m o d e s,
w h e n c o m bi n e d  wi t h t h e g a pl e s s f e r mi o n s, a r e s u ffi ci e nt t o
s u p p r e s s t h e c o n fi ni n g e ff e c t s of t h e S U g ( 2 ) g a u g e fi el d.  T h e
c o nti n u o u s t r a n si ti o n o b s e r v e d i n o u r n u m e ri c s, al o n g  wi t h t h e
e vi d e n c e f o r gl o b al S O ( 5 ) s y m m e t r y i s e vi d e n c e i n s u p p o r t of
o u r p r o p o s al.

We n o t e al s o t h e c u bi c t e r m, p r o p o r ti o n al t o κ i n  E q. (1 2 ).
I n p u r el y s c al a r fi el d t h e o ri e s, t hi s  w o ul d b e s u ffi ci e nt t o i m pl y
a fi r s t- o r d e r p h a s e t r a n si ti o n.  H o w e v e r,  w h e n c o m bi n e d  wi t h
s t r o n g g a u g e fl u c t u a ti o n s a n d  m a s sl e s s f e r mi o n s, i t i s n o t
cl e a r  w h e t h e r e s ti m a t e s  w hi c h e x p a n d a b o u t t h e u p p e r- c ri ti c al
di m e n si o n c a n b e r eli a bl e. I n t h e l a r g e- N f e x p a n si o n of s u c h
a  Hi g g s c ri ti c al t h e o r y, t h e κ d e t e r mi n a nt t e r m i n v ol v e s of
o r d e r N f p o w e r s of t h e  Hi g g s fi el d, a n d i s cl e a rl y i r r el e v a nt a t
t h e c ri ti c al p oi nt.  O u r e vi d e n c e f o r a c o nti n u o u s t r a n si ti o n i s
e vi d e n c e t h a t t hi s i s al s o li k el y t h e c a s e a t N f = 2 .

E v e n if i r r el e v a nt a t c ri ti c ali t y, o n  m o vi n g i nt o t h e  Hi g g s
p h a s e, t h e κ d e t e r mi n a nt t e r m  will di c t a t e t h e n a t u r e of
t h e  Hi g g s c o n d e n s a t e.  N o t e, t h a t si n c e  m ul ti pl e  Hi g g s fi el d s
a r e p r e s e nt d u e t o t h e gl o b al s y m m e t r y, di ff e r e nt p a t t e r s of
Hi g g s c o n d e n s a t e s a r e p o s si bl e d e p e n di n g o n h o w  m a n y ˆH a

w e c o n d e n s e.  T h e s e a r e all d e g e n e r a t e t o q u a d r a ti c o r d e r,
b u t a r e di ff e r e nti a t e d b y t h e d e t e r mi n a nt t e r m t h a t s el e c t s a
si m ul t a n e o u s c o n d e n s a t e a s i n  E q. ( 8 ) i n d e p e n d e nt of t h e si g n
of κ .  T hi s f o r m of t h e  Hi g g s c o n d e n s a t e i s c r u ci al t o o b t ai ni n g
t h e  O S M p h a s e.

Di s c u s si o n a n d s u m m ar y

We h a v e c a r ri e d o u t a d e t ail e d n u m e ri c al a n al y si s of t h e c o n-
fi n e m e nt t r a n si ti o n of t h e o r t h o g o n al s e mi- m e t al ( O S M ) i n
a  m o d el  wi t h a r e p ul si v e o n- si t e  H u b b a r d i nt e r a c ti o n.  T hi s
s e r v e s a s a  m o d el of a c o n fi n e m e nt t r a n si ti o n i n a Z 2 g a u g e
t h e o r y c o u pl e d t o g a pl e s s  Di r a c f e r mi o n s t h a t c a r r y g a u g e
c h a r g e,  w hi c h i s al s o f r e e of t h e f e r mi o n si g n p r o bl e m.  O u r
k e y n u m e ri c al fi n di n g i s a n e m e r g e nt S O ( 5 ) s y m m e t r y a t c ri t-
i c ali t y t h a t e nl a r g e s t h e  mi c r o s c o pi c S O ( 3 ) × C 4 s y m m e t r y
a s s o ci a t e d  wi t h s pi n r o t a ti o n s a n d t h e di s c r e t e s q u a r e l a t ti c e
p oi nt g r o u p s y m m e t r y.  C r u ci all y,  w e d e m o n s t r a t e t h a t t hi s

∗
Stri ctl y s p e a ki n g, t h e si m ul at e d  Q C D 3 at N f = 2 d o e s n ot h a v e t h e f ull S O ( 5 ) s y m m etr y o n

t h e l atti c e s c al e, b e c a u s e t h e f ull s y m m etr y i s a n o m al o u s. I n pri n ci pl e, t h er e i s a  m or e e x oti c

s c e n ari o( 1 8 ), i n  w hi c h t h e  Q C D t h e or y  wit h f ull S O ( 5 ) s y m m etr y fl o w s t o t h e c o nti n u o u s  N e el t o

V B S tr a n siti o n (t h e d e c o n fi n e d q u a nt u m criti c al p oi nt), a n d c hir al s y m m etr y br e a ki n g h a p p e n s o nl y

w h e n t h e f ull S O ( 5 ) i s e x pli citl y br o k e n (f or e x a m pl e t o S O ( 3 ) × S O ( 2 ) ).  O ur t h e or y h ol d s

e v e n if t hi s s c e n ari o i s c orr e ct, si n c e t h e f ull S O ( 5 ) i s alr e a d y br o k e n i n o ur  mi cr o s c o pi c  m o d el.

8 |  w w w. p n a s. or g/ c gi/ d oi/ 1 0. 1 0 7 3/ p n a s. X X X X X X X X X X G a zit et al.
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result is a qualitatively unique feature of the OSM confinement
transition that fundamentally distinguishes it from the more
conventional Gross-Neveu-Yukawa (GNY) and Ising criticality.
In addition, our refined numerical calculations allowed us to
improve previous estimates of critical data, and further sup-
port the scenario of deconfined criticality (DC) with a second
order phase transition.

We note that, even more than a decade after the initial
theoretical proposal, the ultimate thermodynamic fate of DC
for insulating square lattice antiferromagnets remains in de-
bate. Numerical studies of lattice models show conflicting
results, where estimates of certain universal quantities exhibit
a significant drift with system size, and in certain models
even an indication for a first order transition. On the other
hand, several numerical studies indicate an enlarged SO(5)
symmetry that is hard to reconcile with a first order transition
(see Ref.(18) for a recent discussion).

As our model involves fermionic degrees of freedom, its
computational cost using standard QMC methodology does
not scale favorably with systems size, compared to models of
non-LGW transitions consisting of bosonic degrees of freedom.
It is therefore more challenging to assert a strong statement
on the thermodynamic limit of our model. Nevertheless, up
to the largest length scale studied, we did not observe any
sign of deviation from critical scaling and critical properties
seem to remain robust for a wide range of microscopic pa-
rameters without any degree of fine tuning. Most relevant
for this work, it is difficult to imagine a scenario, in which
an enlarged symmetry could generically arise at a first order
phase transition.

We used the numerical results as a guide for constructing
a field theory description of the OSM confinement transi-
tion, which is linked to recent studies of descended phase of
QCD3(Nf = 2) (12, 13, 18, 54). We introduced a matrix Higgs
mechanism, which is distinct from the vector Higgs approach
presented in Ref. (54). In the latter case, the Higgs fields
were bilinears of the fermions fα, in contrast to the boson
bilinears we employed in Eq. (11), and their condensation
led to spin liquids with fermionic spinons which do not carry
the electromagnetic charge. In contrast, condensation of our
matrix Higgs field led to an orthogonal metal, in which the
fermions carry both spin and electromagnetic charge. At the
same time the fermions carry Z2 gauge charge, unlike in the
symmetric mass generation scenario of Refs. (12, 13), where a
Higgs field in the fundamental representation condenses giving
rise to gapless fermions, without gauge charge.

Looking to the future, it would be interesting to explore
some extension of our Higgs mechanism. Our QCD3 mecha-
nism has a natural prediction when time-reversal symmetry is
explicitly broken, in which case the Dirac fermions obtain a
mass term with total Chern number C = 2. Deep in the decon-
fined phase this leads to a Semion×Semion topological order
(ν = 4 in Kitaev’s 16-fold classification (15)). However, near
the critical point (when the Chern mass scale is greater than
the Higgs mass scale), we obtain an SU(2)1 Chern-Simons
theory which is simply the Semion chiral spin liquid. The
two topological orders can in principle be distinguished by
their ground state degeneracy on a torus or infinite cylinder,
perhaps through DMRG calculation. This Semion topological
order, if observed, would be a strong signature of the enhanced
gauge symmetry near the critical point.

Another extension, which may be implemented in quantum
Monte Carlo, is to consider similar transitions described by
QED3, namely a U(1) (instead of SU(2)) gauge theory coupled
to Nf = 4 Dirac fermions. There are two scenarios in which
this would be natural. First, one could consider explicitly
breaking the pseudo-spin SUc(2) symmetry down to U(1), say
by breaking the particle-hole symmetry. Alternatively, one can
study a similar system but with Z4 gauge field on the lattice –
in fact in this scenario we can have more controlled arguments
about the ultimate IR fate of the phases and phase transition,
as we briefly outline in SI Appendix D. In both cases the
gauge symmetry can be naturally enlarged to U(1) but not
SU(2). At the critical point of such QED3-Higgs transition
we expect an enlarged SO(2)× (SO(6)× U(1))/Z2 symmetry,
instead of SO(3)× SO(5) in the QCD3-Higgs transition (the
Neel-VBS SO(5) observed in this work is a subgroup of both
symmetries).

On the numerical front, we see several exciting future di-
rections. First, identifying observables that can probe the
emergent SU(2) gauge fields and matrix Higgs field, H, would
allow for direct confirmation of the critical theory in the numer-
ical simulations. Second, the emergence of an SO(5) symmetry
at criticality can be further tested by studying certain high
order correlation functions that are required to vanish by sym-
metry (19). Finally, eliminating the observed non-universal
corrections to scaling requires simulations on larger lattices,
beyond standard methodologies. In that regard, one promis-
ing approach is the Hamiltonian variant of the fermion bag
algorithm (56, 57).

Lastly, we note that since the theory we simulated, H, does
not contain any gauge neutral fermion it can be thought of
arising from an underlying bosonic theory. It is tempting to
conjecture that the associated bosonic description will also be
free of the numerical sign problem. Identifying such bosonic
lattice models would allow access to significantly larger system
sizes and an accurate study of critical properties.
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