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We study a model of fermions on the square lattice at half-filling
coupled to an Ising gauge theory, that was recently shown in Monte
Carlo simulations to exhibit Z, topological order and massless Dirac
fermion excitations. On tuning parameters, a confining phase with
broken symmetry (an antiferromagnet in one choice of Hamiltonian)
was also established, and the transition between these phases was
found to be continuous, with co-incident onset of symmetry break-
ing and confinement. While the confinement transition in pure gauge
theories is well understood in terms of condensing magnetic flux ex-
citations, the same transition in the presence of gapless fermions is
a challenging problem owing to the statistical interactions between
fermions and the condensing flux excitations. The conventional sce-
nario then proceeds via a two step transition, involving a symmetry
breaking transition leading to gapped fermions followed by confine-
ment. In contrast, here, using quantum Monte Carlo simulations, we
provide further evidence for a direct, continuous transition and also
find numerical evidence for an enlarged SO(5) symmetry rotating be-
tween antiferromagnetism and valence bond solid orders proximate
to criticality. Guided by our numerical finding, we develop a field
theory description of the direct transition involving an emergent non-
abelian (SU(2)) gauge theory and a matrix Higgs field. We contrast
our results with the conventional Gross—Neveu-Yukawa transition.

lassical and quantum phase transitions have traditionally

been studied in the framework of the Landau-Ginzburg-
Wilson paradigm. Phases are distinguished on the basis of
whether they preserve or break global symmetries of the Hamil-
tonian. Two distinct phases can be separated by a continuous
phase transition only when one of them breaks a single sym-
metry which is preserved in the other.

More recently, studies of correlated quantum systems have
led to many examples of important physical models display-
ing phase transitions which do not fit this familiar paradigm.
We can have continuous quantum phase transitions between
phases which break distinct symmetries (1). And upon al-
lowing for topological order, several new types of quantum
phase transitions become possible. We can have continuous
phase transitions between a phase with topological order to
a phase without topological order, both of which preserve all
symmetries: the earliest example of this is the phase transi-
tion in the Ising gauge theory in 2+1 dimensions described
by Wegner (2). We can also have continuous quantum transi-
tions between phases with distinct types of topological order,
and many examples are known in fractional quantum Hall
systems (3, 4). We can have a continuous transition from a
phase with topological order to one with a broken symmetry
(5-7). Finally, we can have phase transitions between a Dirac
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semimetal and various gapped states, including a symmetric
gapped state without topological order dubbed symmetric
mass generation (8-13)

Theories of these novel transitions all involve quantum
field theories with deconfined emergent gauge fields. The
presence of the gauge fields reflects the long-range quantum
entanglement near the critical point: this entanglement is not
easily captured by the symmetry-breaking degrees of freedom,
or their fluctuations. The gauge theories have varieties of
Higgs and confining phases, and transitions between these
phases allow for the transitions described above.

In the present paper, we will present a novel example
of a deconfined critical point, between a deconfined phase
with topological order and a confining phase with broken
symmetry. The deconfined phase has Zs topological order, but
in contrast to conventional topologically ordered states which
are gapped, it also features gapless fermionic excitations, whose
gaplessness is protected by the symmetries of the underlying
Hamiltonian. This is an example of a ‘nodal’ Zs topological
order, that has been invoked in the context of the square
lattice antiferromagnet (14), and in the Kitaev model on the
honeycomb lattice (15). Here, we will augment the model
to include both spin and charge conservation leading to a
larger number of Dirac fermions (four flavors of complex two
component fields) which can be simulated without a sign
problem. Thus, we will be studying how the confinement
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transition in a gauge theory is modified by the presence of
gapless charged fermions.

The confining phase, in the formulation used in our pa-
per, is an insulator on the square lattice at half-filling with
two-sublattice antiferromagnetic (AFM) order, similar to that
found in a cuprate compound like LasCuQO4. The topologi-
cally ordered phase is also at half-filling. This phase can be
considered as a toy model of a ‘pseudogap’ phase relevant
to the doped cuprate superconductors, although our analysis
will be restricted to half-filling. We will argue that there is a
direct transition between the insulating antiferromagnet and
the phase with topological order, and present a critical field
theory with an emergent non-abelian SU(2) gauge field.

Emergent symmetries will also play an in important role in
the analysis of our deconfined critical point. These are sym-
metries which are not present in the underlying Hamiltonian,
or in the non-critical phases, but which become asymptoti-
cally exact at long distances and times in the critical regime.
An emergent SO(5) symmetry was proposed (16-18) for the
deconfined critical point between the insulating AFM and va-
lence bond solid (VBS) states on the square lattice: numerical
computations on lattice models have observed such enhanced
symmetries (19-23). We will present numerical evidence for
the same SO(5) symmetry between the AFM and VBS order
parameters in our model. This emergent symmetry is intrigu-
ing, because neither of the two phases near the transition
(OSM or AFM) involves actual long-range VBS order, and
yet VBS fluctuations become as strong as AFM fluctuations
at the critical point. As we shall see later, this feature arises
naturally in our formulation of the critical theory.

We shall study a model introduced in recent quantum Monte
Carlo (QMC) studies (24, 25). The model can be considered
as an effective theory of electrons (c¢) on the square lattice.
The model is expressed as an Ising lattice gauge theory (ILGT)
coupled to ‘orthogonal’ fermions (f). The QMC studies showed
that this model exhibits a topological ordered ‘orthogonal
semi-metal’ (OSM) phase: this phase hase a Z3 topological
order, and massless Dirac fermion excitations which carry Zo
electric charges and also the spin and electromagnetic charges
of the underlying electrons (c¢). The charges carried by these
fermions are identical to the ‘orthogonal fermions’ introduced
in Ref. (26), and so we have adopted their terminology. The
previous studies also presented evidence for a confining AFM
phase, along with a possible direct and continuous phase
transition between the OSM and AFM phases. However the
underlying mechanism of this transition was not understood.

Our QMC simulation finds numerical evidence for an emer-
gent SO(5) symmetry, rotating between AFM and VBS orders,
at criticality. We contrast this finding with the more standard
Gross—Neveu-Yukawa (GNY) universality class, where such
an enlarged symmetry is absent. Guided by the numerical
results, we conjecture that the critical theory describing the
confinement transition is given by a two-color (SU(2)) quan-
tum chromodynamics (QCD) with Ny = 2 flavors of Dirac
fermions coupled to a near critical matrix Higgs field. The
Higgs mechanism is shown to naturally allow access to both
the confined and deconfined phases, using a single tuning pa-
rameter. The mechanism described here resembles the theory
of symmetric mass generation (SMG) (12, 13) in some respects,
but differs in the representation of the Higgs field under the
gauge group. While SMG required Higgs fields transforming
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Fig. 1. Lattice model — the fermions f,. . reside on the square lattice sites (blue cir-
cles) and the Ising gauge fields, "’i,n reside on the bonds (green squares). The Ising

gauge field determines the sign of the hopping amplitude along the corresponding
bond.

in the fundamental representation, so the Higgs phase was
free of topological order, here we will employ a Higgs field in
the adjoint representation, and the Higgs phase will therefore
inherit a Zs topological order along with gapless fermions.

Model, symmetries and phase diagram

Model. We consider the Hamiltonian H = Hz,+H ¢, illustrated
in Fig. 1. The ILGT part of the Hamiltonian (2) reads,

Hz, :fJZHOthZOZJ.

O bved b

1]

Here, o7 and o} are the conventional Pauli matrices, OJ labels
the square lattice elementary plaquettes and b = {r, 7} denotes
the square lattice bonds with r = {r;,r,} being the lattice
site and /) = &/9. The fermionic part of the Hamiltonian is
given by,

: 1 1
Hp=—t Z o I+ﬁ,afha+h'c'+UZ (nI — 5) (nf: — 5)

1, r
2]

where, the operator f:ya creates an ‘orthogonal fermion’ (26)
at site r with spin polarization « and n, = Ea e =nl+nk
is the fermion density.

By itself, this model cannot be a complete representation
of the spin and charge excitations of a lattice electron model,
like the Hubbard model. This is because it is not possible to
write down a gauge-invariant electron operator, ¢, in terms
of the f, and the o, ;. We need another bosonic degree of
freedom which carries a Zso electric charge. We will introduce
such a degree of freedom later in the section on the critical
theory; but for now, we assume that this boson is gapped in
all the phases we study below, and we will not include it in
our numerical study of H.

As we demonstrate below, by varying the strength of the on-
site Hubbard interaction term, in Eq. 2, we map a more generic
phase diagram, compared to the ones obtained in Refs. (24, 25).
Furthermore, this extension allows us to test the stability of
the OSM confinement transition, and to compare its critical
properties with the more standard GNY and three dimensional
classical Ising universality classes.
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Symmetries. The global and local symmetries of the Hamil-
tonian will play an important role in our analysis. First, the
Hamiltonian is invariant under global SU,(2) rotations cor-
responding to spin rotation symmetry. Second, because we
restrict ourselves to half-filling, our model is also invariant un-
der the particle-hole (PH) transformation fo — (—1)"="v f1.
Finally, combining PH symmetry with the U.(1) symmetry
corresponding to particle number conservation forms an en-
larged SU.(2) pseudo-spin symmetry rotating between charge
density wave (CDW) and superconducting order parameters
(27).

Partial particle-hole (PH) symmetry, acting only on one
of the spin species, maps between the charge, n,, and the
spin, S? = n] — n¥, operators. Consequently, partial PH
symmetry interchanges between the symmetries SU,(2) and
SU.(2) and, when these symmetries are broken, between AFM
and BCS/CDW orders respectively. The Hubbard term in
Eq. (2) explicitly breaks partial PH symmetry, since under the
symmetry action repulsive interaction is mapped to attractive
interaction, U — —U (28).

The correspondence of our model to lattice gauge theories
(LGT) is manifest in the extensive number of local Ising sym-
metries generated by the operators G, = (—1)"" Hbe+r oy,
with 4, denoting the set of bonds emanating from the site r.
The eigenvalues, @), = £1, of G, are conserved quantities and
within the Hamiltonian formalism of LGT (29) are identified
with the static background Zs charge.

The Hilbert space then decomposes into a direct sum of
subspaces labeled by the Zs charge configuration Q,, and
comprises quantum states that obey an Ising variant of Gauss’
law G, = @,. For a uniform charge configuration, we can
distinguish between two possibilities: an even LGT, Q = 1,
with no background charge and an odd LGT, @Q = —1 with a
single Zo background charge at each site. We note that partial
PH symmetry maps Q@ — —Q.

Gauss’s law can be either explicitly enforced (25), or al-
ternatively, it is generated dynamically at sufficiently low
temperatures (24). In the numerical computation below, we
will consider both options depending on numerical convenience.
The zero temperature universal properties of our model, which
are the focus of this study, do not depend on the above choice.

Phase diagram. We now determine the general structure of
the zero temperature phase diagram (see Fig. 2a) by studying
several limiting cases. For concreteness, we consider negative
values of J (the case J > 0 is discussed in Ref. (25)) and set
—t = |J|. All other energy scales are measured in units of |J|.
We will only consider the odd LGT case, which, as we explain
in the following, is compatible with repulsive Hubbard interac-
tions, U > 0. The corresponding results for the even LGT can
be easily obtained by applying a partial PH transformation
with the appropriate identification of symmetries and order
parameters, as discussed above.

We first consider the strong coupling limit h >> ¢, U, |J|. In
the extreme limit h — oo, the ILGT ground state is given by
the product state [¥g,.;) =[], lof = 1), as follows directly
from minimizing the transverse field term in Eq. (1). In
the above limit, we can safely neglect quantum fluctuations
and substitute o = 1 in the Ising Gauss’s law. This yields
the relation @, = (—1)"" such that the local fermion parity,
(=1)"7, becomes a conserved quantity, identified with the
background Ising charge, Q.
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Following the standard LGT analysis (29), we now estab-
lish the effective interaction between a pair of Ising charge
excitations in the strong coupling limit. To comply with Ising
Gauss’s law, a string of flipped Ising gauge field, o3 = —1,
must connect any pair of Ising charges. The energy cost asso-
ciated with each spin flip is proportional to h, and thus the
interaction potential grows linearly with the separation giving
rise to confinement.

The repulsive Hubbard interaction favors single on-site
occupancy and consequently gaps even parity (doublons and
holons) states. The resulting low energy sector is an odd
LGT with a emergent Gauss law constraint G,, = —1. This
leaves the on-site fermion spin as the only remaining dynamical
degree of freedom. Reintroducing quantum fluctuations, at
large but finite transverse field h, allows for virtual hopping
processes. Similarly to the super-exchange mechanism, such
fluctuations induce an effective AFM Heisenberg interaction
proportional to ¢ /h . The zero temperature ground state
will then spontaneously break the spin rotational symmetry,
SU,(2), by forming a Néel AFM state.

Next, we examine the weak coupling limit J > ¢, h,U.
Here, minimizing the Ising flux term in Eq. (1) (for negative
J) realizes a uniform m—flux state, |93, conr) = [ [ [P0 = —1),
where &g = HbeD ot is the Ising flux threading the elemen-
tary plaquette, [J. Crucially, the single-particle spectrum of
the m—flux lattice hosts a pair of gapless Dirac fermions (30).
In the resulting phase, the matter fields are deconfined, since,
in contrast to the confining phase, gauge field fluctuations me-
diate only short-range a attractive interaction with a vanishing
string tension. The deconfined phase hosts fractionalized exci-
tations carrying long-range entanglement (31). We note that
a m—flux phase can be stabilized even if J is positive by taking
the large hopping amplitude ¢ limit (24, 25).

The gapless deconfined phase resembles the well-known gap-
less Z2 spin liquid, using the condensed matter theory (CMT)
parlance (14, 32). However, there is one crucial difference: in
our case the fermionic matter fields carry in addition to the
SU(2) spin charge (similarly to conventional spinons) an U(1)
electromagnetic charge. This makes our model more closely
related to an orthogonal-metal construction (26), where the
fractionalization pattern involves decomposing the physical
fermion into a product of a fermion carrying both spin and
charge and an Ising spin. Both slave particles carry an Ising
gauge charge. We, therefore, dub this phase by the name
orthogonal semi-metal (OSM).

Due to the vanishing density of states at half-filling, the
Dirac phase is stable against AFM order for weak Hubbard
interactions, U < t. However, a transition to an AFM* phase
is expected at sufficiently large coupling. Here, the asterisk
expresses the fact that the gauge theory remains deconfined in
the AFM™ phase. This situation should be contrasted with the
confined phase, where along with AFM symmetry breaking
order, the gauge sector is confined.

Phase transitions. The different phases of our model are clas-
sified according to the presence or absence of topological order
and conventional symmetry breaking AFM order. Thus, the
associated phase transitions are expected to involve either
confinement or symmetry breaking or both.

More specifically, the phase transition between the decon-
fined Dirac phase and the AFM™ phase is solely marked by the
rise of AFM order, while the Ising gauge field sector remains
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Fig. 2. (a) Phase diagram of the ILGT coupled to fermions. Red arrows point to parameter cuts studied in the figures below. (b-c) Simulation of the OSM confinement transition,
carried out at U = 0.25 as a function of h. (b) The onset of AFM order is located by a curve crossing analysis of the susceptibility ratio Aapm and (c) the confinement transition

is located from the divergence of the Ising flux susceptibility, x 5.

deconfined. Therefore, the transition belongs to the conven-
tional chiral GNY universality class (33-36). On the other
hand, across the transition between the confined AFM and
AFM* phases the gapped fermions are only spectators and the
transition is signaled by the emergence of topological order in
the AFM™ phase. Thus, the phase transition corresponds to
the standard confinement transition of the pure Ising gauge
theory, which belongs to the three dimensional classical Ising
model universality class (the spin-wave (Goldstone) modes are
not expected to modify the universality class of this transition,
as can be seen by the methods of Ref. (37)).

The most interesting phase transition, which is the subject
of this study, is between the deconfined Dirac phase and the
confined AFM. Previous numerical simulations (24, 25) and
new results shown below have found evidence for a single and
continuous phase transition involving both symmetry breaking
and confinement. Gaining a better analytic and numerical
understanding of this transition is the main subject of the
remainder of this paper.

Quantum Monte Carlo

Methods. The ILGT coupled to fermions is free of the numer-
ical sign-problem for arbitrary fermion density (here we are
interested only in the half-filled case) (24, 25). This allows us
to study our model using an unbiased and a numerically exact
(up to statistical errors) QMC simulations. We employ the
standard auxiliary-field QMC algorithm (38, 39) using both
single spin-flip updates and global moves inspired by the worm
algorithm (25). In all cases, we set the imaginary time Trotter
step to be |¢|A7 = 1/12, a value for which the discretization
errors are controlled. In what follows, we set t = J = —1 and
explore the phase diagram as a function of A and U. Unless
otherwise stated, we also explicitly impose Gauss’s law con-
straint. Further technical details of our numerical scheme as
well as additional numerical data can be found in SI Appendix
A, SI Appendix B and SI Appendix C.
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Observables. We probe the VBS and AFM order parameters
using the bond kinetic energy, D*/¥, and the fermion spin, S,
operators, respectively. Their corresponding lattice definitions
at finite wave vector, ¢, are given by,

D"(q) = 3 € (050 fl 1y 0 fria + hic)

T,

@) = 3 s

ra,B

where, T;YB are the usual Pauli matrices.

On the w-flux square lattice, the set of fermion bilinears
appearing in Eq. 3 form a five component super-vector that
transforms as a fundamental under SO(5) rotations. Within
this formalism, the competition between AFM and VBS fluc-
tuations is explicitly manifest (16, 17).

To study fluctuations, we use the imaginary time static
susceptibility, which for a generic operator, O, is defined

2
ﬁ < (fOB dr O(q, 7')) >
values are defined with respect to the thermal density ma-
trix, 8 = 1/T is the inverse temperature 7' ,and L is
the linear system size. The ordering wave vector associ-
ated with AFM (VBS) order (along the #/§ bonds) equals
Garmes) = {m, m}({m,0}/{0,7}).

To locate the onset of AFM order, we use the renor-
malization group (RG) invariant ratio Aarpn = 1 —
Xs (Garm)/xs (Garm — Aq), with |Ag| = 2n/L being the
smallest wave vector on our finite lattice. Asrm approaches
unity deep in an AFM phase and vanishes when the sym-
metry is restored (40). For a continuous transition, curves
of Aarm corresponding to different Euclidean space-time vol-
umes are expected to cross at the critical coupling. Antic-
ipating the emergence of strong VBS fluctuations at crit-
icality, we also define the analogous RG ratio, Avss =
1 —xb (Gvss)/xp (Gves — Ag).

For pure lattice gauge theories, it is standard to probe con-
finement via the Polyakov loop (41). In the presence of matter
fields, the Polyakov loop no longer sharply defines confinement

by xo(q) = Here, expectation

Gazit etal.
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Fig. 3. Signature of an SO(5) symmetry. (a) A clear curve crossing is observed in the susceptibility ratio Rso (5) across the OSM confinement transition for U = 0.25 as a
function of h. (b) Joint probability distribution P(D®, S*) of the VBS and AFM order parameters at criticality. P(D®, S*) exhibits a circular symmetry (c) Susceptibility ratio
Rso(s) across the AFM transition for h = 0.1 as a function of U. The absence of curves crossing rules out the emergence of an SO(5) symmetry at the GNY transition.

due to charge screening. In principle, one can detect the rise
of topological order by extracting the topological contribu-
tion to the entanglement entropy (42, 43) or by measuring
the Fredenhagen-Marcu (44, 45) order parameter. However,
such probes are difficult to reliably scale with system size in
fermionic QMC simulations. In our analysis, we detect the
thermodynamic singularity associated with the confinement
transition by probing the expected divergence of the Ising
flux susceptibility, xp = 9(®)/dJ, with ® being the Ising flux
density defined above (25).

Numerical Results. Our first task is to determine numerically
the phase diagram shown in Fig. 2a. We exemplify our analysis
by studying the OSM confinement transition. For concreteness,
we fix U = 0.25, and drive the transition by increasing the
strength of the transverse field, h. In our finite size scaling
analysis, we consider linear system sizes up to L = 18. We
further assume relativistic scaling and accordingly consider
inverse temperatures that grow linearly with the system size,
B =L.

In Fig. 2b, we track the evolution of A srm as a function
of h. We observe a clear curve crossing that varies very
little with system size and strongly indicates a continuous
transition. The crossing point marks the rise of AFM order
and allows us to estimate the critical coupling, h,™ (U =
0.25) = 0.69(2). Moving to the IGLT sector, in Fig. 2¢, we
depict the Ising flux susceptibility, x g, across the confinement
transition. With increase in the system size, xp displays a
progressively diverging and narrowing peak. We use the peak
position to estimate the critical coupling of the confinement
transition to be he®™ = 0.69(2). This value coincides, within
the error bars, with the emergence of AFM order, found above,
suggesting that symmetry breaking and confinement occur
simultaneously.

We employ a similar analysis to determine the rest of the
phase boundaries appearing in Fig. 2a. We find that the critical
confinement line separating the AFM and AFM* phases meets
with the AFM transition line separating the OSM and the
AFM™ phases at a tricritical point. The two critical lines then
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merge into a single line corresponding to the OSM confinement
transition.

We now test the emergence of enlarged symmetries in
the OSM confinement transition. In the presence of an
SO(5) symmetry, the scaling dimension of the VBS and
AFM order parameters must coincide (19). As a direct
consequence, similarly to Aarm, the susceptibilities ratio,
Rsosy = Xarm(Garm)/Xves(Gves) becomes a renormaliza-
tion group (RG) invariant.

In Fig. 3a, we depict the susceptibility ratio, Rso(s), as a
function of h, across the confinement transition, for different
system sizes. Indeed, we find that all curves cross at a single
point, independent of the space-time volume. We use the

. - . s - SO(5) _
crossing point to pin down the critical coupling, h: =
0.69(2), in excellent agreement with the above calculations,
using other observables. We note that this result is a necessary
but not a sufficient condition for the emergence of an SO(5)
symmetry. Nevertheless, it serves as a non-trivial test for this
effect.

To further illustrate the emergence of an SO(5) symmetry,
in Fig. 3b, we depict a two dimensional histogram approx-
imating the joint probability distribution of the VBS and
AFM order parameters at criticality. We note that due to
algorithmic limitations, in computing the AFM histogram,
one must simulate the constraint-free model. Doing so, only
slightly shifts the critical coupling and as explained above,
it does not affect critical properties. Remarkably, the joint
distribution exhibits a circular form, which provides further
indication for the emergence of an SO(5) symmetry. We have
also verified, using a similar analysis, that the joint probability
distribution of the VBS order along the x and y directions
affords an emergent, SO(2), rotational symmetry at criticality,
see SI Appendix B.

To better appreciate the above result, it is instructive to ap-
ply the susceptibility ratios analysis on the more conventional
GNY transition. To that end, we investigate the transition
between the OSM phase and the AFM*phase. We fix h = 0.1,
and cross the AFM transition by increasing U. The results

PNAS | June8,2018 | vol. XXX | no.XX | 5
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correlation length exponent v = 0.58. The same anomalous exponent n = 1.4 is
used to scale both the AFM and VBS fluctuations.

of this analysis are shown in Fig. 3c. In stark contrast to
the confinement transition, we find no evidence for a curve
crossing. Thus, we can deduce that the putatively continuous
OSM confinement transition must belong to a universality
class that is distinct from the conventional GNY transition.
This conclusion is one of our main results.

Motivated by the above results, we now extract the crit-
ical properties of the OSM confinement transition from the
numerical data. The dimensionless susceptibility ratios are
expected to follow a simple scaling form Aapm/ves(h, L) =
S\AFM/VBS(JhLl/”), where 6h = h — h. defines the quantum
detuning parameter from the critical coupling h., and v is the
correlation length exponent. In Figs. 4a and 4b we present the
universal scaling functions b arMm/ves Obtained from a curve
collapse analysis using h. = 0.69(2) and v = 0.58(1).

In the presence of SO(5) symmetry, the AFM and VBS
order parameters are expected to share the same anoma-
lous exponent 7. We assume the standard scaling form
XVBS/AFM = LQ_n)ZVBS/AFM ((WLLI/V), where Xves/arm are the
universal scaling functions of the VBS and AFM order pa-
rameters. In Figs. 4c and 4d we depict the universal scaling
functions Xves/arm using our previous estimates for h. and v
and the same anomalous exponent 17 = 1.4(1). The increased
system size and improved methodology used is this work al-
lowed for a more reliable determination of critical exponents,
compared to the ones appearing in Ref. (25).

In the above scaling analysis, we found that curves corre-
sponding to the smallest system sizes deviate from the expected
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universal curve. These scaling violations are most likely at-
tributed to non-universal corrections to scaling that may be
sizable at small system sizes. Nevertheless, we note that the
critical regime over which we obtain a nearly perfect curve
collapse systematically increases with the systems size.

We note that although the AFM and VBS exponents co-
incide, the scaling functions, Xvss/arm, in Figs. 4c and 4d do
not appear to be the same. The theory to be presented in
the section below requires these functions to be the same at
leading order, with differences only appearing upon considering
corrections to scaling. This feature needs to be understood
better in future work.

Critical theory of the confinement transition

Previous work. It is useful to first recall other theories of con-
finement transitions out of a state with Zs topological order
(46). The confinement transition of the even ILGT without dy-
namical matter was already described by Wegner (2), which he
showed was in the (inverted) Ising universality class. The odd
ILGT without dynamical matter has a confinement transition
to a state with VBS order, and the square lattice critical point
is described by a deconfined U(1) gauge theory (5, 7, 47). This
can be understood by viewing the Zs gauge theory of the topo-
logical state as a compact U(1) gauge theory in which a charge
2 Higgs field has condensed (48). Then the uncondensing of the
Higgs field leads to a confining phase of the U(1) gauge theory,
across a critical point where the U(1) gauge fields are decon-
fined: the background Zs electric charges of the odd ILGT
suppress the U(1) monopoles at the critical point, leading
to deconfinement. This furnishes an example of an enlarged
gauge group appearing at the confinement-deconfinement crit-
ical point of a Za gauge theory. Analogously, we will see that
for our problem of confinement of ILGT coupled to massless
fermions, enlarging the gauge group can account for this tran-
sition as well. However, here we will need to introduce an
SU(2) gauge symmetry as described below.

Fractionalization and Higgs field: parton construction. The
f fermions that appear in the Ising gauge theory can be
constructed via the following ‘parton’ construction by frac-
tionalizing the physical, gauge invariant degrees of freedom.
Notice, the gauge invariant operators in that model are purely
bosonic, and include the spin S and psuedospin I generators.
The latter include the U(1) charge operators 1%, and I~ that
create/destroy charged bosons. These can be decomposed into
partons as follows. First define:

f rt T T:l [ 4}
fri b r
The spin and psuedospin rotations act via multiplication of

SU(2) matrices to the right or left: X — U*X[U?*]". Then
the physical operators are:

X, =

S, = %Tr{XITXT}; I = lTr{Xrqu} [5]

"4
Here we are using the convention for spin/pseudospin Pauli
matrices 7/p from Eq. (3). Clearly there is a Zy gauge redun-
dancy in this definition corresponding to changing the sign of
the fermion operators. Thus a minimal parton Hamiltonian
will have hopping of f fermions mediated by an Ising (Z3)
gauge field, as in to our starting model. However, in order
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to accomplish the observed transition we will need a different
set of variables. To this end, define a fermion matrix field Y,
which is superficially similar to the X, above, however which
only carries the spin quantum number. The psuedospin is
assumed to be carried by a triad of bosonic matrix fields ﬁa,
a =1, 2, 3 each of which is a 2 x 2 matrix. This can also be
written as Ifla = Zgzl Habpb = ﬁa - ii. In terms of these fields
we can decompose the physical operators as:

Ia*1

_1 t : ks
S, = ;T{Y, Y. 1 r=7

Te{Y, Ho Y} [6]
While spin rotations are implemented as before Y — U®Y,
psuedospin rotations only act on H® which transforms as
a vector. This decomposition though has additional gauge
freedom, for instance we can simultaneously rotate:

Y, = Y, U Har — Uf Hop [UZ) 7]
which leaves the physical operators invariant. Therefore this
decomposition has an SU(2) gauge redundancy. Therefore the
effective theory will now involve Y fermions coupled to an
SU(2) gauge field. We can readily recover the Za Dirac phase
as follows. Consider a Higgs transition in which the fields H,y
acquire an expectation value:

<Hab> - H05ab . [8]

Then, H, = Hou® and Eq. (6) reduces to Eq. (5). We will
later see that the dynamics at the transition will naturally
favor such a Higgs condensate.

Fractionalization and Higgs field: Rotating reference frame
construction. An alternate derivation of the fractionalized de-
grees of freedom can be obtained by first expanding the Hilbert
space of the model to include electron excitations c,. We can
then show that the AFM and VBS order parameters of the
possible confining phases, and the orthogonal fermions f, of
the Z> deconfined phase, all emerge by transforming the un-
derlying gauge-invariant electrons, c., to a rotating reference
frame under SU.(2).

A similar approach was adopted in Refs.(49, 50) which
considered phases with Za topological order in which there
are dynamical fermions carrying Zs gauge charges and the
global U.(1) charge (Uc(1) is a subgroup of SU.(2)), but these
fermions are spinless under SU,(2). The transition of these
phases to confining Fermi liquids (which can be unstable to
superconductivity) was described by embedding the Z2 gauge
theory in a SU(2) gauge group. This larger gauge group was
needed for a proper description of the confining phase in terms
of composites of the fractionalized degrees of freedom (51). It
was introduced by transforming to a ‘rotating reference frame’
under SUs(2). In the topological phase, the SU(2) gauge
invariance was broken down to Zs by condensing a SO(3)
Higgs field which was neutral under U.(1) and SU,(2).

In our case, we transform to a rotating reference frame
under SU.(2) by writing (52, 53)

Cry ) _ fra
( Cjw ) - RT( f:,i ) i

where R, is a position and time dependent SU (2) matrix which
performs the transformation to a SU.(2) rotating reference
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frame. This definition immediately introduces a SU4(2) gauge
invariance because the r.h.s. is invariant under
) o

R, — R U? | ( f’;T ) — et < frﬁ

f’r,,], f'r,‘L
where U7 is an arbitrary spacetime-dependent SU,(2) matrix,
as in Eq. (6). The definition in Eq. (9) shows that R, trans-
forms as a SU.(2) fundamental under left multiplication, and
a SUy(2) fundamental under right multiplication. Note that
in this SU4(2) gauge theory formulation, and unlike the Zo
gauge theory in Eq. (2), at this point the f fermions do not
carry a SU.(2) charge; they only carry a SU4(2) charge, and
the SU.(2) charge has been transferred from the f to the R.
We now want to obtain an OSM state, proximate to confin-
ing AFM/VBS states, from the SU4(2) gauge theory defined
by Eq. (9). Condensing the R boson would completely Higgs
SUg(2), and so we assume that R remains gapped across the
transition. But we can break SU(2) down to Z2 by condensing
a matrix Higgs field, H,, which is composed of a pair of R

bosons:

Hap ~ Tr (u"Rp’RY) [11]

where a,b = 1,2,3. This is an alternative interpretation of the
Higgs field H,p introduced in the previous subsection. Eq. (11)
is the analog of the paired condensate of ‘slave’ bosons carrying
U(1) gauge charges in the OM construction of Ref. (26). Hap
transforms as spin-one under the SU,(2) gauge and SU.(2)
pseudo-spin symmetries via a left and right multiplications,
respectively.

Now introducing a Higgs condensate as in Eq. (8) breaks
the gauge SU,(2) down to Zs. It also ties together the global
SUg4(2) x SU.(2) transformations to a diagonal subgroup, so
that the f fermions effectively acquire a SU.(2) index. These
are precisely the characteristics of the observed OSM phase.

We note that the Higgs field in Eq. (11) is the only possible
R pair without spatial gradients. Other possibilities for R
pair Higgs fields are either trivial (Tr (RRT) = 2) or vanish
identically (Tr (/ﬂRRT) = Tr (R ,ubRT> = 0). We can also
make Higgs fields from pairs of the f fermions, as was done
recently in Ref. (54). Such Higgs fields carry only SU4(2)
charges, and their condensation leads to topologically ordered
phases with fermionic excitations with global SU,(2) charges
only: these are not orthogonal fermions, and so condensation
of the f pair Higgs field does not lead to an OSM.

Critical theory. We can now write down a continuum theory
for a phase transition out of the OSM phase by assembling
the degrees of freedom described above in a SU,(2) gauge
theory. First we take the continuum limit of the (fy, fI)
fermions moving in a 7 flux background to a obtain two-
components Dirac spinors, 1, which carry a valley index
v = 1,2 and a fundamental SU,(2) gauge charge (index not
explicitly displayed). The fermions also carry a SU,(2) charge,
but its action is clearer in a Majorana fermion representation
(18, 54). Minimally coupling these fermions to a SU,(2) gauge
field, we obtain two-color QCD coupled to Ny = 2 flavors of
Dirac fermions in three space-time dimensions. This theory
was examined recently by Wang et al. (18), and following
them we dub it QCD3(Ny = 2).

Wang et al. noted that QCD3(Ny = 2) has a global SO(5)
symmetry, and that a gauge-invariant fermion bilinear trans-
forms as an SO(5) vector. Tracing this fermion bilinear back
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Fig. 5. Higgs mediated confinement transition. For positive Higgs mass, m? > 0,
the Higgs field is gapped. The effective field theory is then QCDs(N ¢ = 2), which
confines and spontaneously breaks chiral symmetry, leading to an insulator with AFM
order. Gorversely, for m? < 0, the Higss field condenses and reduces the SU,4(2)
gauge symmetry down to Z, giving rise to the OSM.

to the lattice fermions, f., they noted that this SO(5) order
parameter is precisely the composite of the 3-component AFM

order parameter and the 2-component VBS order parameter.

A confining phase of QCDs3 is expected to break the SO(5)
symmetry, and so we have achieved our aim of writing down
a theory which is proximate to confining phases with AFM or
VBS order. We have also obtained an understanding of the
evidence for SO(5) symmetry in our numerics.

Finally, we combine QCD3(N; = 2) with a phenomeno-
logical action for H to obtain our theory for the transition
between the OSM and AFM phases.

S= /dazz: i’f_’“mﬂ”” _ %Tr [(DfH)T (DfH)]

12
+ %m2 Te[H" H] + ndet H + %)\ Te[H" H]? (12
1 1
+ N Te{(H" H)®| + 7 fw-

Here aj; represents the SU(2) gauge field, and the covari-
ant derivative of the Dirac fermions is defined as , D, =
Y (iap, +aﬁ'r°), where 7¢ are the Pauli matrices. Simi-
larly, the covariant derivative of the Higgs field reads, DX =

(8,,, + a;OC), where O are the generators of SO(3) rotations.

Finally, the last term is the standard Maxwell term, with fg,
being the non-abelian field strength. Note that all terms in
Eq. (12) respect the global SO(5) symmetry.

The transition between OSM and AFM phases is described
by tuning the Higgs mass, m?, as shown in Fig. 5. For negative
m?, the Higgs field is condensed as in Eq. (8), and we obtain
an OSM phase as described above. Note that the 1, fermions
remain massless even when the Higgs field is condensed. This
is because there is no allowed tri-linear Yukawa term between
the Higgs boson and the fermions; such a Yukawa term is
forbidden by SU.(2) symmetry, as the matrix Higgs field H
carries a SU.(2) charge, while the fermions ) do not. This
feature is in contrast to earlier theories of phases with Za
topological order (49, 50, 54), where the Yukawa term was
symmetry allowed, and led to a gap in the fermion spectrum
when the Higgs field was condensed.

For positive m2, we can neglect the massive Higgs field, and
then Eq. (12) reduces to QCDs(N; = 2). For sufficiently large
N¢, QCD3(Ny) defines a deconfined conformal field theory,
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with non-trivial scaling dimensions that can be computed in a
1/N; expansion. However, it is expected that there is a critical
N7 such that for Ny < N, the theory is confining. The most
recent lattice QMC calculation (55) estimates Nf = 4 — 6.
For Ny = 2, which is relevant to our case, a clear ‘chiral’
symmetry breaking was observed, corresponding to a breaking
of SO(5) symmetry in our language. * Therefore, in Eq. (12),
the Higgs transition provides a means to simultaneously drive
confinement and symmetry breaking using a single tuning
parameter corresponding to the mass-squared of the Higgs
field. Once we are in the SO(5)-broken regime, other irrelevant
operators (not shown in Eq. (12)) will become important, and
we assume these select the AFM order observed, rather than
the VBS order.

Finally we turn to the critical point between the OSM and
AFM phases. We assume that this is described by the SO(5)-
symmetric deconfined critical theory in Eq. (12) after the Higgs
mass mass m? has been tuned to its critical value. The idea is
that the additional contributions of the critical Higgs modes,
when combined with the gapless fermions, are sufficient to
suppress the confining effects of the SUy(2) gauge field. The
continuous transition observed in our numerics, along with the
evidence for global SO(5) symmetry is evidence in support of
our proposal.

We note also the cubic term, proportional to « in Eq. (12).
In purely scalar field theories, this would be sufficient to imply
a first-order phase transition. However, when combined with
strong gauge fluctuations and massless fermions, it is not
clear whether estimates which expand about the upper-critical
dimension can be reliable. In the large-N; expansion of such
a Higgs critical theory, the x determinant term involves of
order N; powers of the Higgs field, and is clearly irrelevant at
the critical point. Our evidence for a continuous transition is
evidence that this is also likely the case at Ny = 2.

Even if irrelevant at criticality, on moving into the Higgs
phase, the x determinant term will dictate the nature of
the Higgs condensate. Note, that since multiple Higgs fields
are present due to the global symmetry, different patters of
Higgs condensates are possible depending on how many H,
we condense. These are all degenerate to quadratic order,
but are differentiated by the determinant term that selects a
simultaneous condensate as in Eq. (8) independent of the sign
of k. This form of the Higgs condensate is crucial to obtaining
the OSM phase.

Discussion and summary

‘We have carried out a detailed numerical analysis of the con-
finement transition of the orthogonal semi-metal (OSM) in
a model with a repulsive on-site Hubbard interaction. This
serves as a model of a confinement transition in a Zg gauge
theory coupled to gapless Dirac fermions that carry gauge
charge, which is also free of the fermion sign problem. Our
key numerical finding is an emergent SO(5) symmetry at crit-
icality that enlarges the microscopic SO(3) x Cy symmetry
associated with spin rotations and the discrete square lattice
point group symmetry. Crucially, we demonstrate that this

* Strictly speaking, the simulated QCD4 at Ny = 2 does not have the full SO(5) symmetry on
the lattice scale, because the full symmetry is anomalous. In principle, there is a more exotic
scenario(18), in which the QCD theory with full SO(5) symmeiry flows to the continuous Neel to
VBS transition (the deconfined quantum critical point), and chiral symmetry breaking happens only
when the full SO(5) is explicitly broken (for example to SO(3) = SO(2)). Our theory holds
even if this scenario is comect, since the full SO(5) is already broken in our microscopic model.
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result is a qualitatively unique feature of the OSM confinement
transition that fundamentally distinguishes it from the more
conventional Gross-Neveu-Yukawa (GNY) and Ising criticality.
In addition, our refined numerical calculations allowed us to
improve previous estimates of critical data, and further sup-
port the scenario of deconfined criticality (DC) with a second
order phase transition.

We note that, even more than a decade after the initial
theoretical proposal, the ultimate thermodynamic fate of DC
for insulating square lattice antiferromagnets remains in de-
bate. Numerical studies of lattice models show conflicting
results, where estimates of certain universal quantities exhibit
a significant drift with system size, and in certain models
even an indication for a first order transition. On the other
hand, several numerical studies indicate an enlarged SO(5)
symmetry that is hard to reconcile with a first order transition
(see Ref.(18) for a recent discussion).

As our model involves fermionic degrees of freedom, its
computational cost using standard QMC methodology does
not scale favorably with systems size, compared to models of
non-LGW transitions consisting of bosonic degrees of freedom.
It is therefore more challenging to assert a strong statement
on the thermodynamic limit of our model. Nevertheless, up
to the largest length scale studied, we did not observe any
sign of deviation from critical scaling and critical properties
seem to remain robust for a wide range of microscopic pa-
rameters without any degree of fine tuning. Most relevant
for this work, it is difficult to imagine a scenario, in which
an enlarged symmetry could generically arise at a first order
phase transition.

We used the numerical results as a guide for constructing
a field theory description of the OSM confinement transi-
tion, which is linked to recent studies of descended phase of
QCD3(Ny = 2) (12, 13, 18, 54). We introduced a matriz Higgs
mechanism, which is distinct from the vector Higgs approach
presented in Ref. (54). In the latter case, the Higgs fields
were bilinears of the fermions f,, in contrast to the boson
bilinears we employed in Eq. (11), and their condensation
led to spin liquids with fermionic spinons which do not carry
the electromagnetic charge. In contrast, condensation of our
matrix Higgs field led to an orthogonal metal, in which the
fermions carry both spin and electromagnetic charge. At the
same time the fermions carry Zs gauge charge, unlike in the
symmetric mass generation scenario of Refs. (12, 13), where a
Higgs field in the fundamental representation condenses giving
rise to gapless fermions, without gauge charge.

Looking to the future, it would be interesting to explore
some extension of our Higgs mechanism. Our QCD3 mecha-
nism has a natural prediction when time-reversal symmetry is
explicitly broken, in which case the Dirac fermions obtain a
mass term with total Chern number C' = 2. Deep in the decon-
fined phase this leads to a Semion x Semion topological order
(v =4 in Kitaev’s 16-fold classification (15)). However, near
the critical point (when the Chern mass scale is greater than
the Higgs mass scale), we obtain an SU(2); Chern-Simons
theory which is simply the Semion chiral spin liquid. The
two topological orders can in principle be distinguished by
their ground state degeneracy on a torus or infinite cylinder,
perhaps through DMRG calculation. This Semion topological
order, if observed, would be a strong signature of the enhanced
gauge symmetry near the critical point.
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Another extension, which may be implemented in quantum
Monte Carlo, is to consider similar transitions described by
QED3, namely a U(1) (instead of SU(2)) gauge theory coupled
to Ny = 4 Dirac fermions. There are two scenarios in which
this would be natural. First, one could consider explicitly
breaking the pseudo-spin SU.(2) symmetry down to U(1), say
by breaking the particle-hole symmetry. Alternatively, one can
study a similar system but with Z4 gauge field on the lattice —
in fact in this scenario we can have more controlled arguments
about the ultimate IR fate of the phases and phase transition,
as we briefly outline in SI Appendix D. In both cases the
gauge symmetry can be naturally enlarged to U(1) but not
SU(2). At the critical point of such QED3-Higgs transition
we expect an enlarged SO(2) x (SO(6) x U(1))/Z2 symmetry,
instead of SO(3) x SO(5) in the QCD3-Higgs transition (the
Neel-VBS SO(5) observed in this work is a subgroup of both
symmetries).

On the numerical front, we see several exciting future di-
rections. First, identifying observables that can probe the
emergent SU(2) gauge fields and matrix Higgs field, H, would
allow for direct confirmation of the critical theory in the numer-
ical simulations. Second, the emergence of an SO(5) symmetry
at criticality can be further tested by studying certain high
order correlation functions that are required to vanish by sym-
metry (19). Finally, eliminating the observed non-universal
corrections to scaling requires simulations on larger lattices,
beyond standard methodologies. In that regard, one promis-
ing approach is the Hamiltonian variant of the fermion bag
algorithm (56, 57).

Lastly, we note that since the theory we simulated, H, does
not contain any gauge neutral fermion it can be thought of
arising from an underlying bosonic theory. It is tempting to
conjecture that the associated bosonic description will also be
free of the numerical sign problem. Identifying such bosonic
lattice models would allow access to significantly larger system
sizes and an accurate study of critical properties.
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