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DECIDING ORTHOGONALITY IN CONSTRUCTION-A LATTICES*
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Abstract. Lattices are discrete mathematical objects with widespread applications to integer
programs as well as modern cryptography. An important class of lattices are those that possess an
orthogonal basis, since if such an orthogonal basis is known, then many other fundamental problems
on lattices can be solved easily (e.g., the Closest Vector Problem). However, intriguingly, deciding
whether a lattice has an orthogonal basis is not known to be either NP-complete or in P. In this
paper, we focus on the orthogonality decision problem for a well-known family of lattices, namely
Construction-A lattices. These are lattices of the form C' + ¢Z™, where C' is an error-correcting g-ary
code, and are studied in communication settings. We provide a complete characterization of lattices
obtained from binary and ternary codes using Construction-A that have an orthogonal basis. We
use this characterization to give an efficient algorithm to solve the orthogonality decision problem.
Our algorithm also finds an orthogonal basis if one exists for this family of lattices.
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1. Introduction. A lattice is the set of integer linear combinations of a set
of basis vectors B € R™*" namely L = L(B) = {zB | x € Z™}. Lattices are
well-studied fundamental mathematical objects that have been used to model diverse
discrete structures such as in the area of integer programming [6], or in factoring
integers [13] and factoring rational polynomials [8]. In a groundbreaking result, Ajtai
[1] demonstrated the potential of computational problems on lattices to cryptography,
by showing average case/worst case reductions between lattice problems related to
finding short vectors in a lattice. This led to renewed interest in the complexity
of two fundamental lattice problems: the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP). Concretely, in SVP, given a basis B one is asked to
output a shortest nonzero vector in the lattice, and in CVP, given a basis B and a
target t € R™, one is asked to output a lattice vector closest to ¢.

Both SVP and CVP are NP-hard even to approximate up to subpolynomial factors
(see [11] for a survey), and a great deal of research has been devoted to finding families
of lattices for which the SVP/CVP are easy. A simplest lattice for which CVP is easy
is Z™: indeed, finding the closest lattice vector to a target t € R™ amounts to rounding
the entries of ¢ to the nearest integer. Surprisingly, given an arbitrary basis B, it is
not known how to efficiently verify whether the lattice generated by B is isomorphic
to Z™ up to an orthogonal transformation. Further, given an arbitrary basis for a
lattice, it is not known how to decide efficiently if the lattice has an orthogonal basis
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(an orthogonal basis is a basis in which all vectors are pairwise orthogonal). Similar
to the case of Z", having access to an orthogonal basis leads to an efficient algorithm
to solve CVP, but finding an orthogonal basis given an arbitrary basis appears to be
nontrivial, with no known efficient algorithms.

Deciding if a lattice is equivalent to Z", and deciding if a lattice has an orthogonal
basis, are special cases of the more general Lattice Isomorphism Problem (LIP). In
LIP, given lattices L; and Lo presented by their bases, one is asked to decide if
they are isomorphic, meaning if there exists an orthogonal transformation that takes
one to the other. LIP has significant cryptographic applications [15] and is known
to have an n°(™ algorithm [5]. Earlier, [12] suggested an algorithm for LIP that
works well for certain low-dimensional lattices. Recent results of [9, 10] show that
in certain highly symmetric lattices, isomorphism to Z" can be decided efficiently.
The complexity of LIP is not well understood, and is part of the broader study of
isomorphism between mathematical objects, of which Graph Isomorphism (GI) is a
well-known elusive problem [2]. Interestingly, there is a polynomial time reduction
from GI to LIP [14].

Given that we do not know how to decide isomorphism to Z", nor decide whether
a lattice has an orthogonal basis in general lattices, it is natural to address families of
lattices where these problems can be solved efficiently. In this work, we focus on the
problem of deciding orthogonality for a particular family of lattices, commonly known
as Construction-A lattices [4]. Construction-A lattices L are obtained from a linear
error-correcting code C over a finite field of g elements (denoted F,) as L = C +¢Z".!
We resolve the problem of deciding orthogonality in Construction-A lattices for ¢ = 2
and ¢ = 3 by showing an efficient algorithm. In addition, the algorithm outputs an
orthogonal basis of the input lattice if such a basis exists.

Our main technical contribution is a decomposition theorem for Construction-A
lattices that admit an orthogonal basis. A natural way to obtain orthogonal lattices
through Construction-A is by taking direct products of lower-dimensional orthogonal
lattices. We show that this is the only possible way. We believe that our contributions
are a step towards gaining a better understanding of lattice isomorphism problems
for more general classes of lattices.

Extending our results to values ¢ > 3 might require new techniques. For larger
q, a decomposition characterization seems to require a complete characterization of
weighing matrices of weight ¢ which is a known open problem. In particular, a direct
product decomposition characterization of weighing matrices for the case of ¢ = 4
is known [3]. However, even in this case the parts in the direct product decompo-
sition may not be of constant dimension, so designing an efficient algorithm for the
orthogonality decision problem through a direct product decomposition characteriza-
tion appears to be nontrivial.

1.1. Our results and techniques. As mentioned above, we start by showing
a structural decomposition of orthogonal lattices of the form C + 2Z™ and C + 3Z"
into constant-size orthogonal lattices. We remark that the decomposition holds up to
permutations of the coordinates, and we use the notation Cy = Cy and Ly = Ly to
denote the equivalence of codes and lattices under permutation of coordinates. We
use the notation L @ Lo to denote the direct sum of two lattices.

THEOREM 1.1. Let Lo = C + 27" be a lattice obtained from a binary linear code

IThe term “Construction-A” strictly refers to the case ¢ = 2, but we will not make the distinction
in this paper.
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C CF3. Then the following statements are equivalent:
1. L¢ is orthogonal.
2. Lo =2 ®;L;, where each L; is either Z, or 27, or the 2-dimensional lattice
generated by the rows of the matriz [} .
3. C = @,;C;, where each C; is either a length-1 binary linear code C {0,1}, or
the length-2 binary linear code {00,11}.

The decomposition characterization leads to an efficient algorithm to verify if a
given lattice obtained from a binary linear code using Construction-A is orthogonal.
For the purposes of this algorithmic problem, the input consists of a basis to the lat-
tice. The algorithm finds the component codes given by the characterization thereby
computing the orthogonal basis for such a lattice.

THEOREM 1.2. Given a basis for a lattice L obtained from a binary linear code
using Construction-A, there exists an algorithm running in time O(n®) that verifies
if L is orthogonal, and if so, outputs an orthogonal basis.

We obtain a similar decomposition and algorithm for lattices obtained from
ternary codes. For succinctness of presentation we define the following integer matrix:

1 1 1 0
1 -1 0 1
M= 1 0 -1 -1
o 1 -1 1

THEOREM 1.3. Let Lo = C'+37Z" be a lattice obtained from a ternary linear code
C CTF%. Then the following statements are equivalent:

1. L¢ is orthogonal.

2. Lo =2 @;L;, where each L; is either Z, or 37Z, or the 4-dimensional lattice
generated by the rows of a matriz T (M) obtained from M by negating some
subset of columns.

3. C = @;C;, where each C; is either a linear length-1 ternary code, or the linear
length-4 ternary code generated by the rows of (T (M) mod 3) € F3**, where
T (M) is obtained from M by negating some subset of its columns.

THEOREM 1.4. Given a basis for a lattice L obtained from a ternary linear code
using Construction-A, there exists an algorithm running in time O(n®) that verifies
if L is orthogonal, and if so, outputs an orthogonal basis.

Theorems 1.1 and 1.2 are proved in section 3. Theorems 1.3 and 1.4 are proved
in section 4.

2. Preliminaries. We denote the set of positive integers up to n by [n], the
n x n identity matrix by I,,, and its jth row by e;. For a vector b € R", let b; denote
its jth coordinate, and let ||b|| be its o norm.

Given a set of m linearly independent vectors b; € R", a lattice L is generated by
{b1,...,bn} is defined to be the set of all integer linear combinations of these vectors:

L= {iazbl | ; GZ}.
=1

If m = n, then L is said to be of full rank. The set of vectors which generate L
is known as the basis of the lattice L. A lattice L is said to be orthogonal if it
is generated by a set of pairwise orthogonal vectors. A lattice L is integral if it is
contained in Z™, namely any basis for L only consists of integral vectors.
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We will denote by I, a finite field with ¢ elements. A linear code C' of length n
over F, is a vector space C' C Fy. A linear code is specified by a generator matrix
G that consists of linearly independent vectors in Fy. If €' C F3, then it is called a
binary code, and if C' C F%, then it is called a ternary code.

The Construction-A of a lattice Lo from a linear code C' C Fy, where ¢ is a prime,
is defined as Lo := {c+q-z | ¢ € ¢(C),z € Z"}, where ¢ is the (real embedding)
mapping i € Fy — ¢ € Z. Construction-A is often abbreviated as Lc = C' +¢Z". The
fact that L¢ is a lattice follows from the linearity of C over Fy [4].

For any vector v = (v1,...,v,) € Z™ define v mod ¢ := (v; mod g, . .., v, mod q) €
[y . We note that  mod ¢ is the same as res(z, q).

CrLamM 2.1. Let q be a prime, and L be an integral lattice. If qZ™ C L, then
C = L mod q is a linear code over .

Proof. Let v € L and v = (v mod q) 4 gz for some z € Z™, where here we abuse
notation and view v mod ¢ as embedded into the integers, instead of a vector in Fy.
Since ¢Z™ C L, it follows that v — ¢z = v mod g € L. To show that C = L mod ¢ is a
linear code over Fy, let ¢1,co € C. Then ¢; + ¢ € L (where the addition is over Z),
and so (¢ + ¢2) mod g € C. d

We will use the following immediate claim about product of lattices generated
from codes.

CrAam 2.2. Let L = C+qZ", for some q-ary linear code C' C Fy. If L= L1 & Lo,
and Ly C ZF, then L, = Cy + qZF and Ly =2 Cy + qZ™ %, for q-ary linear codes Cy
and Cy that are projections of C' on the coordinates corresponding to Ly and Ls,

respectively.

A matrix U is unimodular if U € Z™*™ and det(U) € {£1}. Two different bases
By, By give the same lattice if and only if there exists a unimodular matrix U such that
B, = UBy. The Hermite Normal Form (HNF) basis for a full rank lattice L C R™ is
a square, nonsingular, and upper triangular matrix B C R™*" such that off-diagonal
elements satisfy 0 < B; ; < B;; forall 1 <i < j < n.

FACT 2.3 (see [7]). There exists an efficient algorithm which on input a set of
rational vectors, B, computes a basis for the lattice generated by B: the algorithm
simply computes the unique HNF basis of the lattice generated by B.

We note that Lo = C + gZ™ contains gZ" as a sublattice and hence it is a full
rank lattice.

FACT 2.4. A basis B for the lattice Lo specified by the generator matriz G for the
code C' can be computed efficiently by taking the HNF of the matriz Lﬁ } . Conversely,

given a basis B of L¢, the generator matriz for C can be computed efficiently by finding
a basis for B mod g by row reduction over IF,.

Proof of Fact 2.4. Let Lc be a lattice obtained by Construction-A from a g-ary
linear code C' C Fy, Lc = C' + qZ". We first show that given a generator G for the

linear code C, the HNF( [q? ] ) gives a basis for the lattice L¢.

Let B = HNF( [q(i ] ) By definition of the HNF basis, B is a basis for the

lattice which contains each generator vector g € G and each ge; for all j € [n]. We
note that each vector v € L¢ is a linear combination of the generators of C' and 31,
which is exactly the lattice L(B). Therefore, B is a basis for L¢.
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Given a basis B for L, we now show that the set of linearly independent vectors
in F obtained by embedding B mod ¢ into F, gives a generator for the code C. L¢
contains qZ" as a sublattice, and from Claim 2.1, we can conclude that the code C
is the embedding of Lc mod ¢ into F,. Since any lattice vector v € L¢ is an integer
linear combination of rows of B, all codewords in L& mod g can be obtained as linear
combinations of B mod ¢ over ;. Therefore, the linearly independent set of vectors
in B mod ¢ form a generator for the code C. |

A weighing matriz of order n and weight k is a n X n matrix with entries in
{0,1, =1} such that each row and column has exactly k nonzero entries and the row
vectors are orthogonal to each other. By definition, a weighing matrix W satisfies
WWT = kI,. For matrices A € R™*"t and B € R"2*"2_ we denote the (n; + ny) x
(n1+mns)-dimensional block-diagonal matrix obtained using blocks A and B by A® B.
We will use the following characterization of weighing matrices of weights 2 and 3.
For completeness we present proofs of Theorems 2.5 and 2.7 here.

THEOREM 2.5 (see [3]). A matriz W is a weighing matriz of order n and weight
2 if and only if W can be obtained from

21 1

by negating some rows and columns and by interchanging some rows and columns.

Proof. Let W(n,2) denote a weighing matrix of order n and weight 2. We prove
this theorem by induction on the order n of W(n,2).

For n = 2, the matrix [} ] is the only possible 2 x 2 orthogonal matrix up to
permutations of columns with entries in {1, —1}. Therefore, W(2,2) = [} ].

Let us assume the induction hypothesis about all weighing matrices of order at
most n — 2 and weight 2.

Let W € {0,1,—1}"*" be an orthogonal matrix such that each row of W has
exactly two nonzero entries. Since we are characterizing W up to permutations of
rows and columns, and negations of rows and columns, we can assume without loss
of generality that the first row of W is

wy = (1,1,0,...,0).

Since W is orthogonal, the nonzero entries of every other row, w; has even intersection
with the nonzero entries of wq, i.e.,

|[Support(w;) N Support(wy)| € {0, 2}.

Let us consider the case when |Support(w;)NSupport(w;)| = 0 for all i € [n]\{1}.
Note that the w;’s are mutually orthogonal and supported on n — 2 coordinates. This
would imply that W has at most n — 1 rows in total which contradicts the fact that
W is a n X n matrix. Therefore, there exists at least one row, say ws such that
|[Support(ws) NSupport(w; )| = 2. Since wy is orthogonal to w; and it has exactly two
nonzero entries, it is of the form

wy = (1,—1,0,...,0).

We note that there cannot exist any other row ws of W, such that |[Support(wsz)N
Support(w; )| = 2 since it is not possible for such a vector to be orthogonal to both
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wy and wy. Therefore, for every other row w;, i € {3,...,n}, we have |Support(w;) N
Support(w; )| = 0. The weighing matrix is, therefore, of the form

1 1

W = [1 1

Jow
where W' is a weighing matrices of order at n — 2 and weight 2. The proof follows
from the induction hypothesis. 0

The following lemma is needed for the proof of Theorem 2.7.

LEMMA 2.6. A weighing matriz of order 4 and weight 3 is equivalent to M up to
permutations of rows and columns, and negations of rows and columns.

Proof. Let W be a weighing matrix of order 4 and weight 3. Since each vector has
weight at exactly 3, we can assume without loss of generality that w; = (1,1,1,0).
All rows are mutually orthogonal. Therefore, |Support(w;) N Support(w,)| € {0, 2}
and [Support(w;) N Support(w;)| # 0 for all 4.

Let us consider another row wsy such that |Support(w;) N Support(wsz)| = 2.
So, wy = (1,—1,0,1) up to permutations of coordinates. For any other row ws, if
|[Support(w;) N Support(ws) N Support(ws)| = 2, then the orthogonality condition
with either wy or ws is violated. Therefore, w3 is of the form ws = (1,0,—1,—1).
This forces wy = (0,1,—1,1) and, hence W = M. O

THEOREM 2.7 (see [3]). A matrix W is a weighing matriz of order n and weight
3 if and only if W can be obtained from @L/?M by negating some rows and columns
and by interchanging some rows and columns.

Proof. Let W(n,3) denote a weighing matrix of order n and weight 3. We prove
this theorem by induction on the order n of W(n, 3).

For n = 4, from Lemma 2.6 we have W (4,3) = M. Let us assume the induction
hypothesis about all weighing matrices of order at most n — 4 and weight 3.

Let W € {0,1,—1}"*™ be an orthogonal matrix such that each row of W has
exactly three nonzero entries. Since we are characterizing W up to permutations of
rows and columns, and negations of rows and columns, we can assume without loss
of generality that the first row of W is

wy = (1,1,1,0,...,0).

Since W is orthogonal, the nonzero entries of every other row, w; has even intersection
with the nonzero entries of wy, i.e.,

|Support(w;) N Support(wy)| € {0,2} for all i € {2,...,n}.

Let us consider the case when |Support(w;)NSupport(w;)| = 0 for all i € [n]\{1}.
Note that the w;’s are mutually orthogonal and supported on n — 3 coordinates. This
would imply that W has at most n — 2 rows in total which contradicts the fact that
W is a n x n matrix. Therefore, there exists at least two rows, say ws,ws such
that [Support(w;) N Support(ws)| = 2 and |Support(w;) N Support(wsz)| = 2. Since
these three vectors are mutually orthogonal and Support(w;) = 2, it follows that
|[Support(wsz) N Support(ws)| > 0. Without loss of generality, these three vectors are
of the following form:

1 1 1 0o 0 - 0
1 -1 0 1 0 - 0
1 0 -1 -1 0 - 0
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We observe that if [Support(w;) N Support(wsz)| = 0 for all ¢ € [n] \ {1,3}, then the
number of vectors in W is at most n — 1. Therefore, there exists at least one other
row wy such that |Support(ws) N Support(wsz)| = 2. Since wy is orthogonal to all
w1, wsa, and ws, the unique candidate for wy is of the form (0,1,-1,1,0,...,0). We
note that if there exists another row, ws such that |[Support(ws) N Support(w,)| > 0
for any j € [4], then it cannot be orthogonal to all four vectors wy, wa, w3, and wy.
So, |Support(w;) N Support(w;)| =0 for any j € [4] and ¢ > 5.

Therefore, W (n,3) = M & W', where W' is a weighing matrix of order n — 4 and
weight 3. It then follows from the induction hypothesis that

W(n,3) = o;M.

3. Orthogonal lattices from binary codes. In this section we focus on lat-
tices obtained from binary linear codes using Construction-A. In section 3.1, we show
that any orthogonal lattice obtained from a binary linear code by Construction-A is
equivalent to a product lattice whose components are 1-dimensional or 2-dimensional
lattices. In section 3.2, we show that given a lattice obtained from a binary linear
code by Construction-A, there exists an efficient algorithm to verify if the lattice is
orthogonal.

3.1. Decomposition characterization. We prove Theorem 1.1 in this subsec-
tion.

Proof of Theorem 1.1. We show that (1) = (2) and (2) = (3) to complete the
equivalence of the three statements.

(1) = (2): We show that Lc = C + 2Z" is orthogonal if and only if it decomposes
into a direct sum of lower-dimensional orthogonal lattices, Lo = &;L;.

If Le =2 @;L; such that each L; is orthogonal, then L is also orthogonal. This
is because L would have a block diagonal orthogonal basis where each block is in
itself orthogonal or a 1 x 1 matrix.

We prove the other direction of the equivalence by induction on the dimension,
n, of the lattice Le. For the base case consider n = 1. Since L is integral and is of
the form C + 27Z for some binary linear code C, it follows that L has to be either Z
or 27Z.

Let us assume the induction hypothesis for all n — 1 or lower-dimensional orthog-
onal lattices obtained from binary linear codes using Construction-A.

Let Lo be an n-dimensional orthogonal lattice and B be an orthogonal basis of
L¢ with the rows being basis vectors. Since L¢ is an integral lattice, B has only
integral entries. The next two claims summarize certain properties of the entries of
the basis matrix B.

CrAmM 3.1. For every row b of B and for every j € [n], we have that 2|b;| €
{0, 16117, 2[|][}.

Proof. Since B is an orthogonal basis, BBT = D, where D is the diagonal matrix
with entries ||b()]|2, where b(*) denotes the ith basis vector.

602 0 0o --- 0
0 ||b(2)||2 0 .- 0
0 0 0 - [p™)?

We know that 2Z™ C L¢ so, 2e; € L¢ for every j € [n]. Therefore, there is an
integral matrix X € Z"*™ such that XB = 2I,, i.e., 2B~! € Z"*™. Since B is an
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orthogonal basis,
1
B '=B"D'e 32
Each column of BT D=1 is given by b/||b]|?, where b is a basis vector. Therefore,
for any j € [n], we have

2b; = 0 mod ||b||? for all j € [n], and rows b of B.

Sir;ce b; 2is integral and |b;| < ||b]|* for every j € [n], it follows that 2|b;| €
{0, [1ol%, 2{[o[]}-

CrLAM 3.2. Let b be a row of B.

(1) If there exists j € [n] such that 2|b;| = 2||b||?, then b; = +1 and bjy = 0 for
every ' € [n] \ {7}.

(2) If there exists j € [n] such that 2|b;j| = ||b]|*> and b; = +2, then by = 0 for
every ' € [n] \ {7}

(3) If there exists j € [n] such that 2|b;| = ||b||?> and b; = £1, then there exist
J1 € [n)\ {j}, such that |bj,| =1 and bjy =0 for every 5" € [n]\ {4,751}

Proof. (1) Since [|b]|? =7, b?, and each b; € Z, we conclude that |b;| =1

=1 ">
and the remaining coordinates in b have to be 0, i.e., by = 0 for all j' €

(] \ {j}-

(2) Follows from 2|b;| = ||b]|? and b being integral.

(3) We can rewrite the condition 2|b;| = ||b]|? as 2|b;| = >_i, b?. Rearranging
the terms, we have

bl (2= [b;]) = 7.
i
If b; = £1, then Z#j b? = 1. Further, b is integral. Hence, b has exactly 1
other nonzero coordinates bj,, j # j1, such that |b;,| = 1. d

Using the properties of the orthogonal basis B of Ls given in Claims 3.1 and 3.2,
we show that B is equivalent (up to permutations of its columns) to a block diagonal
matrix, i.e.,

B, 0 -+ 0
0 By -+ 0

B= | . . s
0 0 --- By

where each B; is either the 1 x 1 matrix [1} or the 1 x 1 matrix [2] or the 2 x 2 matrix
[} fl]. It follows that Lo =2 @;L; such that B; is the basis for the lower-dimensional
lattice L.

Let us pick a row b of B with the smallest support. Fix an index j € [n] to be the
index of a nonzero entry with minimum absolute value in b, i.e., j := arg ming {|bg|}.
Since b is a row of a basis matrix, b cannot be the all-zeroes vector and, therefore, there
exists a j € [n] such that |b;| > 0. Since we are only interested in equivalence (that
allows for permutation of coordinates), we may assume without loss of generality that
j = 1 by permuting the coordinates. By Claim 3.1, we have that 2|b;| € {||b]|?, 2||b]|*}.
We consider each of these cases separately.

1. Suppose 2|b1| = 2||b||%. By Claim 3.2(1), b = (£1,0,...,0). Since B is an orthogo-
nal basis, (b,b') =0 =0} =0 for all ¥’ # b € B. The orthogonality of B, therefore,
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forces all other basis vectors to take a value of 0 in the 1st coordinate. Thus B is
of the form

Therefore, we obtain Lo = Z ¢ L', where L’ is an orthogonal (n — 1)-dimensional
lattice generated by the basis matrix restricted to the coordinates other than 1, say,
B’. From Claim 2.2, it follows that L' = C’ 4+ 2Z"~! for some binary linear code
C' C Fy~'. Thus L' satisfies the induction hypothesis and we have the desired
decomposition.

2. Suppose 2|b1| = ||b]|>. We can rewrite this condition as 2|b;| = >
ing the terms, we have

n b2

;1 bi- Rearrang-

ba] (2—[ba]) = D07
i#1
Since the right-hand side (RHS) is a sum of squares, it should be nonnegative.
(i) If RHS is 0, then b; = £2 and, therefore, it follows from Claim 3.2(2) that
b= (£2,0,...,0). The orthogonality of B forces all other basis vectors to take a
value of 0 at the 1st coordinate.

Therefore, we obtain Lo = 2Z& L', where L’ is an orthogonal (n—1)-dimensional
lattice generated by the basis matrix restricted to the coordinates other than 1,
say B’. From Claim 2.2, it follows that L' = C’ 4 2Z"~! for some binary linear
code ¢’ C Fy~!. Thus L' satisfies the induction hypothesis and we have the
desired decomposition.

(ii) If RHS is strictly positive, then |b;| € (0,2) NZ = {1}. By Claim 3.2(3), we
have that b has exactly two nonzero coordinates and they are +1. By permuting
the coordinates of B, we may assume that b = (+1,+1,0,...,0).

Since we picked the row b to be the one with the smallest support, it follows
that every row has at least two nonzero coordinates. By Claims 3.1 and 3.2, this is
possible only if for every other row o’ there exists j* € [n] such that 2|b, | = ||’ 2.
By Claim 3.2(1) and (2), every other row &’ has all its coordinates in {0, £1, +2}.
By Claim 3.2(2), every other row &’ has none of its coordinates in {£2}. Therefore,
every other row b has all its coordinates in {0,+1}. By Claim 3.2(3), every row
of the basis matrix has the same form as b: they have exactly two nonzero entries
each of which is £1.

Since the rows of the basis matrix are orthogonal, it follows that the ba-
sis matrix B is a weighing matrix of order n with weight 2. By Theorem 2.5
the matrix B is obtained from &, [} fl} by either negating some rows or
columns and by interchanging rows or columns. We recall that interchanging or
negating the rows of the basis matrix of a lattice preserves the basis property
while interchanging columns is equivalent to permuting the coordinates. Hence
Lo=LB)= &L 1)),
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(2) = (3): We now show that Lo decomposes into a direct sum of lower-dimensional
lattices, Lo =2 @, L; if and only if the code C also decomposes, C' = &,C;.

Let Lo = @;L;. Without loss of generality, we can consider Lo = @;L;. We
have C' = L mod 2 = @;L; mod 2. We observe that if L; has dimension n;, then
L; 2 27™. Therefore, C; = L; mod 2 is a binary code. Let C; := L; mod 2 for every
i. Then C = @;C;. (If ¢ € C, then ¢ € L and hence the projection of ¢ to the subset
of coordinates corresponding to L; is in C;. Let ¢; € C; for every ¢. The concatenated
vector @;¢; is in @;L; mod 2 and hence is in C).

To show the other direction of the equivalence, let C' = @,C;, where each C; C Fy’
and n = >, n;. Therefore, Lo = C + 272" = &;C; + 22" = @&;(C; + 27™) since
7" = @, 2. a

3.2. Algorithm. Theorem 1.1 shows that a lattice of the form C 4 2Z" is or-
thogonal if and only if the underlying code decomposes into a direct sum of binary
linear codes isomorphic to {0,1} or {0} or the 2-dimensional code {00,11}. We now
give a polynomial time algorithm which finds the decomposition of the code C' into
the component codes, C;, if there exists one. Therefore, if the lattice Lo is orthog-
onal, the algorithm decides in polynomial time if it is orthogonal and also gives the
orthogonal basis for the lattice.

The algorithm recursively attempts to find the component codes. If it is unable
to decompose the code at any stage, then it declares that L is not orthogonal. At
every step we check if C' = {0,1} x C" or {0} x C’ or {00,11} x C’ and then recurse
on C'.

Proof of Theorem 1.2. Given a basis for L as input, we first compute the genera-
tor for C. From Theorem 1.1, we know that if L is orthogonal, then C' = &,;C; where
each C; is either the length-1 code {0, 1} or the length-1 code {0} or the 2-dimensional
code {00, 11}.

Therefore, the algorithm in each step decides whether C = {0,1} & C’ or C
{0} @ C’ or C =2 {00,11} & C’". Theorem 3.3 shows that by using Algorithm 1 we can
check in O(n?) time, if C =2 {0,1} @& C’. The same algorithm can be modified to check
in O(n?) time, if C = {0} & C’. Theorem 3.4 shows that Algorithm 2 can verify if
C ={00,11} & C’ in O(n®) time. If any one of the algorithms finds a decomposition,
then we recurse on the lower-dimensional code C’ to find a further decomposition.
We recurse at most n times. If all the algorithms fail to find a decomposition, then
L¢ is not orthogonal. Therefore, it takes O(n%) time to decide if L¢ is orthogonal. O

We now describe the individual algorithms to verify if C 2 {0,1} & C" or C' =
{0} " or C = {00,11} & C".

Algorithm 1 : decompose — length — 1(G):
Input: G ={g1,...,9n} € F} (A generator for the code C)

1: for je{l,---,n} do

2:  Let G’ + projection of vectors in G on coordinates [n] \ {j}

3. For g € G/, define ¢°, g' € F} as the n-dimensional vectors obtained by extend-
ing g using 0 and 1 along the jth coordinate, respectively.

4: if ¢° gl € C for all g € G’ then

5: return j

6: return FAIL
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THEOREM 3.3. Let C be a binary linear code, and let G = {g1,...,9,} € F3*"
be its generator. Then Algorithm 1 decides whether C = {0,1} & C" for some linear
code C' C F;‘fl and, if so, outputs the coordinate corresponding to the direct sum
decomposition. Moreover, the algorithm runs in time O(n?).

Proof. For j € [n], let C’ji. C F5~! be the projection of C on the indices [n] \ {5}
and for a vector ¢ € Cj’f,, let ¥, ¢! € F} be extensions of ¢ using 0, 1, respectively, along

the jth coordinate. We note that C' = {0,1} & C’ for some binary linear code C" if
and only if there exists an index j € [n], such that

C:{cf\cec]é,ée{o,l}}.

From the definition of C’]i,, it follows that C' C {cg | ¢ € C%J € {0,1}} up to a
permutation of coordinates. So, the algorithm just needs to verify if the other side of
the containment holds for some j € [n].

Let G’ be the set of vectors of G projected on the coordinates [n]\{j}. Algorithm 1
verifies if g° and ¢! are codewords in C, for every vector g € G’. We now show that
this is sufficient. Since C is a code, if ¢g¥, g* € C for every g € G’, then all linear
combinations of these vectors are also in C. Therefore, {c’ | c € C%, te{0,1}} CC.

It takes O(n?) time to compute a parity check matrix from the generator G and
O(n?) time to verify if an input vector is a codeword using the parity check matrix.
For every possible choice of the index j, Algorithm 1 checks if each of the 2n vectors
of the form ¢° g are in C. Therefore, Algorithm 1 takes O(n?*) time to decide if
c={0,1}aC". O

Algorithm 2 : decompose — length — 2(G):
Input: G ={g1,...,9n} € Fy (A generator for the code C)

1: for ji,j2 €41,2,...,n} do

2:  Let G’ + projection of vectors in G on coordinates [n] \ {j1,J2}

3:  Let G” « projection of vectors in G on coordinates {j1, j2}

4. if Code generated by G = {00,11} then

5 For g € G’ define g°°, g'! € F} be n-dimensional vectors obtained by extend-
ing g using 00 and 11 along the ji,js coordinates.

if ¢%° gt € C for all g € G’ then

T return ji,jo

8: return FAIL

<@

THEOREM 3.4. Let C be a binary linear code, and let G = {g1,...,9,} € F3*"
be its generator. Then Algorithm 2 decides whether C =2 {00,11} & C" for some linear
codes C' C Fgfz and, if so, outputs the coordinates corresponding to the direct sum
decomposition. Moreover, the algorithm runs in time O(n®).

Proof. For ji,j2 € [n], let C7 . be the projection of C' on the indices {j1,j2}.

We first verify if C7 . is the code {00 11}. For this purpose, it is sufficient to check

if €7, ;, is generated by {11}. Now, to see if C' = {00,11} & C” for some binary linear

code C’ C F3~2. Define C%. j, to be the projection of C' on the indices [n] \ {1, 2}
For a vector ¢ € C’ let COO 1 € F2 be the extensions of ¢ using {00,11} along
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the j1, jo coordinates. We note that C = {00, 11} & C”’ for some binary linear code C’
if and only if there exist indices j1, j2 € [n], such that

1,J2°

(1) C:{cﬂcecjé 66{00,11}}.

From the definition of C%. - and C}, ;, = {00,11}, it follows that C' C {c¢* | ¢ €

C’J’,—1 ol € {00,11}}. So, the algorithm just needs to verify if the other side of the
containment holds for some indices j1, j2 € [n].

Let G’ be the set of vectors of G projected on the coordinates [n] \ {j1,72}-
Algorithm 2 verifies if ¢°° and ¢g'! are codewords in C, for every vector g € G'. We
now show that this is sufficient. Since C is a code, if ¢°°, g'* € C for every g € G/, then
all linear combinations of these vectors are also in C. Therefore, {cé |ce C’j’,—1 P NS
{00,11}} C C.

For each choice of {ji,j2}, it takes O(n) time to verify if C7 ;= {00,11}. Time
to verify if an input vector is a codeword using the parity check matrix is O(n?). We
perform this check for 2n vectors of the form {¢* | g € G', £ € {00,11}}.

It takes O(n?) time to verify if C' = {00,11} & C% ;, for every pair of indices
j1,j2 € [n]. There are at most (;‘) possible choices of indices, j1, jo; therefore, it takes

O(n®) time in total to decide if C = {00,11} & C". 0

4. Orthogonal lattices from Ternary codes. In this section we focus on lat-
tices obtained from ternary linear codes using Construction-A. In section 4.1, we show
that any orthogonal lattice obtained from a ternary linear code by Construction-A is
equivalent to a product lattice whose components are 1-dimensional or 4-dimensional.
In section 4.2, we show that given a lattice obtained from a ternary linear code by
Construction-A, there exists an efficient algorithm to verify if the lattice is orthogonal.

4.1. Decomposition characterization. We prove Theorem 1.3 in this subsec-
tion.

Proof of Theorem 1.3. We show that (1) = (2) and (2) = (3) to complete the
equivalence of the three statements.

(1) = (2): We show that Lc = C + 3Z" is orthogonal if and only if it decomposes
into a direct sum of lower-dimensional orthogonal lattices, Lo = &;L;.

If Lo = @;L; such that each L; is orthogonal, then L¢ is also orthogonal. This is
because L¢ has a block diagonal basis where each block is itself an orthogonal matrix
(by definition, a 1 x 1-dimensional matrix is orthogonal).

We prove the other direction of the equivalence by induction on the dimension,
n, of the lattice Lo. For the base case consider n = 1. Since L is integral and is of
the form C' + 3Z for some ternary code C, it follows that L has to be either Z or 3Z.

Let us assume the induction hypothesis for all n — 1 or lower-dimensional orthog-
onal lattices obtained from ternary linear codes using Construction-A.

Let Le be an n-dimensional orthogonal lattice and B be an orthogonal basis of
L¢ with the rows being basis vectors. Since L¢ is an integral lattice, B has only
integral entries. The next two claims summarize certain properties of the entries of
the basis matrix B.

CLAM 4.1. For every row b of B and for every j € [n], we have that 3|b;| €
{0, 11612, 31[b117}-

Proof. Since B is an orthogonal basis, BBT = D, where D is the diagonal matrix
with entries ||b(?]]2, where b(*) denotes the ith basis vector:
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162 0 0 .- 0
0 @)% 0 0
0 0 0 - [p™2

We know that 3Z™ C L¢ so, 3e; € L¢ for every j € [n]. Therefore, there is an
integral matrix X € Z"*" such that XB = 3I,, i.e., 3B~! € Z"*™. Since B is an
orthogonal basis,

B—l _ BTD—l c lznxn
3

Each column of BT D=1 is given by b/||b]|?, where b is a basis vector. Therefore,
for any j € [n], we have

3b; = 0 mod ||b||? for all j € [n], and rows b of B.

Since b; is integral and |b;j| < [|b]|? for every j € [n], it follows that 3|b;| €
{0, 11611, 2||6]|2, 3||6]|*}. It now remains to exclude the case 3|b;| = 2||b||®. Suppose
there exists j € [n] such that 3|b;| = 2||b||2. Since b is a basis vector, it follows that
b is not all zeroes Hence b; # 0. We can rewrite the condition 3|b;| = 2|[b||* as
3l =230 b2 Rearrangmg the terms, we have

;| (3 —2[b;)) =2 b7
i#]
Since the RHS is a sum of squares, it is always nonnegative. The left-hand side (LHS)
is nonzero since b; € Z \ {0}. So the LHS should be strictly positive. Therefore
|b;] € (0,3/2) N Z and hence |b;| = 1. However, this implies that ZZ# 2 =1/2,
contradicting the fact that b is integral. Hence, 3||b;|| = 2||b||? is impossible. O

CrAM 4.2. Let b be a row of B.

(1) If there exists j € [n] such that 3|b;| = 3||b||?, then b; = £1 and bj = 0 for
every 7' € ]\ {7}

(2) If there exists j € [n] such that 3|b;| = ||b||* and b; = £3, then by = 0 for
every j' € [n] \ {j}.

(3) If there exists j € [n] such that 3|b;| = ||b||* and b; = %1, then there exist
J1,d2 € [n]\ {4}, such that |bj,| = |bj,| = 1 and by = 0 for every j' €
(] \ {4, g1, g2 }-

(4) If there exists j € [n] such that 3|b;| = ||b||?, then bj: € {0,+1,£3} for every
j" € [n].

Proof. (1) Since, [|b|> = Y7, b7, and each b; € Z, we conclude that [b;| =1
and the remaining coordinates in b have to be 0, i.e., b, = 0 for all j' €

[n] \ {7}

(2) Follows from 3|b;| = ||b]|? and b being integral.

(3) We can rewrite the condition 3|b;| = ||b]|? as 3|b;| = >
the terms, we have

2) o] (3= [ts1) = > 02,

i#J

", b?. Rearranging

If b; = %1, then Zl £ b? = 2. Further, b is integral. Hence, b has exactly two
other nonzero coordinates b;,,bj,, j # j1, j2, such that |bjl| =|b;,| = 1.



DECIDING ORTHOGONALITY IN CONST-A LATTICES 1257

(4) We have equation (2). The RHS is a sum of squares and hence the LHS
is nonnegative. Moreover, b is not all-zeroes vector implies that b; # 0.
Therefore, [b;| € (0,3] N Z. If b; = &2, then in order to satisfy >, b2 =2
using integral b;’s, exactly two coordinates b;,,b;, should be £1, where j #
J1,j2. However, in this case, 3|b;,| = 3|b;,| = 3 & {0, |b]|*> = 6, 3||b]|* = 18},
thus contradicting Claim 4.1. The conclusion then follows from parts (2) and
(3). d

Using the properties of the orthogonal basis B of L given in Claims 4.1 and 4.2,
we show that B is equivalent (up to permutations of its columns) to a block diagonal
matrix, i.e.,

B 0 - 0
0 By -+ 0
B~ . ,
: .0
0 0 --- By

where each B; is either the 1 x 1 matrix m or the 1 x 1 matrix [3] or the 4 x 4
matrix obtained from M by negating a subset of its columns, 7(M). It follows that
Lo =2 @;L; such that B; is the basis for the lower-dimensional lattice L;.

Let us pick a row b of B with the smallest support. Fix an index j € [n] to be the
index of a nonzero entry with minimum absolute value in b, i.e., j := argming{|bx|}.
Since b is a row of a basis matrix, b cannot be the all-zeroes vector and, therefore, there
exists a j € [n] such that |b;| > 0. Since we are only interested in equivalence (that
allows for permutation of coordinates), we may assume without loss of generality that
j = 1 by permuting the coordinates. By Claim 4.1, we have that 3|b1| € {||b]|?, 3||b]|*}.
We consider each of these cases separately.

1. Suppose 3|b1| = 3||b||?. By Claim 4.2(1), b = (&1,0,...,0). Since B is an orthogo-
nal basis, (b,') = 0= b} =0 for all ¥’ # b € B. The orthogonality of B, therefore,
forces all other basis vectors to take a value of 0 in the 1st coordinate. Thus B is
of the form

Therefore, we obtain Lo = Z @ L', where L’ is an orthogonal (n — 1)-dimensional
lattice generated by the basis matrix restricted to the coordinates other than 1, say,
B'. From Claim 2.2, it follows that L' = C’ + 3Z"~! for some ternary linear code
C' C Fg‘*l. Thus L’ satisfies the induction hypothesis and we have the desired
decomposition.

2. Suppose 3|b1| = [|b]|>. We can rewrite this condition as 3|b;| = >
ing the terms, we have

no 32
i1 U3 -

Rearrang-
[bal (3 —[ba]) = > 02,
i#1
Since the RHS is a sum of squares, it should be nonnegative.

(i) If RHS is 0, then b; = £3 and, therefore, it follows from Claim 4.2(2) that
b= (+£3,0,...,0). The orthogonality of B forces all other basis vectors to take a
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value of 0 in the 1st coordinate.

Therefore, we obtain Lo 22 3Z@® L', where L’ is an orthogonal (n — 1)-dimensional

lattice generated by the basis matrix restricted to the coordinates other than 1,

say B’. From Claim 2.2, it follows that L' = C’ + 3Z"~! for some ternary linear

code €' C Fy~'. Thus L' satisfies the induction hypothesis and we have the
desired decomposition.

(ii) If RHS is strictly positive, then |bi| € (0,3) NZ = {1,2}. By Claim 4.2(4),
by # £2. Therefore, by = £1. By Claim 4.2(3), we have that b has exactly three
nonzero coordinates and they are +1. By permuting the coordinates of B, we
may assume that b= (£1,4+1,4+1,0,...,0).

Since we picked the row b to be the one with the smallest support, it follows
that every row has at least three nonzero coordinates. By Claims 4.1 and 4.2,
this is possible only if for every other row o’ there exists j° € [n] such that
3[t,| = [[t']|>. By Claim 4.2(4), every other row b’ has all its coordinates in
{0,£1,+3}. By Claim 4.2(2), every other row b’ has none of its coordinates in
{£3}. Therefore, every other row b’ has all its coordinates in {0,+1}. By Claim
4.2(3), every row of the basis matrix has the same form as b: they have exactly
three nonzero entries each of which is +1.

Since the rows of the basis matrix are orthogonal, it follows that the basis
matrix B is a weighing matrix of order n with weight 3. By Theorem 2.7, the
matrix B is obtained from &,,,4M by either negating some rows or columns and
by interchanging rows or columns. We recall that interchanging or negating the
rows of the basis matrix of a lattice preserves the basis property while interchang-
ing columns is equivalent to permuting the coordinates. Hence Lo = L(B) &
GB?!%LU}(M))7 where each 7;(M) is a 4 X 4 matrix obtained by negating a subset
of columns of M.

(2) = (3): We now show that Lo decomposes into a direct sum of lower-dimensional
lattices, Lo = @;L; if and only if the code C also decomposes, C = &,C;.

Let Lo = @;L;. Without loss of generality, we can consider Lo = &;L;. We
have C' = L mod 3 = @;L; mod 3. We observe that if L; has dimension n;, then
L; O 3Z™. Therefore, C; = L; mod 3 is a ternary code. Let C; := L; mod 3 for every
i. Then C = @;C;. (If ¢ € C, then ¢ € L and hence the projection of ¢ to the subset
of coordinates corresponding to L; is in C;. Let ¢; € C; for every i. The concatenated
vector @;¢; is in ®;L; mod 3 and hence is in C.)

To show the other direction of the equivalence, let C' = @,C;, where each C; C Fy’
and n = ), n;. Therefore, Lo = C + 32" = &,C; + 32" = &;(C; + 3Z™) since
7" = @7 0

4.2. Algorithm. Theorem 1.3 shows that a lattice of the form C + 3Z" is or-
thogonal if and only if the underlying code decomposes into a direct sum of ternary
linear codes isomorphic to {0,1,2} or {0} or the 4-dimensional code generated by
T (M) mod 3, where T (M) is obtained from matrix M by negating a subset of its
columns. We now give a polynomial time algorithm which finds the decomposition of
the code C into the component codes, C;, if there exists one. Therefore, if the lattice
L¢ is orthogonal, the algorithm decides in polynomial time if it is orthogonal and also
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gives the orthogonal basis for the lattice.

The algorithm recursively attempts to find the component codes. If it is unable
to decompose the code at any stage, then it declares that L is not orthogonal. At
every step we check if C'= {0,1,2} x C" or {0} x C" or Crppy x C" where Cr(pyy is
the code generated by T (M) mod 3 and then recurse on C".

Proof of Theorem 1.4. Given a basis for Lo as input, we first compute the gen-
erator for C'. From Theorem 1.3, we know that if Lo is orthogonal, then C = &,;C;
where each C; is either the length-1 code {0, 1,2} or the length-1 code {0} or a 4-
dimensional code generated by the rows of 7 (M) mod 3 where T (M) obtained from
matrix M by negating a subset of its columns.

Therefore, the algorithm in each step decides if C = {0,1,2}&C" or C 2 {0}’
or C = Cru)®C’, where C(pr) denotes the code generated by 7 (M) mod 3. Theo-
rem 4.3 shows that using Algorithm 3 we can check in O(n?*) time if C = {0, 1,2}®C".
The same algorithm can be modified to check in O(n?) time if C = {0} ® C’. Theo-
rem 4.4 shows that Algorithm 4 can verify if C' 2 Cy() @ C' in O(n”) time. If any
one of the algorithms finds a decomposition, then we recurse on the lower-dimensional
code C’ to find a further decomposition. We recurse at most n times. If all the al-
gorithms fail to find a decomposition, then L¢ is not orthogonal. Therefore, it takes
O(n®) time to decide if L¢ is orthogonal. a0

We now describe the individual algorithms to verify if C = {0,1,2} & C’ or
C={0}aC or C= Crom aC.

Algorithm 3 : decompose — length — 1(G):
Input: G ={g1,...,9.} € F} (A generator for the code C)

1: for j € {1,...,n} do

2:  Let G’ + projection of vectors in G on coordinates [n] \ {j}

3. For g € G', define ¢°,g',g> € F} as the n-dimensional vectors obtained by
extending ¢ using 0, 1, and 2 along the jth coordinate, respectively.

4. if ¢° ¢', g?> € C for all g € G’ then

5: return j

6: return FAIL

THEOREM 4.3. Let C' be a ternary linear code and G = {g1,...,9,} € Fy*"
be its generator. Then Algorithm 3 decides if C = {0,1,2} & C’ for some linear
code C' C ]Fg_l and, if so, outputs the coordinate corresponding to the direct sum
decomposition. Moreover, the algorithm runs in time O(n*).

Proof. For j € [n], let C]i, C FZ~! be the projection of C' on the indices [n] \ {j}
and for a vector ¢ € C%, let ¥, ¢!, c® € F} be extensions of ¢ using 0, 1, 2, respectively,

along the jth coordinate. We note that C = {0,1,2} & C’ for some ternary linear
code C" if and only if there exists an index j € [n], such that

C= {c£|c€C’§.,€6{0,1,2}}.

From the definition of C§7 it follows that C' C {cé | c € Cji.,ﬁ e {0, 1,2}} up to a
permutation of coordinates. So, the algorithm just needs to verify if the other side of
the containment holds for some j € [n].
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Let G’ be the set of vectors of G projected on the coordinates [n]\{j}. Algorithm 3
verifies if gV, ¢!, and g2 are codewords in C, for every vector g € G’. We now show that
this is sufficient. Since C is a code, if ¢°, g', g? € C for every g € G’, then all linear
combinations of these vectors are also in C. Therefore, {c’ | ¢ € C]i,, te{0,1,2}} CC.

It takes O(n?) time to compute a dual code basis from the generator G and O(n?)
time to verify if an input vector is a codeword using the dual basis. For every possible
choice of the index j, Algorithm 3 checks if each of the 3n vectors of the form ¢°, g*, g°
are in C. Therefore, Algorithm 3 takes O(n?*) time to decide if C = {0,1,2} & C’. O

Algorithm 4 : decompose — length — 4(G):
Input: G ={g1,...,9.} € F} (A generator for the code C)

1: for jl,jg,jg,j4€{1,2,-" ,n} do

2:  Let G’ + projection of vectors in G on coordinates [n] \ {j1, j2, 3, ja}

3:  Let G” « projection of vectors in G on coordinates {j1, j2, j3, ja}

4: for S C 4] do

5 Let T(M) <~ M with columns in S negated

6 if Cr(y) = Code generated by G” then

7 For g € G’ define gP', gP2, gP3, gP* € F% be n-dimensional vectors obtained
by extending g using the rows of 7 (M) along the ji, j2, J3, ja coordinates.

if gP1,gP2, gP3,gP* € C for all g € G’ then
9: return ji, j2,j3, j4 and T (M)
10: return FAIL

%

THEOREM 4.4. Let C be a ternary linear code, and let G = {g1,...,gn} € F3*" be
its generator. For a matriz T (M) obtained by negating a subset of columns of M, let
Cr(m) be the length-4 code whose generators are the rows of T(M). Then Algorithm
4 decides if C = Crpy @ C for some linear codes C' C Fy~* and Cry € F5 and
if so outputs the coordinates corresponding to the direct sum decomposition as well as
the matriz T(M). Moreover, the algorithm runs in time O(n7).

Proof. For 1 < ji < ja <jz<js<m,letC} , . . betheprojection of C'on the
indices {41, j2,j3, ja}. We first verify if C7 , . . is the code generated by the rows
of T(M) (denoted as C(ar)) for some T (M) which is obtained by negating a subset
of columns of M. We would like to check if every c € C’j”1 Jajisja 18 10 C(ar) and vice
versa. For this purpose, it is sufficient to check if the generator vectors of C;’l arda,da
are codewords in C'7(5r) and each row of 7(M) is a codeword in C7, . . . We know
that the generators of C7, ; . . are contained in G" where G" is the set of vectors
in G projected on the indices {j1, j2, j3,J4}-

Once we fix 7(M) such that C} , . . = Cr(), it remains to verify if C =

Crmy @ C' for some ternary linear code C" C Fg_4. Define C’j’.—1 eaga O be the
let

projection of C on the indices [n] \ {j1,j2,J3,74}. For a vector ¢ € Cg/'}.,fz,g%,yi’

c? € F3 be the extensions of ¢ using a codeword p € Cr(yr) along the 71, j2, j3, ja
coordinates. We note that C' = Cr(pp) @ C’ for some ternary linear code C” if and
only if there exist indices j1, j2, 43, j4 € [n], such that

(3) C:{Cp|CECJI*1)]*27J*37J*4,p€CT(M)}
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From the definition of C%- - - - and C7 . . . (= Crr), it follows that C' C {c? |
J1,J2,73,J4 J15J25735J4
ceCl 5+ 5.0 €Cran} So, the algorithm just needs to verify if the other side of

the containment holds for some indices j1, j2, js, ja € [n].

Let G’ be the set of vectors of G projected on the coordinates [n] \ {j1, j2, j3, ja -
Algorithm 4 verifies if gP°, ¢gP', gP®, and ¢gP* are codewords in C, for every vector
g € G'. We now show that this is sufficient. Since C'is a code, if gP°, gP1, g3, gP* € C
for every g € G' and p; € T(M), then all linear combinations of these vectors are also
in C. Therefore, {¢” [c€ C% - - -.p € Cran}t € C.

There are 2#4* possible choices of 7 (M) including permutations. For each matrix

T (M), it takes O(n) time to verify if Cry) = C}, ;, ;. ... Time to verify if an input

vector is a codeword using the dual basis is O(n?). We perform this check for 4n
vectors of the form {gP°,gP*,g?3,g?4 | g € G'}. So, for a given T(M) such that

Crary = CF, 4y s ja» 1t takes O(n?) time to verify C = Cryy @ C'.

For every possible choice of indices, {j1, jo, j3, 74}, Algorithm 4 takes O(n?) time

to verify if C' = Crp) @ Cgl‘l F A Since there are at most (Z) possible choices of

indices, it takes O(n") time in total to decide if C' = Crppy) @ C'. |
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