
SIAM J. DISCRETE MATH. c© 2017 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 1244–1262

DECIDING ORTHOGONALITY IN CONSTRUCTION-A LATTICES∗

KARTHEKEYAN CHANDRASEKARAN† , VENKATA GANDIKOTA‡ , AND

ELENA GRIGORESCU‡

Abstract. Lattices are discrete mathematical objects with widespread applications to integer
programs as well as modern cryptography. An important class of lattices are those that possess an
orthogonal basis, since if such an orthogonal basis is known, then many other fundamental problems
on lattices can be solved easily (e.g., the Closest Vector Problem). However, intriguingly, deciding
whether a lattice has an orthogonal basis is not known to be either NP-complete or in P. In this
paper, we focus on the orthogonality decision problem for a well-known family of lattices, namely
Construction-A lattices. These are lattices of the form C+ qZn, where C is an error-correcting q-ary
code, and are studied in communication settings. We provide a complete characterization of lattices
obtained from binary and ternary codes using Construction-A that have an orthogonal basis. We
use this characterization to give an efficient algorithm to solve the orthogonality decision problem.
Our algorithm also finds an orthogonal basis if one exists for this family of lattices.

Key words. orthogonal lattices, lattice isomorphism, construction-A lattices

AMS subject classifications. 68W40, 15B36, 15B10

DOI. 10.1137/15M1054766

1. Introduction. A lattice is the set of integer linear combinations of a set
of basis vectors B ∈ R

m×n, namely L = L(B) = {xB | x ∈ Z
m}. Lattices are

well-studied fundamental mathematical objects that have been used to model diverse
discrete structures such as in the area of integer programming [6], or in factoring
integers [13] and factoring rational polynomials [8]. In a groundbreaking result, Ajtai
[1] demonstrated the potential of computational problems on lattices to cryptography,
by showing average case/worst case reductions between lattice problems related to
finding short vectors in a lattice. This led to renewed interest in the complexity
of two fundamental lattice problems: the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP). Concretely, in SVP, given a basis B one is asked to
output a shortest nonzero vector in the lattice, and in CVP, given a basis B and a
target t ∈ R

n, one is asked to output a lattice vector closest to t.
Both SVP and CVP are NP-hard even to approximate up to subpolynomial factors

(see [11] for a survey), and a great deal of research has been devoted to finding families
of lattices for which the SVP/CVP are easy. A simplest lattice for which CVP is easy
is Zn: indeed, finding the closest lattice vector to a target t ∈ R

n amounts to rounding
the entries of t to the nearest integer. Surprisingly, given an arbitrary basis B, it is
not known how to efficiently verify whether the lattice generated by B is isomorphic
to Z

n up to an orthogonal transformation. Further, given an arbitrary basis for a
lattice, it is not known how to decide efficiently if the lattice has an orthogonal basis

∗Received by the editors March 2, 2016; accepted for publication (in revised form) February 14,
2017; published electronically June 15, 2017. The preliminary version of this work appeared in the
Proceedings of FSTTCS’15.

http://www.siam.org/journals/sidma/31-2/M105476.html
Funding: The research of the second and third authors was supported in part by NSF CCF-

1649515.
†Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-

Champaign, Urbana, IL 61801 (karthe@illinois.edu).
‡Computer Science, Purdue University, West Lafayette, IN 47906 (vgandiko@purdue.edu,

elena-g@purdue.edu).

1244

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1245

(an orthogonal basis is a basis in which all vectors are pairwise orthogonal). Similar
to the case of Zn, having access to an orthogonal basis leads to an efficient algorithm
to solve CVP, but finding an orthogonal basis given an arbitrary basis appears to be
nontrivial, with no known efficient algorithms.

Deciding if a lattice is equivalent to Z
n, and deciding if a lattice has an orthogonal

basis, are special cases of the more general Lattice Isomorphism Problem (LIP). In
LIP, given lattices L1 and L2 presented by their bases, one is asked to decide if
they are isomorphic, meaning if there exists an orthogonal transformation that takes
one to the other. LIP has significant cryptographic applications [15] and is known
to have an nO(n) algorithm [5]. Earlier, [12] suggested an algorithm for LIP that
works well for certain low-dimensional lattices. Recent results of [9, 10] show that
in certain highly symmetric lattices, isomorphism to Z

n can be decided efficiently.
The complexity of LIP is not well understood, and is part of the broader study of
isomorphism between mathematical objects, of which Graph Isomorphism (GI) is a
well-known elusive problem [2]. Interestingly, there is a polynomial time reduction
from GI to LIP [14].

Given that we do not know how to decide isomorphism to Z
n, nor decide whether

a lattice has an orthogonal basis in general lattices, it is natural to address families of
lattices where these problems can be solved efficiently. In this work, we focus on the
problem of deciding orthogonality for a particular family of lattices, commonly known
as Construction-A lattices [4]. Construction-A lattices L are obtained from a linear
error-correcting code C over a finite field of q elements (denoted Fq) as L = C+qZn.1

We resolve the problem of deciding orthogonality in Construction-A lattices for q = 2
and q = 3 by showing an efficient algorithm. In addition, the algorithm outputs an
orthogonal basis of the input lattice if such a basis exists.

Our main technical contribution is a decomposition theorem for Construction-A
lattices that admit an orthogonal basis. A natural way to obtain orthogonal lattices
through Construction-A is by taking direct products of lower-dimensional orthogonal
lattices. We show that this is the only possible way. We believe that our contributions
are a step towards gaining a better understanding of lattice isomorphism problems
for more general classes of lattices.

Extending our results to values q > 3 might require new techniques. For larger
q, a decomposition characterization seems to require a complete characterization of
weighing matrices of weight q which is a known open problem. In particular, a direct
product decomposition characterization of weighing matrices for the case of q = 4
is known [3]. However, even in this case the parts in the direct product decompo-
sition may not be of constant dimension, so designing an efficient algorithm for the
orthogonality decision problem through a direct product decomposition characteriza-
tion appears to be nontrivial.

1.1. Our results and techniques. As mentioned above, we start by showing
a structural decomposition of orthogonal lattices of the form C + 2Zn and C + 3Zn

into constant-size orthogonal lattices. We remark that the decomposition holds up to
permutations of the coordinates, and we use the notation C1

∼= C2 and L1
∼= L2 to

denote the equivalence of codes and lattices under permutation of coordinates. We
use the notation L1 ⊕ L2 to denote the direct sum of two lattices.

Theorem 1.1. Let LC = C +2Zn be a lattice obtained from a binary linear code

1The term “Construction-A” strictly refers to the case q = 2, but we will not make the distinction
in this paper.

1246 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

C ⊆ F
n
2 . Then the following statements are equivalent:
1. LC is orthogonal.
2. LC

∼= ⊕iLi, where each Li is either Z, or 2Z, or the 2-dimensional lattice
generated by the rows of the matrix

[

1 1

1 −1

]

.
3. C ∼= ⊕iCi, where each Ci is either a length-1 binary linear code ⊆ {0, 1}, or

the length-2 binary linear code {00, 11}.

The decomposition characterization leads to an efficient algorithm to verify if a
given lattice obtained from a binary linear code using Construction-A is orthogonal.
For the purposes of this algorithmic problem, the input consists of a basis to the lat-
tice. The algorithm finds the component codes given by the characterization thereby
computing the orthogonal basis for such a lattice.

Theorem 1.2. Given a basis for a lattice L obtained from a binary linear code
using Construction-A, there exists an algorithm running in time O(n6) that verifies
if L is orthogonal, and if so, outputs an orthogonal basis.

We obtain a similar decomposition and algorithm for lattices obtained from
ternary codes. For succinctness of presentation we define the following integer matrix:

M =









1 1 1 0
1 −1 0 1
1 0 −1 −1
0 1 −1 1









.

Theorem 1.3. Let LC = C+3Zn be a lattice obtained from a ternary linear code
C ⊆ F

n
3 . Then the following statements are equivalent:
1. LC is orthogonal.
2. LC

∼= ⊕iLi, where each Li is either Z, or 3Z, or the 4-dimensional lattice
generated by the rows of a matrix T (M) obtained from M by negating some
subset of columns.

3. C ∼= ⊕iCi, where each Ci is either a linear length-1 ternary code, or the linear
length-4 ternary code generated by the rows of (T (M) mod 3) ∈ F

4×4
3 , where

T (M) is obtained from M by negating some subset of its columns.

Theorem 1.4. Given a basis for a lattice L obtained from a ternary linear code
using Construction-A, there exists an algorithm running in time O(n8) that verifies
if L is orthogonal, and if so, outputs an orthogonal basis.

Theorems 1.1 and 1.2 are proved in section 3. Theorems 1.3 and 1.4 are proved
in section 4.

2. Preliminaries. We denote the set of positive integers up to n by [n], the
n× n identity matrix by In, and its jth row by ej . For a vector b ∈ R

n, let bj denote
its jth coordinate, and let ‖b‖ be its `2 norm.

Given a set of m linearly independent vectors bj ∈ R
n, a lattice L is generated by

{b1, . . . , bm} is defined to be the set of all integer linear combinations of these vectors:

L =

{

m
∑

i=1

αibi | αi ∈ Z

}

.

If m = n, then L is said to be of full rank. The set of vectors which generate L
is known as the basis of the lattice L. A lattice L is said to be orthogonal if it
is generated by a set of pairwise orthogonal vectors. A lattice L is integral if it is
contained in Z

n, namely any basis for L only consists of integral vectors.

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1247

We will denote by Fq a finite field with q elements. A linear code C of length n
over Fq is a vector space C ⊆ F

n
q . A linear code is specified by a generator matrix

G that consists of linearly independent vectors in F
n
q . If C ⊆ F

n
2 , then it is called a

binary code, and if C ⊆ F
n
3 , then it is called a ternary code.

The Construction-A of a lattice LC from a linear code C ⊆ F
n
q , where q is a prime,

is defined as LC := {c + q · z | c ∈ φ(C), z ∈ Z
n}, where φ is the (real embedding)

mapping i ∈ Fq 7→ i ∈ Z. Construction-A is often abbreviated as LC = C+ qZn. The
fact that LC is a lattice follows from the linearity of C over Fq [4].

For any vector v = (v1, . . . , vn) ∈ Z
n define v mod q := (v1 mod q, . . . , vn mod q) ∈

F
n
q . We note that x mod q is the same as res(x, q).

Claim 2.1. Let q be a prime, and L be an integral lattice. If qZn ⊆ L, then
C = L mod q is a linear code over Fq.

Proof. Let v ∈ L and v = (v mod q) + qz for some z ∈ Z
n, where here we abuse

notation and view v mod q as embedded into the integers, instead of a vector in F
n
q .

Since qZn ⊆ L, it follows that v− qz = v mod q ∈ L. To show that C = L mod q is a
linear code over Fq, let c1, c2 ∈ C. Then c1 + c2 ∈ L (where the addition is over Z),
and so (c1 + c2) mod q ∈ C.

We will use the following immediate claim about product of lattices generated
from codes.

Claim 2.2. Let L = C+qZn, for some q-ary linear code C ⊆ F
n
q . If L

∼= L1⊕L2,

and L1 ⊆ Z
k, then L1

∼= C1 + qZk and L2
∼= C2 + qZn−k, for q-ary linear codes C1

and C2 that are projections of C on the coordinates corresponding to L1 and L2,
respectively.

A matrix U is unimodular if U ∈ Z
n×n and det(U) ∈ {±1}. Two different bases

B1, B2 give the same lattice if and only if there exists a unimodular matrix U such that
B1 = UB2. The Hermite Normal Form (HNF) basis for a full rank lattice L ⊆ R

n is
a square, nonsingular, and upper triangular matrix B ⊆ R

n×n such that off-diagonal
elements satisfy 0 ≤ Bi,j < Bj,j for all 1 ≤ i < j ≤ n.

Fact 2.3 (see [7]). There exists an efficient algorithm which on input a set of
rational vectors, B, computes a basis for the lattice generated by B: the algorithm
simply computes the unique HNF basis of the lattice generated by B.

We note that LC = C + qZn contains qZn as a sublattice and hence it is a full
rank lattice.

Fact 2.4. A basis B for the lattice LC specified by the generator matrix G for the

code C can be computed efficiently by taking the HNF of the matrix
[

G

qIn

]

. Conversely,

given a basis B of LC , the generator matrix for C can be computed efficiently by finding
a basis for B mod q by row reduction over Fq.

Proof of Fact 2.4. Let LC be a lattice obtained by Construction-A from a q-ary
linear code C ⊆ F

n
q , LC = C + qZn. We first show that given a generator G for the

linear code C, the HNF
(

[

G

qIn

]

)

gives a basis for the lattice LC .

Let B = HNF
(

[

G

qIn

]

)

. By definition of the HNF basis, B is a basis for the

lattice which contains each generator vector g ∈ G and each qej for all j ∈ [n]. We
note that each vector v ∈ LC is a linear combination of the generators of C and 3In
which is exactly the lattice L(B). Therefore, B is a basis for LC .

1248 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

Given a basis B for LC , we now show that the set of linearly independent vectors
in F

n
q obtained by embedding B mod q into Fq gives a generator for the code C. LC

contains qZn as a sublattice, and from Claim 2.1, we can conclude that the code C
is the embedding of LC mod q into Fq. Since any lattice vector v ∈ LC is an integer
linear combination of rows of B, all codewords in LC mod q can be obtained as linear
combinations of B mod q over Fq. Therefore, the linearly independent set of vectors
in B mod q form a generator for the code C.

A weighing matrix of order n and weight k is a n × n matrix with entries in
{0, 1,−1} such that each row and column has exactly k nonzero entries and the row
vectors are orthogonal to each other. By definition, a weighing matrix W satisfies
WWT = kIn. For matrices A ∈ R

n1×n1 and B ∈ R
n2×n2 , we denote the (n1 + n2)×

(n1+n2)-dimensional block-diagonal matrix obtained using blocks A and B by A⊕B.
We will use the following characterization of weighing matrices of weights 2 and 3.
For completeness we present proofs of Theorems 2.5 and 2.7 here.

Theorem 2.5 (see [3]). A matrix W is a weighing matrix of order n and weight
2 if and only if W can be obtained from

⊕
n/2
i=1

[

1 1
1 −1

]

by negating some rows and columns and by interchanging some rows and columns.

Proof. Let W (n, 2) denote a weighing matrix of order n and weight 2. We prove
this theorem by induction on the order n of W (n, 2).

For n = 2, the matrix
[

1 1

1 −1

]

is the only possible 2× 2 orthogonal matrix up to

permutations of columns with entries in {1,−1}. Therefore, W (2, 2) ∼=
[

1 1

1 −1

]

.
Let us assume the induction hypothesis about all weighing matrices of order at

most n− 2 and weight 2.
Let W ∈ {0, 1,−1}n×n be an orthogonal matrix such that each row of W has

exactly two nonzero entries. Since we are characterizing W up to permutations of
rows and columns, and negations of rows and columns, we can assume without loss
of generality that the first row of W is

w1 = (1, 1, 0, . . . , 0).

Since W is orthogonal, the nonzero entries of every other row, wi has even intersection
with the nonzero entries of w1, i.e.,

|Support(wi) ∩ Support(w1)| ∈ {0, 2}.

Let us consider the case when |Support(wi)∩Support(w1)| = 0 for all i ∈ [n]\{1}.
Note that the wi’s are mutually orthogonal and supported on n−2 coordinates. This
would imply that W has at most n− 1 rows in total which contradicts the fact that
W is a n × n matrix. Therefore, there exists at least one row, say w2 such that
|Support(w2)∩Support(w1)| = 2. Since w2 is orthogonal to w1 and it has exactly two
nonzero entries, it is of the form

w2 = (1,−1, 0, . . . , 0).

We note that there cannot exist any other row w3 of W , such that |Support(w3)∩
Support(w1)| = 2 since it is not possible for such a vector to be orthogonal to both

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1249

w1 and w2. Therefore, for every other row wi, i ∈ {3, . . . , n}, we have |Support(wi) ∩
Support(w1)| = 0. The weighing matrix is, therefore, of the form

W ∼=

[

1 1
1 −1

]

⊕W ′,

where W ′ is a weighing matrices of order at n − 2 and weight 2. The proof follows
from the induction hypothesis.

The following lemma is needed for the proof of Theorem 2.7.

Lemma 2.6. A weighing matrix of order 4 and weight 3 is equivalent to M up to
permutations of rows and columns, and negations of rows and columns.

Proof. Let W be a weighing matrix of order 4 and weight 3. Since each vector has
weight at exactly 3, we can assume without loss of generality that w1 = (1, 1, 1, 0).
All rows are mutually orthogonal. Therefore, |Support(wi) ∩ Support(wj)| ∈ {0, 2}
and |Support(w1) ∩ Support(wi)| 6= 0 for all i.

Let us consider another row w2 such that |Support(w1) ∩ Support(w2)| = 2.
So, w2 = (1,−1, 0, 1) up to permutations of coordinates. For any other row w3, if
|Support(w1) ∩ Support(w2) ∩ Support(w3)| = 2, then the orthogonality condition
with either w1 or w2 is violated. Therefore, w3 is of the form w3 = (1, 0,−1,−1).
This forces w4 = (0, 1,−1, 1) and, hence W ≡M .

Theorem 2.7 (see [3]). A matrix W is a weighing matrix of order n and weight

3 if and only if W can be obtained from ⊕
n/4
i=1M by negating some rows and columns

and by interchanging some rows and columns.

Proof. Let W (n, 3) denote a weighing matrix of order n and weight 3. We prove
this theorem by induction on the order n of W (n, 3).

For n = 4, from Lemma 2.6 we have W (4, 3) ∼= M . Let us assume the induction
hypothesis about all weighing matrices of order at most n− 4 and weight 3.

Let W ∈ {0, 1,−1}n×n be an orthogonal matrix such that each row of W has
exactly three nonzero entries. Since we are characterizing W up to permutations of
rows and columns, and negations of rows and columns, we can assume without loss
of generality that the first row of W is

w1 = (1, 1, 1, 0, . . . , 0).

Since W is orthogonal, the nonzero entries of every other row, wi has even intersection
with the nonzero entries of w1, i.e.,

|Support(wi) ∩ Support(w1)| ∈ {0, 2} for all i ∈ {2, . . . , n}.

Let us consider the case when |Support(wi)∩Support(w1)| = 0 for all i ∈ [n]\{1}.
Note that the wi’s are mutually orthogonal and supported on n−3 coordinates. This
would imply that W has at most n− 2 rows in total which contradicts the fact that
W is a n × n matrix. Therefore, there exists at least two rows, say w2, w3 such
that |Support(w1) ∩ Support(w2)| = 2 and |Support(w1) ∩ Support(w3)| = 2. Since
these three vectors are mutually orthogonal and Support(w1) = 2, it follows that
|Support(w2) ∩ Support(w3)| > 0. Without loss of generality, these three vectors are
of the following form:





1 1 1 0 0 · · · 0
1 −1 0 1 0 · · · 0
1 0 −1 −1 0 · · · 0



 .

1250 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

We observe that if |Support(wi) ∩ Support(w2)| = 0 for all i ∈ [n] \ {1, 3}, then the
number of vectors in W is at most n − 1. Therefore, there exists at least one other
row w4 such that |Support(w4) ∩ Support(w2)| = 2. Since w4 is orthogonal to all
w1, w2, and w3, the unique candidate for w4 is of the form (0, 1,−1, 1, 0, . . . , 0). We
note that if there exists another row, w5 such that |Support(w5) ∩ Support(wj)| > 0
for any j ∈ [4], then it cannot be orthogonal to all four vectors w1, w2, w3, and w4.
So, |Support(wi) ∩ Support(wj)| = 0 for any j ∈ [4] and i ≥ 5.

Therefore, W (n, 3) ∼= M ⊕W ′, where W ′ is a weighing matrix of order n− 4 and
weight 3. It then follows from the induction hypothesis that

W (n, 3) ∼= ⊕iM.

3. Orthogonal lattices from binary codes. In this section we focus on lat-
tices obtained from binary linear codes using Construction-A. In section 3.1, we show
that any orthogonal lattice obtained from a binary linear code by Construction-A is
equivalent to a product lattice whose components are 1-dimensional or 2-dimensional
lattices. In section 3.2, we show that given a lattice obtained from a binary linear
code by Construction-A, there exists an efficient algorithm to verify if the lattice is
orthogonal.

3.1. Decomposition characterization. We prove Theorem 1.1 in this subsec-
tion.

Proof of Theorem 1.1. We show that (1) ≡ (2) and (2) ≡ (3) to complete the
equivalence of the three statements.
(1) ≡ (2): We show that LC = C + 2Zn is orthogonal if and only if it decomposes
into a direct sum of lower-dimensional orthogonal lattices, LC

∼= ⊕iLi.
If LC

∼= ⊕iLi such that each Li is orthogonal, then LC is also orthogonal. This
is because LC would have a block diagonal orthogonal basis where each block is in
itself orthogonal or a 1× 1 matrix.

We prove the other direction of the equivalence by induction on the dimension,
n, of the lattice LC . For the base case consider n = 1. Since L is integral and is of
the form C + 2Z for some binary linear code C, it follows that L has to be either Z
or 2Z.

Let us assume the induction hypothesis for all n− 1 or lower-dimensional orthog-
onal lattices obtained from binary linear codes using Construction-A.

Let LC be an n-dimensional orthogonal lattice and B be an orthogonal basis of
LC with the rows being basis vectors. Since LC is an integral lattice, B has only
integral entries. The next two claims summarize certain properties of the entries of
the basis matrix B.

Claim 3.1. For every row b of B and for every j ∈ [n], we have that 2|bj | ∈
{0, ‖b‖2, 2‖b‖2}.

Proof. Since B is an orthogonal basis, BBT = D, where D is the diagonal matrix
with entries ‖b(i)‖2, where b(i) denotes the ith basis vector.

D =











‖b(1)‖2 0 0 · · · 0
0 ‖b(2)‖2 0 · · · 0
...

...
. . .

...
0 0 0 · · · ‖b(n)‖2











.

We know that 2Zn ⊆ LC so, 2ej ∈ LC for every j ∈ [n]. Therefore, there is an
integral matrix X ∈ Z

n×n such that XB = 2In, i.e., 2B
−1 ∈ Z

n×n. Since B is an

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1251

orthogonal basis,

B−1 = BTD−1 ∈
1

2
Z
n×n.

Each column of BTD−1 is given by b/‖b‖2, where b is a basis vector. Therefore,
for any j ∈ [n], we have

2bj ≡ 0 mod ‖b‖2 for all j ∈ [n], and rows b of B.

Since bj is integral and |bj | ≤ ‖b‖
2 for every j ∈ [n], it follows that 2|bj | ∈

{0, ‖b‖2, 2‖b‖2}.

Claim 3.2. Let b be a row of B.
(1) If there exists j ∈ [n] such that 2|bj | = 2‖b‖2, then bj = ±1 and bj′ = 0 for

every j′ ∈ [n] \ {j}.
(2) If there exists j ∈ [n] such that 2|bj | = ‖b‖

2 and bj = ±2, then bj′ = 0 for
every j′ ∈ [n] \ {j}.

(3) If there exists j ∈ [n] such that 2|bj | = ‖b‖
2 and bj = ±1, then there exist

j1 ∈ [n] \ {j}, such that |bj1 | = 1 and bj′ = 0 for every j′ ∈ [n] \ {j, j1}.

Proof. (1) Since ‖b‖2 =
∑n

i=1 b
2
i , and each bi ∈ Z, we conclude that |bj | = 1

and the remaining coordinates in b have to be 0, i.e., bj′ = 0 for all j′ ∈
[n] \ {j}.

(2) Follows from 2|bj | = ‖b‖
2 and b being integral.

(3) We can rewrite the condition 2|bj | = ‖b‖
2 as 2|bj | =

∑n
i=1 b

2
i . Rearranging

the terms, we have

|bj | (2− |bj |) =
∑

i 6=j

b2i .

If bj = ±1, then
∑

i 6=j b
2
i = 1. Further, b is integral. Hence, b has exactly 1

other nonzero coordinates bj1 , j 6= j1, such that |bj1 | = 1.

Using the properties of the orthogonal basis B of LC given in Claims 3.1 and 3.2,
we show that B is equivalent (up to permutations of its columns) to a block diagonal
matrix, i.e.,

B ∼=











B1 0 · · · 0
0 B2 · · · 0
...

. . .
...

0 0 · · · Bk











,

where each Bi is either the 1×1 matrix
[

1
]

or the 1×1 matrix
[

2
]

or the 2×2 matrix
[

1 1

1 −1

]

. It follows that LC
∼= ⊕iLi such that Bi is the basis for the lower-dimensional

lattice Li.
Let us pick a row b of B with the smallest support. Fix an index j ∈ [n] to be the

index of a nonzero entry with minimum absolute value in b, i.e., j := argmink{|bk|}.
Since b is a row of a basis matrix, b cannot be the all-zeroes vector and, therefore, there
exists a j ∈ [n] such that |bj | > 0. Since we are only interested in equivalence (that
allows for permutation of coordinates), we may assume without loss of generality that
j = 1 by permuting the coordinates. By Claim 3.1, we have that 2|b1| ∈ {‖b‖

2, 2‖b‖2}.
We consider each of these cases separately.
1. Suppose 2|b1| = 2‖b‖2. By Claim 3.2(1), b = (±1, 0, . . . , 0). Since B is an orthogo-

nal basis, 〈b, b′〉 = 0⇒ b′1 = 0 for all b′ 6= b ∈ B. The orthogonality of B, therefore,

1252 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

forces all other basis vectors to take a value of 0 in the 1st coordinate. Thus B is
of the form

B =









±1 0 · · · 0
0

B
′...

0









.

Therefore, we obtain LC
∼= Z⊕ L′, where L′ is an orthogonal (n− 1)-dimensional

lattice generated by the basis matrix restricted to the coordinates other than 1, say,
B′. From Claim 2.2, it follows that L′ = C ′ + 2Zn−1 for some binary linear code
C ′ ⊆ F

n−1
2 . Thus L′ satisfies the induction hypothesis and we have the desired

decomposition.
2. Suppose 2|b1| = ‖b‖

2. We can rewrite this condition as 2|b1| =
∑n

i=1 b
2
i . Rearrang-

ing the terms, we have

|b1| (2− |b1|) =
∑

i 6=1

b2i .

Since the right-hand side (RHS) is a sum of squares, it should be nonnegative.
(i) If RHS is 0, then b1 = ±2 and, therefore, it follows from Claim 3.2(2) that
b = (±2, 0, . . . , 0). The orthogonality of B forces all other basis vectors to take a
value of 0 at the 1st coordinate.

B =









±2 0 · · · 0
0

B
′...

0









.

Therefore, we obtain LC
∼= 2Z⊕L′, where L′ is an orthogonal (n−1)-dimensional

lattice generated by the basis matrix restricted to the coordinates other than 1,
say B′. From Claim 2.2, it follows that L′ = C ′ + 2Zn−1 for some binary linear
code C ′ ⊆ F

n−1
2 . Thus L′ satisfies the induction hypothesis and we have the

desired decomposition.
(ii) If RHS is strictly positive, then |b1| ∈ (0, 2) ∩ Z = {1}. By Claim 3.2(3), we
have that b has exactly two nonzero coordinates and they are ±1. By permuting
the coordinates of B, we may assume that b ≡ (±1,±1, 0, . . . , 0).

Since we picked the row b to be the one with the smallest support, it follows
that every row has at least two nonzero coordinates. By Claims 3.1 and 3.2, this is
possible only if for every other row b′ there exists j′ ∈ [n] such that 2|b′j′ | = ‖b

′‖2.
By Claim 3.2(1) and (2), every other row b′ has all its coordinates in {0,±1,±2}.
By Claim 3.2(2), every other row b′ has none of its coordinates in {±2}. Therefore,
every other row b′ has all its coordinates in {0,±1}. By Claim 3.2(3), every row
of the basis matrix has the same form as b: they have exactly two nonzero entries
each of which is ±1.

Since the rows of the basis matrix are orthogonal, it follows that the ba-
sis matrix B is a weighing matrix of order n with weight 2. By Theorem 2.5
the matrix B is obtained from ⊕n/2

[

1 1

1 −1

]

by either negating some rows or
columns and by interchanging rows or columns. We recall that interchanging or
negating the rows of the basis matrix of a lattice preserves the basis property
while interchanging columns is equivalent to permuting the coordinates. Hence

LC = L(B) ∼= ⊕
n/2
i=1L(

[

1 1

1 −1

]

).

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1253

(2) ≡ (3): We now show that LC decomposes into a direct sum of lower-dimensional
lattices, LC

∼= ⊕iLi if and only if the code C also decomposes, C ∼= ⊕iCi.
Let LC

∼= ⊕iLi. Without loss of generality, we can consider LC = ⊕iLi. We
have C = LC mod 2 = ⊕iLi mod 2. We observe that if Li has dimension ni, then
Li ⊇ 2Zni . Therefore, Ci = Li mod 2 is a binary code. Let Ci := Li mod 2 for every
i. Then C = ⊕iCi. (If c ∈ C, then c ∈ L and hence the projection of c to the subset
of coordinates corresponding to Li is in Ci. Let ci ∈ Ci for every i. The concatenated
vector ⊕ici is in ⊕iLi mod 2 and hence is in C).

To show the other direction of the equivalence, let C ∼= ⊕iCi, where each Ci ⊆ F
ni

2

and n =
∑

i ni. Therefore, LC = C + 2Zn ∼= ⊕iCi + 2Zn ∼= ⊕i(Ci + 2Zni) since
Z
n ∼= ⊕iZ

ni .

3.2. Algorithm. Theorem 1.1 shows that a lattice of the form C + 2Zn is or-
thogonal if and only if the underlying code decomposes into a direct sum of binary
linear codes isomorphic to {0, 1} or {0} or the 2-dimensional code {00, 11}. We now
give a polynomial time algorithm which finds the decomposition of the code C into
the component codes, Ci, if there exists one. Therefore, if the lattice LC is orthog-
onal, the algorithm decides in polynomial time if it is orthogonal and also gives the
orthogonal basis for the lattice.

The algorithm recursively attempts to find the component codes. If it is unable
to decompose the code at any stage, then it declares that LC is not orthogonal. At
every step we check if C ∼= {0, 1} × C ′ or {0} × C ′ or {00, 11} × C ′ and then recurse
on C ′.

Proof of Theorem 1.2. Given a basis for LC as input, we first compute the genera-
tor for C. From Theorem 1.1, we know that if LC is orthogonal, then C ∼= ⊕iCi where
each Ci is either the length-1 code {0, 1} or the length-1 code {0} or the 2-dimensional
code {00, 11}.

Therefore, the algorithm in each step decides whether C ∼= {0, 1} ⊕ C ′ or C ∼=
{0}⊕C ′ or C ∼= {00, 11}⊕C ′. Theorem 3.3 shows that by using Algorithm 1 we can
check in O(n4) time, if C ∼= {0, 1}⊕C ′. The same algorithm can be modified to check
in O(n4) time, if C ∼= {0} ⊕ C ′. Theorem 3.4 shows that Algorithm 2 can verify if
C ∼= {00, 11} ⊕C ′ in O(n5) time. If any one of the algorithms finds a decomposition,
then we recurse on the lower-dimensional code C ′ to find a further decomposition.
We recurse at most n times. If all the algorithms fail to find a decomposition, then
LC is not orthogonal. Therefore, it takes O(n6) time to decide if LC is orthogonal.

We now describe the individual algorithms to verify if C ∼= {0, 1} ⊕ C ′ or C ∼=
{0} ⊕ C ′ or C ∼= {00, 11} ⊕ C ′.

Algorithm 1 : decompose− length− 1(G):

Input: G = {g1, . . . , gn} ∈ F
n
2 (A generator for the code C)

1: for j ∈ {1, · · · , n} do
2: Let G′ ← projection of vectors in G on coordinates [n] \ {j}
3: For g ∈ G′, define g0, g1 ∈ F

n
2 as the n-dimensional vectors obtained by extend-

ing g using 0 and 1 along the jth coordinate, respectively.
4: if g0, g1 ∈ C for all g ∈ G′ then
5: return j
6: return FAIL

1254 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

Theorem 3.3. Let C be a binary linear code, and let G = {g1, . . . , gn} ∈ F
n×n
2

be its generator. Then Algorithm 1 decides whether C ∼= {0, 1} ⊕ C ′ for some linear
code C ′ ⊆ F

n−1
2 and, if so, outputs the coordinate corresponding to the direct sum

decomposition. Moreover, the algorithm runs in time O(n4).

Proof. For j ∈ [n], let C ′
j
⊆ F

n−1
2 be the projection of C on the indices [n] \ {j}

and for a vector c ∈ C ′
j
, let c0, c1 ∈ F

n
2 be extensions of c using 0, 1, respectively, along

the jth coordinate. We note that C ∼= {0, 1} ⊕ C ′ for some binary linear code C ′ if
and only if there exists an index j ∈ [n], such that

C =
{

c` | c ∈ C ′
j
, ` ∈ {0, 1}

}

.

From the definition of C ′
j
, it follows that C ⊆

{

c` | c ∈ C ′
j
, ` ∈ {0, 1}

}

up to a

permutation of coordinates. So, the algorithm just needs to verify if the other side of
the containment holds for some j ∈ [n].

LetG′ be the set of vectors ofG projected on the coordinates [n]\{j}. Algorithm 1
verifies if g0 and g1 are codewords in C, for every vector g ∈ G′. We now show that
this is sufficient. Since C is a code, if g0, g1 ∈ C for every g ∈ G′, then all linear
combinations of these vectors are also in C. Therefore,

{

c` | c ∈ C ′
j
, ` ∈ {0, 1}

}

⊆ C.

It takes O(n2) time to compute a parity check matrix from the generator G and
O(n2) time to verify if an input vector is a codeword using the parity check matrix.
For every possible choice of the index j, Algorithm 1 checks if each of the 2n vectors
of the form g0, g1 are in C. Therefore, Algorithm 1 takes O(n4) time to decide if
C ∼= {0, 1} ⊕ C ′.

Algorithm 2 : decompose− length− 2(G):

Input: G = {g1, . . . , gn} ∈ F
n
2 (A generator for the code C)

1: for j1, j2 ∈ {1, 2, . . . , n} do
2: Let G′ ← projection of vectors in G on coordinates [n] \ {j1, j2}
3: Let G′′ ← projection of vectors in G on coordinates {j1, j2}
4: if Code generated by G′′ ≡ {00, 11} then
5: For g ∈ G′ define g00, g11 ∈ F

n
2 be n-dimensional vectors obtained by extend-

ing g using 00 and 11 along the j1, j2 coordinates.
6: if g00, g11 ∈ C for all g ∈ G′ then
7: return j1, j2
8: return FAIL

Theorem 3.4. Let C be a binary linear code, and let G = {g1, . . . , gn} ∈ F
n×n
2

be its generator. Then Algorithm 2 decides whether C ∼= {00, 11}⊕C ′ for some linear
codes C ′ ⊆ F

n−2
2 and, if so, outputs the coordinates corresponding to the direct sum

decomposition. Moreover, the algorithm runs in time O(n5).

Proof. For j1, j2 ∈ [n], let C ′′
j1,j2

be the projection of C on the indices {j1, j2}.
We first verify if C ′′

j1,j2
is the code {00, 11}. For this purpose, it is sufficient to check

if C ′′
j1,j2

is generated by {11}. Now, to see if C ∼= {00, 11}⊕C ′ for some binary linear

code C ′ ⊆ F
n−2
2 . Define C ′

j̄1,j̄2
to be the projection of C on the indices [n] \ {j1, j2}.

For a vector c ∈ C ′
j̄1,j̄2

, let c00, c11 ∈ F
n
2 be the extensions of c using {00, 11} along

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1255

the j1, j2 coordinates. We note that C ∼= {00, 11}⊕C ′ for some binary linear code C ′

if and only if there exist indices j1, j2 ∈ [n], such that

(1) C =
{

c` | c ∈ C ′
j̄1,j̄2

, ` ∈ {00, 11}
}

.

From the definition of C ′
j̄1,j̄2

and C ′′
j1,j2

= {00, 11}, it follows that C ⊆
{

c` | c ∈

C ′
j̄1,j̄2

, ` ∈ {00, 11}
}

. So, the algorithm just needs to verify if the other side of the

containment holds for some indices j1, j2 ∈ [n].
Let G′ be the set of vectors of G projected on the coordinates [n] \ {j1, j2}.

Algorithm 2 verifies if g00 and g11 are codewords in C, for every vector g ∈ G′. We
now show that this is sufficient. Since C is a code, if g00, g11 ∈ C for every g ∈ G′, then
all linear combinations of these vectors are also in C. Therefore,

{

c` | c ∈ C ′
j̄1,j̄2

, ` ∈

{00, 11}
}

⊆ C.
For each choice of {j1, j2}, it takes O(n) time to verify if C ′′

j1,j2
= {00, 11}. Time

to verify if an input vector is a codeword using the parity check matrix is O(n2). We
perform this check for 2n vectors of the form {g` | g ∈ G′, ` ∈ {00, 11}}.

It takes O(n3) time to verify if C ∼= {00, 11} ⊕ C ′
j̄1,j̄2

for every pair of indices

j1, j2 ∈ [n]. There are at most
(

n
2

)

possible choices of indices, j1, j2; therefore, it takes
O(n5) time in total to decide if C ∼= {00, 11} ⊕ C ′.

4. Orthogonal lattices from Ternary codes. In this section we focus on lat-
tices obtained from ternary linear codes using Construction-A. In section 4.1, we show
that any orthogonal lattice obtained from a ternary linear code by Construction-A is
equivalent to a product lattice whose components are 1-dimensional or 4-dimensional.
In section 4.2, we show that given a lattice obtained from a ternary linear code by
Construction-A, there exists an efficient algorithm to verify if the lattice is orthogonal.

4.1. Decomposition characterization. We prove Theorem 1.3 in this subsec-
tion.

Proof of Theorem 1.3. We show that (1) ≡ (2) and (2) ≡ (3) to complete the
equivalence of the three statements.
(1) ≡ (2): We show that LC = C + 3Zn is orthogonal if and only if it decomposes
into a direct sum of lower-dimensional orthogonal lattices, LC

∼= ⊕iLi.
If LC

∼= ⊕iLi such that each Li is orthogonal, then LC is also orthogonal. This is
because LC has a block diagonal basis where each block is itself an orthogonal matrix
(by definition, a 1× 1-dimensional matrix is orthogonal).

We prove the other direction of the equivalence by induction on the dimension,
n, of the lattice LC . For the base case consider n = 1. Since L is integral and is of
the form C + 3Z for some ternary code C, it follows that L has to be either Z or 3Z.

Let us assume the induction hypothesis for all n− 1 or lower-dimensional orthog-
onal lattices obtained from ternary linear codes using Construction-A.

Let LC be an n-dimensional orthogonal lattice and B be an orthogonal basis of
LC with the rows being basis vectors. Since LC is an integral lattice, B has only
integral entries. The next two claims summarize certain properties of the entries of
the basis matrix B.

Claim 4.1. For every row b of B and for every j ∈ [n], we have that 3|bj | ∈
{0, ‖b‖2, 3‖b‖2}.

Proof. Since B is an orthogonal basis, BBT = D, where D is the diagonal matrix
with entries ‖b(i)‖2, where b(i) denotes the ith basis vector:

1256 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

D =











‖b(1)‖2 0 0 · · · 0
0 ‖b(2)‖2 0 · · · 0
...

...
. . .

...
0 0 0 · · · ‖b(n)‖2











.

We know that 3Zn ⊆ LC so, 3ej ∈ LC for every j ∈ [n]. Therefore, there is an
integral matrix X ∈ Z

n×n such that XB = 3In, i.e., 3B
−1 ∈ Z

n×n. Since B is an
orthogonal basis,

B−1 = BTD−1 ∈
1

3
Z
n×n.

Each column of BTD−1 is given by b/‖b‖2, where b is a basis vector. Therefore,
for any j ∈ [n], we have

3bj ≡ 0 mod ‖b‖2 for all j ∈ [n], and rows b of B.

Since bj is integral and |bj | ≤ ‖b‖
2 for every j ∈ [n], it follows that 3|bj | ∈

{0, ‖b‖2, 2‖b‖2, 3‖b‖2}. It now remains to exclude the case 3|bj | = 2‖b‖2. Suppose
there exists j ∈ [n] such that 3|bj | = 2‖b‖2. Since b is a basis vector, it follows that
b is not all zeroes. Hence bj 6= 0. We can rewrite the condition 3|bj | = 2‖b‖2 as
3|bj | = 2

∑n
i=1 b

2
i . Rearranging the terms, we have

|bj | (3− 2|bj |) = 2
∑

i 6=j

b2i .

Since the RHS is a sum of squares, it is always nonnegative. The left-hand side (LHS)
is nonzero since bj ∈ Z \ {0}. So the LHS should be strictly positive. Therefore,
|bj | ∈ (0, 3/2) ∩ Z and hence |bj | = 1. However, this implies that

∑

i 6=j b
2
i = 1/2,

contradicting the fact that b is integral. Hence, 3||bj || = 2‖b‖2 is impossible.

Claim 4.2. Let b be a row of B.
(1) If there exists j ∈ [n] such that 3|bj | = 3‖b‖2, then bj = ±1 and bj′ = 0 for

every j′ ∈ [n] \ {j}.
(2) If there exists j ∈ [n] such that 3|bj | = ‖b‖

2 and bj = ±3, then bj′ = 0 for
every j′ ∈ [n] \ {j}.

(3) If there exists j ∈ [n] such that 3|bj | = ‖b‖
2 and bj = ±1, then there exist

j1, j2 ∈ [n] \ {j}, such that |bj1 | = |bj2 | = 1 and bj′ = 0 for every j′ ∈
[n] \ {j, j1, j2}.

(4) If there exists j ∈ [n] such that 3|bj | = ‖b‖
2, then bj′ ∈ {0,±1,±3} for every

j′ ∈ [n].

Proof. (1) Since, ‖b‖2 =
∑n

i=1 b
2
i , and each bi ∈ Z, we conclude that |bj | = 1

and the remaining coordinates in b have to be 0, i.e., bj′ = 0 for all j′ ∈
[n] \ {j}.

(2) Follows from 3|bj | = ‖b‖
2 and b being integral.

(3) We can rewrite the condition 3|bj | = ‖b‖
2 as 3|bj | =

∑n
i=1 b

2
i . Rearranging

the terms, we have

(2) |bj | (3− |bj |) =
∑

i 6=j

b2i .

If bj = ±1, then
∑

i 6=j b
2
i = 2. Further, b is integral. Hence, b has exactly two

other nonzero coordinates bj1 , bj2 , j 6= j1, j2, such that |bj1 | = |bj2 | = 1.

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1257

(4) We have equation (2). The RHS is a sum of squares and hence the LHS
is nonnegative. Moreover, b is not all-zeroes vector implies that bj 6= 0.
Therefore, |bj | ∈ (0, 3] ∩ Z. If bj = ±2, then in order to satisfy

∑

i 6=j b
2
i = 2

using integral bi’s, exactly two coordinates bj1 , bj2 should be ±1, where j 6=
j1, j2. However, in this case, 3|bj1 | = 3|bj2 | = 3 6∈ {0, ‖b‖2 = 6, 3‖b‖2 = 18},
thus contradicting Claim 4.1. The conclusion then follows from parts (2) and
(3).

Using the properties of the orthogonal basis B of LC given in Claims 4.1 and 4.2,
we show that B is equivalent (up to permutations of its columns) to a block diagonal
matrix, i.e.,

B ∼=











B1 0 · · · 0
0 B2 · · · 0
...

. . . 0
0 0 · · · Bk











,

where each Bi is either the 1 × 1 matrix
[

1
]

or the 1 × 1 matrix
[

3
]

or the 4 × 4
matrix obtained from M by negating a subset of its columns, T (M). It follows that
LC
∼= ⊕iLi such that Bi is the basis for the lower-dimensional lattice Li.
Let us pick a row b of B with the smallest support. Fix an index j ∈ [n] to be the

index of a nonzero entry with minimum absolute value in b, i.e., j := argmink{|bk|}.
Since b is a row of a basis matrix, b cannot be the all-zeroes vector and, therefore, there
exists a j ∈ [n] such that |bj | > 0. Since we are only interested in equivalence (that
allows for permutation of coordinates), we may assume without loss of generality that
j = 1 by permuting the coordinates. By Claim 4.1, we have that 3|b1| ∈ {‖b‖

2, 3‖b‖2}.
We consider each of these cases separately.
1. Suppose 3|b1| = 3‖b‖2. By Claim 4.2(1), b = (±1, 0, . . . , 0). Since B is an orthogo-

nal basis, 〈b, b′〉 = 0⇒ b′1 = 0 for all b′ 6= b ∈ B. The orthogonality of B, therefore,
forces all other basis vectors to take a value of 0 in the 1st coordinate. Thus B is
of the form

B =









±1 0 · · · 0
0

B
′...

0









.

Therefore, we obtain LC
∼= Z⊕ L′, where L′ is an orthogonal (n− 1)-dimensional

lattice generated by the basis matrix restricted to the coordinates other than 1, say,
B′. From Claim 2.2, it follows that L′ = C ′ + 3Zn−1 for some ternary linear code
C ′ ⊆ F

n−1
3 . Thus L′ satisfies the induction hypothesis and we have the desired

decomposition.
2. Suppose 3|b1| = ‖b‖

2. We can rewrite this condition as 3|b1| =
∑n

i=1 b
2
i . Rearrang-

ing the terms, we have

|b1| (3− |b1|) =
∑

i 6=1

b2i .

Since the RHS is a sum of squares, it should be nonnegative.
(i) If RHS is 0, then b1 = ±3 and, therefore, it follows from Claim 4.2(2) that
b = (±3, 0, . . . , 0). The orthogonality of B forces all other basis vectors to take a

1258 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

value of 0 in the 1st coordinate.

B =









±3 0 · · · 0
0

B
′...

0









.

Therefore, we obtain LC
∼= 3Z⊕L′, where L′ is an orthogonal (n−1)-dimensional

lattice generated by the basis matrix restricted to the coordinates other than 1,
say B′. From Claim 2.2, it follows that L′ = C ′ + 3Zn−1 for some ternary linear
code C ′ ⊆ F

n−1
3 . Thus L′ satisfies the induction hypothesis and we have the

desired decomposition.
(ii) If RHS is strictly positive, then |b1| ∈ (0, 3) ∩ Z = {1, 2}. By Claim 4.2(4),
b1 6= ±2. Therefore, b1 = ±1. By Claim 4.2(3), we have that b has exactly three
nonzero coordinates and they are ±1. By permuting the coordinates of B, we
may assume that b ≡ (±1,±1,±1, 0, . . . , 0).

Since we picked the row b to be the one with the smallest support, it follows
that every row has at least three nonzero coordinates. By Claims 4.1 and 4.2,
this is possible only if for every other row b′ there exists j′ ∈ [n] such that
3|b′j′ | = ‖b

′‖2. By Claim 4.2(4), every other row b′ has all its coordinates in
{0,±1,±3}. By Claim 4.2(2), every other row b′ has none of its coordinates in
{±3}. Therefore, every other row b′ has all its coordinates in {0,±1}. By Claim
4.2(3), every row of the basis matrix has the same form as b: they have exactly
three nonzero entries each of which is ±1.

Since the rows of the basis matrix are orthogonal, it follows that the basis
matrix B is a weighing matrix of order n with weight 3. By Theorem 2.7, the
matrix B is obtained from ⊕n/4M by either negating some rows or columns and
by interchanging rows or columns. We recall that interchanging or negating the
rows of the basis matrix of a lattice preserves the basis property while interchang-
ing columns is equivalent to permuting the coordinates. Hence LC = L(B) ∼=

⊕
n/4
i=1L(Ti(M)), where each Ti(M) is a 4×4 matrix obtained by negating a subset

of columns of M .
(2) ≡ (3): We now show that LC decomposes into a direct sum of lower-dimensional
lattices, LC

∼= ⊕iLi if and only if the code C also decomposes, C ∼= ⊕iCi.
Let LC

∼= ⊕iLi. Without loss of generality, we can consider LC = ⊕iLi. We
have C = LC mod 3 = ⊕iLi mod 3. We observe that if Li has dimension ni, then
Li ⊇ 3Zni . Therefore, Ci = Li mod 3 is a ternary code. Let Ci := Li mod 3 for every
i. Then C = ⊕iCi. (If c ∈ C, then c ∈ L and hence the projection of c to the subset
of coordinates corresponding to Li is in Ci. Let ci ∈ Ci for every i. The concatenated
vector ⊕ici is in ⊕iLi mod 3 and hence is in C.)

To show the other direction of the equivalence, let C ∼= ⊕iCi, where each Ci ⊆ F
ni

3

and n =
∑

i ni. Therefore, LC = C + 3Zn ∼= ⊕iCi + 3Zn ∼= ⊕i(Ci + 3Zni) since
Z
n ∼= ⊕iZ

ni .

4.2. Algorithm. Theorem 1.3 shows that a lattice of the form C + 3Zn is or-
thogonal if and only if the underlying code decomposes into a direct sum of ternary
linear codes isomorphic to {0, 1, 2} or {0} or the 4-dimensional code generated by
T (M) mod 3, where T (M) is obtained from matrix M by negating a subset of its
columns. We now give a polynomial time algorithm which finds the decomposition of
the code C into the component codes, Ci, if there exists one. Therefore, if the lattice
LC is orthogonal, the algorithm decides in polynomial time if it is orthogonal and also

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1259

gives the orthogonal basis for the lattice.
The algorithm recursively attempts to find the component codes. If it is unable

to decompose the code at any stage, then it declares that LC is not orthogonal. At
every step we check if C ∼= {0, 1, 2} × C ′ or {0} × C ′ or CT (M) × C ′ where CT (M) is
the code generated by T (M) mod 3 and then recurse on C ′.

Proof of Theorem 1.4. Given a basis for LC as input, we first compute the gen-
erator for C. From Theorem 1.3, we know that if LC is orthogonal, then C ∼= ⊕iCi

where each Ci is either the length-1 code {0, 1, 2} or the length-1 code {0} or a 4-
dimensional code generated by the rows of T (M) mod 3 where T (M) obtained from
matrix M by negating a subset of its columns.

Therefore, the algorithm in each step decides if C ∼= {0, 1, 2}⊕C ′ or C ∼= {0}⊕C ′

or C ∼= CT (M)⊕C ′, where CT (M) denotes the code generated by T (M) mod 3. Theo-
rem 4.3 shows that using Algorithm 3 we can check in O(n4) time if C ∼= {0, 1, 2}⊕C ′.
The same algorithm can be modified to check in O(n4) time if C ∼= {0} ⊕ C ′. Theo-
rem 4.4 shows that Algorithm 4 can verify if C ∼= CT (M) ⊕ C ′ in O(n7) time. If any
one of the algorithms finds a decomposition, then we recurse on the lower-dimensional
code C ′ to find a further decomposition. We recurse at most n times. If all the al-
gorithms fail to find a decomposition, then LC is not orthogonal. Therefore, it takes
O(n8) time to decide if LC is orthogonal.

We now describe the individual algorithms to verify if C ∼= {0, 1, 2} ⊕ C ′ or
C ∼= {0} ⊕ C ′ or C ∼= CT (M) ⊕ C ′.

Algorithm 3 : decompose− length− 1(G):

Input: G = {g1, . . . , gn} ∈ F
n
3 (A generator for the code C)

1: for j ∈ {1, . . . , n} do
2: Let G′ ← projection of vectors in G on coordinates [n] \ {j}
3: For g ∈ G′, define g0, g1, g2 ∈ F

n
3 as the n-dimensional vectors obtained by

extending g using 0, 1, and 2 along the jth coordinate, respectively.
4: if g0, g1, g2 ∈ C for all g ∈ G′ then
5: return j
6: return FAIL

Theorem 4.3. Let C be a ternary linear code and G = {g1, . . . , gn} ∈ F
n×n
3

be its generator. Then Algorithm 3 decides if C ∼= {0, 1, 2} ⊕ C ′ for some linear
code C ′ ⊆ F

n−1
3 and, if so, outputs the coordinate corresponding to the direct sum

decomposition. Moreover, the algorithm runs in time O(n4).

Proof. For j ∈ [n], let C ′
j
⊆ F

n−1
3 be the projection of C on the indices [n] \ {j}

and for a vector c ∈ C ′
j
, let c0, c1, c2 ∈ F

n
3 be extensions of c using 0, 1, 2, respectively,

along the jth coordinate. We note that C ∼= {0, 1, 2} ⊕ C ′ for some ternary linear
code C ′ if and only if there exists an index j ∈ [n], such that

C =
{

c` | c ∈ C ′
j
, ` ∈ {0, 1, 2}

}

.

From the definition of C ′
j
, it follows that C ⊆

{

c` | c ∈ C ′
j
, ` ∈ {0, 1, 2}

}

up to a

permutation of coordinates. So, the algorithm just needs to verify if the other side of
the containment holds for some j ∈ [n].

1260 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

LetG′ be the set of vectors ofG projected on the coordinates [n]\{j}. Algorithm 3
verifies if g0, g1, and g2 are codewords in C, for every vector g ∈ G′. We now show that
this is sufficient. Since C is a code, if g0, g1, g2 ∈ C for every g ∈ G′, then all linear
combinations of these vectors are also in C. Therefore,

{

c` | c ∈ C ′
j
, ` ∈ {0, 1, 2}

}

⊆ C.

It takes O(n2) time to compute a dual code basis from the generator G and O(n2)
time to verify if an input vector is a codeword using the dual basis. For every possible
choice of the index j, Algorithm 3 checks if each of the 3n vectors of the form g0, g1, g2

are in C. Therefore, Algorithm 3 takes O(n4) time to decide if C ∼= {0, 1, 2} ⊕ C ′.

Algorithm 4 : decompose− length− 4(G):

Input: G = {g1, . . . , gn} ∈ F
n
3 (A generator for the code C)

1: for j1, j2, j3, j4 ∈ {1, 2, · · · , n} do
2: Let G′ ← projection of vectors in G on coordinates [n] \ {j1, j2, j3, j4}
3: Let G′′ ← projection of vectors in G on coordinates {j1, j2, j3, j4}
4: for S ⊆ [4] do
5: Let T (M)←M with columns in S negated
6: if CT (M) ≡ Code generated by G′′ then
7: For g ∈ G′ define gp1 , gp2 , gp3 , gp4 ∈ F

n
3 be n-dimensional vectors obtained

by extending g using the rows of T (M) along the j1, j2, j3, j4 coordinates.

8: if gp1 , gp2 , gp3 , gp4 ∈ C for all g ∈ G′ then
9: return j1, j2, j3, j4 and T (M)

10: return FAIL

Theorem 4.4. Let C be a ternary linear code, and let G = {g1, . . . , gn} ∈ F
n×n
3 be

its generator. For a matrix T (M) obtained by negating a subset of columns of M , let
CT (M) be the length-4 code whose generators are the rows of T (M). Then Algorithm

4 decides if C ∼= CT (M) ⊕ C ′ for some linear codes C ′ ⊆ F
n−4
3 and CT (M) ⊆ F

4
3 and

if so outputs the coordinates corresponding to the direct sum decomposition as well as
the matrix T (M). Moreover, the algorithm runs in time O(n7).

Proof. For 1 ≤ j1 < j2 < j3 < j4 ≤ n, let C ′′
j1,j2,j3,j4

be the projection of C on the
indices {j1, j2, j3, j4}. We first verify if C ′′

j1,j2,j3,j4
is the code generated by the rows

of T (M) (denoted as CT (M)) for some T (M) which is obtained by negating a subset
of columns of M . We would like to check if every c ∈ C ′′

j1,j2,j3,j4
is in CT (M) and vice

versa. For this purpose, it is sufficient to check if the generator vectors of C ′′
j1,j2,j3,j4

are codewords in CT (M) and each row of T (M) is a codeword in C ′′
j1,j2,j3,j4

. We know
that the generators of C ′′

j1,j2,j3,j4
are contained in G′′ where G′′ is the set of vectors

in G projected on the indices {j1, j2, j3, j4}.
Once we fix T (M) such that C ′′

j1,j2,j3,j4
= CT (M), it remains to verify if C ∼=

CT (M) ⊕ C ′ for some ternary linear code C ′ ⊆ F
n−4
3 . Define C ′

j̄1,j̄2,j̄3,j̄4
to be the

projection of C on the indices [n] \ {j1, j2, j3, j4}. For a vector c ∈ C ′
j̄1,j̄2,j̄3,j̄4

, let
cp ∈ F

n
3 be the extensions of c using a codeword p ∈ CT (M) along the j1, j2, j3, j4

coordinates. We note that C ∼= CT (M) ⊕ C ′ for some ternary linear code C ′ if and
only if there exist indices j1, j2, j3, j4 ∈ [n], such that

(3) C =
{

cp | c ∈ C ′
j̄1,j̄2,j̄3,j̄4

, p ∈ CT (M)

}

.

DECIDING ORTHOGONALITY IN CONST-A LATTICES 1261

From the definition of C ′
j̄1,j̄2,j̄3,j̄4

and C ′′
j1,j2,j3,j4

(= CT (M)), it follows that C ⊆ {c
p |

c ∈ C ′
j̄1,j̄2,j̄3,j̄4

, p ∈ CT (M)}. So, the algorithm just needs to verify if the other side of

the containment holds for some indices j1, j2, j3, j4 ∈ [n].
Let G′ be the set of vectors of G projected on the coordinates [n] \ {j1, j2, j3, j4}.

Algorithm 4 verifies if gp0 , gp1 , gp3 , and gp4 are codewords in C, for every vector
g ∈ G′. We now show that this is sufficient. Since C is a code, if gp0 , gp1 , gp3 , gp4 ∈ C
for every g ∈ G′ and pi ∈ T (M), then all linear combinations of these vectors are also
in C. Therefore, {cp | c ∈ C ′

j̄1,j̄2,j̄3,j̄4
, p ∈ CT (M)} ⊆ C.

There are 2444 possible choices of T (M) including permutations. For each matrix
T (M), it takes O(n) time to verify if CT (M) = C ′′

j1,j2,j3,j4
. Time to verify if an input

vector is a codeword using the dual basis is O(n2). We perform this check for 4n
vectors of the form {gp0 , gp1 , gp3 , gp4 | g ∈ G′}. So, for a given T (M) such that
CT (M) = C ′′

j1,j2,j3,j4
, it takes O(n3) time to verify C ∼= CT (M) ⊕ C ′.

For every possible choice of indices, {j1, j2, j3, j4}, Algorithm 4 takes O(n3) time
to verify if C ∼= CT (M) ⊕ C ′

j̄1,j̄2,j̄3,j̄4
. Since there are at most

(

n
4

)

possible choices of

indices, it takes O(n7) time in total to decide if C ∼= CT (M) ⊕ C ′.

Acknowledgments. We thank Daniel Dadush and the anonymous reviewers for
helpful suggestions and pointers.

REFERENCES

[1] M. Ajtai, Generating hard instances of lattice problems (extended abstract), in Proceedings of
the Twenty-eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
PA, 1996, ACM, New York, 1996, pp. 99–108, https://doi.org/10.1145/237814.237838.

[2] L. Babai, Automorphism groups, isomorphism, reconstruction, in Handbook of Combinatorics
27, R. L. Graham, M. Grotschel, and L. Lovasz, eds., North-Holland, Amsterdam, 1996,
pp. 1447–1540.

[3] H. Chan, C. Rodger, and J. Seberry, On inequivalent weighing matrices, Ars Combin., 21
(1986), pp. 299–333.

[4] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grundlehren Math.
Wiss. 290, Springer-Verlag, New York, 1999, https://doi.org/10.1007/978-1-4757-6568-7.

[5] I. Haviv and O. Regev, On the lattice isomorphism problem, in Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
OR, ACM, New York, SIAM, Philadelphia, 2014, pp. 391–404, https://doi.org/10.1137/1.
9781611973402.29.

[6] R. Kannan, Improved algorithms for integer programming and related lattice problems, in
Proceedings of the 15th Annual ACM Symposium on Theory of Computing, Boston, MA,
1983, pp. 193–206, https://doi.org/10.1145/800061.808749.

[7] R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith and Hermite
normal forms of an integer matrix, SIAM J. Comput., 8 (1979), pp. 499–507, https://doi.
org/10.1137/0208040.

[8] A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational coeffi-
cients, Math. Ann., 261 (1982), pp. 515–534.

[9] H. Lenstra and A. Silverberg, Revisiting the gentry-szydlo algorithm, in Advances in Cryp-
tology CRYPTO 2014, Lecture Notes in Comput. Sci. 8616, Springer, Berlin, Heidelberg,
2014, pp. 280–296, https://doi.org/10.1007/978-3-662-44371-2 16.

[10] H. W. Lenstra and A. Silverberg, Lattices with symmetries, J. Cryptol., in press, https:
//doi.org/10.1007/s00145-016-9235-7.

[11] D. Micciancio and O. Regev, Lattice-based cryptography, in Post-Quantum Cryptography,
D. J. Bernstein, J. Buchmann, and E. Dahmen, eds., Springer, Berlin, 2009, pp. 147–191,
https://doi.org/10.1007/978-3-540-88702-7 5.

[12] W. Plesken and B. Souvignier, Computing isometries of lattices, J. Symbolic Comput., 24
(1997), pp. 327–334, https://doi.org/10.1006/jsco.1996.0130.

1262 K. CHANDRASEKARAN, V. GANDIKOTA, AND E. GRIGORESCU

[13] C. Schnorr, Factoring integers by CVP algorithms, in Number Theory and Cryptography -
Papers in Honor of Johannes Buchmann on the Occasion of His 60th Birthday, Lecture
Notes in Comput. Sci. 8260, Springer, Heidelberg, 2013, pp. 73–93, https://doi.org/10.
1007/978-3-642-42001-6 6.

[14] M. D. Sikiric, A. Schürmann, and F. Vallentin, Complexity and algorithms for computing
Voronoi cells of lattices, Math. Comp., 78 (2009), pp. 1713–1731, https://doi.org/10.1090/
S0025-5718-09-02224-8.

[15] M. Szydlo, Hypercubic lattice reduction and analysis of GGH and NTRU signatures, in Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Lecture
Notes in Comput. Sci. 2656, Springer, Berlin, 2003, pp. 433–448, https://doi.org/10.1007/
3-540-39200-9 27.

	Introduction
	Our results and techniques

	Preliminaries
	Orthogonal lattices from binary codes
	Decomposition characterization
	Algorithm

	Orthogonal lattices from Ternary codes
	Decomposition characterization
	Algorithm

	References

