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Abstract.

Testing membership in lattices is of practical relevance, with applications to integer programming, error detection in lattice-
based communication and cryptography. In this work, we initiate a systematic study of local testing for membership in lattices,
complementing and building upon the extensive body of work on locally testable codes. In particular, we formally define the
notion of local tests for lattices and present the following:

1. We show that in order to achieve low query complexity, it is sufficient to design one-sided non-adaptive canonical
tests. This result is akin to, and based on an analogous result for error-correcting codes due to Ben-Sasson et al.
(SIAM J. Computing 35(1) pp1–21).

2. We demonstrate upper and lower bounds on the query complexity of local testing for membership in code formula
lattices. We instantiate our results for code formula lattices constructed from Reed-Muller codes to obtain nearly-
matching upper and lower bounds on the query complexity of testing such lattices.

3. We contrast lattice testing to code testing by showing lower bounds on the query complexity of testing low-dimensional
lattices. This illustrates large lower bounds on the query complexity of testing membership in the well-known knapsack
lattices. On the other hand, we show that knapsack lattices with bounded coefficients have low-query testers if the
inputs are promised to lie in the span of the lattice.
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1. Introduction. Local testing for properties of combinatorial and algebraic objects have widespread
applications and have been intensely investigated in the past few decades. The main underlying goal in
Local Property Testing is to distinguish objects that satisfy a given property from objects that are far from
satisfying the property, using a small number of observations of the input object. Starting with the seminal
works of [7, 12, 31], significant focus in the area has been devoted to locally testable error-correcting codes,
called Locally Testable Codes (LTCs) [14]. LTCs are the key ingredients in several fundamental results in
complexity theory, most notably in the PCP theorem [2, 3].

In this work we initiate the study of local testability for membership in point lattices, a class of infinite
algebraic objects that form discrete subgroups of R

n. Lattices are well-studied in mathematics, physics
and computer science due to their rich algebraic structure [8]. Algorithms for various lattice problems
have directly influenced the ability to solve integer programs [9, 22, 16]. Recently, lattices have found
applications in modern cryptography due to attractive properties that enable efficient computations and
security guarantees [26, 24, 29, 30]. Lattices are also used in practical communication settings to encode
data in a redundant manner in order to protect it from channel noise during transmission [11].

A point lattice L ⊂ R
n of rank k and dimension n is specified by a set of linearly independent vectors

b1, . . . , bk ∈ R
n known as a basis, for some k ≤ n. If k = n the lattice is said to have full rank. The set

L is defined to be the set of all vectors in R
n that are integer linear combinations of the basis vectors, i.e.,

L := {
∑k

i=1 αibi | αi ∈ Z ∀ i ∈ [k]}. Lattices are the analogues over Z of linear error-correcting codes over
a finite field F, which are generated as F-linear combinations of a linearly independent set of basis vectors
b1, . . . , bk ∈ F

n.
Given a basis for a lattice L, we are interested in testing if a given input t ∈ R

n belongs to L, or is far
from all points in L by querying a small number of coordinates of t. We emphasize that this setting does
not limit the computational space or time in pre-processing the lattice as well as the queried coordinates.
The main goal is to design a tester that queries only a small number of coordinates of the input.
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1.1. Motivation. Lattice-based communication. Lattices are a major technical tool in communi-
cation systems as the analogue of error-correcting codes over reals, for applications such as wireless com-
munication and transmission over analog lines. In lattice-coding, the message m is mapped to a point c
in a chosen lattice L. The codeword c is transmitted over an analog channel. If the encoded message gets
corrupted by the channel, then the channel output may not be a lattice point, thus enabling transmission
error detection. In order to correct errors, computationally expensive decoding algorithms are employed.
Instead, the receiver may perform a local test for membership in the lattice beforehand, allowing the costly
decoding computation to run only when there is a reasonably high chance of correct decoding.

Coding theory. Lattices can be seen as coding theoretic objects naturally bringing features of error-
correcting codes from the finite field domain to the real domain. As such, a study of local testing (and
correction) procedures for lattices naturally extends the classical notions of Locally Testable Codes (LTCs)
and Locally Decodable Codes (LDCs), which are in turn of significance to computational complexity theory
(for example in constructing probabilistically checkable proofs and hardness amplification, among numerous
other applications). Characterizing local testability, explicitly initiated by Kaufman and Sudan [18], has
been an intensely investigated direction in the study of LTCs. We believe that an analogous investigation of
lattices is likely to bring new insights and new connections in property testing.

Integer Programming. Lattices are the fundamental structures underlying integer programming problems.
An integer programming problem (IP) is specified by a constraint matrix A ∈ R

n×m and a vector b ∈ R
n. The

goal is to verify if there exists an integer solution to the system Ax = b, x ≥ 0. Although IP is NP-complete
[17], its instances are solved routinely in practice using cutting planes and branch-and-cut techniques [33].
The relaxed problem of verifying integer feasibility of the system Ax = b is equivalent to verifying whether
b lies in the lattice generated by the columns of A. Thus, the relaxation problem is the membership testing
problem in a lattice. It is solvable efficiently and is a natural pre-processing step to solving IPs. Furthermore,
if the number of constraints n in the problem is very large, then it would be helpful to run a tester that
reads only a partial set of coordinates of the input b to verify if b could lie in the lattice generated by the
columns of A or is far from it. If the test rejects, then this saves on the computational effort to search for a
non-negative solution.

Cryptography. In some cryptanalytic attacks on lattice-based cryptosystems, one needs to distinguish
target vectors that are close to lattice vectors from those that are far from all lattice vectors. Hence, it is
imperative to understand which lattices are difficult to test in order to ensure security of certain lattice-based
cryptosystems.

We now give an informal description of our testing model motivated by its application in lattice-coding.
The transmission of each coordinate of a lattice-codeword over the analog channel consumes power that
is proportional to the square of the transmitted value. Thus the power consumption for transmitting the
lattice-codeword c ∈ L ⊂ R

n is proportional to its squared `2 norm. The power consumption for transmitting
a codeword over the channel is usually constrained by a power budget. The noise vector is also subject to a
bound on its power. The power budget for transmission is typically formulated by considering the lattice-
code C(L) defined by the set of lattice points c ∈ L that satisfy

∑n
i=1 c

2
i ≤ σn for some constant power

budget σ > 0. In order to ensure that the receiver can tolerate adversarial noise budget δ per channel use,
the shortest nonzero vector v ∈ L should be such that

∑n
i=1 v

2
i ≥ δn. Thus, the relative distance of the

lattice-code C(L) is defined to be
∑n

i=1 v
2
i /n, where v ∈ L is a shortest nonzero lattice vector. The rate of

a lattice-code C(L) is defined to be (1/n) log |C(L)| (note that this quantity could be larger than 1). An
asymptotically good family of lattices, in this work, is one that achieves rate and relative distance that are
both lower bounded by a positive constant. Such families are ideal for use in noisy communication channels.

We define a notion of a tester that will be useful as a pre-processor for decoding, and is similar to
the established notion of code testing: An `2-tester of a lattice L for a given distance parameter ε > 0
is a probabilistic procedure that given an input t ∈ R

n, queries at most q coordinates of t, accepts with
probability at least 2/3 if t ∈ L, and rejects with probability at least 2/3 if

∑n
i=1(ti − wi)

2 ≥ εn for every
w ∈ L.
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In the next section we propose two main directions of research (Questions 1.2 and 1.3) analogous to
similar directions that are fundamental to the study of locally testable codes.

1.2. Testing model. In the above application, we focused on `2 distances. We now formalize the notion
of testing lattices for `p distances. We consider `p distances since these are natural notions for real-valued
inputs [5]. The `p distance between x, y ∈ R

n is defined as dp(x, y) := ‖x− y‖p = (
∑

i∈[n] |xi − yi|
p)1/p. The

distance from v ∈ R
n to L is dp(v, L) := minu∈L dp(v, u). Denote the `p norm of the real vector 1n by ‖1n‖p.

In this work, we focus only on integral lattices, which are sub-lattices of Zn. Integral lattices are the
most commonly encountered lattices in applications. Moreover, arbitrary lattices can be approximated by
rational lattices and rational lattices can be scaled to integral lattices. Furthermore, it is imperative to
investigate and understand integral lattices as a first step before attempting to address arbitrary lattices.
For a lattice L, we denote the subspace of the lattice by span(L).

Definition 1.1 (Local test for lattices). An `p-tester T (ε, c, s, q) for a lattice L ⊆ Z
n is a probabilistic

algorithm that queries q coordinates of the input t ∈ R
n, and

• (completeness) accepts with probability at least 1− c if t ∈ L,
• (soundness) rejects with probability at least 1− s if dp(t, L) ≥ ε · ‖1n‖p (we call such a vector t to be

ε-far from L).
If T always accepts inputs t that are in the lattice L then it is called 1-sided, otherwise it is 2-sided. If the
queries performed by T depend on the answers to the previous queries, then T is called adaptive, otherwise
it is called non-adaptive.

Our notion for a vector being “ε-far from the lattice” calls for a discussion. The notion of being ‘ε-far’
from the lattice should ideally be defined to suit the application of interest. For example, in applications
like IP and cryptography, it is natural to ask for a notion of tester that ensures that scaling the lattice
does not change the query complexity. An alternate definition of ε-far based on the covering radius of the
lattice could be helpful to achieve this property. The covering radius of a lattice L ⊆ R

n (similar to codes)
is the largest distance of any vector in R

n to the lattice. It is trivial to design a tester to verify if a point
is in the lattice or at distance more than the covering radius from the lattice (simply accept all inputs). In
order to have a tester notion where scaling preserves query complexity, we may define a vector as being ε-far
from the lattice if the distance of the vector to every lattice point is at least ε times the covering radius
of the lattice. We note that the covering radius of any integral lattice is Ω(‖1n‖p). Indeed, the densest
possible integral lattice, namely the integer lattice Z

n, has covering radius (1/2)‖1n‖p, as exhibited by the
point v = (1/2, . . . , 1/2) ∈ R

n. Thus, by asking the tester to reject points at distance more than ε‖1n‖p
in Definition 1.1, we have settled upon a strong notion of being ε-far from the lattice (i.e., the definition
would in particular imply that vectors that are farther than ε times the covering radius would be rejected
by the tester). Moreover, the definition of ε-far based on covering radius is essentially equivalent to the one
in Definition 1.1 if the covering radius of the lattice is Θ(n).

A test T (ε, 0, 0, q) is a test with perfect completeness and perfect soundness. 1-sided testers (i.e., testers
with perfect completeness) are useful as a pre-processing step, as mentioned earlier. An asymptotically good
family of lattices L(n) for `p distances is one that has `p-relative distance lower bounded by a constant (i.e.,
minv∈L(n) ‖v‖

p
p/n = Ω(1)) and has 2Ω(n) lattice points in the origin-centered `p-ball of radius ‖1n‖p. By a

simple packing argument1, we note that such lattices have at most 2O(n) lattice points in the origin-centered
`p-ball of radius ‖1

n‖p. Similar to the application in lattice-coding and locally testable codes, a main question
in `p-testing of lattices is the following:

Question 1.2. Is there an asymptotically good family of lattices that can be tested for membership with
constant number of queries?

Motivated by the applications in IP and cryptography, we identify another fundamental question in `p-testing
of lattices:

1Let L(n) be an asymptotically good family of lattices with minimum distance λ1 := c‖1n‖p for some constant c. Let K
be the number of lattice points inside the `p-ball of radius ‖1n‖p, denoted by B(0, ‖1n‖p). The balls of radius λ1/2 about each
of those K lattice points are disjoint and the union of these balls are contained in B(0, (1 + c/2)‖1n‖p). Therefore, K is upper
bounded by the ratio of the volumes of B(0, (1 + c/2)‖1n‖p) and B(0, (c/2)‖1n‖p) which is at most e2n/c.
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Question 1.3. What properties of a given lattice enable the design of `p-testers with constant query
complexity?

Tolerant Testing. Many applications can tolerate a small amount of noise in the input. Parnas et al. [28]
introduced the notion of tolerant testing to account for a small amount of noise in the input. Tolerant testing
has been studied in the context of codes (e.g. [15, 19]), and in the context of properties of real-valued data
in the `p norm (e.g. [5]). We extend the tolerant testing model to lattices as follows.

Definition 1.4 (Tolerant local test for lattices). An `p-tolerant-tester T (ε1, ε2, c, s, q) for a lattice L ⊆
Z
n is a probabilistic algorithm that queries q coordinates of the input t ∈ R

n, and
• (completeness) accepts with probability at least 1− c if dp(t, L) ≤ ε1 · ‖1

n‖p,
• (soundness) rejects with probability at least 1− s if dp(t, L) ≥ ε2 · ‖1

n‖p.

Tolerant testing with parameter ε1 = 0 corresponds to the notion of testing given in Definition 1.1. Tolerant
testing and distance approximation are closely related notions. In fact, in the Hamming space, the ability
to perform tolerant testing for every choice of ε1 < ε2 can be exploited to approximate distances (using a
binary search) [28].

Analogy with code testers. A common notion of testing for membership in error-correcting codes requires
that inputs at Hamming distance at least εn from the code be rejected. (This notion is only relevant when
the covering radius of the code is larger than εn.) We include the common definition here, and note that
stronger versions of testing have also been considered in the literature [14, 15].

Definition 1.5 (Local test for codes). A tester T (ε, c, s, q) for an error-correcting code C ⊆ F
n is a

probabilistic algorithm that makes q queries to the input t ∈ F
n, and

• (completeness) accepts with probability at least 1− c if t ∈ C, and
• (soundness) rejects with probability at least 1 − s if dH(t, C) ≥ ε · n, where dH(u, v) := |{i ∈ [n] :
u(i) 6= v(i)}| denotes the Hamming distance between u and v, and dH(t, C) := minc∈C dH(t, c) (we
call such a vector t to be ε-far from C).

1.3. Our contributions. We initiate the study of membership testing in point lattices from the per-
spective of sublinear algorithms aiming to lay the ground work for further advances towards resolving Ques-
tion 1.2 and Question 1.3. Our contributions draw on connections between lattices and codes, and on
well-known techniques in property testing.

1.3.1. Upper and lower bounds for testing specific lattice families. Motivated by applications
in lattice-based communication, we focus on an asymptotically good family of sets constructed from linear
codes, via the so-called “code formula” [11]. We show upper and lower bounds on the query complexity of
`1-testers for code formulas, as a function of the query complexity of the constituent code testers.

Code formula lattices. For simplicity, in what follows we will slightly abuse notation and use binary
linear code C ⊆ {0, 1}n to denote both the code viewed over the field F2 = {0, 1} and the code embedded
into R

n via the trivial embedding 0 7→ 0 and 1 7→ 1. All the arithmetic operations in the code formula refer
to operations in R

n. For two sets A and B of vectors we define A + B := {a + b | a ∈ A, b ∈ B}. The
constituent codes used in all code formula lattices considered in this work are binary linear codes.

Definition 1.6 (Code Formula). Let C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ Cm = F
n
2 be a family of nested binary

linear codes. Then the code formula constructed from the family is defined as

C0 + 2C1 + · · ·+ 2m−1Cm−1 + 2mZ
n.

Here, m is the height of the code-formula.
If the family satisfies the Schur product condition, namely, c1 ∗ c2 ∈ Ci+1 for all codewords c1, c2 ∈ Ci,

where the ‘*’ operator is the coordinate-wise (Schur) product c1∗c2 = 〈(c1)i ·(c2)i〉i∈[n], then the code-formula

forms a lattice (see [20]) and we denote it by L(〈Ci〉
m−1
i=0 ).

Significance of code formula lattices. Code formula lattices with height one already have constant
rate if the constituent code C0 has minimum Hamming distance Ω(n). Unfortunately, these lattices have
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tiny relative minimum distance (since 2Zn has constant length vectors). However, code formulas of larger
height achieve much better relative distance. In particular, it is easy to see that code formula lattices of
height m ≥ log n in which each of the constituent codes Ci has minimum Hamming distance Ω(n) give
asymptotically good families of lattices [13, 8]. The code formula lattice constructed from a family of codes
that satisfies the Schur-product condition is equivalent to the lattice constructed from the same family of
codes by Construction D [21, 8, 20]. Construction-D lattices are primarily used in communication settings,
e.g. see Forney [11].

In this work we design a tester for code formula lattices using testers for the constituent codes.

Theorem 1.7. Let 0 < ε, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary linear codes
satisfying the Schur product condition. Suppose every Ci has a 1-sided tester Ti(ε/m2i+1, 0, s, qi). Then,
there exists an `1-tester T (ε, 0, s, q) for the lattice L(〈Ci〉

m−1
i=0 ) with query complexity

q = O

(

1

ε
log

1

s

)

+

m−1
∑

i=1

qi.

Next, we show a lower bound on the query complexity for testing membership in code formula lattices,
using lower bounds for testing membership in the constituent codes.

Theorem 1.8. Let 0 < ε, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary linear
codes satisfying the Schur product condition. Let qi = qi(ε, c, s) be such that any (possibly adaptive, 2-sided)
`1-tester Ti(ε, c, s, q

′) for Ci satisfies q
′ = Ω(qi), for every i = 0, 1, . . . ,m− 1. Then every (possibly adaptive,

2-sided) `1-tester T (ε, c, s, q) for the lattice L(〈Ci〉
m−1
i=0 ) has query complexity

q = Ω

(

max

{

1

ε
log

1

s
, max
i=0,1,...,m−1

qi

})

.

Code formula lattices from Reed-Muller codes. We instantiate the upper and lower bounds on the query
complexity for a common family of code formula lattices constructed using Reed-Muller codes [11] to obtain
nearly matching upper and lower bounds. We recall Reed-Muller codes below.

Definition 1.9 (Reed Muller Codes). Each codeword of a binary Reed-Muller code RM(k, r) ⊆ F
2r

2

corresponds to a polynomial p(x) ∈ F2[x] in r variables of degree at most k evaluated at all 2r possible inputs
x ∈ F

r
2.

For the family of Reed-Muller codes in F
2r

2 , it is well-known that RM(0, r) ⊆ RM(1, r) ⊆ RM(2, r) ⊆
RM(3, r) ⊆ · · · ⊆ RM(r − 1, r) ⊆ RM(r, r) = F

2r

2 . A particular family of RM codes that leads to code

formula lattices is 〈RM(ki, r)〉
log r
i=0 , with ki = 2i. Indeed, it can be easily verified that this family satisfies

the Schur product condition since Reed-Muller codewords are evaluation tables of multivariate polynomials
over the binary field and product of two degree k polynomials is a degree 2k polynomial. Hence for height
m ≤ log r the construction 〈RM(2i, r)〉m−1

i=0 gives rise to a lattice. We note these lattices have small relative
minimum distance and are not asymptotically good families of lattices.

Corollary 1.10. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let 0 < ε, s < 1
and L be the lattice obtained from this family of codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ
2r .

Then, there exists an `1-tester T (ε, 0, s, q) for L with query complexity

q(ε, s) = O

(

2km−1 ·
1

ε
log

1

s

)

.

In particular, when the height m and the degrees are constant, the query complexity of the tester is a
constant.

For the lower bound, we obtain the following corollary using known lower bounds for testing Reed-Muller
codes.
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Corollary 1.11. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let 0 < ε, c, s < 1
be constants and L be the lattice obtained from this family of codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ
2r .

Then, every (possibly 2-sided, adaptive) `1-tester T (ε, c, s, q) for L has query complexity

q = Ω(2km−1).

We note that for code formula lattices obtained from Reed-Muller codes, Corollaries 1.10 and 1.11 show
matching bounds (up to a constant factor depending on ε, s).

Random lattices. There exists a distribution of random lattices which are impossible to test with small
number of queries. This follows from Theorem 1.8 and considering random codes, which typically need
at least a linear number of queries to test. We illustrate a concrete example by considering the following
distribution of random lattices [10, 4]: For constants b < a, let m = nb/a and let H ∈ F

m×n
2 be a random

matrix such that each row and column has exactly a and b non-zeroes respectively. Consider the linear code
Ca,b := {x ∈ F

n
2 : Hx = 0(mod 2)} and the code formula lattice L(Ca,b) associated with the linear code Ca,b.

Theorem 1.12. There exist constants a, b, ε, c, s such that every (possibly 2-sided, adaptive) `1-tester
T (ε, c, s, q) for L(Ca,b) has query complexity q = Ω(n).

The above theorem follows as an immediate corollary of Theorem 1.8 and Theorem 3.7 of [4].

1.3.2. Tolerant testing code formulas. We also obtain upper bounds for tolerantly testing code
formula lattices.

Theorem 1.13. Let 0 < ε1, ε2, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary linear
codes satisfying the Schur product condition. Suppose every Ci has a tolerant tester Ti(2ε1,

ε2
m2i+1 ,

c
m+1 , s, qi).

Let γ = min{c/(m + 1), s}, ε2 > m2m+1ε1. Then there exists an `1-tolerant-tester T (ε1, ε2, c, s, q) for the
lattice L(〈Ci〉

m−1
i=0 ) with query complexity

q = O

(

1

(ε2 − 2ε1)2
log

(

1

γ

))

+

m−1
∑

i=0

qi.

Corollary 1.14. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let L be the
lattice obtained from this family of codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ
2r .

Then there exists a `1-tolerant-tester T (ε1, ε2, 1/3, 1/3, q) for L for all ε1 ≤ c′1
2km−1

, ε2 ≥ c′2m

2k0−1 (for some

constants c′1 and c′2) with query complexity q = O(2km−1 · logm).

1.3.3. A canonical/linear test for lattices. We show a reduction from any given arbitrary test to
a canonical linear test, thus suggesting that it is sufficient to design canonical linear tests for achieving low
query complexity. In order to describe the intuition behind a canonical linear test, we first illustrate how to
solve the membership testing problem when all coordinates of the input are known. For a given lattice L,
its dual lattice is defined as

L⊥ := {u ∈ span(L) | 〈u, v〉 ∈ Z, for all v ∈ L}.

It is easy to verify that (L⊥)⊥ = L. Furthermore, a vector v ∈ L if and only if for all u ∈ L⊥, we have
〈u, v〉 ∈ Z. Thus, to test membership of t in L in the classical decision sense, it is sufficient to verify
whether t has integer inner products with a set of basis vectors of the dual lattice L⊥. Inspired by this
observation, we define a canonical linear test for lattices as follows. For a lattice L ⊆ R

n and J ⊆ [n], let
L⊥
J := {x ∈ L⊥ | supp(x) ⊆ J}, where supp(x) is the set of non-zero indices of the vector x.
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Definition 1.15 (Linear Tester). A linear tester for a lattice L ⊆ Z
n is a probabilistic algorithm which

queries a subset J = {j1, . . . , jq} ⊆ [n] of coordinates of the input t ∈ R
n and accepts t if and only if 〈t, x〉 ∈ Z

for all x ∈ L⊥
J .

2

Remark. By definition, the probabilistic choices of a linear tester are only over the set of coordinates
to be queried: upon fixing the coordinate queries, the choice of the algorithm to accept or reject is fully
determined. Furthermore, a linear tester is 1-sided since if the input t is a lattice vector, then for every dual
vector u ∈ L⊥, the inner product 〈u, t〉 is integral, and so it will be accepted with probability 1.

We show that non-adaptive linear tests are nearly as powerful as 2-sided adaptive tests for a full-rank
lattice. We reduce any (possibly 2-sided, and adaptive) test for a full-rank lattice to a non-adaptive linear
test for the same distance parameter ε, with a small increase in the query complexity and the soundness
error.

Theorem 1.16. Let L ⊆ Z
n be a lattice with rank(L) = n. If there exists an adaptive 2-sided `p-

tester T (ε, c, s, q) with query complexity q = qT (ε, c, s), then there exists a non-adaptive linear `p-tester
T ′(ε, 0, c+ s, q′) with query complexity q′ = qT (ε/2, c, s) +O((1/εp) log (1/s)).

Furthermore, if we are guaranteed that the inputs are in Z
n, then the query complexity of the test T ′

above can be improved to be identical to that of T (up to a constant factor in the ε parameter). The increase
in the query complexity comes from an extra step used to verify the integrality of the input.

Theorem 1.16 suggests that, for the purposes of designing a tester with small query complexity, it is
sufficient to design a non-adaptive linear tester, i.e., it suffices to only identify the probability distribution
for the coordinates that are queried. Moreover, this theorem makes progress towards Question 1.3, since it
shows that a lower bound on the query complexity of non-adaptive linear tests for a particular lattice implies
a lower bound on the query complexity of all tests for that lattice. Thus in order to understand the existence
of low query complexity tester for a particular lattice, it is sufficient to examine the existence of low query
complexity non-adaptive linear tester for that lattice.

We note that Theorem 1.16 is the analogue of the result of [4] for linear error-correcting codes. In Section
2, we comment on the comparison between our proof and that in [4].

1.3.4. Testing membership of inputs outside the span of the lattice. We also observe a stark
difference between the membership testing problem for a linear code, and the membership testing problem
for a lattice. In the membership testing problem for a linear code C ⊆ F

n defined over a finite field that is
specified by a basis, the input is assumed to be a vector in F

n and the goal is to verify whether the input
lies in the span of the basis (see Definition 1.5). As opposed to codes, for a lattice L ⊆ R

n, the input is an
arbitrary real vector, and the goal is to verify whether the input is a member of L, and not to verify whether
the input is a member of the span of the lattice. Thus, the inputs to the lattice membership testing problem
could lie either in span(L), or outside span(L). Interestingly, for some lattices it is easy to show strong lower
bounds on the query complexity if the inputs are allowed to lie outside span(L), thus suggesting that such
inputs are hard to test.

Theorem 1.17. Let L ⊆ Z
n be a lattice of rank k. Let P ⊆ [n] be the support of the vectors in span(L)⊥.

Let 0 < ε, c, s < 1. Every non-adaptive `p-tester T (ε, c, s, q) for L for inputs in R
n has query complexity

q = Ω(|P |).

On the other hand, testers for inputs in the span(L) can be lifted to obtain testers for all inputs (including
inputs that could possibly lie outside span(L)).

Theorem 1.18. Let L ⊆ Z
n be a lattice of rank k. Let P ⊆ [n] be the support of the vectors in span(L)⊥.

Let 0 < ε, c, s < 1, and suppose L has an `p-tester T (ε, c, s, q) for inputs t ∈ span(L). Then L has a tester
T ′(2ε, c, s, q′) for inputs in R

n with query complexity

q′ ≤ q + |P |.

2 Verifying whether 〈t, x〉 ∈ Z for all x ∈ L⊥
J can be performed efficiently by checking inner products with a set of basis

vectors of the lattice L⊥
J .
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Theorem 1.18 implies that for lattices L of rank at most n − 1, if the membership testing problem for
inputs that lie in span(L) is solvable using a small number of queries and if span(L)⊥ is supported on few
coordinates, then the membership testing problem for all inputs (including those that do not lie in span(L))
is solvable using a small number of queries.

Knapsack Lattices. Theorem 1.17 implies a linear lower bound for non-adaptively testing a well-known
family of lattices, known as knapsack lattices, which have been investigated in the quest towards lattice-
based cryptosystems [23, 32, 27]. We recall that a knapsack lattice is generated by a set of basis vectors
B = {b1, . . . , bn−1}, bi ∈ R

n that are of the form

b1 = (1, 0, . . . , 0, a1)

b2 = (0, 1, . . . , 0, a2)

...

bn−1 = (0, 0, . . . , 1, an−1)

where a1, . . . , an−1 are integers. We denote such a knapsack lattice by La1,...,an−1
.

Corollary 1.19. Let a1, . . . , an be integers and 0 < ε, c, s < 1. Every non-adaptive `p-tester T (ε, c, s, q)
for La1,...,an−1

has query complexity
q = Ω(n).

However, knapsack lattices with bounded coefficients are testable with a constant number of queries if
the inputs are promised to lie in span(L).

Theorem 1.20. Let a1, . . . , an−1 be integers with M = maxi∈[n] |ai|
p and 0 < ε, s < 1. There exists a

non-adaptive `p-tester T (ε, 0, s, q) for La1,...,an−1
with query complexity q = O

(

M
εp · log 1

s

)

, if the inputs are
guaranteed to lie in span(L).

Theorem 1.20 indicates that the large lower bound suggested by Theorem 1.17 could be circumvented
for certain lattices if we are promised that the inputs lie in span(L).

2. Overview of the proofs.

2.1. Upper and lower bounds for testing general code formula lattices. The constructions of a
tester for Theorem 1.7 and a tolerant tester for Theorem 1.13 follow the natural intuition that in order to test
the lattice one can test the underlying codes individually. The proof relies on a triangle inequality that can
be derived for such lattices. The application to code-formula lattices constructed from Reed-Muller codes
follows from the tight analysis of Reed-Muller code testing from [6], which guarantees constant rejection
probability of inputs that are at distance proportional to the minimum distance of the code. We note that
the time complexity of the code-formula tester is given by the sum of the run-times of the component code
testers. Since the component code testers can be assumed to be linear, and hence efficient, the code-formula
lattice tester is also efficient.

While the tester that we construct from code testers for the purposes of proving Theorem 1.7 is an
adaptive linear test, there is a simple variant that is a non-adaptive linear test with at least as good correctness
and soundness. (see Remark 5.16 in Section 5).

The lower bound (Theorem 1.8) relies on the fact that if an input t is far from the code Ck in the code
formula construction, then the vector 2kt is far from the lattice . Moreover, if t ∈ Ck then 2kt belongs to
the lattice. Therefore a test for the lattice can be turned into a test for the constituent codes.

2.2. From general tests to canonical tests. We briefly outline our reduction for Theorem 1.16.
Suppose T (ε, c, s, q) is a 2-sided, adaptive tester with query complexity q = qT (ε, c, s) for a full rank integral
lattice L. Such a tester handles all real-valued inputs. We first restrict T to a test that processes only
integral inputs in the bounded set Zd = {0, 1, . . . , d− 1} (for some carefully chosen d), and so the restricted
test inherits all the parameters of T . We remark that Zd ⊂ Z is a subset of integers, and it should not be
confused with Zd, the ring of integers modulo d.
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A key ingredient in our reduction is choosing the appropriate value of d in order to enable the same
guarantees as that of codes. We choose d such that dZn ⊆ L. Such a d always exists [25]. This choice of d
allows us to add any vector in V = L mod d (embedded in R

n) to any vector x ∈ R
n without changing the

distance of x to L in any `p-norm (see Proposition 5.2).
Since our inputs are now integral and bounded, any adaptive test can be viewed as a distribution over

deterministic tests, which themselves can be viewed as decision trees. This allows us to proceed along the
same lines as in the reduction for codes over finite fields of [4].

We exploit the property that adding any vector in V to any vector x ∈ R
n does not change the distance

to L. In the first step of our reduction we add a random vector in V to the input and perform a probabilistic
linear test. The idea is that one can relabel the decision tree of any test according to the decision tree of
a linear test, such that the error shifts from the positive (yes) instances to the negative (no) instances (see
Lemma 5.3). A simple property of lattices used in this reduction is that if the set of queries I and answers
aI do not have a local witness for non-membership in the lattice (in the form of a dual lattice vector v
supported on I such that 〈wI , vI〉 6∈ Z), then there exists w ∈ L that extends aI to the remaining set of
coordinates (i.e., aI = wI).

In the next step we remove the adaptive aspect of the test to obtain a non-adaptive linear test for inputs
in Zn

d (see Lemma 5.4). We obtain this tester by performing the adaptive queries on a randomly chosen
vector in V (and not on the input itself) and rejecting/accepting according to whether there exists a local
witness for the non-membership of the input queried on the same coordinates.

We then lift this test to a non-adaptive linear test for inputs in Z
n, by simulating the test over Zn

d on
the same queried coordinates but using the answers obtained after taking modulo d. Owing to the choice of
d, this does not change the distance of the input to the lattice (see Lemma 5.5).

Finally, we extend this test to a non-adaptive linear test for inputs in R
n by performing some additional

queries to rule out inputs that are not in Z
n. For this, we design a tester for the integer lattice Zn with query

complexity O((1/εp) log (1/s)). This final step of testing integrality increases the overall query complexity
to qT (ε/2, c, s) +O((1/εp) log (1/s)) (see Lemma 5.6).

Organization. We prove the upper bound and lower bound for testing code formula constructions (The-
orem 1.7, Theorem 1.8) and its instantiations to Reed-Muller codes (Corollary 1.10, Corollary 1.11 ) in
Section 3. The upper bound for tolerant testing code-formula constructions (Theorem 1.13) and its instanti-
ations to Reed-Muller codes (Corollary 1.14) are proved in Section 4. We present the formal lemmas needed
to prove Theorem 1.16 and their proofs in Section 5. We address non-full-rank lattices and prove Theorems
1.17, 1.18, Corollary 1.19 and Theorem 1.20 in Section 6.

3. Testing Code-Formula Lattices.

3.1. Upper Bounds for Code-Formula Lattices. In this section we construct a tester for testing
membership in lattices obtained from the code formula construction using a tester for the constituent codes.

Theorem 1.7. Let 0 < ε, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary linear codes
satisfying the Schur product condition. Suppose every Ci has a 1-sided tester Ti(ε/m2i+1, 0, s, qi). Then,
there exists an `1-tester T (ε, 0, s, q) for the lattice L(〈Ci〉

m−1
i=0 ) with query complexity

q = O

(

1

ε
log

1

s

)

+

m−1
∑

i=1

qi.

Proof. Let L := L(〈Ci〉
m−1
i=0 ). First, we use Lemma 5.6 to reduce the task to testing integral inputs for

distance parameter ε/2. According to the lemma, it suffices to show that all such inputs can be tested with

1-sided error and using
∑m−1

i=1 qi queries.
Now, let w ∈ Z

n denote the input. We may assume that all coordinates of w are non-negative integers
less than 2m. Otherwise, we can shift each coordinate by an appropriate (possibly different) multiple of 2m

to make sure this condition holds. Observe that each such operation would correspond to shifting w by an
integer multiple of the lattice vector 2mei, where ei is the ith basis vector, and that translating a vector by

9



a lattice point does not affect its distance to the lattice. Moreover, observe that this transformation can be
applied implicitly, locally, and efficiently by the testing algorithm as the queries are made.

Let w0, . . . , wm−1 ∈ {0, 1}n where wi(j) is the (i+1)th least significant bit in the binary decomposition of

the jth coordinate of w. Thus we have w =
∑m−1

i=0 2iwi. Once again, the coordinates of wi can be computed
implicitly, locally and efficiently by the algorithm as the queries are made.

The tester T would now proceed as follows: Run Ti(ε/(m2i+1), 0, s, qi) on wi for every i = 0, 1, . . . ,m−1.
Accept if and only if all tests accept.

The overall query complexity of this tester is
∑m−1

i=1 qi.
The completeness of this tester is easy to deduce. Indeed, if w ∈ L(〈Ci〉

m−1
i=0 ), then by definition of the

code formula construction, there exist w̃i ∈ Ci for every i = 0, 1, . . . ,m − 1 and an integer w̃m ∈ 2mZ
n

such that w =
∑m−1

i=0 2iw̃i + w̃m. Since entries of w are non-negative integers less than 2m, we must have
w̃m = 0. Moreover, since w̃i ∈ {0, 1}n and the binary representation is unique, it must be that w̃i ∈ Ci for
i = 0, . . . ,m− 1. That is, each of the wi embedded in F

n
2 are in Ci and therefore, each Ti(ε/(2

i+1m), 0, s, qi)
(and thus the overall tester) will accept wi.

Before analyzing the soundness, we observe the following simple inequality.

Claim 3.1. d1(w,L) ≤ d1(w0, C0) + 2d1(w1, C1) + · · ·+ 2m−1d1(wm−1, Cm−1).

Proof. Let ci ∈ {0, 1}n be the closest codeword to wi in Ci for every i = 0, 1, . . . ,m − 1. From the
definition of the code formula construction, we know that the vector v = c0 + 2c1 + · · · + 2m−1cm−1 is a
lattice vector. Therefore,

m−1
∑

i=0

2id1(wi, Ci) =

m−1
∑

i=0

2i‖wi − ci‖1

≥

∥

∥

∥

∥

∥

m−1
∑

i=0

2i(wi − ci)

∥

∥

∥

∥

∥

1

(by the triangle inequality)

= d1(w, v)

≥ d1(w,L).

Now, if d1(w,L) ≥ εn/2, then by Claim 3.1 we have

d1(w0, C0) + 2d1(w1, C1) + · · ·+ 2m−1d1(wm−1, Cm−1) ≥ εn/2.

Therefore, by averaging, for some i ∈ {0, 1, . . . ,m − 1} we must have d1(wi, Ci) ≥ (ε/(m2i+1))n. Thus the
tester Ti(ε/(m2i+1), 0, s, qi) will reject with probability at least 1− s. Hence the soundness follows.

We now apply the result of Theorem 1.7 to the lattice obtained by applying code formula on a nested
family of Reed-Muller codes. In order to do so, we use the following result.

Theorem 3.2. [6] For any 0 ≤ k ≤ r and 0 < s < 1, RM(k, r) has a 1-sided tester T (ε, 0, s, q(ε, s))
with query complexity q(ε, s) = O((log 1

s )(2
k + 1

ε )) whose queries are each uniformly distributed.

Using the above result in Theorem 1.7, we obtain Corollary 1.10 whose proof we present next.

Corollary 1.10. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let 0 < ε, s < 1
and L be the lattice obtained from this family of codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ
2r .

Then, there exists an `1-tester T (ε, 0, s, q) for L with query complexity

q(ε, s) = O

(

2km−1 ·
1

ε
log

1

s

)

.

Proof. From Theorem 1.7, for any ε > 0, there is a T (ε, 0, s, q(ε, s)) tester for the code formula lattice

L(〈Ci〉
m−1
i=0 ) with query complexity q(ε, s) = O

(

1
ε log

1
s

)

+
∑m−1

i=0 qi
(

ε
m2i+1 , s

)

, where qi(ε, s) is the query
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complexity of testing the code Ci (with distance parameter ε and soundness error s). By Theorem 3.2, each
RM(ki, r) has a 1-sided tester Ti(εi, 0, s, qi(εi, s)) with query complexity qi(εi, s) = O(log(1/s))(2ki + 1/εi).

Therefore, the 1-sided tester T (ε, 0, s, q) for the code formula lattice L(〈RM(i, r)〉
km−1

i=k0
) has query complexity

q(ε, s) = O

(

1

ε
log

1

s

)

+

m−1
∑

i=0

qi

( ε

m2i+1
, s
)

= O

(

1

ε
log

1

s

)m−1
∑

i=0

(

2ki +m2i+1
)

= O

(

1

ε
log

1

s

)

(

m2m +

m−1
∑

i=0

2ki

)

= O

(

1

ε
log

1

s

)

(

m2m + 2km−1
)

= O

(

1

ε
log

1

s
· 2km−1

)

.

To see the last step of the above equation, recall that in order for L(〈RM(i, r)〉
km−1

i=k0
) to be a lattice, we

must have ki ≥ 2i−1 for i > 0, and in particular km−1 ≥ 2m−2. So 2km−1 ≥ 22
m−2

≥ m2m, for m ≥ 5.

3.2. Lower bounds for Code-Formula Lattices. In this section, we prove Theorem 1.8. We will
use the following lemma.

Lemma 3.3. Let C0, C1, . . . , Cm−1 be a family of codes satisfying the Schur product condition and L =
L(〈Ci〉

m−1
i=0 ). Let t ∈ {0, 1}n and k ∈ {0, 1, . . . ,m− 1}. Then

d1(t, Ck) ≤ d1(2
kt, L) ≤ 2kd1(t, Ck).

Proof. Since 2kCk is contained in L, d1(2
kt, L) ≤ d1(2

kt, 2kCk) = 2kd1(t, Ck). So, the distance of 2kt to
the lattice is at most 2kd1(t, Ck). We now show the inequality

d1(2
kt, L) ≥ d1(t, Ck).

Let v =
∑m−1

j=0 2jcj + 2mz for some arbitrary cj ∈ Cj (for every j ∈ {0, 1, . . . ,m − 1}) and some z ∈ Z
n,

be an arbitrary lattice vector. We will show that d1(2
kt, v) ≥ d1(t, Ck). Let u = ck − t, and S ⊆ [n] be the

support of u, then |S| ≥ d1(t, Ck).
By Claim 3.4, d1(2

kt, v) ≥
∑

i∈S |v(i)− 2kt(i)| ≥ |S| (where v(i) and t(i) represent the ith entry in the
respective vectors), which completes the proof.

Claim 3.4. For every i ∈ S, |v(i)− 2kt(i)| ≥ 1.

Proof. Let i ∈ S. Since 2ku = 2kck − 2kt, we have 2k|u(i)| = 2k. We also have

|v(i)− 2kt(i)| =

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

2jcj(i) + 2ku(i) +
m−1
∑

j=k+1

2jcj(i) + 2mz(i)

∣

∣

∣

∣

∣

∣

.

Since cj(i) ∈ {0, 1} for every j ∈ {0, 1, . . . , k − 1}, the first term in the above sum is at least zero and
at most 2k − 1. The maximum is achieved when all cj(i) = 1 for all j ∈ [k − 1], and u(i) = 1. Hence,

1 ≤
∣

∣

∣

∑k−1
j=0 2

jcj(i) + 2ku(i)
∣

∣

∣ ≤ 2k+1 − 1. Since ck+1(i) ∈ {0, 1}, we have

1 ≤

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

2jcj(i) + 2ku(i) + 2k+1ck+1(i)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

2jcj(i) + 2ku(i)

∣

∣

∣

∣

∣

∣

+
∣

∣2k+1ck+1(i)
∣

∣ ≤ 2k+2 − 1.
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Proceeding similarly, since cj(i) ∈ {0, 1} for j = k + 2, . . . ,m− 1, we have

1 ≤

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

2jcj(i) + 2ku(i) +
m−1
∑

j=k+1

2jcj(i)

∣

∣

∣

∣

∣

∣

≤ 2m − 1.

Since zm ∈ Z, we conclude that
∣

∣

∣

∑k−1
j=0 2

jcj(i) + 2ku(i) +
∑m−1

j=k+1 2
jcj(i) + 2mz(i)

∣

∣

∣ ≥ 1.

Theorem 1.8. Let 0 < ε, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary linear
codes satisfying the Schur product condition. Let qi = qi(ε, c, s) be such that any (possibly adaptive, 2-sided)
`1-tester Ti(ε, c, s, q

′) for Ci satisfies q
′ = Ω(qi), for every i = 0, 1, . . . ,m− 1. Then every (possibly adaptive,

2-sided) `1-tester T (ε, c, s, q) for the lattice L(〈Ci〉
m−1
i=0 ) has query complexity

q = Ω

(

max

{

1

ε
log

1

s
, max
i=0,1,...,m−1

qi

})

.

Proof. Let T (ε, c, s, q) be a test for the code lattice, and let k ∈ {0, 1, . . . ,m− 1}. We construct a tester
Tk(ε, c, s, q) for Ck as follows: On input w ∈ {0, 1}n, run T (ε, c, s, q) on 2kw and accept if and only if T
accepts. The query complexity of Tk is the same as the query complexity of T . If the input w is a codeword
in Ck, then by the definition of the lattice, 2kw is a lattice vector, and Tk will accept w with probability at
least 1 − c. If d1(w,Ck) ≥ εn, then by Lemma 3.3, we have that d1(2

kw,L(〈Ci〉)
m−1
i=0 ) ≥ εn. Therefore, Tk

will reject w with probability at least 1 − s. Finally, since L ⊆ Z
n we have that d(w,Zn) ≤ d(w,L) and so

we could use T to test membership in Z
n. By Claim 3.5 testing Z

n requires q = Ω( 1ε log(1/s)) queries.

Claim 3.5. Any test Tk(ε, c, s, q) for Z
n requires q = Ω( 1ε log(1/s)) queries.

Proof. First, we use Yao’s duality theorem [34] which is a standard tool in proving lower bounds and
assume that the testing algorithm is, without loss of generality, deterministic (but possibly adaptive). We
exhibit two distributions on the inputs which the algorithm is expected to distinguish but cannot do so
without making sufficiently many queries. The yes case distribution is the deterministic distribution on
all-zeros input (which is a lattice point). Given an input from this distribution, the algorithm should accept.
The no case distribution would consists of the all-zeros vector but with a uniformly random set S of 2εn
coordinate positions changed from 0 to 1/2. Indeed, all vectors on the support of this distribution are ε-far
from the lattice. Assuming that q ≤ n/2 (otherwise there is nothing to prove), each time the algorithm
queries a position that has not been queries before, there is at most a 4ε chance that it hits any position in
S (even conditioned on the past query outcomes). Thus the probability that the algorithm ever succeeds in
finding a position in S is at most 1− (1− 4ε)q, which, on the other hand by the soundness condition, should
be at least 1 − s. Therefore, the soundness error is at least s ≥ (1 − 4ε)q or, in other words, in order to
achieve a given s we must have q = Ω( 1ε log(

1
s )).

In the case of code formula lattices generated from Reed-Muller codes of order r, we note that n = 2r.
We need the following known lower bound on the query complexity of testing Reed-Muller codes. For
completeness we reproduce the exact statement that we need in this work and include a proof.

Theorem 3.6 ([1]). Let T (ε, c, s, q) be a (possibly 2-sided and adaptive) tester for the code RM(k, r)
where k ≤ r/(2 log r), ε < 1/2 − Ω(1), and c + s < 1 − Ω(1) (where Ω(1) hides arbitrarily small positive
absolute constants). Then, q ≥ 2k.

Proof. Using the reduction from 2-sided, adaptive testers to non-adaptive, 1-sided tests for any linear
code (applicable to RM codes) of [4], it is sufficient to focus on the latter tests. Let C be the code RM(k, r).
First we note that the length of the code is R := 2r and its dimension is

log |C| =
k
∑

i=0

(

r

i

)

≤ 1 + krk.

Therefore, noting that k ≤ r/(2 log r),

|C| = O(2kr
k

) = O(2r
k+1

) = O(2(logR)
√
R) = 2o(R).
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Let V be the number of points in a Hamming ball of radius εR in {0, 1}R. Thus we have V ≤ 2h(ε)R, where
h(·) denotes the binary entropy function. Let S be the set of points in {0, 1}R that have Hamming distance
at most εr with the code. Of course we have

|S| ≤ V |C| = O(2(h(ε)+o(1))R).

Since ε < 1 is a fixed constant, this implies |S|/2R = o(1). Now we run the tester with the following two
input distributions:
Case 1. The tester is given a uniformly random string in {0, 1}R as the input.
Case 2. The tester is given a uniformly random codeword of C as the input.
Since the dual distance of C is 2k+1, a standard coding theoretic fact implies that a uniformly random
codeword of C is t-wise independent for t = 2k+1; i.e., any local view of up to t coordinates of the random
codeword is exactly the uniform distribution. Therefore, since the tester makes no more than t queries, its
output distribution is exactly the same in the above two cases. Let p be the acceptance probability of the
tester with respect to the (common) output distribution. In order to satisfy completeness, the tester should
accept with probability at least 1− c in the second case. Therefore, we must have p ≥ 1− c.

On the other hand, a uniform random string in {0, 1}R is ε-far from the code with probability 1− o(1)
according to the above bound on |S|. In the conditional world where this string actually becomes ε-far from
the code, the acceptance probability of the code would thus remain within p(1± o(1)). However, in this case
the soundness implies that the tester should accept with probability at most s, and thus, p ≤ s(1 + o(1)).
Thus the two distributions provided by the above two cases would violate requirements of the local tester
assuming that c+ s ≤ 1− Ω(1).

Corollary 1.11. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let 0 < ε, c, s < 1
be constants and L be the lattice obtained from this family of codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ
2r .

Then, every (possibly 2-sided, adaptive) `1-tester T (ε, c, s, q) for L has query complexity

q = Ω(2km−1).

Proof. Suppose we have a tester T (ε, c, s, q) for L(〈RM(ki, r)〉
m−1
i=0 ). By Theorem 1.8, we have

q ≥ max
i=0,1,...,m−1

qi(ε, c, s).

By Theorem 3.6, it follows that q = Ω(2km−1).

4. Tolerant Testing Code Formula Lattices . We first give a tolerant tester for testing membership
in Z

n. We will use this tester in the design of a tolerant tester for testing membership in lattices obtained
from the code formula construction.

Lemma 4.1. Let ε1, ε2, c, s > 0 such that ε2 > ε1 and γ = min{c, s} . There is a tolerant tester
TZ(ε1, ε2, c, s, qZ) for Z

n which uses qZ = O(1/(ε2 − ε1)
2 · log( 1γ )) queries.

Proof. The tester estimates the distance of the input from Z
n by querying O(1/(ε2− ε1)

2 log( 1γ )) coordi-

nates uniformly at random. If the estimated distance is at least (ε1+ε2)
2 n, then it rejects, otherwise it accepts.

The correctness and soundness follow from Chernoff bounds. We describe the test formally as follows:
1. Query q := C/(ε2 − ε1)

2 · log( 1γ ) coordinates of the input t uniformly at random, for some constant

C to be determined later. Let I ⊆ [n] be the indices of the queried coordinates.

2. Let δ :=
∑

i∈I
|ti−btie|
q .

3. If δ ≤ ε1+ε2
2 then Accept.

4. Else Reject.
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Suppose d(t,Zn) ≤ ε1n, then d(t,Zn)/n =
∑n

i=1|ti − btie|/n ≤ ε1. Therefore, E[δ] ≤ ε1. By a Chernoff

bound, it follows that Pr[δ − ε1 > ε2−ε1
2 ] ≤ e−q(ε2−ε1)

2/2 ≤ c for q ≥ C/(ε2 − ε1)
2 · log( 1γ ) and a constant

C > 0.
Now suppose d(t,Zn) > ε2n. Then, d(t,Zn)/n =

∑n
i=1 |ti − btie|/n ≥ ε2. Again, by a Chernoff bound,

and suitable choice of the constant C, it follows that Pr[ε2 − δ ≥ ε2−ε1
2 ] ≤ e−q(ε2−ε1)

2/4 ≤ s for q chosen as
above.

We now describe a tolerant tester for code formula lattices.

Theorem 1.13. Let 0 < ε1, ε2, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary linear
codes satisfying the Schur product condition. Suppose every Ci has a tolerant tester Ti(2ε1,

ε2
m2i+1 ,

c
m+1 , s, qi).

Let γ = min{c/(m + 1), s}, ε2 > m2m+1ε1. Then there exists an `1-tolerant-tester T (ε1, ε2, c, s, q) for the
lattice L(〈Ci〉

m−1
i=0 ) with query complexity

q = O

(

1

(ε2 − 2ε1)2
log

(

1

γ

))

+
m−1
∑

i=0

qi.

Proof. We use the tolerant testers Ti for the codes Ci and the tolerant tester TZ for Zn to construct a
tolerant tester for L.

Let bte denote the vector obtained by rounding each coordinate of t to its nearest integer and for any
vector x, let x(j) denote the jth coordinate of x. Let t0, ..., tm−1 ∈ {0, 1}n where ti(j) is the (i+ 1)th least

significant bit in the binary decomposition of the jth coordinate of bte. Define tm = 1
2m (t−

∑m−1
i=0 2iti) ∈ R

n.
Therefore, t can be written as t = t0 + 2t1 + · · · + 2m−1tm−1 + 2mtm, where ti ∈ {0, 1}n for all i ∈ [m − 1]
and tm ∈ R

n. Moreover, tm ∈ Z
n if and only if t ∈ Z

n.
The tolerant tester T (ε1, ε2, c, s, q) on input t ∈ R

n now proceeds as follows: Run TZ(ε1,
ε2
2 ,

c
m+1 , s, qZ)

on t and Ti(2ε1,
ε2

m2i+1 ,
c

m+1 , s, qi) on ti for all i ∈ {0, 1, . . . ,m − 1}. Accept if and only if all tests accept.
The query complexity of T (ε1, ε2, c, s, q) is therefore:

q(ε1, ε2, c, s) =

m−1
∑

i=0

qi + qZ ,

where we recall that qZ is the query complexity of TZ(ε1,
ε2
2 ,

c
m+1 , s, qZ). From Lemma 4.1, we know that

qZ = O( 1
(ε2−2ε1)2

log( 1γ )), where γ = min{ c
m+1 , s}. We now analyze the soundness and completeness of this

test.

Soundness. Suppose d(t, L) ≥ ε2n. We first show that either t is far from Z
n or the closest integer

vector to t is far from the lattice.

Claim 4.2. d(t, L) ≤ d(bte, L) + d(t,Zn)

Proof. Let u be the closest lattice vector to bte. Then

d(t, L) ≤ ‖t− u‖1 = ‖(t− bte) + (bte − u)‖1 ≤ ‖t− bte‖1 + ‖bte − u‖1

Since ‖t− bte‖1 = d(t,Zn), it follows that d(t, L) ≤ d(bte, L) + d(t,Zn).

Therefore, if d(t, L) ≥ ε2n, then from Claim 4.2, either d(bte, L) ≥ ε2n/2 or d(t,Zn) ≥ ε2n/2. If
d(t,Zn) ≥ ε2n/2, then TZ rejects t with probability at least 1− s. If d(bte, L) ≥ ε2n/2, then from Claim 3.1
proved in Section 3 we can conclude that there exists some i ∈ {0, 1, . . . ,m − 1} such that 2id(ti, Ci) ≥
ε2n/2m, and Ti(ti, 2ε1, ε2/m2i+1) will reject ti with probability at least 1− s. Thus, if d(t, L) ≥ ε2n, then T
rejects t with probability with at least 1− s.

Completeness. Suppose d(t, L) ≤ ε1n. Then d(t,Zn) ≤ ε1n, since L ⊆ Z
n. So, TZ(ε1,

ε2
2 ,

c
m+1 , s, qZ)

will accept t with probability at least 1− c
m+1 . We now show that each ti is also close to the corresponding

linear code Ci.
For the sake of contradiction, suppose d(ti, Ci) > 2ε1n for some i ∈ [m − 1]. We will show that

d(t, L) > ε1n. We do this in two steps. First we show in Lemma 4.3 that d(bte, L) > 2ε1n. Then by
Claim 4.5 and the fact that d(t,Zn) ≤ ε1n, we have that d(t, L) > ε1n, a contradiction.
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Lemma 4.3. If d(ti, Ci) > 2ε1n for some i ∈ [m− 1], then d(bte, L) > 2ε1n.

Proof. Let v =
∑m−1

i=0 2ivi + 2mvm ∈ L be the closest lattice vector to bte. By definition of the lattice,
each vi ∈ Ci for i ∈ [m − 1] and vm ∈ Z

n. Consider the vectors t0, t1, . . . , tm as defined above (for which

bte =
∑m−1

i=0 2iti + 2mtm). So, each ti ∈ {0, 1}n and tm ∈ Z
n. The following property of vectors with

bounded entries will be used to prove the claim.

Claim 4.4. Let a0, a1, . . . , am−1 ∈ {−1, 0,+1}n and am ∈ Z. Define u = a0+2a1+ · · ·+2mam. If there
exists some k ∈ [m− 1] such that ‖ak‖1 > s, then ‖u‖1 > s.

Proof. Since ‖ak‖1 > s, and ak ∈ {−1, 0,+1}n, there exist at least s coordinates such that |ak(i)| = 1.
Let S be the set of those indices, S = {i ∈ [n] : |ak(i)| = 1}. Since ‖ak‖1 > s, we know that |S| > s. We now
show that for all i ∈ S, |u(i)| ≥ 1. Therefore, ‖u‖1 > s.

Let i ∈ S. For each such coordinate, we can express u(i) =
∑m

j=0 2
jaj(i). Let h ∈ [k] be the smallest

integer such that ah(i) 6= 0. We know that such h exists since ak(i) 6= 0. Therefore, we know that
u(i) mod 2h+1(= ah), is non-zero. Therefore, u(i) is also non-zero. Since u(i) ∈ Z, we have that |u(i)| ≥ 1.

Therefore, |u(i)| ≥ 1 for all i ∈ S. and ‖u‖1 ≥ |S| > s.

Define ai = (ti − vi) for all i ∈ [m]. We note that each ai ∈ {−1, 0,+1}n for i ∈ [m − 1] and that
am ∈ Z

n. The proof now follows from Claim 4.4 for s = 2ε1n.

The next claim is a straightforward application of the triangle inequality.

Claim 4.5. d(t, L) ≥ d(bte, L)− d(t,Zn)

Proof. Let u be the closest lattice vector to t.

d(bte, L) ≤ ‖bte − u‖1 = ‖bte − t+ t− u‖1.

By the triangle inequality, we have ‖bte − t + t − u‖1 ≤ ‖bte − t‖1 + ‖t − u‖1. Since u is the closest lattice
vector to t, d(t, L) = ‖t− u‖1. Also, ‖bte − t‖ = d(t,Zn), Therefore, d(bte, L) ≤ d(t, L) + d(t,Zn).

Thus, if d(t, L) ≤ ε1n, then TZ accepts t with probability at least 1 − c
m+1 and each code tester Ti

accepts ti with probability at least 1− c
m+1 . Therefore, from the union bound, T accepts t with probability

at least 1−
∑m

i=0
c

m+1 = 1− c.

We next instantiate Theorem 1.13 for code-formula lattices obtained from Reed-Muller codes. We first
recall a simple observation made in [28] that any local test with individual queries uniformly distributed is
also a tolerant test.

Claim 4.6 ([28]). If a code C ⊆ {0, 1}n has a one-sided local test T (ε, 0, 1/3, q) whose queries are each
uniformly distributed, then C has a tolerant test T (ε1, ε2, 1/3, 1/3, q), with ε1 ≤ 1

3q and ε2 ≥ ε.

Using Claim 4.6 and Theorem 3.2, and by appropriately amplifying the success probability, we get a
tolerant test for Reed-Muller codes.

Corollary 4.7. For any k, r, c, s > 0 and γ = min{c, s}, there exists a tolerant test T (ε1, ε2, c, s, q) for
RM(k, r) such that ε1 ≤ c1

1
2k
, ε2 ≥ c2

1
2k

and q = O(2k log( 1γ )), for some c1, c2 > 0.

Proof. By Theorem 3.2 we know that there is a 1-sided tester T (ε, 0, 1/3, q) for RM(k, r) and ε =
O(1/2k) with query complexity q = O(2k) . From Claim 4.6, we know that we can obtain a tolerant tester
T (ε1, ε2, 1/3, 1/3, q) with O(2k) queries for any ε1 ≤ c1/2

k and ε2 ≥ c2/2
k. By independently repeating the

tester multiple times and taking majority vote to amplify the success probability, for any 0 < c, s ≤ 1 and
γ = min{c, s} we get a tolerant tester T (ε1, ε2, c, s, q) for RM(n, k) with q = O(2k log( 1γ )) queries.

Using Corollary 4.7 and Theorem 1.13 we obtain the following immediate corollary.

Corollary 1.14. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of Reed-Muller
codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product condition. Let L be the
lattice obtained from this family of codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ
2r .
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Then there exists a `1-tolerant-tester T (ε1, ε2, 1/3, 1/3, q) for L for all ε1 ≤ c′1
2km−1

, ε2 ≥ c′2m

2k0−1 (for some

constants c′1 and c′2) with query complexity q = O(2km−1 · logm).

Proof. From Corollary 4.7, every RMki
has a tolerant tester Ti(2ε1,

ε2
m2i+1 ,

1
3(m+1) ,

1
3 , qi) with query

complexity qi = O(2ki log(m+ 1)) for 2ε1 ≤ c1
2ki

and ε2
m2i+1 ≥ c2

2ki
for some constants c1, c2 > 0.

Using Theorem 1.13, we therefore conclude that L has a tolerant tester T (ε1, ε2,
1
3 ,

1
3 , q) with query

complexity q = O( 1
(ε2−2ε1)2

log(m + 1)) +
∑m−1

i=0 O(2ki log(m + 1)) = O(2km−1 logm) for 2ε1 ≤ mini{
c1
2ki

}

and ε2
m2i+1 ≥ maxi{

c2
2ki

}.

5. Reducing an arbitrary test to a non-adaptive linear test. In this section we sketch the proof
of Theorem 1.16. Throughout this section, we focus on full-rank integral lattices. Given a 2-sided adaptive
`p-tester T (ε, c, s, q), with q = qT (ε, c, s) for an integral lattice L, we construct a non-adaptive linear `p-tester
T ′(ε, 0, c + s, q′) with query complexity q′ = qT (ε/2, c, s) + O((1/εp) log (1/s)). We reduce the inputs to a
bounded set using the following property of integral lattices.

Fact 5.1. [25] Given any full rank integral lattice L, there exists d ∈ Z such that d·Zn ⊆ L. In particular
|det(L)| · Zn ⊆ L for any lattice (where det(L) denotes the determinant of a lattice, a parameter that can be
computed given a basis of the lattice). For instance, we can take d = 2m for the lattices of height m obtained
using the code formula construction.

Let V = L mod d embedded in Z
n (i.e., we treat V as a set of vectors in Z

n each of which is obtained
by taking coordinate-wise modulo d of some lattice vector). Thus, V ⊆ Zn

d . We will need the following
properties of V .

Proposition 5.2. Let L ⊆ Z
n be a full-rank lattice, d ∈ Z+ such that dZn ⊆ L, and let V = L mod d ⊆

Z
n. Then V satisfies the following properties:

1. v ∈ L if and only if v mod d ∈ V .
2. V = L ∩ Zn

d .
3. (v + V ) mod d ⊆ V if and only if v ∈ L.
4. For any v ∈ Z

n, dp(v, L) = dp(v mod d, L).

Proof. 1. If v ∈ L, then v mod d ∈ V by definition. For the opposite direction, let v ∈ Z
n be

such that u = v mod d ∈ V . Then by the definition of V there exists v′ ∈ L such that v′ = u = v
(mod d). Then v − v′ ∈ dZn ⊆ L, and so v ∈ L.

2. By definition L ∩ Zn
d ⊆ V . To show that V ⊆ L note that by 1), if v ∈ V there exists v′ ∈ L such

that v′ = v mod d. As before, this implies that v ∈ L.
3. This statement follows by the fact that V ⊆ L and from the fact that lattices are closed under

addition.
4. Note that dp(v, L) = minu∈L dp(u, v) = minu∈L ‖v − u‖p. If v = dv1 + v2, since dv1 ∈ dZn ⊆ L, it

follows that minu∈L ‖v − u‖p = minu∈L ‖v2 − u‖p, since a lattice is closed under addition.

Theorem 1.16 will immediately follow by combining Lemmas 5.3, 5.4, 5.5, and 5.6. We now state the
lemmas and prove them in the subsequent subsections.

Lemma 5.3. Suppose a full-rank lattice L ⊆ Z
n with dZn ⊆ L for d ∈ Z+ has an adaptive 2-sided `p-

tester T (ε, c, s, q) for inputs from the domain Zn
d . Then L has an adaptive linear `p-tester T ′(ε, 0, c + s, q)

for inputs from the domain Zn
d .

Lemma 5.4. Suppose a full-rank lattice L ⊆ Z
n with dZn ⊆ L for d ∈ Z+ has an adaptive linear `p-tester

T (ε, 0, s, q) for inputs from the domain Zn
d . Then L has a non-adaptive linear `p-tester T

′(ε, 0, s, q) for inputs
from the domain Zn

d .

Lemma 5.5. Let L ⊆ Z
n be a full-rank lattice with dZn ⊆ L for d ∈ Z+. Then, L has a non-adaptive

linear `p-tester T (ε, 0, s, q) for inputs from the domain Zn
d if and only if L has a non-adaptive linear `p-tester

T ′(ε, 0, s, q) for inputs from the domain Z
n.
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Lemma 5.6. Suppose a full-rank lattice L ⊆ Z
n has a non-adaptive `p-tester T (ε, c, s, q) for inputs from

the domain Z
n. Then there exists a non-adaptive `p-tester T

′(ε, c, s, q′) for inputs in R
n with query complexity

q′ = q(ε/2, c, s) +O((1/εp) log (1/s)). Moreover, if T is a linear tester, then so is T ′.

The proof of Lemma 5.6 uses the following tester for integer lattices which is based on querying a random
collection of coordinates and verifying whether all of them are integral.

Lemma 5.7. For every 0 < ε ≤ 1 and every 0 < s ≤ 1, there exists a non-adaptive linear `p-tester
Tp(ε, 0, s, qZ) for Z

n with query complexity

qZ = O

(

1

εp
log

1

s

)

.

5.1. 2-sided to Linear Tester. In this section, we prove Lemma 5.3. Given a 2-sided adaptive tester
T (ε, c, s, q) for inputs x from the domain Zn

d , we build an adaptive linear (thus one-sided) test T ′(ε, 0, c+s, q)
for inputs from the same domain Zn

d with the same query complexity as that of T in this section.
For an index set J ⊆ [n] and a vector w ∈ Zn

d , let X(w, J) := {x ∈ Zn
d | (∀ i ∈ J) xi = wi }. For a

subset of coordinates J ⊆ [n] and a vector w ∈ Zn
d , we say that there exists a dual witness for X(w, J) if

there exists α ∈ L⊥
J such that 〈α,w〉 /∈ Z. That is, a dual witness α is a dual vector entirely supported on

J that proves none of the vectors in X(w, J) (and thus w) can be in the lattice. Recall that V := L mod d
where dZn ⊆ L.

If the input vector x is from the domain Zn
d , then each coordinate of the input has d possible choices.

Thus, any 2-sided adaptive tester T (ε, c, s, q) for inputs from the domain Z
n
d , can be viewed as a distribution

over deterministic decision trees with each leaf being labeled 1 if accepting and 0 if rejecting. Therefore we
will express the tester as T = (ΥT , DT ), where ΥT is the set of all decision trees (with at most q queries)
and DT is a distribution over ΥT .

Let l be a leaf of a decision tree. We denote the coordinates queried along the path to l by var(l). We
denote the vector that is consistent with the queried coordinates along the path to l and has zeros in the
non-queried coordinates by sl. Let us define Vl to be the set of lattice vectors u which are consistent with
the queries along the path to l. Similarly, let V x

l be the set of vectors in (x+V ) mod d which are consistent
with the queries along the path to l, i.e., Vl = X(sl, var(l)) ∩ V and V x

l = X(sl, var(l)) ∩ ((x + V ) mod d).
We need the following claim about the sizes of Vl and V x

l .

Claim 5.8. For every leaf l in the decision tree Γ, if both Vl and V x
l are non-empty, then |Vl| = |V x

l |.

Proof. Let U denote the set of all the lattice vectors in Zn
d which have all 0’s in the positions queried

along the path to l. We know that U is non-empty because the all zeros vector is in U .
For every v ∈ Vl and u ∈ U , we have that (v+ u) mod d is also in Vl since we are only adding 0’s at the

queried coordinates. Similarly, for every vector v′ ∈ V x
l and u ∈ U , we have that (v′ + u) mod d is also in

V x
l . Therefore, we know that (U + v) mod d ⊆ Vl for every v ∈ Vl and similarly, (U + v′) mod d ⊆ V x

l for
every vector v′ ∈ V x

l .
Further, for every two vectors u, v ∈ Vl, we have that (u− v) mod d is in U and since u and v are both

consistent along the path to l, the vector u−v has all zeros at the queried coordinates. So, (u−v) mod d ∈ U .
Therefore, (Vl − v) mod d ⊆ U for every v ∈ Vl and hence Vl ⊆ (U + v) mod d for every v ∈ Vl. Similarly,
for every vector v′ ∈ V x

l , we have that (V x
l − v′) mod d ⊆ U and hence V x

l ⊆ (U + v′) mod d.
Therefore, if Vl and V x

l are non-empty, then (U + v) mod d = Vl for every vector v ∈ Vl and (U +
v′) mod d = V x

l for every vector v′ ∈ V x
l . Hence, |Vl| = |U | = |V x

l |.

We now show that if a linear test accepts, then there exists a lattice vector that is consistent with the
queried coordinates. In other words, if there is no dual witness then there is a lattice vector that is accepted
by the test.

In the following, let projJ(u) ∈ R
J denote the projection of vector u to the coordinates in J and projJ(S)

denote the set of vectors obtained by projecting the vectors in S to the coordinates in J . We note that the
projection of a rational lattice to a set of coordinates gives a lattice again.
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Proposition 5.9. Let J ⊆ [n], w ∈ Zn
d . If 〈α, projJ(w)〉 ∈ Z for every α ∈ projJ(L

⊥
J ), then V ∩

X(w, J) 6= ∅.

Proof. We recall that the dual of a projection of a lattice is the set of vectors in the projected space
which have integral dot products with all points in the projected lattice. The following proposition shows
that the dual of a projected lattice is the projection of the set of vectors in the dual lattice whose support
is contained in the projection.

Proposition 5.10. Let J ⊆ [n]. Then

(projJ(L))
⊥
= projJ

(

L⊥
J

)

.

Proof. Let αJ ∈ projJ(L
⊥
J ). Let us extend the vector αJ to α ∈ R

n by setting the coordinates that are
not in J to zero. We note that α ∈ L⊥

J . Hence 〈α, x〉 ∈ Z for every x ∈ L. Therefore 〈αJ , xJ〉 ∈ Z for every
xJ ∈ projJ(L). Thus, αJ ∈ (projJ(L))

⊥.
Let αJ ∈ (projJ(L))

⊥. Then for every vJ ∈ projJ(L), we have 〈αJ , vJ〉 ∈ Z. Consequently for every
v ∈ L, we have 〈αJ , projJ(v)〉 ∈ Z. Let us extend the vector αJ to α ∈ R

n by setting the coordinates that
are not in J to zero. Then 〈α, v〉 ∈ Z for every v ∈ L. Therefore α ∈ L⊥ and hence αJ ∈ projJ(L

⊥
J ).

We have that 〈α, projJ(w)〉 ∈ Z for every α ∈ projJ(L
⊥
J ). Therefore projJ(w) ∈ (projJ(L

⊥
J ))

⊥. By
Proposition 5.10, we have that projJ(w) ∈ projJ(L). Hence, there exists x ∈ X(w, J) ∩ L = X(w, J) ∩ V .

Note that it is possible to determine if there exists a dual witness for X(w, J) and if so, find one efficiently
as shown in Proposition 5.11.

Proposition 5.11. Given w ∈ Zn
d and J ⊆ [n], we can find a dual witness for X(w, J) if one exists or

confirm that no dual witness for X(w, J) exists in time O(|J |ω), where O(mω) is the time to compute the
inverse of a m×m real matrix.

Proof. A basis for projJ(L) can be obtained by projecting the basis for L. Now a basis for the dual
of the projected lattice, namely projJ(L)

⊥ = projJ(L
⊥
J ), can be computed in time O(|J |ω). We observe

that for every α ∈ L⊥
J , we have 〈α,w〉 ∈ Z if and only if for every basis vector b of projJ(L

⊥
J ), we have

〈b, projJ(w)〉 ∈ Z. Hence it is sufficient to only verify the inner product of projJ(w) with the basis vectors
of projJ(L

⊥
J ).

We now have the ingredients needed to prove Lemma 5.3.

Lemma 5.3. Suppose a full-rank lattice L ⊆ Z
n with dZn ⊆ L for d ∈ Z+ has an adaptive 2-sided `p-

tester T (ε, c, s, q) for inputs from the domain Zn
d . Then L has an adaptive linear `p-tester T ′(ε, 0, c + s, q)

for inputs from the domain Zn
d .

Proof. We first relabel the decision tree according to the rule required for a linear test: Given a decision
tree Γ for the tester T , we say that it is optimally labeled if the label of any leaf l is 0 whenever there exists a
dual witness for X(sl, var(l)) and 1 otherwise. We denote the tree obtained from Γ by optimally relabeling
to be ΓOPT (the relabeling for a given leaf of a tree Γ can be done efficiently by Proposition 5.11). We build
a tester T ′ as follows:

1. On input x ∈ Zn
d , choose a tree Γ according to DT .

2. Choose a uniformly random vector v in V (recall that V := L mod d).
3. Answer according to the relabeled decision tree ΓOPT on input (x+ v) mod d.

It is clear that T ′ is a linear test and has the same query complexity as that of T . We now show that
the probability of acceptance by T ′ of any vector w which is ε-far from L, does not exceed c + s. Let us
define the following for a tester T̄ :

ρT̄ := avg
y∈V

Pr[T̄ (y) = 1],

ρT̄x := avg
y∈(x+V ) mod d

Pr[T̄ (y) = 1].
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Due to the randomness in the choice of the tester T ′, we have

ρT
′

= Pr[T ′(x) = 1 | x ∈ V ],

ρT
′

x = Pr[T ′(x) = 1].

Since T ′ is a 1-sided tester, we have that ρT
′

= 1. Since T accepts lattice vectors with probability at
least 1− c, we have ρT ≥ 1− c. Let x ∈ Zn

d be ε-far from L. For every v ∈ V , we have that (x+ v) mod d
is also ε-far from L by Proposition 5.2. Therefore, ρTx ≤ s. Using Claim 5.12, we have

ρT
′

x ≤ ρT
′

− ρT + ρTx ≤ 1− (1− c) + s = c+ s.

Claim 5.12. For every x ∈ Zn
d ,

ρT
′

x ≤ ρT
′

− ρT + ρTx .

Proof. Let x be a vector in Zn
d . We analyze the effect of relabeling a single leaf l of the decision tree Γ.

We show that relabeling l optimally preserves the claim and hence by repeated relabeling, we can deduce
the claim.

Case (i). There exists a dual witness for X(sl, var(l)). Then the leaf l is relabeled from 1 to 0. If
input y ∈ X(sl, var(l)), then y cannot be a lattice vector (if y is a lattice vector, then there cannot exist
a dual witness for X(sl, var(l))). Therefore, the probability of acceptance of lattice vectors is not changed
due to relabeling, i.e., ρT

′

= ρT . If the leaf l is reached for input y ∈ Zn
d \ V , then T ′ rejects. Thus,

relabeling does not increase the probability of acceptance of non-lattice vectors, i.e., ρT
′

y ≤ ρTy . Therefore,

ρT
′

x ≤ ρT
′

− ρT + ρTx holds for this case.
Case (ii). There does not exist a dual witness for X(sl, var(l)). Then the leaf l is relabeled from 0 to 1.
The set of vectors in Vl ∪ V x

l were rejected by T and, after optimal relabeling of the leaf l, are now
accepted by T ′. The rest of the vectors in V and (x + V ) mod d are rejected/accepted equally by both T
and T ′.

Now, if y was a lattice vector, then the probability of accepting a lattice vector increases because of the
relabeling of l. Among the vectors in V , the vectors in Vl are precisely the ones which were rejected before
relabeling and are now accepted after relabeling. Since we average over all possible vectors y ∈ V in the
definition of ρT , the fractional change in the acceptance probability given that T ′ and T chose the decision
tree Γ is exactly |Vl|/|V |. Therefore,

ρT
′

= ρT +DT (Γ)
|Vl|

|V |
.

Among the vectors in (x+ V ) mod d, the vectors in V x
l are the only vectors which were rejected before

relabeling and are now accepted after relabeling. Thus, the fractional change in the acceptance probability
of (x+ v) mod d given that T ′ and T chose the decision tree Γ is exactly |V x

l |/|V |. Therefore,

ρT
′

x = ρTx +DT (Γ)
|V x

l |

|V |
.

Combining the two equations, we get

ρT
′

x = ρT
′

− ρT + ρTx +
DT (Γ)

|V |
(|V x

l | − |Vl|).

Using Claim 5.8, we know that |V x
l | ≤ |Vl| if Vl is non empty. Since there does not exist a dual witness for

l, by Proposition 5.9, we have that Vl is non-empty. Hence the claim follows.

5.2. Adaptive to Non-adaptive. In this section we show that given an adaptive linear tester for a
lattice, we can construct a non-adaptive linear tester from it without increasing the query complexity or the
acceptance probability of non-lattice vectors.

Lemma 5.4. Suppose a full-rank lattice L ⊆ Z
n with dZn ⊆ L for d ∈ Z+ has an adaptive linear `p-tester

T (ε, 0, s, q) for inputs from the domain Zn
d . Then L has a non-adaptive linear `p-tester T

′(ε, 0, s, q) for inputs
from the domain Zn

d .
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Proof. Let T (ε, 0, s, q) be an adaptive linear tester for inputs from the domain Zn
d with query complexity

q. We construct a non-adaptive linear tester T ′(ε, 0, s, q) for inputs from the domain Zn
d as follows:

1. On input x ∈ Zn
d , choose a random vector v ∈ V .

2. Run T on input v. Let J denote the set of coordinates that are queried.
3. Query x on all the coordinates in J .
4. Reject if and only if there exists a dual witness for X(x, J).

We note that T ′ is a linear test and the query complexity of T ′ is the same as the query complexity of
T . Since the queries depend only on a random v ∈ V and not on the input x, the test T ′ is non-adaptive. It
remains to bound the acceptance probability of non-lattice vectors by T ′. We will show that there is no dual
witness for X(x, J) if and only if there exists a vector y ∈ (x+ V ) mod d that is consistent with the queried
coordinates of v. As a consequence, we will show that the probability that T ′ accepts x is identical to the
average acceptance probability of x + v for random vectors v ∈ V by T . Before analyzing the acceptance
probability, we introduce a few notations and observations.

For a decision tree Γ ∈ ΥT , we denote the set of leaves of Γ which are labeled 1 by l1(Γ). For a leaf l
of Γ and a vector x ∈ Zn

d , let Ixl be a boolean (indicator) variable which takes a value of 1 if and only if
〈α, x〉 ∈ Z for every α ∈ L⊥

var(l).

Let Γ̄ be the decision tree chosen by the tester T ′ on input x. The random vector v ∈ V chosen by T ′

corresponds to a leaf labeled 1 in Γ̄. This is because T is a linear test and hence a lattice vector v cannot
have any dual witness. Therefore, v ∈ Vl̄ for some l̄ ∈ l1(Γ̄). Since T ′ is a linear test it is clear that T ′

accepts x if and only if Ix
l̄
= 1.

Claim 5.13. Let l be a leaf of a decision tree Γ ∈ ΥT , x ∈ Zn
d and y ∈ (x + V ) mod d.We have that

Ixl = 1 if and only if Iyl = 1.

Proof. If y ∈ (x + V ) mod d, then x − y ∈ L. If x, y ∈ Z
n belong to the same coset of L, then for

every a ∈ L⊥, we have that 〈x, a〉 ∈ Z if and only if 〈y, a〉 ∈ Z. Therefore, there exists α ∈ L⊥
var(l) such that

〈α, x〉 /∈ Z if and only if there exists α ∈ L⊥
var(l) such that 〈α, y〉 /∈ Z. Hence Ixl = 1 if and only if Iyl = 1 for

every y ∈ (x+ V ) mod d.

Claim 5.14. Let x ∈ Zn
d and l be a leaf of a decision tree Γ ∈ ΥT such that l ∈ l1(Γ). Then |V x

l | = Ixl |Vl|.

Proof. We know that for every leaf l which is labeled 1, the set Vl is non-empty since T is a linear tester
(using Proposition 5.9). By Claim 5.8 we know that |V x

l | = |Vl| if V
x
l is also non-empty. Therefore it is

sufficient to show that Ixl = 1 if and only if V x
l is non-empty

If V x
l is non-empty, then by definition, there is a vector y ∈ (x+ V ) mod d which is consistent with all

the queries along the path to l. Since l is labeled 1, we know that T accepts y. Since T is a linear tester,
this implies that there does not exist an α ∈ L⊥

var(l) such that 〈α, x〉 /∈ Z. Hence Iyl = 1. By Claim 5.13, we
know that Ixl is also 1.

If Ixl = 1, then for every α ∈ L⊥
var(l), we have 〈α, x〉 ∈ Z. By Proposition 5.9, there exists a vector

v ∈ V ∩ X(x, var(l)). Hence, we have a vector v ∈ V whose entries are identical to that of x at the
coordinates in var(l). We observe that the vector (x− v) mod d has all 0 entries at the coordinates in var(l).
Further, Vl is non-empty since l is labeled 1. Let u ∈ Vl. Then ((x − v) + u) mod d is consistent with all
queries along the path to l, and is in (x+ V ) mod d. Therefore V x

l is non-empty.

We now show that the acceptance probability of T ′ is equal to the average acceptance probability of T .
Let

ρx := avg
v∈V

Pr[T ((x+ v) mod d) = 1].

We note that this quantity is 1 if x ∈ V and is at most s if x is ε-far from the lattice L. The following claim
shows that T ′ accepts an input vector x with probability 1 if x ∈ V and with probability at most s if x is
ε-far from the lattice L.

Claim 5.15. Let x ∈ Zn
d . Then Pr[T ′(x) = 1] = ρx.

Proof. The average acceptance probability of T can be viewed as follows: we pick a decision tree Γ
according to DT . Then we pick a leaf l labeled 1 with probability proportional to the fraction of vectors in
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x+ V mod d that are consistent with the queries along the path to l. Therefore,

ρx =
∑

Γ∈ΥT

DT (Γ)





∑

l∈l1(Γ)

|V x
l |

|V |



 .

We have seen that T ′(x) = 1 if and only if for the random vector v ∈ V chosen by T ′, and a leaf l̄ ∈ l1(Γ̄)
such that v ∈ Vl̄, we have Ix

l̄
= 1. Thus the execution of T ′ can be treated as follows: First, pick a decision

tree Γ ∈ ΥT according to DT (Γ), then choose a leaf l labeled 1 in Γ with probability proportional to the
fraction of vectors in V that are consistent with the queries to the coordinates in l. Finally, query x on the
variables in var(l) and accept if and only if Ixl = 1. Therefore, the acceptance probability of T is given by

Pr[T (x) = 1] =
∑

Γ∈ΥT

DT (Γ)





∑

l∈l1(Γ)

|Vl|

|V |
· Ixl



 .

By Claim 5.14, we see that ρx = Pr[T ′(x) = 1].

5.3. Handling real-valued inputs. In this section, we build a tester for real-valued inputs using a
tester for bounded integral inputs. We first show how to handle all integral inputs using a tester for integral
inputs from a bounded domain.

Lemma 5.5. Let L ⊆ Z
n be a full-rank lattice with dZn ⊆ L for d ∈ Z+. Then, L has a non-adaptive

linear `p-tester T (ε, 0, s, q) for inputs from the domain Zn
d if and only if L has a non-adaptive linear `p-tester

T ′(ε, 0, s, q) for inputs from the domain Z
n.

Proof. If we have a tester T ′(ε, c, s, q) for integral inputs, then the same tester can be applied to inputs
in Zn

d with the same completeness and soundness parameters and the same query complexity. Given a tester
T (ε, c, s, q) for inputs from the domain Zn

d , we construct the tester T ′(ε, c, s, q) for arbitrary integral inputs
as follows: On input x ∈ Z

n run T (ε, c, s, q) on w := x mod d, and output the result.
If x is a lattice vector, then from Proposition 5.2, we know that w is also a lattice vector, and therefore

T ′ accepts x with probability at least 1 − c. If x is ε-far from the lattice, then again from Proposition 5.2,
we know that w is also ε-far from the lattice and T ′ will accept x with probability at most s. We note that
the query complexity of T ′ is identical to that of T .

To address the case of real inputs, we will design a tester for the integer lattice.

Lemma 5.7. For every 0 < ε ≤ 1 and every 0 < s ≤ 1, there exists a non-adaptive linear `p-tester
Tp(ε, 0, s, qZ) for Z

n with query complexity

qZ = O

(

1

εp
log

1

s

)

.

Proof. The test queries O((1/εp) log(1/s)) coordinates of the input uniformly at random and accepts iff
all the queried coordinates are integral.

If the input is in the lattice, then all the queried coordinates will be integral, and hence the tester will
accept. If the input w is at `p distance at least ε · ‖1n‖p, then at least εpn coordinates of the input are
non-integral. Thus the tester will reject with probability at least 1− s.

We note that the tester is a linear test: the test described can be viewed as picking independent uniform
random standard basis vectors ei ∈ Z

n ⊆ L⊥ (where ei is the indicator vector of the index i), for i ∈ [n],
and testing if the input w satisfies 〈w, ei〉 ∈ Z.

Lemma 5.6. Suppose a full-rank lattice L ⊆ Z
n has a non-adaptive `p-tester T (ε, c, s, q) for inputs from

the domain Z
n. Then there exists a non-adaptive `p-tester T

′(ε, c, s, q′) for inputs in R
n with query complexity

q′ = q(ε/2, c, s) +O((1/εp) log (1/s)). Moreover, if T is a linear tester, then so is T ′.

Proof. Suppose we have a `p-tester T (ε, c, s, q) for integer inputs. We can build a tester T ′ for real valued
inputs as follows:
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1. On input x ∈ R
n, run the `p-tester T̄ (ε/2, 0, s, qZ) for Z

n from Lemma 5.7 on input x. If the tester
T̄ rejects, then reject.

2. Else, run T (ε/2, c, s, q′) on x where q′ = q(ε/2, c, s) and reject immediately if any of the coordinates
queried are not integers; otherwise output the result of T .

If x is a lattice vector, then the acceptance probability of T ′ is the same as that of T since the tester used
in step 1 is a linear tester. If dp(x, L) ≥ ε · ‖1n‖p, then dp(x, bxe) + dp(bxe, L) ≥ dp(x, L) ≥ ε · ‖1n‖p and
therefore either dp(x, bxe) or dp(bxe, L) is at least 1

2ε · ‖1
n‖p. If dp(x, bxe) ≥ 1

2ε · ‖1
n‖p, then dp(x,Z

n) =
dp(x, bxe) ≥

1
2ε · ‖1

n‖p and therefore step 1 rejects with probability at least 1− s. If dp(bxe, L) ≥
1
2ε · ‖1

n‖p,
then step 2 rejects with probability at least 1− s.

The number of queries made by the tester T ′ is q(ε/2, c, s) + O((1/εp) log (1/s)). We note that since
the tester used in step 1 is a non-adaptive linear tester, T ′ would be a non-adaptive linear tester if T is a
non-adaptive linear tester.

Remark 5.16. We note that the test described in the proof of Theorem 1.7 is not a linear test by
definition. We now describe a linear test for the code-formula lattice which is equivalent to the test described
in Section 3.1.

Let Tp denote the tester for Z
n. We assume that each code tester Ti for the code Ci is linear [4] (i.e

Ti queries the input ti ∈ {0, 1}n at Ii = {i1, · · · , iq} ⊆ [n] coordinates according to some distribution and
accepts it if and only if 〈ti, v〉 ≡ 0 mod 2 for every v ∈ C⊥

Ii
). Consider the following variant of the test, that

we call Tlinear, which by definition is a linear test:
1. Let each Ti query Ii ⊆ [n] coordinates and let Tp query Ip coordinates.
2. Let I = ∪iIi ∪ Ip.
3. Accept t if 〈t, x〉 ∈ Z for all x ∈ (L⊥)I
4. Reject otherwise.

Note that the query complexity of Tlinear is upper bounded by the query complexity of T .
If the input is a lattice vector; i.e., t ∈ L, then by definition, the inner product of t with every dual lattice

vector would be an integer. Therefore, the test is 1-sided.
We now show that Tlinear rejects all inputs t which are rejected by T and hence, Tlinear performs at

least as well as T . If T rejects t, then there is some i ∈ {0, 1, . . . ,m − 1} such that ti is rejected by Ti or t
is rejected by Tp. We note that each code tester Ti and also Tp are linear. Therefore, if Ti rejects ti, then
there are no codewords of Ci which agree with ti on the coordinates Ii queried by Ti. So, for the set I which
contains Ii, there are no codewords of Ci which agree with ti on the coordinates in I. If Tp rejects t, then
there is some non-integral coordinate in Ip and hence in I. By definition of the code formula construction, t
is a lattice vector if and only if for each i = 0, . . .m− 1, ti is a codeword in Ci and t ∈ Z

n. Hence, no lattice
vector of L agrees with t on those set of coordinates. Therefore, there exists a dual lattice vector supported
on I, which does not have an integral inner product with t. Therefore, Tlinear also rejects t (and thus, has
at least as good a soundness as the original test T ).

6. Testing membership of inputs outside the span of the lattice. In this section we prove
Theorems 1.17, 1.18, Corollary 1.19 and Theorem 1.20. We first recall the definitions. Let L be a rank k
lattice in Z

n. Let S denote the span(L) and S⊥ be the subspace orthogonal to S. Let U = [u1, · · · , un−k]
T ∈

R
(n−k)×n be an orthonormal basis for S⊥. Let P ⊆ [n] be the set of coordinates that support the vectors in

S⊥ i.e.,

P :=
⋃

i∈[n−k]

supp(ui).

Theorem 1.17. Let L ⊆ Z
n be a lattice of rank k. Let P ⊆ [n] be the support of the vectors in span(L)⊥.

Let 0 < ε, c, s < 1. Every non-adaptive `p-tester T (ε, c, s, q) for L for inputs in R
n has query complexity

q = Ω(|P |).

Proof. To show the Ω(|P |) lower bound, we use Yao’s principle: we setup a distribution D on far inputs
such that every deterministic algorithm requires Ω(|P |) queries to distinguish whether the input is 0 ∈ L
or is far from L. We define D as follows: pick j uniformly at random from P , and set t(j) := Dej , where

D ≥ ε·‖1n‖p

min
i,j:ui,j 6=0

|ui,j | . The following claim shows that the distance of each such t(j) from L is at least ε · ‖1n‖p.
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Claim 6.1. dp(t
(j), L) ≥ ε · ‖1n‖p for every j ∈ P .

Proof. It is sufficient to show that t(j) is far from S, since L ⊆ S. Let t(j) = t(j)‖ + t(j)⊥, where t(j)‖ is
the component of t(j) in S and t(j)⊥ is the component of t in S⊥. By definition,

t(j)⊥ = projS⊥(t(j)) =
∑

`∈[n−k]

〈t(j), u`〉u`.

Since U is an orthonormal basis of S⊥,

‖t(j)⊥‖pp =
∑

`∈[n−k]

|〈t(j), u`〉|
p =

∑

`∈[n−k]

(Du`,j)
p ≥ (ε · ‖1n‖p)

p.

The last inequality follows from the choice of D and the fact that there exists at least one u`,j 6= 0 since
j ∈ P . Therefore, the distance of t(j) from S and hence from L, is at least ε · ‖1n‖p.

By the choice of the distribution, every deterministic test fails on inputs drawn from D with probability
1/|P |. Thus any randomized test requires Ω(|P |) queries in order to succeed with constant probability.

Theorem 1.18. Let L ⊆ Z
n be a lattice of rank k. Let P ⊆ [n] be the support of the vectors in span(L)⊥.

Let 0 < ε, c, s < 1, and suppose L has an `p-tester T (ε, c, s, q) for inputs t ∈ span(L). Then L has a tester
T ′(2ε, c, s, q′) for inputs in R

n with query complexity

q′ ≤ q + |P |.

Proof. Let T (ε, c, s, q) be an `p-tester for L for inputs in span(L) with query complexity q = q(ε). We
now design a tester T ′(ε′, c′, s′, q′) for L for inputs t = (t1, t2, · · · , tn) ∈ R

n. By making an additional |P |
queries, T ′ can compute the coordinates of the projection of t onto S. If t is far from L, then either (i) t is
far from S or (ii) t is close to S but far from L. The coordinates in P would identify if t is far from S and
enable rejection. If t is close to S but far from L, the tester T would reject the projection of t onto S thus
enabling rejection. We now formalize this intuition.

Let t = (t1, t2, · · · , tn) ∈ R
n be the input to the tester T ′. We compute the projection of t on span(L)

by querying all the coordinates in P . Let t⊥ be the projection of t onto S⊥. Since U is an orthonormal basis
for S⊥, we have

t⊥ =
∑

`∈[n−k]

〈t, u`〉u`.

Each inner product in this expression can be computed using only the coordinates in P and therefore, t⊥ can
be computed from t by querying just |P | coordinates. If ‖t⊥‖p ≥ ε′/2 · ‖1n‖p, then T ′ rejects t immediately.
So we now assume ‖t⊥‖p < ε′/2 · ‖1n‖p The projection of t onto S is:

t
‖
j =

{

tj if j /∈ P
tj − t⊥j if j ∈ P

Now we run the tester for T on input t‖ for distance parameter ε = ε′/2 and accept t if and only if T accepts.
If t ∈ L, then t⊥ = 0 and T would accept with probability at least 1− c. If dp(t, L) ≥ ε′ · ‖1n‖p, then

dp(t
‖, L) ≥ ε′ · ‖1n‖p − dp(t

⊥, S) ≥ ε′/2 · ‖1n‖p = ε · ‖1n‖p.

Therefore, T would reject with probability at least 1− s. Finally, note that q′(ε′) ≤ q(ε′/2) + |P |.

6.1. Testing Knapsack Lattices.

Corollary 1.19. Let a1, . . . , an be integers and 0 < ε, c, s < 1. Every non-adaptive `p-tester T (ε, c, s, q)
for La1,...,an−1

has query complexity
q = Ω(n).

Proof. We note that L has rank n − 1 and the vector (a1, a2, . . . , an−1,−1) generates the subspace
orthogonal to span(L), hence the set P of elements in the support of this space has size |P | = n, and the
lower bound follows from Theorem 1.17.
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We now prove Theorem 1.20, namely that knapsack lattices can be tested with a constant number of
queries if the inputs come from the span of the lattice. In fact, we will show that testing such lattices simply
reduces to testing membership in Z

n.

Theorem 1.20. Let a1, . . . , an−1 be integers with M = maxi∈[n] |ai|
p and 0 < ε, s < 1. There exists a

non-adaptive `p-tester T (ε, 0, s, q) for La1,...,an−1
with query complexity q = O

(

M
εp · log 1

s

)

, if the inputs are
guaranteed to lie in span(L).

Proof. Let L = La1,...,an−1
. Let w ∈ span(L) denote the input. Any vector w ∈ span(L) is of the form

w =

(

α1, · · · , αn−1,

n−1
∑

i=1

aiαi

)

for some real values α1, . . . , αn−1. Let w
′ ∈ R

n−1 denote the projection of w on the first n− 1 coordinates.
Let Tp(ε

′, 0, s′, q′) denote the `p-tester for Z
n−1, where q′ = O

((

1
ε′p

)

log 1
s′

)

.

The tester proceeds as follows: Run the tester Tp(ε
′ = ε/(M + 1)1/p, 0, s, q = O

((

M
εp

)

log 1
s

)

) on input
w′. Accept if and only if the tester Tp accepts.

The query complexity of the tester is immediate. If w ∈ L, then each coordinate is integral. Therefore
the test accepts w with probability 1. We use the following claim to analyze the soundness of the test.

Claim 6.2. Let w ∈ span(L), and w′ = (w1, · · · , wn−1) ∈ R
n−1 then,

d(w,L)p ≤ (M + 1) · d(w′,Zn−1)p

Proof. Consider the following vector v ∈ L:

v = (bw1e, · · · , bwn−1e,
n−1
∑

i=1

aibwie)

where bwie denotes the rounding of wi the nearest integer. We now upper bound the distance of w from L
using this lattice vector v.

d(w,L)p ≤ d(w, v)p = ‖w − v‖pp

=

n−1
∑

i=1

|wi − bwie|
p + |wn −

n−1
∑

i=1

aibwie|
p

=

n−1
∑

i=1

|wi − bwie|
p + |

n−1
∑

i=1

aiwi −
n−1
∑

i=1

aibwie|
p

≤
n−1
∑

i=1

|wi − bwie|
p +

n−1
∑

i=1

|ai(wi − bwie)|
p

≤
n−1
∑

i=1

|wi − bwie|
p +M

n−1
∑

i=1

|wi − bwie|
p

= (M + 1) ·
n−1
∑

i=1

|wi − bwie|
p

= (M + 1) · d(w′,Zn−1)p

It remains to bound the soundness error probability. If d(w,L) ≥ ε‖1n‖p, then from Claim 6.2, we get
that d(w′,Zn−1) ≥ (ε/(M + 1)1/p)‖1n‖p. Therefore, the tester Tp rejects w with probability at least 1− s.
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