Nearly Optimal Distinct Elements and Heavy Hitters on Sliding
Windows

Vladimir Braverman*® Elena Grigorescu' Harry Lang?
Johns Hopkins University Purdue University Johns Hopkins University

David P. Woodruff® Samson Zhou"”
Carnegie Mellon University Purdue University

August 8, 2018

Abstract

We study the distinct elements and £,-heavy hitters problems in the sliding window model,
where only the most recent n elements in the data stream form the underlying set. We first
introduce the composable histogram, a simple twist on the exponential (Datar et al., SODA 2002)
and smooth histograms (Braverman and Ostrovsky, FOCS 2007) that may be of independent
interest. We then show that the composable histogram along with a careful combination of
existing techniques to track either the identity or frequency of a few specific items suffices to
obtain algorithms for both distinct elements and £,-heavy hitters that are nearly optimal in
both n and e.

Applying our new composable histogram framework, we provide an algorithm that out-
puts a (1 + €)-approximation to the number of distinct elements in the sliding window model
and uses O (6% log nlog % loglogn + %log2 n) bits of space. For £,-heavy hitters, we provide
an algorithm using space O (},,logfn(log2 logn—l—log%)) for 0 < p < 2, improving upon
the best-known algorithm for f»-heavy hitters (Braverman et al., COCOON 2014), which has
space complexity O (%4 log® n) We also show complementing nearly optimal lower bounds of
Q (% logn + e% log n) for distinct elements and €2 (eip log? n) for /,-heavy hitters, both tight up
to O (loglogn) and O (log %) factors.

“Department of Computer Science, Johns Hopkins University, Baltimore, MD. This material is based upon work
supported in part by the National Science Foundation under Grants No. 1447639, 1650041, and 1652257, Cisco
faculty award, and by the ONR Award N00014-18-1-2364. E-mail: vova@cs. jhu.edu

"Department of Computer Science, Purdue University, West Lafayette, IN. Research supported in part by NSF
CCF-1649515. E-mail: elena-g@purdue.edu

‘Department of Mathematics, Johns Hopkins University, Baltimore, MD. This material is based upon work sup-
ported by the Franco-American Fulbright Commission. The author thanks INRIA (I'Institut national de recherche
en informatique et en automatique) for hosting him during the writing of this paper. E-mail: hlang8@jhu.edu

§School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. The author would like to acknowledge
the support by the National Science Foundation under Grant No. CCF-1815840. E-mail: dwoodruf@cs.cmu.edu

VDepartment of Computer Science, Purdue University, West Lafayette, IN. Research supported in part by NSF
CCF-1649515. E-mail: samsonzhou@gmail.com

1 Introduction

The streaming model has emerged as a popular computational model to describe large data sets
that arrive sequentially. In the streaming model, each element of the input arrives one-by-one and
algorithms can only access each element once. This implies that any element that is not explicitly
stored by the algorithm is lost forever. While the streaming model is broadly useful, it does not fully
capture the situation in domains where data is time-sensitive such as network monitoring [Corl3,
CGO8, CMO05b] and event detection in social media [OMM™'14]. In these domains, elements of
the stream appearing more recently are considered more relevant than older elements. The sliding
window model was developed to capture this situation [DGIMO02]. In this model, the goal is to
maintain computation on only the most recent n elements of the stream, rather than on the stream
in its entirety. We call the most recent n elements active and the remaining elements expired. Any
query is performed over the set of active items (referred to as the current window) while ignoring
all expired elements.

The problem of identifying the number of distinct elements, is one of the foundational problems
in the streaming model.

Problem 1 (Distinct elements) Given an input S of elements in [m], output the number of
items © whose frequency f; satisfies f; > 0.

The objective of identifying heavy hitters, also known as frequent items, is also one of the most
well-studied and fundamental problems.

Problem 2 (¢,-heavy hitters) Given parameters 0 < ¢ < € < 1 and an input S of elements
in [m], output all items i whose frequency f; satisfies f; > 6(Fp)1/p and no item i for which
fi < (e — ¢)(Fy)YP, where F, = Zz‘e[m} fY. (The parameter ¢ is typically assumed to be at least ce
for some fixed constant 0 < ¢ < 1.)

In this paper, we study the distinct elements and heavy hitters problems in the sliding window
model. We show almost tight results for both problems, using several clean tweaks to existing
algorithms. In particular, we introduce the composable histogram, a modification to the exponential
histogram [DGIMO02] and smooth histogram [BO07], that may be of independent interest. We detail
our results and techniques in the following section, but defer complete proofs to the full version of
the paper [BGLT18].

1.1 Owur Contributions
Distinct elements.

An algorithm storing O (}2 log nlog %(log % + log log n)) bits in the insertion-only model was previ-
ously provided [KNW10]. Plugging the algorithm into the smooth histogram framework of [BO07]
yields a space complexity of O (%3 log?3 n(log% + log log n)) bits. We improve this significantly as
detailed in the following theorem.

Theorem 1 Given ¢ > 0, there exists an algorithm that, with probability at least %, provides
a (1 + €)-approximation to the number of distinct elements in the sliding window model, using
O (6% log nlog % loglogn + %log2 77) bits of space.

A known lower bound is € (ﬁ% + log n) bits [AMS99, IW03] for insertion-only streams, which is also
applicable to sliding windows since the model is strictly more difficult. We give a lower bound for
distinct elements in the sliding window model, showing that our algorithm is nearly optimal, up to
log% and loglogn factors, in both n and e.

Theorem 2 Let 0 < € < ﬁ Any one-pass sliding window algorithm that returns a (1 + €)-

approrimation to the number of distinct elements with probability % requires €2 (% log?n + 6% log n)
bits of space.

¢p-heavy hitters.

We first recall in Lemma 16 a condition that allows the reduction from the problem of finding
the ¢,-heavy hitters for 0 < p < 2 to the problem of finding the ¢>-heavy hitters. An algorithm
of [BCIT17] allows us to maintain an estimate of F». However, observe in Problem 2 that an
estimate for F5 is only part of the problem. We must also identify which elements are heavy. First,
we show how to use tools from [BCIW16] to find a superset of the heavy hitters. This alone is not
enough since we may return false-positives (elements such that f; < (e — ¢)v/F2). By keeping a
careful count of the elements (shown in Section 4), we are able to remove these false-positives and

obtain the following result, where we have set ¢ = %e:

Theorem 3 Given ¢ > 0 and 0 < p < 2, there exists an algorithm in the sliding window

model that, with probability at least %, outputs all indices i € [m] for which f; > erl/p, and
reports no indices i € [m| for which f; < ﬁFpl/p. The algorithm has space complexity (in bits)

O (Cip log? n (log2 logn + log %))

Finally, we obtain a lower bound for ¢,-heavy hitters in the sliding window model, showing that
our algorithm is nearly optimal (up to log% and loglogn factors) in both n and e.

Theorem 4 Let p > 0 and €,6 € (0,1). Any one-pass streaming algorithm that returns the £)-
heavy hitters in the sliding window model with probability 1 — § requires Q((1 — §)e P log®n) bits of
space.

More details are provided in Section 4 and Section 5.

By standard amplification techniques any result that succeeds with probability % can be made
to succeed with probability 1 — § while multiplying the space and time complexities by O (log %)
Therefore Theorem 1 and Theorem 15 can be taken with regard to any positive probability of
failure.

See Table 1 for a comparison between our results and previous work.

Problem Previous Bound New Bound
ly-heavy hitters (@) (6% log® n) [BGO14] @ (}2 log® n (logz logn + log? %))
Distinct elements | O (}3 log®n + %log‘S n) [KNW10, BO07] | O (% log % lognloglogn + % log? n)

€

Table 1: Our improvements for o-heavy hitters and distinct elements in the sliding window model.

1.2 Owur Techniques

We introduce a simple extension of the exponential and smooth histogram frameworks, which use
several instances of an underlying streaming algorithm. In contrast with the existing frameworks
where O (logn) different sketches are maintained, we observe in Section 2 when the underlying
algorithm has certain guarantees, then we can store these sketches more efficiently.

Sketching Algorithms

P

Pi—n—1 Pi—n

T T
Pi—n—2 | Pi—n—1 , Pi—n
|
X Pi

Pi—n Di

pi

pi

T
I
I
|
[}
|
:Pi
I
1
I
,
I

Pq

- o o
Sliding window begins

Fig. 1: Each horizontal bar represents an instance of the insertion-only algorithm. The red in-
stance represents the sliding window. Storing an instance beginning at each possible start point
would ensure that the exact window is always available, but this requires linear space. To achieve
polylogarithmic space, the histogram stores a strategically chosen set of O (logn) instances (shaded
grey) so that the value of f on any window can be (1+ €)-approximated by its value on an adjacent
window.

Consider the sliding window model, where elements eventually expire. A very simple (but
wasteful) algorithm is to simply begin a new instance of the insertion-only algorithm upon the arrival
of each new element (Figure 1). The smooth histogram of [BO07], summarized in Algorithm 1,
shows that storing only O (logn) instances suffices.

Algorithm 1 Input: A stream of elements pi,pa,... from [m], a window length n > 1, error
e€(0,1)
1. T+ 0
2: 141
3: loop
4 Get p; from stream
5 T < T + 1; tp < i; Compute D(tr), where f(D) is a (1 + f—l)—approximation of f.
6: forall1 <j<Tdo X
T if f(D(tj_l : tT)) < (1 — i) f(D(tj_H : tT)) then
8 Delete t;; update indices; 7' < T — 1
9 if to <i—n then
10: Delete t1; update indices; T+ T — 1
11: i+i+1

Algorithm 1 may delete indices for either of two reasons. The first (Lines 9-10) is that the index
simply expires from the sliding window. The second (Lines 7-8) is that the indices immediately
before (t;—1) and after (¢;11) are so close that they can be used to approximate t;.

For the distinct elements problem (Section 3), we first claim that a well-known streaming
algorithm [BJK™02] provides a (1 + €)-approximation to the number of distinct elements at all
points in the stream. Although this algorithm is suboptimal for insertion-only streams, we show
that it is amenable to the conditions of a composable histogram (Theorem 6). Namely, we show
there is a sketch of this algorithm that is monotonic over suffixes of the stream, and thus there
exists an efficient encoding that efficiently stores D(¢; : t;+1) for each 1 < i < T, which allows us
to reduce the space overhead for the distinct elements problem.

For lo-heavy hitters (Section 4), we show that the ¢3 norm algorithm of [BCIT17] also satisfies
the sketching requirement. Thus, plugging this into Algorithm 1 yields a method to maintain
an estimate of fo. Algorithm 2 uses this subroutine to return the identities of the heavy hitters.
However, we would still require that all n instances succeed since even O (1) instances that fail
adversarially could render the entire structure invalid by tricking the histogram into deleting the
wrong information (see [BOO07] for details). We show that the f norm algorithm of [BCI™17]
actually contains additional structure that only requires the correctness of polylog(n) instances,
thus improving our space usage.

1.3 Lower Bounds
Distinct elements.

To show a lower bound of (% log?n + }2 log n) for the distinct elements problems, we show in
Theorem 19 a lower bound of 2 (% log? n) and we show in Theorem 22 a lower bound of (2 (}2 log n)
We first obtain a lower bound of €2 (% log? n) by a reduction from the IndexGreater problem, where
Alice is given a string S = x1x2 - - - Ty, and each x; has n bits so that S has mn bits in total. Bob
is given integers ¢ € [m] and j € [2"] and must determine whether z; > j or x; < j.

Given an instance of the IndexGreater problem, Alice splits the data stream into blocks of size

@) (kfgn) and further splits each block into /n pieces of length (1 + 2¢)¥, padding the remainder

of each block with zeros if necessary. For each i € [m], Alice encodes z; by inserting the elements
{0,1,...,(1 4 2¢)¥ — 1} into piece x; of block (¢ — i + 1). Thus, the number of distinct elements
in each block is much larger than the sum of the number of distinct elements in the subsequent
blocks. Furthermore, the location of the distinct elements in block (¢ — i + 1) encodes x;, so that
Bob can recover x; and compare it with j.

We then obtain a lower bound of €2 (}2 log n) by a reduction from the GapHamming problem.
In this problem, Alice and Bob receive length-n bitstrings z and ¥y, which have Hamming distance
either at least § 4 +/n or at most § —+/n, and must decide whether the Hamming distance between
r and y is at least 5. Recall that for e < ln, a (1 + ¢)-approximation can differentiate between
at least § + y/n and at most § — y/n. We use this idea to show a lower bound of 2 (215 logn) by
embedding Q(logn) instances of GapHamming into the stream. As in the previous case, the number
of distinct elements corresponding to each instance is much larger than the sum of the number of
distinct elements for the remaining instances, so that a (1 + €)-approximation to the number of

distinct elements in the sliding window solves the GapHamming problem for each instance.

Heavy hitters.

To show a lower bound on the problem of finding /,-heavy hitters in the sliding window model, we
give a reduction from the Augmentedindex problem. Recall that in the Augmentedindex problem,

Alice is given a length-n string S € {1,2...,k}" (which we write as [k]") while Bob is given an
index i € [n], as well as S[1,7 — 1], and must output the i symbol of the string, S[i]. To encode
S[i] for S € [k]™, Alice creates a data stream aj o ag o ... o ap with the invariant that the heavy
hitters in the suffix a; o a;4+1 o... 0 ap encode S[i]. Specifically, the heavy hitters in the suffix will
be concentrated in the substream a; and the identities of each heavy hitter in a; gives a bit of
information about the value of S[i]. To determine S[i|, Bob expires the elements a1, as, ..., a;—1 so
all that remains in the sliding window is a; o a;41 o ... o a, whose heavy hitters encode S|i].

1.4 Related Work

The study of the distinct elements problem in the streaming model was initiated by Flajolet and
Martin [FM83] and developed by a long line of work [AMS99, GT01, BJKT02, DF03, FEGMO07].
Kane, Nelson, and Woodruff [KNW10] give an optimal algorithm, using O (6% + log n) bits of
space, for providing a (1 + €)-approximation to the number of distinct elements in a data stream,
with constant probability. Blasiok [Blal8] shows that to boost this probability up to 1 — ¢ for a
given 0 < § < 1, the standard approach of running O (log %) independent instances is actually

IOgEg_l + log n) bits of space.

sub-optimal and gives an optimal algorithm that uses O (

The ¢;1-heavy hitters problem was first solved by Misra and Gries, who give a deterministic
streaming algorithm using O (% log n) space [MG82]. Other techniques include the CountMin sketch
[CMO5a], sticky sampling [MM12], lossy counting [MM12], sample and hold [EV03], multi-stage
bloom filters [CFMO09], sketch-guided sampling [KX06], and CountSketch [CCF04]. Among the
numerous applications of the f,-heavy hitters problem are network monitoring [DLM02, SW04],
denial of service prevention [EV03, BAE07, CKMS08], moment estimation [IWO05], ¢,-sampling
[MW10], finding duplicates [GR09], iceberg queries [FSGT98], and entropy estimation [CCM10,
HNOO0S].

A stronger notion of “heavy hitters” is the f¢s-heavy hitters. This is stronger than the ¢;-
guarantee since if f; > eF} then ff > 2F2 > 2F, (and so f; > €y/F3). Thus any algorithm that
finds the f>-heavy hitters will also find all items satisfying the ¢;-guarantee. In contrast, consider
a stream that has f; = /m for some ¢ and f; = 1 for all other elements j in the universe. Then
the f5-heavy hitters algorithm will successfully identify ¢ for some constant ¢, whereas an algorithm
that only provides the ¢1-guarantee requires € = ﬁ, and therefore Q(y/nlogn) space for identifying
1. Moreover, the fs-gaurantee is the best we can do in polylogarithmic space, since for p > 2 it has
been shown that identifying ¢,-heavy hitters requires Q(n'=2/P) bits of space [CKS03, BJKS04].

The most fundamental data stream setting is the insertion-only model where elements arrive
one-by-one. In the insertion-deletion model, a previously inserted element can be deleted (each
stream element is assigned +1 or —1, generalizing the insertion-only model where only +1 is used).
Finally, in the sliding window model, a length n is given and the stream consists only of insertions;
points expire after n insertions, meaning that (unlike the insertion-deletion model) the deletions
are implicit. Letting S = s1, so,... be the stream, at time ¢ the frequency vector is built from the
window W' = {s;_(,_1),.-.,5t} as the active elements, whereas items {s1,...,s;—n} are expired.
The objective is to identify and report the “heavy hitters”, namely, the items ¢ for which f; is large
with respect to W.

Table 2 shows prior work for ¢s-heavy hitters in the various streaming models. A retuning of
CountSketch in [TZ12] solves the problem of fs-heavy hitters in O (log2 n) bits of space. More
recently, [BCIW16] presents an fs-heavy hitters algorithm using O (lognloglogn) space. This

algorithm is further improved to an O (logn) space algorithm in [BCI17], which is optimal.

In the insertion-deletion model, CountSketch is space optimal [CCF04, JST11], but the update
time per arriving element is improved by [LNNT16]. Thus in some sense, the fs-heavy hitters
problem is completely understood in all regimes except the sliding window model. We provide a
nearly optimal algorithm for this setting, as shown in Table 2.

Model Upper Bound Lower Bound
Insertion-Only O (e 2logn) [BCI"17] Q(e ?logn) [Folklore]
Insertion-Deletion O (e ?log”n) [CCF04] Q(e%log®n) [JST11]
Sliding Windows | O (¢ 2log”n(loge ! +loglogn)) [Theorem 15] | Q(e 2log®n) [Theorem 4]

Table 2: Space complexity in bits of computing ¢»>-heavy hitters in various streaming models. We
write n = |S| and to simplify bounds we assume logn = O (logm).

We now turn our attention to the sliding window model. The pioneering work by Datar
et al. [DGIMO2] introduced the exponential histogram as a framework for estimating statistics
in the sliding window model. Among the applications of the exponential histogram are quan-
tities such as count, sum of positive integers, average, and ¢, norms. Numerous other signifi-
cant works include improvements to count and sum [GT02], frequent itemsets [CWYMOG6], fre-
quency counts and quantiles [AMO04, LT06], rarity and similarity [DMO02], variance and k-medians
[BDMOO3] and other geometric problems [FKZ05, CS06]. Braverman and Ostrovsky [BO07] in-
troduced the smooth histogram as a framework that extends to smooth functions. [BOO07] also
provides sliding window algorithms for frequency moments, geometric mean and longest increasing
subsequence. The ideas presented by [BO07] also led to a number of other results in the sliding
window model [CMS13, BLLM15, BOR15, BLLM16, CNZ16, ELVZ17, BDUZ18|. In particular,
Braverman et al. [BGO14] provide an algorithm that finds the f2-heavy hitters in the sliding win-
dow model with ¢ = ce for some constant ¢ > 0, using O (%4 log® n) bits of space, improving on
results by [HT08]. [BEFK16] also implements and provides empirical analysis of algorithms finding
heavy hitters in the sliding window model. Significantly, these data structures consider insertion-
only data streams for the sliding window model; once an element arrives in the data stream, it
remains until it expires. It remains a challenge to provide a general framework for data streams
that might contain elements “negative” in magnitude, or even strict turnstile models. For a survey
on sliding window algorithms, we refer the reader to [Bral6].

2 Composable Histogram Data Structure Framework

We first describe a data structure which improves upon smooth histograms for the estimation of
functions with a certain class of algorithms. This data structure provides the intuition for the
space bounds in Theorem 1. Before describing the data structure, we need the definition a smooth
function.

Definition 5 [BO07] A function f > 1 is («a, B)-smooth if it has the following properties:
Monotonicity f(A) > f(B) for BC A (B is a suffiz of A)

Polynomial boundedness There exists ¢ > 0 such that f(A) < nc.

Smoothness For any € € (0,1), there exists a € (0,1), B € (0,a] so that if B C A and (1 —
B)f(A) < f(B), then (1 —a)f(AUC) < f(BUC) for any adjacent C'.

We emphasize a crucial observation made in [BO07]. Namely, for p > 1, £, is a (6, %)—smooth

function while for p <1, ¢, is a (¢, €)-smooth function.

Given a data stream S = py,po,...,p, and a function f, let f(t1,t2) represent f applied to
the substream py,, pt,+1,-- ., Pt,. Furthermore, let D(¢; : t2) represent the data structure used to
approximate f(t1,t2).

Theorem 6 Let f be an («, B)-smooth function so that f = O (n®) for some constant c. Suppose
that for all €,6 > 0:

(1) There exists an algorithm A that maintains at each time t a data structure D(1 : t) which
allows it to output a value f(1,t) so that

Pr||f(1,t) — f(1,8)] < gf(l,t),for al0<t<n|>1-6.

(2) There exists an algorithm B which, given D(ty : t;) and D(t; + 1 : ti+1), can compute D(t; :
tiv1). Moreover, suppose storing D(t; : tiy1) uses O (gi(e,0)) bits of space.

Then there ezists an algorithm that provides a (1 + €)-approximation to f on the sliding window,
4 logn
B

1)
using O B log?n + Z gi (e, ﬁ) bits of space.
i=1

We remark that the first condition of Theorem 6 is called “strong tracking” and well-motivated by
[BDN17].

3 Distinct Elements

We first show that a well-known streaming algorithm that provides a (1 + €)-approximation to the
number of distinct elements actually also provides strong tracking. Although this algorithm uses
O (%2 log n) bits of space and is suboptimal for insertion-only streams, we show that it is amenable
to the conditions of Theorem 6. Thus, we describe a few modifications to this algorithm to provide
a (1 + €)-approximation to the number of distinct elements in the sliding window model.

Define Isb(x) to be the 0-based index of least significant bit of a non-negative integer x in binary
representation. For example, Isb(10) = 1 and Isb(0) := log(m) where we assume log(m) = O (logn).
Let S C [m] and h : [m] — {0,1}1°8™ be a random hash function. Let S, := {s € S : Isb(h(s)) > k}
so that 2¥|Sy| is an unbiased estimator for |S|. Moreover, for k such that E[S;] = © (}2), the
standard deviation of 2¥| S| is O (€|S|). Let ha : [m] — [B] be a pairwise independent random hash
function with B = 160—20. Let ®p(m) be the expected number of non-empty bins after m balls are
thrown at random into B bins so that E[|ha(Sk)|] = ®5(|Sk|)-

Fact 7 ,(t) =t (1— (1—1)™)

Blasiok provides an optimal algorithm for a constant factor approximation to the number of distinct
elements with strong tracking.

Theorem 8 [Bla18] There is a streaming algorithm that, with probability 1 — &, reports a (1 +
€)-approzimation to the number of distinct elements in the stream after every update and uses

—1
(@) <w + log 77) bits of space.

Thus we define an algorithm Oracle that provides a 2-approximation to the number of distinct
elements in the stream after every update, using O (logn) bits of space.

Since we can specifically track up to O (}2) distinct elements, let us consider the case where
the number of distinct elements is w (6%) Given access to Oracle to output an estimate K, which
is a 2-approximation to the number of distinct elements, we can determine an integer k£ > 0 for
which 2% =0 (zlg) Then the quantity 2°® 5" (|ha(Sk)|) provides both strong tracking as well as a

(1 + €)-approximation to the number of distinct elements:

Lemma 9 [Blal8] The median of O (loglogn) estimators 28® ! (|ha(Sk)|) is a (1+€)-approzvimation

at all times for which the number of distinct elements is © (f—;), with constant probability.

Hence, it suffices to maintain ho(.S;) for each 1 < i < logm, provided access to Oracle to find k,
and O (loglogn) parallel repetitions are sufficient to decrease the variance.

Indeed, a well-known algorithm for maintaining hs(.S;) simply keeps a logm x O (}2) table T
of bits. For 0 < i < logn, row i of the table corresponds to ha(S;). Specifically, the bit in entry
(i,7) of T' corresponds to 0 if ha(s) # j for all s € S; and corresponds to 1 if there exists some
s € S; such that ha(s) = j. Therefore, the table maintains ha(S;), so then Lemma 9 implies that
the table also gives a (1 + ¢)-approximation to the number of distinct elements at all times, using
O (C% log n) bits of space and access to Oracle. Then the total space is O (%2 log nlog log n) after
again using O (loglogn) parallel repetitions to decrease the variance.

Naively using this algorithm in the sliding window model would give a space usage dependency of
O (6% log? nloglog n) To improve upon this space usage, consider maintaining tables for substreams
(t1,1), (ta, 1), (t3,1t),... where t; < to < t3 < ... < t. Let T; represent the table corresponding to
substream (t;,t). Since (tj+1,t) is a suffix of (¢;,¢), then the support of the table representing
(ti+1,t) is a subset of the support of the table representing (¢;,t). That is, if the entry (a,b) of T;1+1
is one, then the entry (a, b) of T; is one, and similarly for each j < i. Thus, instead of maintaining
%logn tables of bits corresponding to each of the (¢;,t), it suffices to maintain a single table T’
where each entry represents the ID of the last table containing a bit of one in the entry. For
example, if the entry (a,b) of Ty is zero but the entry (a,b) of Ty is one, then the entry (a,b) for
T is 8. Hence, T is a table of size logm x O (6%), with each entry having size O (log% + log log n)
bits, for a total space of O (}2 logn (log% + log log n)) bits. Finally, we need O (% log? n) bits to
maintain the starting index ¢; for each of the % logn tables represented by T'. Again using a number
of repetitions, the space usage is O (C% logn (log% + log log n) loglogn + %log2 n)

Since this table is simply a clever encoding of the O (% log n) tables used in the smooth histogram
data structure, correctness immediately follows. We emphasize that the improvement in space
follows from the idea of Theorem 6. That is, instead of storing a separate table for each instance
of the algorithm in the smooth histogram, we instead simply keep the difference between each
instance.

Finally, observe that each column in 7" is monotonically decreasing. This is because Sy := {s €
S :lIsb(h(s)) > k} is a subset of Si_;. Alternatively, if an item has been sampled to level k, it
must have also been sampled to level £ — 1. Instead of using O (log% + loglog n) bits per entry,

we can efficiently encode the entries for each column in 7" with the observation that each column
is monotonically decreasing.

Proof of Theorem 1: Since the largest index of T; is i = %logn and T has logm rows,
1
the number of possible columns is (E log ?(:ng mfl), which can be encoded using O (lognlog %) bits.

Correctness follows immediately from Lemma 9 and the fact that the estimator is monotonic. Again
we use O (% log? n) bits to maintain the starting index t; for each of the %logn tables represented
by T. As T has O (}2) columns and accounting again for the O (loglogn) repetitions to decrease

the variance, the total space usage is O (}2 logn log % loglogn + %log2 n) bits. O

4 (, Heavy Hitters

Subsequent analysis by Berinde et al. [BICS10] proved that many of the classic fs-heavy hitter
algorithms not only revealed the identity of the heavy hitters, but also provided estimates of their
frequencies. Let fiq(x) be the vector f whose largest k entries are instead set to zero. Then an

algorithm that, for each heavy hitter i, outputs a quantity f; such that]fi—fi\ < el fraitmy 11 < €| £l
is said to satisfy the (e, k)-tail guarantee. Jowhari et al. [JST11] show an algorithm that finds the
la-heavy hitters and satisfies the tail guarantee can also find the ¢)-heavy hitters. Thus, we first
show results for fo-heavy hitters and then use this property to prove results for ¢,-heavy hitters.

To meet the space guarantees of Theorem 15, we describe an algorithm, Algorithm 2, that only
uses the framework of Algorithm 1 to provide a 2-approximation of the 5 norm of the sliding
window. We detail the other aspects of Algorithm 2 in the remainder of the section.

Recall that Algorithm 1 partitions the stream into a series of “jump-points” where f increases
by a constant multiplicative factor. The oldest jump point is before the sliding window and initiates
the active window, while the remaining jump points are within the sliding window. Therefore, it
is possible for some items to be reported as heavy hitters after the first jump point, even though
they do not appear in the sliding window at all! For example, if the active window has /o norm
2, and the sliding window has ¢ norm (1 4 ¢€)A, all 2e) instances of a heavy hitter in the active
window can appear before the sliding window even begins. Thus, we must prune the list containing
all heavy hitters to avoid the elements with low frequency in the sliding window.

To account for this, we begin a counter for each element immediately after the element is
reported as a potential heavy hitter. However, the counter must be sensitive to the sliding window,
and so we attempt to use a smooth-histogram to count the frequency of each element reported as
a potential heavy hitter. Even though the count function is (e, €) smooth, the necessity to track
up to O (}2) heavy hitters prevents us from being able to (1 + ¢)-approximate the count of each
element. Fortunately, a constant approximation of the frequency of each element suffices to reject
the elements whose frequency is less than gfa. This additional data structure improves the space
dependency to O (6%)

4.1 Background for Heavy Hitters

We now introduce concepts from [BCIW16, BCIT17] to show the conditions of Theorem 6 apply,
first describing an algorithm from [BCI"17] that provides a good approximation of F» at all times.

Theorem 10 (Remark 8 in [BCI"17]) For anye € (0,1) and § € [0,1), there exists a one-pass

streaming algorithm Estimator that outputs at each time t a value F2(t) so that
Pr [\FQ(” — FQ(t)] < eFQ(t), forall0 <t < n} >1-9,

and uses O (}2 log m (log log m + log %) log %) bits of space and O ((log logm + log %) log %) update
time.

The algorithm of Theorem 10 is a modified version of the AMS estimator [AMS99] as follows.
Given vectors Z; of 6-wise independent Rademacher (i.e. uniform +1) random variables, let X;(¢) =
(Z;j, f), where f() is the frequency vector at time ¢. Then [BCI*17] shows that ¥; = & Zjvzl Xit
is a reasonably good estimator for F». By keeping X;(1,t1), X;(t1 + 1,¢2),..., X;(t; +1,t), we can
compute X;; from these sketches. Hence, the conditions of Theorem 6 are satisfied for Estimator,
so Algorithm 1 can be applied to estimate the f5 norm. One caveat is that naively, we still require
the probability of failure for each instance of Estimator to be at most ﬁ for the data structure
to succeed with probability at least 1 — d. We show in Appendix A that it suffices to only require
the probability of failure for each instance of Estimator to be at most m, thus incurring only
O (loglogn) additional space rather than O (logn). We now refer to a heavy hitter algorithm from
[BCIT17] that is space optimal up to log% factors.

Theorem 11 (Theorem 11 in [BCI"17]) For any ¢ > 0 and § € [0,1), there erists a one-pass
streaming algorithm, denoted (e,0) — BPTree, that with probability at least (1 — 0), returns a set
of 5-heavy hitters containing every e-heavy hitter and an approrimate frequency for every item
returned satisfying the (e,1/e?)-tail guarantee. The algorithm uses O (}2 (log é) (logn + log m))
bits of space and has O (log i) update time and O (E% log é) retrieval time.

Observe that Theorem 10 combined with Theorem 6 already yields a prohibitively expensive Eis

dependency on €. Thus, we can only afford to set € to some constant in Theorem 10 and have a
constant approximation to F5 in the sliding window.

At the conclusion of the stream, the data structure of Theorem 6 has another dilemma: either
it reports the heavy hitters for a set of elements S; that is a superset of the sliding window or
it reports the heavy hitters for a set of elements Ss that is a subset of the sliding window. In
the former case, we can report a number of unacceptable false positives, elements that are heavy
hitters for &1 but may not appear at all in the sliding window. In the latter case, we may entirely
miss a number of heavy hitters, elements that are heavy hitters for the sliding window but arrive
before &2 begins. Therefore, we require a separate smooth histogram to track the counter of specific
elements.

Theorem 12 For any € > 0, there exists an algorithm, denoted (1 + €) — SmoothCounter, that
outputs a (1 + €)-approximation to the frequency of a given element in the sliding window model,
using O (%(logn + logm) log n) bits of space.

The algorithm follows directly from Theorem 6 and the observation that ¢; is (e, €)-smooth.

4.2 [(y-Heavy Hitters Algorithm

We now prove Theorem 15 using Algorithm 2. We detail our £s-heavy hitters algorithm in full,
using o = +/F> and e-heavy hitters to refer to the f»-heavy hitters problem with parameter e.

10

Algorithm 2 e-approximation to the ¢3-heavy hitters in a sliding window

Input: A stream S of updates p; for an underlying vector v and a window size n.
Output: A list including all elements 7 with f; > ef2 and no elements j with f; < ﬁﬁg.

1: Maintain sketches D(py, : pry), D(Pty + 1 : Dt3)s -, D(pt,,_, + 1 : py,) to estimate the £ norm.

> Use Estimator with parameters (%, (@) <1O;6n>> and Algorithm 1 here.
Let A; be the merged sketch D(py, + 1 : py,).
3: For each merged sketch A;, find a superset H; of the {z-heavy hitters.
> Use (1%7 %) — BPTree here. (Theorem 11)
4: For each element in Hi, create a counter.
> Instantiate a 2 — SmoothCounter for each of the O (}2) elements reported in Hi.
5: Let 5 be the estimated f5 norm of Aj.
> Output of Estimator on A;. (Theorem 10)
6: For element i € Hy, let f; be the estimated frequency of i.
> Output by 2 — SmoothCounter. (Theorem 12)
7: Output any element 7 with fz > iégg.

»

Lemma 13 Any element i with frequency f; > €ly is output by Algorithm 2.

Proof: Since the ¢3 norm is a smooth function, and so there exists a smooth-histogram which is
an (%, g)—estimation of the ¢ norm of the sliding window by Theorem 6. Thus, %ég(Al) < ly(W) <
%ég(Al). With probability 1 — %, any element i whose frequency satisfies f;(WW) > elo(WW) must
have f;(W) > elay(W) > %6@2(/11) and is reported by (f—G, %) — BPTree in Step 3.

Since BPTree is instantiated along with A;, the sliding window may begin either before or
after BPTree reports each heavy hitter. If the sliding window begins after the heavy hitter is
reported, then all f;(W) instances are counted by SmoothCounter. Thus, the count of f; estimated
by SmoothCounter is at least f;(W) > elo(W) > %eég(Al), and so Step 7 will output i.

On the other hand, the sliding window may begin before the heavy hitter is reported. Recall
that the BPTree algorithm identifies and reports an element when it becomes an j5-heavy hitter
with respect to the estimate of /5. Hence, there are at most 2 - %EQ(A;L) < %eég (A7) instances of an
element appearing in the active window before it is reported by BPTree. Since f;(W) > elo(W) >
%eég(Al), any element ¢ whose frequency satisfies f;(WW) > el2(W') must have f;(W) > %fg(Al) and
therefore must have at least (1 — 1) ely(Ay) > %(—:@(Al) instances appearing in the stream after it
is reported by BPTree. Thus, the count of f; estimated by SmoothCounter is at least iegg(Al), and
so Step 7 will output 1. O

Lemma 14 No element i with frequency f; < 15l2(W) is output by Algorithm 2.

Proof : If i is output by Step 7, then fz > iegg(Al). By the properties of SmoothCounter and
Estimator, f;(W) > % > éeég(Al) > 1—1262(W)./ where the last inequality comes from the fact that
EQ(W) < %gg(Al) O

11

Theorem 15 Given €, > 0, there exists an algorithm in the sliding window model (Algorithm 2)
that with probability at least 1 — § outputs all indices i € [m] for which f; > e\/Fy, and re-
ports no indices i € [m] for which f; < 5VF2. The algorithm has space complexity (in bits)
O (}2 log?n (log2 logn + log %))

Proof: By Lemma 13 and Lemma 14, Algorithm 2 outputs all elements with frequency at least
el2(W) and no elements with frequency less than 15¢2(7). We now proceed to analyze the space
complexity of the algorithm. Step 1 uses Algorithm 1 in conjunction with the Estimator routine to

maintain a %-approximation to the fo-norm of the sliding window. By requiring the probability of

failure to be O (m) in Theorem 10 and observing that 8 = O (1) in Theorem 6 suffices for a

%—approximation, it follows that Step 1 uses O (log n(logn + log m log? log m)) bits of space. Since
Step 3 runs an instance of BPTree for each of the at most O (logn) buckets, then by Theorem 11,
it uses O (EL2 (log i) logn(logn + log m)) bits of space.

Notice that BPTree returns a list of O (E%) elements, by Theorem 11. By running SmoothCounter
for each of these, Step 7 provides a 2-approximation to the frequency of each element after being re-
turned by BPTree. By Theorem 12, Step 7 has space complexity (in bits) O (E%(log n + logm) log n)
Assuming logm = O (logn), the algorithm uses O (}2 log®n (log2 logn + log %)) bits of space. O

4.3 Extension to ¢, norms for 0 < p <2

To output a superset of the /,-heavy hitters rather than the ¢>-heavy hitters, recall that an algorithm
provides the (e, k)-tail guarantee if the frequency estimate f; for each heavy hitter i € [m] satisfies
|fi—fi] <e- | frait(e) 1, where fiqk is the frequency vector f in which the k most frequent entries
have been replaced by zero. Jowhari et al. [JST11] show the impact of f-heavy hitter algorithms
that satisfy the tail guarantee.

Lemma 16 [JST11] For any p € (0,2], any algorithm that returns the e?/?-heavy hitters for (o
satisfying the tail guarantee also finds the e-heavy hitters for €.

The correctness of Theorem 3 immediately follows from Lemma 16 and Theorem 15.

Proof of Theorem 3: By Theorem 11, BPTree satisfies the tail guarantee. Therefore by
Lemma 16, it suffices to analyze the space complexity of finding the ¢”/2-heavy hitters for (5. By
Theorem 15, there exists an algorithm that uses O (}2 log?n (log2 logn + log %)) bits of space to find
the e-heavy hitters for /5. Hence, there exists an algorithm that uses O (}p log?n (log2 logn + log %))
bits of space to find the e-heavy hitters for ¢, where 0 < p < 2. o

5 Lower Bounds

5.1 Distinct Elements

To show a lower bound of 2 (% log?n + 6% log n) for the distinct elements problem, we show in
Theorem 19 a lower bound of 2 (% log? n) and we show in Theorem 22 a lower bound of §2 (6% log n)
We first obtain a lower bound of 2 (% log? n) by a reduction from the IndexGreater problem.

12

Sliding window string S of length n

. 6en 6en 6en Gen
Flock length: lognl Tog n I Tog 1 | Togn

A N A S A Ay I
1

Elements {0,1,..., (14 2¢)" — 1} inserted into piece x; of block 1.

Alice: x1 ...xy,, where m = é logn.

Each zy is %logn bits.
Fig. 2: Construction of distinct elements instance by Alice. Pieces of block i have length (1+2¢)?—1.

Definition 17 In the IndexGreater problem, Alice is given a string S = x1xa- - -y of length mn,
and thus each x; has n bits. Bob is given integers i € [m] and j € [2"]. Alice is allowed to send a
message to Bob, who must then determine whether x; > j or x; < j.

Given an instance of the IndexGreater problem, Alice first splits the data stream into blocks of size

O <106gn) She further splits each block into \/n pieces of length (1 4 2€), before padding the

remainder of block (¢ — k + 1) with zeros. To encode z; for each i € [m], Alice inserts the elements
{0,1,...,(1 + 2¢)¥ — 1} into piece z; of block (¢ — i + 1), before padding the remainder of block
(¢ — k + 1) with zeros. In this manner, the number of distinct elements in each block dominates
the number of distinct elements in the subsequent blocks. Moreover, the location of the distinct
elements in block (¢ —i + 1) encodes x;, so that Bob can compare x; to j.

Lemma 18 The one-way communication complexity of IndexGreater is Q(nm) bits.

Proof : We show the communication complexity of IndexGreater through a reduction from the
Augmentedindex problem. Suppose Alice is given a string S € {0,1}"™ and Bob is given an index
i along with the bits S[1], S[2],...,S[i — 1]. Then Bob’s task in the Augmentedindex problem is to
determine S[i].

Observe that Alice can form the string T' = x1x5 - - - T, of length mn, where each x has n bits
of S. Alice can then use the IndexGreater protocol and communicate to Bob a message that will
solve the IndexGreater problem. Let j = || so that the symbol S[i] is a bit inside 2;11. Then Bob
constructs the string w by first concatenating the bits S[jn + 1], S[jn +2],..., S[i — 1], which he is
given from the Augmentedindex problem. Bob then appends a zero to w, and pads w with ones at
the end, until w reaches n bits:

w=S[n+1]oSin+2]o---08[i—1 o000 lolo---0ol .
| ———
until w has n bits
Bob takes the message from Alice and runs the IndexGreater protocol to determine whether z; > w.
Observe that by construction z; > w if and only if S[i] = 1. Thus, if the IndexGreater protocol

succeeds, then Bob will have solved the Augmentedindex problem, which requires communication
complexity ©(nm) bits. Hence, the communication complexity of IndexGreater follows. O

13

Theorem 19 Letp >0 ande,d € (0,1). Any one-pass streaming algorithm that returns a (1+ ¢€)-
approrimation to the number of distinct elements in the sliding window model with probability %
requires € (% log? n) space.

Proof : We reduce a one-way communication protocol for IndexGreater to finding a (1 + ¢)-
approximation to the number of distinct elements in the sliding window model.

Let n be the length of the sliding window and suppose Alice receives a string S = z1z2...2¢ €
{0,1}*, where ¢ = é log n and each z;, has % logn bits. Bob receives an index i € [¢] and an integer
Jj € [/n]. Suppose Alice partitions the sliding window into ¢ blocks, each of length 7= lgg;.
For each 1 < k < & logn, she further splits block (¢ — k + 1) into /n pieces of length (1 + 2¢)F,
before padding the remainder of block (¢ — k + 1) with zeros. Moreover, for piece xj of block
(¢ — k + 1), Alice inserts the elements {0,1,...,(1 4+ 2¢)¥ — 1}, before padding the remainder of
block (¢ —k+ 1) with zeros. Hence, the sliding window contains all zeros, with the exception of the
elements {0,1,. .., (14+2¢)¥—1} appearing in piece x), of block ((—k-+1) forall1 <k < (= é log n.
Note that (1 + 2¢€)* < ¥/n and x;, < /n for all k, so all the elements fit within each block, which
has length lg”; Finally, Alice runs the (1 + ¢)-approximation distinct elements sliding window
algorithm and passes the state to Bob. See Figure 2 for an example of Alice’s construction.

Given integers i € [(] and j € [\/n], Bob must determine if z; > j. Thus, Bob is interested in
x;, so he takes the state of the sliding window algorithm, and inserts a number of zeros to expire
each block before block i. Note that since Alice reversed the stream in her final step, Bob can do
this by inserting (¢ — i) (3 logn) number of zeros. Bob then inserts (j —1)(1+ 2¢)’ additional zeros,
to arrive at piece j in block i. Since piece z; contains (1 + 2¢)* distinct elements and the remainder
of the stream contains (1 + 2¢)""! distinct elements, then the output of the algorithm will decrease

below (lf f?z during piece x;. Hence, if the output is less'than (IIL fg)z after Bob arrives at piece
j, then z; < j. Otherwise, if the output is at least (lfr—fec)z, then z; > j. By the communication
complexity of IndexGreater (Lemma 18), this requires space €2 (% log? n) O

To obtain a lower bound of 2 (6% log n), we give a reduction from the GapHamming problem.

Definition 20 [IW03] In the GapHamming problem, Alice and Bob receive n bit strings x and vy,
which have Hamming distance either at least § +/n or at most § —/n. Then Alice and Bob must
decide which of these instances is true.

Chakrabarti and Regev show an optimal lower bound on the communication complexity of GapHam-
ming.

Lemma 21 [CR12] The communication complezity of GapHamming is Q(n).

Observe that a (14 €)5 < § + /n for € < % and thus a (1 + €)-approximation can differentiate

between at least § ++/n and at most § —+/n. We use this idea to show a lower bound of (2 (}2 log n)
by embedding Q(logn) instances of GapHamming into the stream.

Theorem 22 Letp >0 and e, € (0,1). Any one-pass streaming algorithm that returns a (1+¢)-
approrimation to the number of distinct elements in the sliding window model with probability %
requires € (6% log n) space for e < %

14

Proof : We reduce a one-way communication protocol for the GapHamming problem to finding
a (1 4 €)-approximation to the number of distinct elements in the sliding window model. For
each % <1< m+47 let j = 27 and x; and y; each have length 2/ and (xj,y;) be drawn
from a distribution such that with probability 3, HAM (z;,y;) = (1 + 4€)2’~! and otherwise (with
probability 1), HAM (z;,y;) = (1 — 4€)27~1. Then Alice is given {z;} while Bob is given {y;}
and needs to output HAM (z;,y;). For e < ﬁ, this is precisely the hard distribution in the

communication complexity of GapHamming given by [CR12].

Let a = logé and b = %. Let wor = w9x and let wor_1 be a string of length 22k=1 4]l
consisting of zeros. Suppose Alice forms the concatenated string S = wap 0 wap_1 0+ 0 Waqt1 0 Way.
Note that Zib:% 2% < n, so S has length less than n. Alice then forms a data stream by the
following process. She initializes k = 1 and continuously increments k until £ = n. At each step, if
S[k] = 0 or k is longer than the length of S, Alice inserts a 0 into the data stream. Otherwise, if
S[k] = 1, then Alice inserts k into the data stream. Meanwhile, Alice runs the (1+¢)-approximation

distinct elements sliding window algorithm and passes the state of the algorithm to Bob.
To find HAM (z9;, y2;), Bob first expires (ZZI):%H 2’“) — 2% elements by inserting zeros into the

data stream. Similar to Alice, Bob initializes k¥ = 1 and continuously increments k until k = 2%, At
each step, if ya;[k] = 0 (that is, the k™ bit of y9; is zero), then Bob inserts a 0 into the data stream.
Otherwise, if yo;[k] = 1, then Bob inserts k into the data stream. At the end of this procedure,
the sliding window contains all zeros, nonzero values corresponding to the nonzero indices of the
string xo; 0 wg;—1 0T9;—2 0+ 0T242 O Waq+1 O Tag, and nonzero values corresponding to the nonzero
indices of yo;. Observe that each w; solely consists of zeros and Z?:la 22k < 9%=1 Therefore,
HAM (294, 72;) is at least (1 — 4¢)2%~! while the number of distinct elements in the sliding window
is at most (1 + 46)22i while the number of distinct elements in the suffix z9; 9 0 z9;_3--- is at
most (1 + €)2%~2. Thus, a (1 + €)-approximation to the number of distinct elements differentiates
between HAM (z2;, y2i) = (1 + 4€)2271 and HAM (z9;,y2;) = (1 — 4e)2%7L,

Since the sliding window algorithm succeeds with probability %, then the GapHamming dis-
tance problem succeeds with probability % across the Q(logn) values of i. Therefore, any (1 + €)-
approximation sliding window algorithm for the number of distinct elements that succeeds with
probability % requires {2 (}2 log n) space for e < ﬁ O

Hence, Theorem 2 follows from Theorem 19 and Theorem 22.

5.2 [(,-Heavy Hitters

To show a lower bound for the /,-heavy hitters problem in the sliding window model, we consider
the following variant of the Augmentedindex problem. Let k and n be positive integers and § € [0, 1).
Suppose the first player Alice is given a string S € [k]”, while the second player Bob is given an
index i € [n], as well as S[1,7 — 1]. Alice sends a message to Bob, and Bob must output S[i] with
probability at least 1 — §.

Lemma 23 [MNSW95] Even if Alice and Bob have access to a source of shared randomness,
Alice must send a message of size Q((1 — d)nlogk) in a one-way communication protocol for the
Augmentedindex problem.

We reduce the Augmentedindex problem to finding the ¢,-heavy hitters in the sliding window model.
To encode S[i| for S € [k]|", Alice creates a data stream a; o ag o ... o ap with the invariant that

15

the heavy hitters in the suffix a; o aj+1 0 ... 0 ap encodes S[i]. Thus to determine S[i], Bob just
needs to run the algorithm for finding heavy hitters on sliding windows and expire the elements
a1, ag,...,a;—1 so all that remains in the sliding window is a; 0 a;41 0 ... 0 ay.

Proof of Theorem 4: We reduce a one-way communication protocol for the AugmentedIndex
problem to finding the ¢, heavy hitters in the sliding window model. Let a = ﬁ log v/n and

b = logn. Suppose Alice receives S = [29]” and Bob receives i € [b] and S[1,i — 1]. Observe that
each S[i] is 5 log \/n bits and so S[i] can be rewritten as S[i] = w; o wy o ... o wy, where each
t = 55 and so each w; is log \/n bits.

To recover S[i], Alice and Bob run the following algorithm. First, Alice constructs data stream
A =ajo0a90...0ap which can be viewed as updates to an underlying frequency vector in R".
Each aj consists of ¢ updates, adding 2P(b=k) 6 coordinates v, vy ..., v of the frequency vector,
where the binary representation of each v; € [n] is the concatenation of the binary representation
of j with the log y/n bit string w;. She then runs the sliding window heavy hitters algorithm and
passes the state of the algorithm to Bob.

Bob expires all elements of the stream before a;, runs the sliding window heavy hitters algorithm
on the resulting vector, and then computes the heavy hitters. We claim that the algorithm will
output ¢ heavy hitters and by concatenating the last log \/n bits of the binary representation of each
of these heavy hitters, Bob will recover exactly S[i]. Observe that the ¢, norm of the underlying
vector represented by a;0a;410...0a; is exactly (ﬁ(lp + 2P 4P + .+ 2p(b—i)))1/19 < %2”_”1 =
%2b_i. Let w1, us...,u; be the coordinates of the frequency vector incremented by Alice as part of
a;. Each coordinate u; has frequency 20— > ¢ (%Qb_i), so that u; is an £)-heavy hitter.

Moreover, the first logt bits of u; encode j € [t] while the next log+/n bits encode w;. Thus,
Bob identifies each heavy hitter and finds the corresponding j € [t] so that he can concatenate
Sli] =wyowgo...0w. O

Acknowledgements

We would like to thank Nikita Ivkin for pointing out an error in Algorithm 2.

References

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137-147, 1999. A preliminary
version appeared in the Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing (STOC), 1996. 1.1, 1.4, 4.1

[AMO04] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over
sliding windows. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 286-296, 2004. 1.4

[BDMOO03] Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintain-
ing variance and k-medians over data stream windows. In Proceedings of the Twenty-
Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 234-243, 2003. 1.4

16

[BAEOT]

[BJKS04]

[BJK+02]

[BEFK16]

[BICS10]

[Bla18]

[BDN17]

[Bral6]

[BCI*17]

[BCIW16]

[BDUZ18]

Nagender Bandi, Divyakant Agrawal, and Amr ElI Abbadi. Fast algorithms for heavy
distinct hitters using associative memories. In 27th IEEE International Conference on
Distributed Computing Systems (ICDCS), page 6, 2007. 1.4

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statis-
tics approach to data stream and communication complexity. J. Comput. Syst. Sci.,
68(4):702-732, 2004. A preliminary version appeared in the Proceedings of the 43rd
Symposium on Foundations of Computer Science (FOCS), 2002. 1.4

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Count-
ing distinct elements in a data stream. In Randomization and Approrimation Tech-
niques, 6th International Workshop, RANDOM, Proceedings, pages 1-10, 2002. 1.2,
1.4

Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in
streams and sliding windows. In 35th Annual IEEE International Conference on Com-
puter Communications, INFOCOM, pages 1-9, 2016. 1.4

Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. Space-optimal
heavy hitters with strong error bounds. ACM Trans. Database Syst., 35(4):26:1-26:28,
2010. A preliminary version appeared in the Proceedings of the Twenty-Eigth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2009. 4

Jaroslaw Blasiok. Optimal streaming and tracking distinct elements with high proba-
bility. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 2432-2448, 2018. 1.4, 8, 9

Jaroslaw Blasiok, Jian Ding, and Jelani Nelson. Continuous monitoring of ¢p norms
in data streams. In Approzimation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pages 32:1-32:13, 2017. 2

Vladimir Braverman. Sliding window algorithms, 2016. 1.4

Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P. Woodruff. Bptree: An /9 heavy hitters algorithm using con-
stant memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS, pages 361-376, 2017. 1.1, 1.2, 1.4, 4.1, 10,
4.1, 11

Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff.
Beating countsketch for heavy hitters in insertion streams. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 740-753,
2016. 1.1, 1.4, 4.1

Vladimir Braverman, Petros Drineas, Jalaj Upadhyay, and Samson Zhou. Numerical
linear algebra in the sliding window model. CoRR, abs/1805.03765, 2018. 1.4

17

[BGO14]

[BGL*18]

[BLLM15]

[BLLM16]

[BOO7]

[BOR15]

[CFMO9]

[CCMI0]

[CKS03]

[CR12]

[CS06]

Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch ¢9-heavy-hitters
on sliding windows. Theor. Comput. Sci., 554:82-94, 2014. A preliminary version
appeared in the Proceedings of Computing and Combinatorics, 19th International
Conference (COCOON), 2013. 1.1, 1.4

Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson
Zhou. Nearly optimal distinct elements and heavy hitters on sliding windows. CoRR,
abs/1805.00212, 2018. 1

Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering
on sliding windows in polylogarithmic space. In 35th IARCS Annual Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS, pages
350-364, 2015. 1.4

Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering
problems on sliding windows. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 1374-1390, 2016. 1.4

Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows.
In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS) Pro-
ceedings, pages 283-293, 2007. 1, 1.1, 1.1, 1.2, 1.2, 1.4, 5, 2

Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman. Zero-one laws for sliding
windows and universal sketches. In Approxzimation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 573-590, 2015.
1.4

Yousra Chabchoub, Christine Fricker, and Hanene Mohamed. Analysis of a bloom
filter algorithm via the supermarket model. In 21st International Teletraffic Congress,
ITC, pages 1-8, 2009. 1.4

Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algo-
rithm for estimating the entropy of a stream. ACM Trans. Algorithms, 6(3):51:1-51:21,
2010. 1.4

Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on
the multi-party communication complexity of set disjointness. In 18th Annual IEEE
Conference on Computational Complezity, pages 107-117, 2003. 1.4

Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication
complexity of gap-hamming-distance. SIAM J. Comput., 41(5):1299-1317, 2012. A
preliminary version appeared in the Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011. 21, 5.1

Timothy M. Chan and Bashir S. Sadjad. Geometric optimization problems over sliding
windows. Int. J. Comput. Geometry Appl., 16(2-3):145-158, 2006. A preliminary ver-
sion appeared in the Proceedings of Algorithms and Computation, 15th International
Symposium (ISAAC), 2004. 1.4

18

[CCFO4]

[CNZ16]

Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in
data streams. Theor. Comput. Sci., 312(1):3-15, 2004. A preliminary version appeared
in the Proceedings of the Automata, Languages and Programming, 29th International
Colloquium (ICALP), 2002. 1.4

Jiecao Chen, Huy L. Nguyen, and Qin Zhang. Submodular maximization over sliding
windows. CoRR, abs/1611.00129, 2016. 1.4

[CWYMO06] Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Catch the moment:

[Corl3]

[CGOS]

[CKMSO08]

[CMObal

[CMO5b]

[CMS13]

[DGIMO02]

[DMO02]

[DLMO2]

[DFO03]

maintaining closed frequent itemsets over a data stream sliding window. Knowl. Inf.
Syst., 10(3):265-294, 2006. A preliminary version appeared in the Proceedings of the
4th IEEE International Conference on Data Mining (ICDM), 2004. 1.4

Graham Cormode. The continuous distributed monitoring model. SIGMOD Record,
42(1):5-14, 2013. 1

Graham Cormode and Minos N. Garofalakis. Streaming in a connected world: querying
and tracking distributed data streams. In EDBT, page 745, 2008. 1

Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Finding
hierarchical heavy hitters in streaming data. TKDD, 1(4):2:1-2:48, 2008. 1.4

Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms, 55(1):58-75, 2005. A preliminary
version appeared in the Proceedings of the 6th Latin American Symposium (LATIN),
2004. 1.4

Graham Cormode and S. Muthukrishnan. What’s new: finding significant differences
in network data streams. IEEE/ACM Transactions on Networking, 13(6):1219-1232,
2005. 1

Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the
sliding-window model. In Algorithms - ESA 2013 - 21st Annual European Symposium,
Proceedings, pages 337-348, 2013. 1.4

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794-1813, 2002. A pre-
liminary version appeared in the Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2002. 1, 1, 1.4

Mayur Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream
windows. In Algorithms - ESA 2002, 10th Annual European Symposium, Proceedings,
pages 323-334, 2002. 1.4

Erik D. Demaine, Alejandro Loépez-Ortiz, and J. lan Munro. Frequency estimation
of internet packet streams with limited space. In Algorithms - ESA, 10th Annual
European Symposium, Proceedings, pages 348-360, 2002. 1.4

Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (ex-
tended abstract). In Algorithms - ESA, 11th Annual European Symposium, Proceed-
ings, pages 605-617, 2003. 1.4

19

[ELVZ17]

[EVO03]

[FSG 98]

[FKZ05]

[FFGMO7]

[FM83]

[GTO01]

[GTO02]

[GROY)

[HNOOS]

[HTO8]

[TW03]

[TWO05]

[JST11]

Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghaddam.
Submodular optimization over sliding windows. In Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW, pages 421-430, 2017. 1.4

Cristian Estan and George Varghese. New directions in traffic measurement and ac-
counting: Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst.,
21(3):270-313, 2003. 1.4

Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jef-
frey D. Ullman. Computing iceberg queries efficiently. In VLDB’98, Proceedings of
24rd International Conference on Very Large Data Bases, pages 299-310, 1998. 1.4

Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the
streaming and sliding-window models. Algorithmica, 41(1):25-41, 2005. 1.4

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. In AofA: Analysis of
Algorithms, page 137-156, 2007. 1.4

Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In 24th Annual Sym-
posium on Foundations of Computer Science, pages 76-82, 1983. 1.4

Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union
of data streams. In SPAA, pages 281-291, 2001. 1.4

Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, pages 63-72, 2002. 1.4

Parikshit Gopalan and Jaikumar Radhakrishnan. Finding duplicates in a data stream.
In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pages 402-411, 2009. 1.4

Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming
entropy via approximation theory. In 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS, pages 489-498, 2008. 1.4

Regant Y. S. Hung and Hing-Fung Ting. Finding heavy hitters over the sliding window
of a weighted data stream. In LATIN: Theoretical Informatics, 8th Latin American
Symposium, Proceedings, pages 699-710, 2008. 1.4

Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements
problem. In 44th Symposium on Foundations of Computer Science (FOCS), pages
283-288, 2003. 1.1, 20

Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments
of data streams. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC), pages 202-208, 2005. 1.4

Hossein Jowhari, Mert Saglam, and Gabor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proceedings of the 30th ACM

20

[KNW10]

[KX06]

[LNNT16]

[LT06]

[MM12]

[MNSW95]

MG82]

MW10]

[OMM™*14]

[SW04]

[TZ12]

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 49—
58, 2011. 1.4, 4, 4.3, 16

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for
the distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS, pages 41-52,
2010. 1.1, 1.1, 1.4

Abhishek Kumar and Jun (Jim) Xu. Sketch guided sampling - using on-line estimates
of flow size for adaptive data collection. In INFOCOM 2006. 25th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer
and Communications Societies, 2006. 1.4

Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hit-
ters via cluster-preserving clustering. In IEEFE 57th Annual Symposium on Foundations
of Computer Science, FOCS, pages 61-70, 2016. 1.4

Lap-Kei Lee and H. F. Ting. A simpler and more efficient deterministic scheme for
finding frequent items over sliding windows. In Proceedings of the Twenty-Fifth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
290-297, 2006. 1.4

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. PVLDB, 5(12):1699, 2012. A preliminary version appeared in the Proceedings
of the 28th International Conference on Very Large Data Bases (VLDB), 2002. 1.4

Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data
structures and asymmetric communication complexity. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing, pages 103—-111, 1995. 23

Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program.,
2(2):143-152, 1982. 1.4

Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error ¢p-sampling with
applications. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1143-1160, 2010. 1.4

Miles Osborne, Sean Moran, Richard McCreadie, Alexander Von Lunen, Martin
Sykora, Elizabeth Cano, Neil Ireson, Craig MacDonald, ladh Ounis, Yulan He, Tom
Jackson, Fabio Ciravegna, and Ann O’Brien. Real-time detection, tracking and mon-
itoring of automatically discovered events in social media. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, 2014. 1

Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large networks.
IEEE/ACM Trans. Netw., 12(2):219-232, 2004. 1.4

Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applica-
tions to linear probing and second moment estimation. STAM J. Comput., 41(2):293~
331, 2012. 1.4

21

A Full Version

We show that the structure of the F» algorithm only requires the correctness of a specific O (polylogn)
algorithms in the data structure. Given a vector v € R™, let Fy(v) = v? + v3 + ... + v2,. Recall
that the histogram creates a new algorithm each time a new element arrives in the data stream.
Instead of requiring all n algorithms perform correctly, we show that it suffices to only require the
correctness of a specific O (polylog n) of these algorithms.

Let F be the value of F5 on the most recent n elements. For the purpose of analysis, we say
that an algorithm is important if it is still maintained within the histogram when its output is at
least @ and the algorithm never outputs anything greater than 8F log® n.

We first show that with high probability, all algorithms correctly maintain a log n-approximation
of the value of F» for the corresponding frequency vector. Conditioned on each algorithm correctly
maintaining a log n-approximation, we then show that O (log6 n) algorithms are important. Ob-
serve that an algorithm that reports a 2-approximation to F' is important. Furthermore, we show
that any algorithm that is not important cannot influence the output of the histogram, conditioned
on each algorithm correctly maintaining a log n-approximation. Thus, it suffices to require correct-
ness of strong tracking on these O (log6 n) important algorithms and we apply a union bound over
the O (log6 n) important algorithms to ensure correctness. Hence for each algorithm, we require

the probability of failure to be at most O (log%) for the histogram to succeed with probability at
least 1 — 6.

Fact 24 Given m-dimensional vectors x,y, z with non-negative entries, then Fa(x+y+2)— Fa(z+
y) > Fg(x + Z) — FQ(JJ)

Although the number of algorithms in the histogram at any given moment is at most O (logn),
it may be possible that many algorithms have output at least % only to be deleted at some point

in time. We now show that in a window of size 2n, there are only O (log6 n) important algorithms.

Lemma 25 Conditioned on all algorithms in the stream correctly providing a log n-approximation,
then there are at most O (10g6 n) important algorithms that begin in the most recent 2n elements.

Proof : Let 51 < s < ... < s; be the starting points of important algorithms Ai, A, ..., A;,
respectively, that begin within the most recent 2n elements. For each 1 < j < i, let ¢; be the first

time that algorithm A; outputs a value that is at least %gn. The idea is to show at the end of the
cF

stream, the elements between s; and s;11 are responsible for an increase in Fy by at least TToe”
for all j. Since an algorithm is important if it never outputs anything greater than 8F log® n, then
the Fy value of the substream represented by the algorithm is at most 8F log* n, and it follows that
i=0 (log6 n)

Recall that to maintain the histogram, there exists a constant ¢ such that whenever two adjacent
algorithms have output within a factor of ¢, then we delete one of these algorithms. Hence, A;_;
must output a value that is at least 21%2 — at time t;. Otherwise, the histogram would have deleted
algorithm A; before t;, preventing A; from being important. Conditioning on correctness of a

log n-approximation of all algorithms, the value of F5 on the frequency vector from s;_1 to ¢; is at

cl
least m .

In other words, the elements from time s;_; to s; are responsible for a difference of at least

2155% between the F, values of the substreams represented by A;_1 and A; at time t;. Thus by

22

Fact 24, the difference between the F values of the substreams represented by A;_; and A; at any
time ¢ > t; is at least cl” By induction, the value of F5 on the substream from s; to ¢; is at

2log’n’
(g;)?f:. Recall that the Fy of the substream represented by any important algorithm is at

most 8F log* n. Therefore, at most O (log6 n) algorithms are important. O

least

Fact 26 For x >0 and a,b > 0, (xIQa)Q > (q{;iz)bf.

itai)® itaithi)?
Corollary 27 For a;, b, x; > 0 where Y 22 > 0, Z%Z;) > Z(é:b:)g)~
Lemma 28 Conditioned on all algorithms in the stream correctly providing a log n-approximation,
then any algorithm that outputs a value that is at least 8F log® n cannot delete an important algo-
rithm that provides a 2-approrimation to F.

Proof : Note that any algorithm A that outputs a value that is at least 8F log® n must rep-
resent a substream whose Fy value is at least 8F log?n at the end of the stream, assuming a
log n-approximation of all algorithms. Observe that the substream represented by an important
algorithm B that provides a 2-approximation has Fb value at most 2F at the end of the stream.
By Corollary 27, the ratio between the F5 values of the substreams represented by A and B must
be at least 4log?n at every previous point in time. Thus, if A and B always correctly maintain a
log n-approximation of the corresponding substreams, the ratio of the outputs between A and B is
at least 4, so A will never cause the histogram data structure to delete B. O

Hence, it remains to show that with high probability, all algorithms correctly maintain a logn-
approximation of the value of Fs for the corresponding frequency vector. Recall that Estimator from
Theorem 10 uses an AMS sketch so that the resulting frequency of each element f; is multiplied by
a Rademacher random variable R;.

Theorem 29 (Khintchine’s inequality) Let R € {—1,1}" be chosen uniformly at random and
[€ R™ be a given vector. Then for any even integer p, E {37 Rifi)’] < PP|IfI[5-

Although we would like to apply Khintchine’s inequality directly, the Rademacher random variables
R; used in Estimator are log n-wise independent. Nevertheless, we can use independence to consider
the log n-th moment of the resulting expression.

Corollary 30 Let 21, 22,...,2m € {—1,1} be a set of log n-wise independent random variables and
f € R™ be a given vector. Then for any even integer p < logn, E[(3_", zifi)"] < /PP f15-

We now show that each algorithm fails to maintain a log n-approximation of the value of F5 for the
corresponding frequency vector only with negligible probability.

Lemma 31 Let z1,29,...,2m € {—1,1} be a set of logn-wise independent random variables and

[€ R™ be a given vector. Then Pr[|Y ", z fi| > (logn)|| f||2] < m.

Proof : For the ease of notation, let p = logn be an even integer. Observe that
m m p
Pr |3 zfi| > (ogn)l|flls| = Pr || i) > (logn)pllflé’] -
i=1 =1

23

m r\P
By Markov’s inequality, Pr[|> /", zi fi|” > (logn)?||f|5] < %Zg;:)—w. By Corollary 30, it

E[(Xr, zif:)"] NV
follows that (log)P/ < Tog PI/IE — Tognvier" O

Therefore, with high probability, all algorithms correctly maintain a logn-approximation of the
value of Fy for the corresponding frequency vector.

24

	Introduction
	Our Contributions
	Our Techniques
	Lower Bounds
	Related Work

	Composable Histogram Data Structure Framework
	Distinct Elements
	p Heavy Hitters
	Background for Heavy Hitters
	2-Heavy Hitters Algorithm
	Extension to p norms for 0<p<2

	Lower Bounds
	Distinct Elements
	p-Heavy Hitters

	Full Version

