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Abstract

Locality sensitive hashing (LSH) was introduced by Indyk and Motwani (STOC ‘98) to give the

first sublinear time algorithm for the c-approximate nearest neighbor (ANN) problem using only

polynomial space. At a high level, an LSH family hashes “nearby” points to the same bucket

and “far away” points to different buckets. The quality of measure of an LSH family is its LSH

exponent, which helps determine both query time and space usage.

In a seminal work, Andoni and Indyk (FOCS ‘06) constructed an LSH family based on random

ball partitionings of space that achieves an LSH exponent of 1/c2 for the `2 norm, which was

later shown to be optimal by Motwani, Naor and Panigrahy (SIDMA ‘07) and O’Donnell, Wu

and Zhou (TOCT ‘14). Although optimal in the LSH exponent, the ball partitioning approach

is computationally expensive. So, in the same work, Andoni and Indyk proposed a simpler and

more practical hashing scheme based on Euclidean lattices and provided computational results

using the 24-dimensional Leech lattice. However, no theoretical analysis of the scheme was given,

thus leaving open the question of finding the exponent of lattice based LSH.

In this work, we resolve this question by showing the existence of lattices achieving the optimal

LSH exponent of 1/c2 using techniques from the geometry of numbers. At a more conceptual level,

our results show that optimal LSH space partitions can have periodic structure. Understanding

the extent to which additional structure can be imposed on these partitions, e.g. to yield low

space and query complexity, remains an important open problem.
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1 Introduction

Nearest neighbor search (NNS) is a fundamental problem in data structure design. Here,

we are given a database P of n points in a metric space X, and the goal is to build a data

structure that can quickly return a closest point in the database to any queried target. In

its exact form, the problem is known to suffer from the curse of dimensionality, where data

structures that beat brute force search (i.e. a linear scan through the data points) require

either space or query time exponential in the dimension of the space X. To circumvent
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this issue, Indyk and Motwani [20] studied a relaxed version of NNS which allowed for both

approximation and randomization. In (c, r)-approximate nearest neighbor search (ANN),

we are given an approximation factor c ≥ 1 and distance threshold r > 0, where we must

guarantee that for a query q, if dX(q, P ) ≤ r then the data structure returns p ∈ P such

that dX(q, p) ≤ cr. When we allow randomization, we only require that any fixed query

succeeds with good probability over the randomness used to construct the data structure.

In order to address ANN, Indyk and Motwani introduced the concept of Locality Sens-

itive Hashing (LSH). A locality sensitive hash function maps “nearby” points together and

“far away” points apart. Indyk and Motwani showed that such LSH function families can

be used to build data structures with both sublinear query time and subquadratic space

for ANN. LSH is now one of the most popular methods for solving ANN and has found

many applications in areas such as cryptanalysis [23, 10], information retrieval and machine

learning (see [29] for a survey). Important metric spaces for LSH include {0, 1}d or Rd under

`1 or `2-norms, and the sphere Sd−1 under angular distance. In this work, we focus on R
d

under the `2-norm.

LetH be a family of functions with an associated probability distribution. An LSH family

H is (c, r, p1, p2)-sensitive for X if a randomly chosen hash function h from H maps any two

points in X at distance at most r to the same bucket with probability at least p1 and any

two points in X at distance at least cr to the same bucket with probablity at most p2. The

measure of quality of the LSH family is the so-called LSH exponent ρ := ln(1/p1)/ ln(1/p2).

If X = (Rd, `2) and the maximum computational time for evaluating the hash function h(x)

at any point x ∈ X for any element h ∈ H is at most κ, then one can build a randomized

(c, r)-ANN data structure that answers queries in O((d + κ)nρ(c) log1/p2
(n)) time using

O(dn + n1+ρ(c)) space [20, 19]. Similar results hold for other d-dimensional metric spaces.

Consequently, much research effort has been directed at constructing LSH families with both

low LSH exponent and fast evaluation times.

For the `2-norm, the first results [20, 18] gave constructions achieving an exponent 1/c±
o(1) for X being the hypercube {0, 1}d, which was later extended to all of Rd in [14]. For the

`2-norm over X = R
d, Andoni and Indyk [4] gave the first construction of an LSH hash family

achieving a limiting exponent of 1/c2, which was later shown to be optimal in [25, 26]. We

note that optimality here holds only for “classical” LSH, in which the LSH family depends

only on the ambient metric space and not on the database itself, and that these lower bounds

have been recently circumvented using more sophisticated data dependent approaches [6, 8],

which we discuss later.

While achieving the optimal exponent, the hash functions from Andoni and Indyk’s

work [4] are unfortunately quite expensive to evaluate. Their hash function family can be

described as follows: For a design dimension k, a function from the family corresponds to

kO(k) random shifts t1, t2, . . . of the integer lattice Z
k which satisfy that every point in R

k is

at `2 distance at most 1/4 from at least one shift. To map the database and the queries into

R
k, the hash function uses a Gaussian random projection G mapping R

d to R
k. The hash

value on query q then equals the closest vector to Gq in Z
k +ti, where i is the first index such

that Gq is at distance at most 1/4 from some point in Z
k + ti. For this family they prove an

upper bound on the LSH exponent of 1/c2 + O(log k/
√

k), which tends to 1/c2 as k → ∞.

Note that storing the description of this hash function requires kO(k) space and evaluating

it requires iterating over all shifts which takes kO(k) time. This prohibitive space usage

and running time restricted the use of these hash functions to only very low dimensions in

the context of ANN (i.e. k is restricted to be a very slow growing function of the number

of points n in the database), yielding a rather slow convergence to the optimal 1/c2 exponent.
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Lattice based LSH. Motivated by the above-mentioned drawbacks, Andoni and Indyk

[4] proposed a simpler and more practical LSH scheme based on Euclidean Lattices. A k-

dimensional lattice L ⊂ R
k given by a collection of basis vectors B = (b1, . . . , bk) is defined to

be all integer linear combinations of b1, . . . , bk. The determinant of L is defined as |det(B)|,
which we note is invariant to the choice of basis. In lattice based LSH, one simply replaces

the kO(k) shifts of Zk by a single random shift t ∈ R
k of a lattice L, and the hash value on

query q now becomes the closest vector to Gq in L + t.

We note that the last step of the hashing algorithm corresponds to solving the closest

vector problem (CVP) on L, i.e. given a target point q one must compute a closest vector

to x in L under the `2 norm. While this problem is NP-Hard in the worst case [22], in

analogy to coding, one has complete freedom to design the lattice. Thus the main potential

benefit of lattice based LSH is that one may hope to find “LSH-good” lattices (i.e., lattices

with good LSH exponent) for which CVP can be solved quickly (at least much faster than

enumerating over a ball partition). A secondary benefit is that the corresponding hash

functions require very little storage compared to the ball partitions, namely just a single

shift vector t together with the projection matrix G are sufficient (note that the lattice is

shared across all instantiations of the hash function). To evaluate lattice based LSH, Andoni

and Indyk [4] provided experimental results for L being the 24 dimensional Leech lattice

equipped with the decoder of [3]. A version of this scheme with the 8 dimensional E8 lattice

has also been implemented and tested in [21], and a parallelized GPU implementation of

the Leech lattice scheme was tested in [11].

The following natural question was left open in the work of Andoni and Indyk: can the

space partitions induced by lattices achieve the optimal LSH constant for the `2-norm? Note

that for a lattice L, the associated space partition corresponds to a random shift of the tiling

of space {y + VL : y ∈ L}, where VL is the Voronoi cell of the lattice, i.e. the set of all points

closer to the origin than to any other lattice point.

Our Contribution. As our main result, we resolve this question in the affirmative. We

show that for any fixed approximation factor c > 1, there exists a sequence of lattices

{Lk,c ⊂ R
k : k ≥ 1}, where Lk,c has an associated LSH exponent for `2-norm bounded by

1/c2 + O(1/
√

k). We note that this is slightly better than the rate of convergence to optim-

ality proven by Andoni and Indyk in [4] for the ball partitioning approach. To prove this

result, we rely on the probabilistic method, using a delicate averaging argument over the

space of all lattices of determinant 1.

Our result is currently non-constructive, as we lack the appropriate concentration results

for the LSH collision probabilities, though we believe this should be achievable. A simple

and efficient sampling algorithm for the random lattice distribution that we employ – known

as the Siegel measure over lattices – was given by Ajtai [2], and we expect that a lattice

sampled from this distribution should be “LSH-good” (in terms of the LSH exponent) with

high probability. Perhaps a more significant issue is that for the same dimension k, the

probabilistic argument may produce different lattices for different approximation factors.

Resolving this issue would require a much finer understanding of the shape of the collision

probability curve (currently, we can only control the curve at two points), and we leave this

as as an open problem. We note however, that if one allows for sampling a different random

lattice for each hash function instantiation, as opposed to a single lattice shared by all

instantiations, then our methods are indeed constructive. We find this approach somewhat

less appealing however, since in general the cost of preprocessing a lattice in the context

ITCS 2018
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of CVP, say computing a short basis, the Voronoi cell, etc., is substantial, and hence it is

desirable to only have to perform such preprocessing once. Furthermore, since the end goal

is eventually to find a class of LSH good lattices with fast decoding algorithms, our main

contribution here is to show that LSH good lattices do in fact exist.

From the perspective of the complexity of ANN, LSH-good lattices (when given as advice

to an ANN algorithm) provide a slight improvement over [4] when using any of the recent

2k+o(k)-time and 2k+o(k)-space algorithms for the closest vector problem [13, 1] to implement

the hash queries. In particular, for (c, r)-ANN on an n element database in R
d, by choosing

the dimension of the lattice to be k = log2/3(n), we get query time dnρ using dn + n1+ρ

space where ρ = 1/c2 + O(1/ log1/3(n)). These complexity results for ANN are however

superseded by the more recent approaches using data dependent LSH [6, 8], which achieve

ρ = 1/(2c2 − 1) + o(1). While more sophisticated, these approaches still depend on rather

impractical and expensive random space partitions – with query complexity 2O(
√

d) instead

of 2d – and hence there is still room for progress.

Given this, we view our contribution mainly as a conceptual one, namely that structured

space partitions can be optimal. We hope that this provides additional motivation for de-

veloping space partitions which admit fast query algorithms, and in particular for finding

novel classes of “spherical” lattices (LSH-good or otherwise) admitting fast CVP solvers. We

note that up to present, the only known general classes of lattices for which CVP is solvable

in polynomial time are lattices of Voronoi’s first kind (VFK) [24] and tensor products of

two root lattices [15], whose geometry is still rather restrictive (see [33] section 2.3 for an

exposition of VFK lattices).

1.1 Techniques and High Level Proof Plan

The main techniques we use come from the theory of random lattices in the geometry of

numbers. While getting precise estimates on an LSH collision probability for a generic

high dimensional lattice seems very difficult, it turns out to be much easier to estimate the

average collision probability for random lattices. The distribution on lattices we use is known

as the Siegel measure on lattices, which is an invariant probability measure on the space of

lattices of determinant 1 whose existence was established by Siegel [30] (the invariance is

with respect to linear transformations of determinant 1).

A powerful point of leverage when using random lattices drawn from the Siegel distribu-

tion is that one can compute expected lattice point counts using volumes. In particular, for

any Borel set S ⊆ R
k, we have the useful identity EL[|(L∩S)\{0}|] = vol(S), i.e. the expec-

ted number of non-zero lattice points in S is equal to its volume. We will need more refined

tools than this however, and in particular, we shall rely heavily on powerful probabilistic

estimates of Schmidt [28] and Rogers [27] developed for the Siegel measure. More specific-

ally, Schmidt [28] provides extremely precise estimates on the probability that a Borel set of

small volume does not intersect a random lattice, while Rogers [27] gives similarly precise

estimates for the relative fraction of cosets of a random lattice not intersecting a Borel set.

Using these estimates, we quickly derive clean and tight integral expressions for the aver-

age collision probabilities. From then on, the strategy is simple if rather tedious, namely, to

get precise enough estimates for these integrals to be able to show that the average “near”

collision probability to the power c2 + o(1) is larger than average “far” collision probability.

With this inequality in hand, we immediately deduce the existence of an LSH-good lattice

from the probabilitic method. To prove that a random lattice is in fact LSH-good with high

probability (making our proof constructive) it would suffice to show concentration for the
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relevant collision probabilities. While this seems very plausible, we leave it for future work.

Estimating the Collision Probabilities and the LSH Constant. We now give a

more detailed geometric explanation of what the collision probabilities represent, how the

computations for lattices differ from those for a random ball partition, and how the random

lattice estimates mentioned above come into play.

We recall the lattice LSH family going from R
d to R

k induced by a lattice L ⊂ R
k. We

shall assume here that L has determinant 1 and hence that the Voronoi cell VL of L has

volume 1 (any region that tiles space with respect to L has the same volume). A function

from the hash familyH is generated as follows. First, pick a uniform random coset t← R
k/L

and a matrix M ∈ R
k×d with i.i.d. N(0, 1/k) entries (i.e. Gaussian with mean 0 and variance

1/k). On query q, we define the hash value as CVL(Mq + t), namely the closest vector in

L to Mq + t. Note that M is normalized here to approximately preserve distances, since

E[‖Mq‖2] = ‖q‖2. For x, y ∈ R
d, ‖x−y‖2 = ∆, we wish to estimate the collision probability

p∆ := Pr
h←H

[h(x) = h(y)] = Pr
M,t

[CVL(t + Mx) = CVL(t + My)] , (1)

where M, t are as above. We will show shortly that the right hand side indeed only depends

on ∆. Using the above hash family, showing that L achieves the optimal LSH exponent for

an approximation factor c > 0 corresponds to showing

min
∆>0

ln(1/p∆)/ ln(1/pc∆) ≤ 1/c2 + o(1) . (2)

Note that for any desired distance threshold r > 0, we can always scale the database so

that the scaled distance threshold becomes the minimizer above. Clearly, to be able to get

a good upper bound on the LHS of (2), we have to be able to derive tight estimates for the

collision probability curve p∆ over a reasonably large range.

To understand p∆, we now show that the collision probability can be expressed as the

probability that a uniformly sampled point in VL stays inside VL after a Gaussian perturb-

ation of size ∆. Let x, y, M, t be as in (1). A first easy observation is that conditioned on

any realization of M(y − x), the distribution of Mx + t is still uniform over cosets of Rn/L

since t is uniform. Therefore,

Pr
M,t

[CVL(t + Mx) = CVL(t + My)] = Pr
M,t

[CVL(t) = CVL(t + M(y − x))]

= Pr
t,g←N(0,Ik/k)

[CVL(t) = CVL(t + ∆g)]

(

since M(y − x) has distribution N(0, ∆2Ik/k)
)

= Pr
v←VL,g←N(0,Ik/k)

[v + ∆g ∈ VL] .

For the last equality, note first that the Voronoi cell contains exactly one element from every

coset of R
k/L and hence a uniformly chosen point v from VL is also uniform over cosets.

Lastly, by construction CVL(v) = 0 and hence CVL(v) = CVL(v + ∆g)⇔ v + ∆g ∈ VL.

At this point, without any extra information about VL, the task of bounding the delicate

function of collision probabilities seems daunting if not intractable (note that generically VL

is a polytope with 2(2k − 1) facets). To compare with the ball partitioning approach, it is

not hard to show that up to a factor 2, the collision probabilities there are in correspondance

with the quantities

q∆ := Pr
u←rkBk

2 ,g←N(0,Ik/k)
[u + ∆g ∈ rkBk

2 ],

ITCS 2018
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where rk ≈
√

k/(2πe) is the radius of a ball of volume 1 in R
k. We use the volume 1 ball here

to make the correspondance to VL which also has volume 1. Thus, to match the collision

probabilities of the ball, which we know yield the right exponent, one would like VL to “look

like” a ball. Unfortunately, even seemingly strong notions of sphericality, such as assuming

that VL is within a factor 2 scaling of a ball (which random lattices in fact satisfy, see [16]

for an exposition), do not seem to suffice to estimate these delicate collision probabilities

at the right ranges. Note that to make the effects of the inevitable estimation errors and

dimensionality effects small in the minimization of (2), we will want both p∆ and pc∆ to be

quite small when we estimate the ratio of their logarithms. For the ball, the function q∆

has the form e−α∆2

, where α := α(∆) varies slowly within a constant range for ∆ = O(
√

k).

Note that if α were in fact constant, then ln(1/q∆)/ ln(1/qc∆) would equal 1/c2 for every ∆.

The region where α is the most stable turns out to be around ∆ = k1/4, where q∆ is quite

small, i.e. around e−Ω(
√

k).

Fortunately, while computing precise estimates for a fixed L is hard, computing the

average collision probability over the Siegel measure on the space of lattices of determinant

1 is much easier. Note that the expected collision probability curve EL[p∆], where L is chosen

from the Siegel measure, corresponds exactly to the collision probability curve associated

with a slight modification of the LSH family examined above, namely, where instead of

using a fixed lattice, we simply sample a new lattice L from the Siegel measure for each

hash function instantiation. We now argue that to show existence of a good LSH lattice

one can simply replace the collision probability curve above p∆ by the expected collision

probability curve EL[p∆]. To see this, assume that (2) holds for the expected curve. By

rearranging, this implies that that there exists ∆ > 0 such that EL[p∆]c
2−o(1) ≥ EL[pc∆].

Since c2 − o(1) ≥ 1, by Jensen’s inequality

EL[p
c2−o(1)
∆ ] ≥ EL[p∆]c

2−o(1) ≥ EL[pc∆] . (3)

Thus, by the probabilistic method, there must exist a lattice L′ such that p
c2−o(1)
∆ ≥ pc∆

holds for L′, which shows that L′ achieves an LSH constant of 1/c2 + o(1), as needed.

We now explain how one can compute the expected collision probabilities using the

estimates of Schmidt and Rogers. For a fixed ∆, a direct computation reveals

EL[p∆] = EL,u←VL,g←N(0,Ik/k)[u + ∆g ∈ VL]

= EL,g←N(0,Ik/k)

[
∫

Rn

I[u ∈ VL, u + ∆g ∈ VL]du

]

( since VL has volume 1 )

=

∫

Rn

Pr
L,g←N(0,Ik/k)

[u ∈ VL, u + ∆g ∈ VL]du . (4)

Define Bx for x ∈ R
k to be the open ball around x of radius ‖x‖. Note that for a fixed g and u,

the event that both u and ∆g+u are in VL, can be directly expressed as (Bu∪B∆g+u)∩L = ∅,
i.e. that there is no lattice point closer to u and ∆g + u than 0. Thus, one can express (4)

as
∫

Rn

Pr
L,g←N(0,Ik/k)

[(Bu ∪B∆g+u) ∩ L = ∅]du . (5)

From here, for fixed g and u, the inner expression is exactly the probability that a random

lattice L doesn’t intersect a Borel set and hence we may apply Schmidt’s estimates. Here

Schmidt shows that as long as the Bu ∪ B∆g+u has volume less than k − 1, then under a

mild technical assumption, we can estimate

Pr
L

[(Bu ∪B∆g+u) ∩ L = ∅] ≈ e−Vu,∆g
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where Vu,∆g is the volume of Bu ∪ B∆g+u. This estimate is only useful when u has norm

roughly rk, since otherwise the volume of Bu is too large to usefully apply Schmidt’s estimate.

However, one would expect that for large u, the probability that u is in the Voronoi cell is

already quite small. This is formalized by Roger’s estimate, which gives that the fraction

of cosets of L that are not covered by the ball of volume k around the origin (i.e. again

radius roughly rk) is approximately e−k. In particular, this implies that at most an e−k

expected fraction of the Voronoi cell (since points in the Voronoi cell are in one to one

correspondance with cosets) lies outside a ball of radius ≈ rk, and hence we can truncate

the integral expression (5) at roughly this radius without losing much.

After these reductions, we get that the collision probabilities can be tightly approximated

by the following explicit integral:

∫

Rn

Eg[e−Vu,∆g ]du. (6)

The proof now continues with an unfortunately very long and tedious calculation, which

shows that the above estimate closely matches the corresponding collision probability q∆ for

the ball, thus yielding the desired LSH constant.

1.2 Related Work

As mentioned earlier, the works [6, 8] show how to use a data dependent version of LSH

to give an improved ANN exponent of 1/(2c2 − 1), which was shown to be optimal under

an appropriate formalization of data dependence in [9]. These works reduce ANN in `2 to

ANN on the sphere via a recursive clustering approach, where the base case of the recursion

roughly corresponds to the clustered vectors being embedded as nearly orthogonal vectors

on the sphere. A generic reduction from `2 ANN to spherical ANN (without the exact base

case guarantee as above) was also given in earlier work of Valiant [32]. We note that the

above clustering style reductions to the sphere remain relatively impractical, and thus there

still seems to be room for more direct and practical `2 methods. For a different vein, the

works [10, 12, 7] studied the achievable tradeoffs between query time and space usage, where

the optimal tradeoff for hashing based approaches was achieved in [7].

With respect to structured and practical LSH hash functions, [5] computed the collision

probabilities for cross-polytope LSH on the sphere (first introduced by [31, 17]), which cor-

responds to a Voronoi partition on the sphere induced by a vertices of a randomly rotated

cross-polytope. As their main result, they show that when near vs far corresponds to `2

distance
√

2/c vs
√

2 (the latter case correspondings to orthogonal vectors), cross polytope

LSH achieves the optimal limiting exponent of 1/(2c2 − 1), corresponding to the base case

of the recursive clustering approaches above. Furthermore, they show a fine grained lower

bound on the LSH exponent (when the far case again corresponds to orthogonal vectors) of

any hash function which partitions the sphere into at most T parts1, which allows them to

conclude that any spherical LSH function that substantially improves upon cross polytope

LSH needs to have query time sublinear in the number of parts. It is tempting here to seek

an analogy with lattice based LSH, in that the complexity of CVP computations on a d-

dimensional lattice L, after appropriate preprocessing, can be bounded by Õ(dO(1)|VL|) [13]

where |VL| denotes the number of facets of the Voronoi cell of L. Thus, one may wonder if

|VL| can be associated with the number of “parts” in an analogous manner. For a generic

1 Under the mild technical assumption that each piece covers at most 1/2 the sphere.

ITCS 2018
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d-dimensional lattice, we note that |VL| = 2(2d − 1), and thus the corresponding question

would be to find an LSH-good lattice for which CVP takes Õ(2(1−ε)d) for some positive

ε > 0. As another interesting comparison, the d-dimensional cross polytope induces a par-

tion with 2d parts whose gap to optimality (in terms of the spherical LSH exponent) is

O(log log d/ log d), whereas a random d-dimensional lattice has a Voronoi cell is 2(2d − 1)

facets with a gap to optimality (for `2 LSH) of O(1/
√

d).

1.3 Conclusions and Open Problems

To summarize, for a fixed approximation factor c > 1, we show that random space partitions

induced by shifts of a single lattice can achieve the optimal data oblivious LSH exponent for

the `2 metric. While this shows that we can hope for “well-structured” space partitions for

`2, the lattices we use to show existence are random, and are in many ways devoid of easy

to exploit structure (at least algorithmically). Thus, a natural open question is whether

one can find a more structured family of lattices achieving the same limiting LSH exponent

for which CVP queries can be executed faster. In terms of improving the present result,

another natural question would be to make our proof constructive and to show that for a

fixed dimension k, there exists a single k-dimensional lattice which achieves the optimal LSH

exponent for every c ≥ 1.

Organization. In Section 2, we setup notations and define formally the notion of lattices

and approximate nearest neighbor search problem. We describe our lattice based hash

function family in Section 3 and analyze its performance. The helper theorems needed to

show the main result are proved in subsequent sections.

2 Preliminaries

We denote the set {1, 2, . . . , n} by [n]. We work over the Euclidean space. For x ∈ R
d,

let ||x|| =
√

∑

i x2
i denote the `2 norm of x. Let VB denote the volume of a k-dimensional

unit-radius ball. Let τ =
√

k · V
1
k

B . By standard geometry facts, τ =
√

2πe
(

1 + O
(

1
k

))

.

For x ∈ R
k, let Bx denote the open ball centered at x of radius ‖x‖ and let Vx denote its

volume. Note that Vx = VB‖x‖k.

Lattices. A lattice L ⊂ R
d is the set of all linear combinations with integer coefficients of

a set of linearly independent vectors {b1, b2, . . . , br}, i.e., L = {∑i αibi | αi ∈ Z ∀i ∈ [r]}.
The lattice may be represented by the d× r basis matrix B, whose columns are the vectors

bi. If the rank r is exactly equal to d, then the lattice is said to have full rank. It is common

to assume that the lattice has full rank, and we do so in what follows, since otherwise one

may just work over the real span of B.

The quotient group R
d/L of L is the set of cosets c + L = {c + v | v ∈ L}, where c ∈ R

d,

with the group operation (c1 + L) + (c2 + L) = (c1 + c2) + L. The determinant of L, denoted

det(L), is defined as det(L) =
√

BT B. A lattice has multiple bases: if B is a basis then

BU is also a basis, for any unimodular matrix U (i.e., a matrix U with integer entries with

det(U) = 1.) The Voronoi cell of a lattice is the set of all points closer to the origin than to

any other lattice point. Formally, VL := {x ∈ R
d | ||x|| ≤ ||x−v||,∀v ∈ L}. Define the shifted

Voronoi cell centered at v, denoted VL(v), to be the set of points v +VL = {v + u | u ∈ VL}.
It is a standard fact that the set of cells {v + VL}v∈L cover the entire space R

d. Moreover,

for every x ∈ R
d, there exists a v ∈ L such that x − v ∈ VL. In fact, the (half-open)

Voronoi cell contains exactly one representative from each coset c + L, for c ∈ R
d. One of
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the fundamental computational problem on lattices is the Closest Vector Problem (CVP)

defined as follows: given a target vector t ∈ R
d, find a closest vector from the lattice L to

t. We will denote a solution to CVP with input t by CVL(t). We will use recent algorithms

running in time O(2d) as a blackbox [1]. We will need the following property of the Voronoi

cell.

I Fact 1. v ∈ CVL(t) if and only if t− v ∈ VL.

Approximate Near Neighbor and LSH. In the c-approximate near neighbor(c-ANN)

problem, given a collection P of n points in R
d, and parameters r, δ > 0, the goal is to

construct a data structure with the following property: on input a query point q ∈ R
d, with

probability 1− δ, if there exists p ∈ P with ||q− p|| ≤ r, it outputs some point p′ ∈ P, with

||q− p′|| ≤ c · r. By a simple scaling of the coordinates, one may assume that r = 1. Also, δ

is assumed to be a constant, and the success probability can be amplified by building several

instances of the data structure.

A familyH is a locality-sensitive hashing scheme with parameters (1, c, p1, p2) if it satisfies

the following properties: for any p, q ∈ R
d

if ||p− q|| ≤ 1 then PrH[h(q) = h(p)] ≥ p1,

if ||p− q|| ≥ c then PrH[h(q) = h(p)] ≤ p2.

The initial work of [20] shows that an LSH scheme implies a data structure for c-ANN.

I Theorem 2. [20] Given a LSH family H with parameters (1, c, p1, p2), where each function

in H can be evaluated in time τ , let ρ = log(1/p1)
log(1/p2) . Then there exists a data structure for

c-ANN with O((d + τ)nρ log1/p2
n) query time, using O(dn + n1+ρ) amount of space.

Multidimensional Gaussian. A d-dimensional Gaussian distribution with mean 0 and

covariance matrix σ2Id ∈ R
d×d has density function

p(x) =
1

(2π)d/2σd
exp(−||x||

2

2σ2
),

and is denoted by N(0, σ2Id).

3 Our Lattice-based Hash Family and Proof Strategy

LSH family for lattice L with det(L) = 1. A hash function h = hM,t indexed by a

projection matrix M ∈ R
k×d from R

d to R
k, and a vector t ∈ R

k is constructed as follows:

1. pick the entries Mi,j according to a Gaussian distribution with mean 0 and variance 1/k.

2. pick t uniformly from the Voronoi cell VL of L (centered at 0). Sampling t can be achieved

by sampling from R
k/L, namely by sampling from the fundamental parallelepiped with

respect to any basis.

Given a point a ∈ R
d, we define h(a) to be a closest vector in L to its projection Ma

translated by t. Formally,

h(a) = CVL(Ma + t).

We first show that for a, b ∈ R
d the quantity PrM,t[h(a) = h(b)] only depends on the

distance ||a− b||, and not on the points a, b themselves.
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I Proposition 3. Let a, b ∈ R
d be arbitrary and let ∆ = ||a− b||. Then

Pr
M,t

[h(a) = h(b)] = Pr
x←VL,y←N(0,∆2Ik/k)

[x + y ∈ VL].

Let p∆ denote the probability of collision of two inputs which are exactly distance ∆ apart.

i.e., p∆ := PrM,t[h(a) = h(b)], where ||a − b|| = ∆. An easy argument shows that p∆ is

non-increasing as a function of ∆.

I Corollary 4. p∆ is non-increasing as a function of ∆.

The performance of our LSH family is measured by the LSH constant defined by

ρL := min
∆>0

ln 1/p∆

ln 1/pc∆
.

Our result shows the existence of a lattice L with optimal performance guarantee.

I Theorem 5. For every k large enough and c > 1, there exists a k-dimensional lattice L

with det(L) = 1 achieving

ρL ≤
1

c2
+ O

(

1√
k

)

.

Theorem 5 follows from our main technical result, which bounds the expected collision

probabilities p∆ and pc∆ for ∆ = k1/4.

I Theorem 6. For every k large enough and c > 1, there exist absolute constants K1, K2, K3

such that for ∆ = k1/4,

EL [p∆] ≥ K1 e−
τ2

8

√
k and,

EL [pc∆] ≤ K2 e
− τ2

8 c2
√

k

(

1−K3c2
√

k

)

,

where the expectation is over k-dimensional lattices L with det(L) = 1.

We can now prove Theorem 5 using Corollary 4 and Theorem 6.

Proof of Theorem 5. For any ∆ > 1, define ρ̃ := ln 1/EL[p∆]
ln 1/EL[pc∆] . From Corollary 4, we know

that p∆ is non-increasing. Hence, ρ̃ ≤ 1 for any c > 1. So, we can use Jensen’s inequality

to get that

EL

[

p
1/ρ̃
∆

]

≥ EL [p∆]
1/ρ̃

(Jensen’s inequality)

= EL [pc∆] (by the definition of ρ̃) .

By the probabilistic method, it then follows that there exists a k-dimensional lattice L

with det(L) = 1, such that the collision probabilities satisfiy ln 1/p∆

ln 1/pc∆
= ρ̃ and hence, ρL ≤ ρ̃.

We now show that ρ̃ ≤ 1
c2 + O

(

1√
k

)

. From Theorem 6 we know that for any c > 1, and

∆ = k
1
4 , there exist constants K1, K2, K3 such that

EL [p∆] ≥ K1 e−
τ2

8

√
k and,

EL [pc∆] ≤ K2 e
− τ2

8 c2
√

k

(

1−K3c2
√

k

)
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Note that for c > k
1
4√

K3
, the upper bound on EL [pc∆] from Theorem 6 becomes trivial.

First, we consider the case when c ≤ k
1
4

2
√

K3
. For this value of c, we can use bounds obtained

in Theorem 6 to show that ρ̃ ≤ 1
c2 + O

(

1√
k

)

as follows:

ln 1/EL(p∆)

ln 1/EL(pc∆)
≤

τ2

8

√
k − ln K1

τ2

8 c2
√

k
(

1− K3c2
√

k

)

− ln K2

≤ 1

c2

(

1 + K4
c2

√
k

)

for some constant K4 .

Now, for c > k
1
4

2
√

K3
, we need to show that there exists a k-dimensional lattice of determ-

inant 1, such that ρL ≤ 1
c2 + O

(

1√
k

)

. From the monotonicity of p∆, we know that for any

c′ < c, pc∆ ≤ pc′∆. Therefore, consider c′ = k
1
4 /2
√

K3 < c. From Theorem 6, and the

analysis above, we know that there exists a lattice of determinant 1 such that

ρL ≤
1

c′2

(

1 + K4
c′2√

k

)

for some constant K4

=
2K3√

k
+

K4√
k

=
1

c2
+ O

(

1√
k

)

.

J

Proving Theorem 6 poses substantial technical hurdles. We will break the proof into

smaller components, which we describe after introducing some helpful notation.

For any ∆ ≥ 1, define

I(∆2) :=

∫

x∈Rk:Vx≤ k
8

Ey←N(0,∆2Ik/k)

[

e−Vx−Vx+y
]

dx.

In the next lemma, we show tight bounds on EL[p∆] in terms of I(∆2).

I Lemma 7. For every k large enough and any ∆ ≥ 1,

I(∆2)− e−k/8 ≤ EL[p∆] ≤ 4I(4−
2
k ∆2) + 3e−k/8.

where the expectation is over k-dimensional lattices L with det(L) = 1.

We now show tight bounds for I(∆2) for ∆2 = β
√

k ,where 1 ≤ β ≤ O(
√

k) in Lemma 8,

which is the most technically delicate part of the analysis, as it involves precise balancing

of parameters and taking care of minutious details.

I Lemma 8. There exist absolute constants K ∈ [0, 1], K1, K2, K̄1, K̄2 such that for any

1 ≤ β ≤ K
√

k,

K̄1 e
−αβ

√
k
(

1+
K̄2β√

k

)

≤ I
(

β
√

k
)

≤ K1 e
−αβ

√
k
(

1−K2β√
k

)

We now show how Lemmas 7 and Lemma 8 imply Theorem 6.
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Proof of Theorem 6. First we prove the lower bound on EL[p∆] for ∆ = k
1
4 . From

Lemma 7 and Lemma 8, we have

EL[p∆] ≥ I(∆2)− e−k/8 (from Lemma 7)

≥ K̄1 e
−α
√

k
(

1+
K̄2√

k

)

− e−k/8 (from Lemma 8 with β = 1)

≥ K̄3 e−α
√

k.

Similarly, for the upper bound on EL[pc∆] for ∆ = k
1
4 , we get

EL[pc∆] ≤ 4 I(4−
2
k c2∆2) + 3e−k/8 (from Lemma 7)

≤ K1 e
−4

− 2
k c2α

√
k

(

1−K2c2
√

k

)

+ 3e−k/8 (from Lemma 8 with β = 4−
2
k c2)

≤ K3 e
−c2α

√
k

(

1−K2c2
√

k

)

(since 4−
2
k ≥ 1−O(1/k)) .

Note that since Lemma 8 holds for β < O(
√

k), the upper bound on EL[pc∆] holds for

c2 ≤ K
√

k for some constant K. J

We conclude this section with the proof of Proposition 3 and of Corollary 4, while

devoting the rest of the paper for the proof of Lemma 7. Due to space constraints, the proof

of Lemma 8 will appear in the full version of the paper.

Proof of Proposition 3. Let M and t be as defined above. From the definition of the hash

function, h(a) = h(b) if Ma + t and Mb + t land in the same Voronoi cell of L about some

lattice point. Let ||a− b|| = ∆. We have

p∆ = Pr
M,t

[h(a) = h(b)]

= Pr
M,t

[CVL(Ma + t) = CVL(Mb + t)]

= Pr
M,t

[Ma + t, Ma + M(b− a) + t lie in the same Voronoi cell ]. (7)

Let Ma + t ∈ VL(`) for some ` ∈ L. Define x := Ma + t− ` ∈ VL. Note that because of the

random shift t, x is a uniform random point in the Voronoi cell of L about 0.

Let y := M(b− a) ∈ R
k. Since each entry Mij of M is a Gaussian random variable with

0 mean and variance 1/k, therefore, the ith entry of y, given as yi =
∑k

j=1 Mij(bj − aj) has

mean 0 and variance 1
k

∑

j(bj − aj)2 = ∆2

k .

Plugging these observations in Equation 7, we get

p∆ = Pr
M,t

[Ma + t− `, Ma + M(b− a) + t− ` ∈ VL]

= Pr
x←VL,y←N(0,∆2Ik/k)

[x, x + y ∈ VL]

= Pr
x←VL,y←N(0,∆2Ik/k)

[x + y ∈ VL].

J

Proof of Corollary 4. By Proposition 3, it suffices to show that the function

f(s) = Pr
x←VL,y←N(0,Ik/k)

[x + sy ∈ VL],
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where x is uniform in VL and y is standard Gaussian, is a non-increasing function of s on

R+. Since VL has volume 1 and x + sy ∈ VL ⇔ x ∈ VL − sy, we have that

Pr
x,y

[x + sy ∈ VL] = Pr
y

[vol(VL ∩ (VL − sy)] .

Define gy(s) := vol(VL ∩ (VL − sy)). We claim that gy(s) is non-decreasing on (−∞, 0] and

non-increasing on [0,∞). To see this, note that by symmetry of V, gy is symmetric, i.e.

gy(s) = gy(−s). Furthermore, for λ ∈ [0, 1], s1, s2 ∈ R,

gy(λs1 + (1− λ)s2)1/n = vol(VL ∩ (VL − λ(s1 + (1− λ)s2)y))1/n

≥ vol(λ(VL ∩ (VL − s1y)) + (1− λ)(VL ∩ (VL − s2y)))1/n

( by containment )

≥ λvol(VL ∩ (VL − s1y))1/n + (1− λ)vol(VL ∩ (VL − s2y))1/n

( by Brunn-Minkowski )

= λgy(s1)1/n + (1− λ)gy(s2)1/n .

Therefore, gy(s)1/n is a symmetric, non-negative and concave function of s. Any symmetric

concave function on R must attain its maximum value at 0, and hence must be non-increasing

away from 0.

Now consider 0 ≤ s1 ≤ s2. Since gy is non-increasing on R+, we get that

f(s1) = Ey[gy(s1)] ≥ Ey[gy(s2)] = f(s2)

as needed.

J

4 Proof of Lemma 7

In the previous section, we had seen that the expected collision probability between points

which are ∆ apart is defined as

EL[p∆] = EL

[

Pr
x←VL,y←N(0,∆2Ik/k)

[x + y ∈ VL]

]

=

∫

x∈Rk

∫

y∈Rk

Pr
L

(x, x + y ∈ VL) · e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx for σ2 = ∆2/k.

The goal of this section is to derive tight bounds for this expression through the proof

of Lemma 7.

Recall that Bx denotes the open k-dimensional ball centered at x ∈ R
k of radius ‖x‖

and Bx+y denotes the open k-dimensional ball centered at x + y ∈ R
k of radius ‖x + y‖.

Also, Vx and Vx+y denotes their volumes. Consider Bx,y = Bx ∪Bx+y, the union of Bx and

Bx+y and let Vx,y denote its volume. We will need the following theorem for the proof of

Lemma 7.

I Lemma 9.

e−Vx,y − e−k/4 ≤ Pr
L

(x, x + y ∈ VL) ≤ e−
1
2 Vx,y + e−k/4.

In order to prove Lemmas 7 and 9, we invoke the following results of Rogers [27] and

Schmidt [28].
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I Theorem 10 (Corollary of [27], Theorem 1). Let B be the k-dimensional ball of volume V

centered at the origin. If V ≤ k
8 , then there exists a constant k0 such that for k > k0,

∣

∣

∣

∣

∫

x∈Rk

Pr
L

[x ∈ VL \B] dx− e−V

∣

∣

∣

∣

≤ c1k3

(

16

27

)
k
4

where, the probability is taken over the space of all lattices of determinant 1.

I Theorem 11 ([28], Theorem 4). Let S be a Borel set of measure V such that 0 /∈ S and

for all x ∈ S, −x /∈ S. If V ≤ k − 1, then for k ≥ 13,

Pr
L

[L ∩ S = ∅] = e−V (1−R) .

where, the probability is taken over the space of all lattices of determinant 1 and |R| <

6
(

3
4

)
k
2 e4V + V k−1k−k+1eV +k.

I Fact 12.

1

2
(Vx + Vx+y) ≤ Vx,y ≤ Vx + Vx+y.

Proof. Let WLOG, Vx ≤ Vx+y. Also, we know that Vx,y = Vx + Vx+y − V (Bx ∩Bx+y). We

now show that V (Bx∩Bx+y) ≤ 1
2 (Vx + Vx+y). This fact follows easily from the observation

that the intersection volume is at most the volume of the smaller ball. Therefore,

V (Bx ∩Bx+y) ≤ Vx =
1

2
Vx +

1

2
Vx ≤

1

2
(Vx + Vx+y) .

J

We now prove Lemma 7 using Lemma 9.

Proof of Lemma 7 . For notational convenience, we will use σ2 to denote ∆2/k. From the

definition of p∆ and Proposition 3, we have

EL[p∆] = EL

[

Pr
x←VL,y←N(0,σ2Ik)

[x + y ∈ VL]

]

=

∫

x∈Rk

∫

y∈Rk

Pr
L

(x, x + y ∈ VL) · e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx

=

∫

x∈Rk:Vx≤ k
8

∫

y∈Rk

Pr
L

(x, x + y ∈ VL) · e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx

+

∫

x∈Rk:Vx> k
8

∫

y∈Rk

Pr
L

(x, x + y ∈ VL) · e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx. (8)

We first note that if Vx ≥ k
8 , then the probability that x ∈ VL is itself very small. This

fact gives us tight bounds on EL[p∆] up to additive e−Ω(k) term. We use Theorem 10 to
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formalize this statement. Let B0 be the 0 centered ball of volume k
8 . We have,

∫

x∈Rk:Vx≥ k
8

∫

y∈Rk

Pr
L

(x, x + y ∈ VL) · e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx

≤
∫

x∈Rk:Vx≥ k
8

∫

y∈Rk

Pr
L

(x ∈ VL) · e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx

=

∫

x∈Rk:Vx≥ k
8

Pr
L

(x ∈ VL)dx

=

∫

x∈Rk

Pr
L

(x ∈ VL \B0) dx

= e−
k
8 + e−

k
8 . ( from Theorem 10 )

Plugging this observation into the expression for EL[p∆] in Equation 8, we get that

∫

x∈Rk:Vx≤ k
8

∫

y∈Rk

Pr
L

(x, x + y ∈ VL) · e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx

≤ EL[p∆]

≤
∫

x∈Rk:Vx≤ k
8

∫

y∈Rk

Pr
L

(x, x + y ∈ VL) · e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx + 2e−k/8.

Further, using the bounds on PrL(x, x + y ∈ VL) from Lemma 9, we get

∫

x∈Rk:Vx≤ k
8

∫

y∈Rk

(

e−Vx,y − e−k/4
)

· e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx

≤ EL[p∆]

≤
∫

x∈Rk:Vx≤ k
8

∫

y∈Rk

(

e−
1
2 Vx,y + e−k/4

)

· e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx + 2e−k/8.

Since Vx,y ≤ Vx + Vx+y, the lower bound in the theorem statement then follows trivially.

EL[p∆] ≥
∫

x∈Rk:Vx≤ k
8

∫

y∈Rk

(

e−Vx,y − e−k/4
)

· e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx

=

∫

x∈Rk

Vx≤ k
8

∫

y∈Rk

e−Vx,y
e−

‖y‖2

2σ2

(2πσ2)
k
2

dy dx−
∫

x∈Rk

Vx≤ k
8

∫

y∈Rk

e−k/4 e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx

≥
∫

x∈Rk:Vx≤ k
8

Ey∼N(0,σ2 Ik)

[

e−Vx−Vx+y
]

dx− k

8
e−k/4

≥
∫

x∈Rk:Vx≤ k
8

Ey∼N(0,σ2 Ik)

[

e−Vx−Vx+y
]

dx− e−k/8

For the upper bound, set u = 4−
1
k x, and v = 4−

1
k y. Since 1

2 Vx,y ≥ Vx+Vx+y

4 = Vu +Vu+v,
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we have

EL[p∆] ≤
∫

x∈Rk:Vx≤ k
8

∫

y∈Rk

(

e−
1
2 Vx,y + e−k/4

)

· e−
‖y‖2

2σ2

(2πσ2)
k
2

dy dx + 2e−k/8

≤
∫

x∈Rk

∫

y∈Rk

e−
Vx+Vx+y

4
e−

‖y‖2

2σ2

(2πσ2)
k
2

dy dx + 3e−k/8

=

∫

u∈Rk

∫

v∈Rk

e−Vu−Vu+v
e−

‖v‖2 4
2
k

2σ2

(2πσ2)
k
2

4dv 4du + 3e−k/8

= 4

∫

u∈Rk

∫

v∈Rk

e−Vu−Vu+v
e
− ‖v‖2

2(4
− 1

k σ)2

(

2π(4−
1
k σ)2

)
k
2

dv du + 3e−k/8

= 4

∫

u∈Rk

Ev

[

e−Vu−Vu+v
]

du + 3e−k/8 where, v ∼ N(0, 4−
2
k σ2 Ik).

J

Now it remains to prove Lemma 9.

Proof of Lemma 9. Recall that Bx,y = Bx ∪ Bx+y, the union of Bx and Bx+y and Vx,y

denotes its volume. We note that x and x + y are in the voronoi cell of a lattice L if and

only if Bx,y does not contain any lattice points. Therefore,

Pr
L

[x, x + y ∈ VL] = Pr
L

[Bx,y ∩ L = ∅]

As a first case, suppose Vx,y < k
32 . Now consider the following partition of Bx,y. Let S

be the set of points a ∈ Bx,y such that −a ∈ Bx,y.

S = {a ∈ Bx,y | −a ∈ Bx,y}.

Partition S with respect to an arbitrary hyperplane as follows: Define S1 = {a ∈ S | aty < 0}
and S2 = S \ S1 for an arbitrarily chosen y ∈ R

k. Note that for every a ∈ S1, −a ∈ S2.

Define A = (Bx,y \S)∪S1. Note that {A, S2} is a partition of Bx,y, i.e., Bx,y = A∪S2, and

A ∩ S2 = ∅.
Without loss of generality, assume that A is the larger partition of Bx,y, i.e VA ≥ 1

2 Vx,y.

Also from the definition of A and S2, we have that if A ∩ L = ∅, then S2 ∩ L = ∅. We can

now apply Theorem 11 for both A and S2.

Pr
L

[Bx,y ∩ L = ∅] = Pr
L

[(A ∩ L = ∅), (S2 ∩ L = ∅)]

= Pr
L

[A ∩ L = ∅] Pr
L

[(S2 ∩ L = ∅) | (A ∩ L = ∅)]

= Pr
L

[A ∩ L = ∅]

= e−VA (1−RA) where, |RA| = 6

(

3

4

)
k
2

e4VA + V k−1
A k−k+1eVA+k.

Since 1
2 Vx,y ≤ VA ≤ Vx,y < k

32 , we have |RA| < e−k/4. Therefore,

e−Vx,y

(

1− e−k/4
)

≤ Pr
L

[Bx,y ∩ L = ∅] ≤ e−
1
2 Vx,y

(

1 + e−k/4
)

.
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Next, suppose Vx,y > k
32 . Then consider a body B′x,y contained in Bx,y of volume k

32 .

Using a similar argument as above with Bx,y replaced with B′x,y, we conclude that

Pr
L

[Bx,y ∩ L = ∅] ≤ Pr
L

[

B′x,y ∩ L = ∅
]

≤ e−k/4.

J
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