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1 Introduction

We study lower bounds for computing the inner product function by AC0 circuits with parity gates

on the level just above the input gates (AC0 ◦MOD2). As we will review, this problem has emerged

as a common, particularly simple special case of several major open problems in Computational

Complexity, about which we know surprisingly little. We therefore view progress on this special

case as a benchmark for new techniques in circuit complexity for these larger questions.

A core program in Computational Complexity is to understand the power of restricted circuit

families. One facet of such understanding is to identify functions that these circuits cannot compute.

In practice, it turns out that once we can prove such lower bounds, then we become surprisingly

facile with the class, gaining the ability to learn the functions computed by such circuits [LMN93]

(and this is necessary in some form [KF09,KKO13,Vol14]), the ability to generate inputs that are

pseudorandom for the class [Nis91,NW94, ISW06, SU05,Uma03] (again necessary in some form),

and more. As a consequence, “understanding” the class is often identified with proving such lower

bounds. It is therefore interesting when this intuition fails to hold.

Shaltiel and Viola [SV10] notice such a gap: although we can prove that, e.g., the MOD3 function

has constant hardness for AC0[2] circuits [Raz87, Smo87] (where AC0[2] is AC0 equipped with

parity gates), we still do not have pseudorandom generators for AC0[2]. The trouble is that known

constructions of pseudorandom generators require strongly hard on average functions [NW94], and

proofs of hardness amplification require the class in question to compute the majority function,

which AC0[2] cannot even approximate [Raz87]. Shaltiel and Viola therefore highlight the problem

of establishing such strong average case hardness against AC0[2] circuits as a challenge in circuit

complexity. Servedio and Viola [SV12] point out that such strong hardness is not even known for

AC0 ◦MOD2, and suggest the problem as a natural special case. In particular, they conjecture

that, for this special case, the Inner Product function (IP), defined below, is an example of such a

function (although it is trivially computable by AC0[2]).

Definition 1.1. IP(x, y) : {0, 1}2n → {0, 1} is the function
∑n

i=1 xiyi (mod 2).

Thus, showing that IP cannot be computed by small AC0 ◦MOD2 circuits is a natural step towards

a better understanding of AC0[2].

On the other hand, a better understanding of the class AC0◦MOD2 turns out to be of interest to

practical cryptography as well. Along similar lines, Akavia et al. [ABG+14], in the course of propos-

ing a candidate weak pseudorandom function of minimal complexity (computable in AC0 ◦MOD2

in this case), make a strong conjecture; namely that every AC0 ◦MOD2 circuit has a quasipolyno-

mially heavy Fourier coefficient. Since IP only has small Fourier coefficients, this conjecture also

entails the same consequence considered by Servedio and Viola, and simply showing that IP cannot

be computed by small AC0 ◦MOD2 circuits is again a special case of this problem.

Finally, Servedio and Viola [SV12] note that a special case of Valiant’s matrix rigidity prob-

lem [Val77] is to exhibit a function that has low correlation with all sparse polynomials. AC0◦MOD2
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circuits are in turn well-approximated by such sparse polynomials, so giving explicit functions that

are not correlated with any AC0 ◦MOD2 functions is again a natural special case; and IP is again

the natural candidate for such a function.

Proving lower bounds for AC0 ◦ MOD2 circuits computing IP is challenging since the usual

techniques from the literature do not immediately apply. Specifically, although Razborov’s tech-

nique [Raz87] establishes strong lower bounds against AC0[2], we note that IP does have small

AC0[2] circuits. There is thus no hope in using Razborov’s technique directly to prove lower

bounds for IP. And of course, techniques based on random restrictions are helpless against the

input layer parity gates.

Servedio and Viola note that it follows from Jackson’s work [Jac97, Fact 8] that depth-3 AC0 ◦
MOD2 circuits (i.e., a DNF of parities) cannot approximate IP. Also, Jukna [Juk06] has shown

that such circuits computing IP must have exponential size (a bound recently optimized by Cohen

and Shinkar [CS14]). And yet, as noted by Servedio and Viola, nothing is known about depth-4

circuits, let alone AC0 ◦MOD2 circuits of arbitrary depth.

Our results. In this work, we give the first nontrivial (superlinear) lower bound for IP against

(arbitrary depth) AC0 ◦MOD2. In fact, our result is slightly stronger and applies to the broader

class of bent functions (i.e., functions whose Fourier coefficients are all equal in magnitude, IP being

a special case).

Theorem 1.2. If C is an AC0 ◦MOD2 circuit of depth k and size s that computes the IP function

on n variables, then s = Ω(n1+4−k
).

The proof of this theorem follows by an adaptation of the results of Chaudhuri and Radhakrish-

nan [CR96] who showed a similar bound for AC0 circuits; a similar adaptation for AC0[2] circuits

was previously given by Kopparty and Srinivasan [KS12].

Our main theorem is an Ω̃(n2) AC0 ◦MOD2 lower bound for IP:

Theorem 1.3. Any depth-4 AC0 ◦MOD2 circuit computing the IP function on n variables must

have size s = Ω(n2/ log6 n).

An intuitive interpretation of the above results is the following. IP is a means to “generate”

all possible parities on n bits. AC0 ◦MOD2 circuits are merely AC0 circuits that are given access

to an arbitrary but fixed set of parity functions, bounded in number by the size of the circuit.

Our results address the question of how much these few parities can aid the computation of most

remaining parities.

Our technique: a moment-matching bound. At the heart of our proof of this second lower

bound is a lemma that may be of independent interest:
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Lemma 1.4 (Moment-matching bound). Let X and Y be random variables taking values in

{0, 1, 2, . . . , s}. Suppose that the first d moments of X and Y are equal. Then,

Pr(Y = 0) ≤ Pr(X = 0) + e−Ω(d/
√
s).

Several other “moment-matching” bounds appear in the literature, and here we briefly discuss

the relationship of our work to these bounds. First, the classical “truncated moments” problem

concerns the conditions for the existence of a probability distribution on a given set with a given

sequence of moments [And70,CF91]. But, as noted by Rashkodnikova et al. [RRSS09], the solutions

generated by these techniques do not necessarily lie on integers, and so the conditions refer to a

different class of random variables. Klivans and Meka [KM13] likewise consider bounds on the

difference in probability of general events that may be induced by distributions with d matching

moments. Their bounds apply to much more general properties (than simply the event X = 0) and

much more general distributions; as such, in spite of some similarities in the techniques employed

in their work1, they do not obtain bounds in a useful form for our purposes. Rashkodnikova et

al. [RRSS09] in turn consider nonnegative, bounded, and integer-valued random variables as we

do, but they consider a different property; namely, given that the first d moments are proportional

(not necessarily identical), they maximize their ratio.

Interestingly, it turns out that the moment-matching bound we obtain has a close technical

relationship to the approximate inclusion-exclusion bounds obtained by Linial and Nisan [LN90].

Indeed, the technique we use to prove Lemma 1.4 is essentially the same as the core technique

underlying Linial and Nisan’s work, and in fact, we can show that our moment-matching lemma

is essentially equivalent to Linial and Nisan’s approximate inclusion-exclusion bounds (see Ap-

pendix B.1 for details). In view of the naturalness of the statement of our moment-matching

bound, we believe that this lemma may be of interest, even if one is familiar with the approximate

inclusion-exclusion bounds.

1.1 Overview of the depth-4 lower bound

Our argument consists of two main steps: (1) We show that any depth-4 AC0 ◦ MOD2 circuit

(without loss of generality, with an AND top gate) of size s ≤ n2 computing the Inner Product

function must have a one-sided approximation by a DNF of parities in which the terms are all small:

It is correct when it outputs 0, and the circuit outputs zero on at least a 1/n2 fraction of inputs.

(2) We then show that such one-sided approximators for the Inner Product function can only output

0 with small probability, which can be made smaller than 1/n2 for some s = O(n2/poly log n).

The first part is relatively straightforward. We let a candidate circuit for the inner product

function of size s ≤ n2 be given. We first obtain a one-sided approximation to our circuit by invoking

1Indeed, although like us, Klivans and Meka relate this problem to the existence of some polynomials via LP

duality, for Klivans and Meka, constructing these (sandwiching) polynomials is the problem, not the solution.
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the Discriminator Lemma of Hajnal et al. [HMP+93] to obtain a depth-3 circuit (eliminating the

top AND layer) that is correct whenever it reports 0, and reports 0 on a large (≥ 1/n2) fraction of

the inputs. We then reduce the fan-in of the second (from bottom) layer of AND gates by trimming

the AND gates with large fan-in at a slight cost in the approximation error (asymptotically smaller

than 1/n2).

Towards the second part of our argument, we consider the degree of an arbitrary parity in the

{±1}-representation in terms of the original variables as well as the bottom layer parities. That

is, the degree of a parity χ is now defined as the minimum number of variables and/or bottom

layer parities that need to be added together (over F2) to obtain χ: e.g., a single parity gate (new

variable) has degree 1, and a parity of k new variables (parity gates or old variables) has degree

≤ k. Given the size of the circuit s, we obtain that w.h.p. over the setting of the input y variables,

the inner product function IP(x, y) is a parity in the x variables that remains of high degree (at

least Ω(n/ log s)) over these new variables.

We show that, for a 1 − o(1) fraction of fixings of the y variables, the probability that our

circuit outputs 0 when IP(x, y) = 0 is small as follows. We apply the above-mentioned moment-

matching bound (Lemma 2.8) to the random variable N(x) (over a random x) that counts the

number of the AND gates in the depth-3 approximator obtained by the Discriminator Lemma that

output 1. We can then show that the first m = Ω̃(n) moments of (N(x) | IP(x, y) = 0) and

(N(x) | IP(x, y) = 1) are identical and Prx(N(x) = 0 | IP(x, y) = 1) = 0 since N(x) = 0 precisely

when the OR gate at the output of the depth-3 one-sided approximator outputs 0, in which case

the circuit is correct. Using this information in a linear-programming based proof, we show that

Prx(N(x) = 0 | IP(x, y) = 0) . e−Ω̃(m/
√
s). For our m, if s ≤ n2/ poly log n, the upper bound

becomes smaller than 1/n2, completing the second part and finishing the proof.

To see that the low-degree moments match, we note that N(x) is represented by a low-degree

polynomial: In the {0, 1}-representation, it is simply the summation of monomials of degreeO(log n)

corresponding to the second-level AND gates (recall that the degree remains the same in the {±1}-
representation). In the {±1}-representation, however, it is then clear that the parity in x that we

obtain from our setting of the y variables in IP(x, y) is (w.h.p. over y) uncorrelated with N(x). In

other words, Ex(N(x) | IP(x, y) = 0) = Ex(N(x) | IP(x, y) = 1). This argument can be seen to

hold for larger moments as well.

We prove the moment-matching bound by writing a linear program for the probability distri-

bution satisfying the given moment constraints over {0, . . . , s} that maximizes the probability of

obtaining 0. We bound the value of this LP by giving an explicit dual-feasible solution; It turns

out that the dual can be rewritten as maximizing the lower bound on the values a bounded degree

polynomial attains at the integer points in [0, s], given that it takes value 0 at the origin and is

also upper bounded by 1 at these integer points. Similar linear programs were first considered

by Linial and Nisan [LN90] in their work on approximate inclusion-exclusion, and the conditions

are quite similar to the conditions for approximators for the OR function sought by Nisan and
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Szegedy [NS94], and our solution at this stage essentially follows these works, using Chebyshev

polynomials to construct the desired (essentially optimal, cf. Paturi [Pat92]) polynomial.

An alternative proof. There is also an alternative way of completing the proof of our lower

bound that uses approximate inclusion-exclusion directly. We believe that the main proof we de-

scribe here, using moment-matching, is more natural. For completeness, a sketch of this alternative

proof appears in Appendix B.2.

1.2 Preliminaries

All logarithms in this paper are to the base 2. Let n ≥ 1 be a natural number. We use [n] to denote

the set {1, . . . , n}. We use F2 for the field with 2 elements {0, 1}, where addition and multiplication

are performed modulo 2. We view elements in Fn
2 as n-bit binary strings – that is elements of {0, 1}n

– alternatively. If x and y are two n-bit strings, then x+ y (or x− y) denotes bitwise addition (i.e.

XOR) of x and y. We view Fn
2 as a vector space equipped with an inner product 〈x, y〉, which we

take to be the standard dot product: 〈x, y〉 =
∑n

i=1 xiyi, where all operations are performed in F2.

Often times, it is convenient to switch the range of Boolean functions between {0, 1} and {−1, 1}.
We use f± to denote the {−1, 1}-valued Boolean function corresponding to f . They are related by

f± = (−1)f = 1− 2f and f = (1− f±)/2.

For every α ∈ Fn
2 , one can define a linear function (or parity function) mapping Fn

2 to {0, 1} as
`α(x) = 〈α, x〉. Let χα = (−1)`α , which are commonly known as characters.

Characters play a central role in Fourier analysis of Boolean functions, which we briefly review

in the sequel.

Fourier analysis of Boolean functions. For functions f, g : Fn
2 → R the inner product is

defined as 〈f, g〉 := Ex∈Fn
2
(f(x)g(x)). For α = (α1, . . . , αn) ∈ Fn

2 , the corresponding character

function χα is defined as χα(x1, . . . , xn) =
∏

i : αi=1(−1)xi . For α, β ∈ Fn
2 , the inner product

between χα and χβ is 1 if α = β, and 0 otherwise. Therefore the characters form an orthonormal

basis for complex-valued functions over Fn
2 , and we can expand any f defined on Fn

2 using {χα}α∈Fn
2

as a basis.

Definition 1.5 (Fourier Transform). Let f : Fn
2 → R. The Fourier transform f̂ : Fn

2 → C of f is

defined to be f̂(α) = Ex(f(x)χα(x)). The quantity f̂(α) is called the Fourier coefficient of f at α.

The Fourier inversion formula is given by f(x) =
∑

α∈Fn
2
f̂(α)χα(x), and the Parseval’s identity

is
∑

α∈Fn
2
f̂(α)2 = Ex(f(x)

2).

A Boolean function f : Fn
2 → {0, 1} is called a bent function if all the Fourier coefficients of

f± := (−1)f have the same absolute value. That is, |f̂±(α)| = 2−n/2 for every α ∈ Fn
2 . It is well

known that the Inner Product function IP is a bent function.
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Discriminator Lemma for linear threshold circuits. A linear threshold gate T a

k (x1, . . . , xt)

of fan-in t outputs 1 if and only if
∑t

i=1 aixi ≥ k, where a = (a1, . . . , at) is vector of weights.

The Discriminator Lemma of Hajnal et al. is a powerful tool for proving lower bounds of threshold

circuits2.

Lemma 1.6 (Discriminator lemma, Lemma 3.3 in [HMP+93]). Let C = T a

k (C1, . . . , Cm) be a circuit

on n inputs with a threshold gate at the top level, and write a =
∑m

i=1 |ai|. Let A,B ⊆ {0, 1}n be

any two disjoint sets of inputs such that the circuit C accepts A and rejects B. Then there exists

a subcircuit Ci, i ∈ [m], such that
∣∣∣∣PrA (Ci(x) = 1)− Pr

B
(Ci(x) = 1)

∣∣∣∣ ≥ 1/a,

where PrA(Ci(x)) (resp., PrB(Ci(x))) denotes the uniform probability over the set A (resp., B).

2 Lower bound for depth-4 circuits

In this section we will show an Ω̃(n2) lower bound for any depth-4 AC0 ◦ MOD2 circuit that

computes IP(x, y). Note that all circuits here are allowed to have negations below the XOR gates;

these negations are not counted in the depth of the circuit.

2.1 Depth-3 discriminator

Let C be any depth-4 AC0 ◦MOD2 circuit that computes IP(x, y). First, without loss of generality,

we may assume the top layer gate of C is an AND gate; the case that the top layer gate is an OR

gate follows a similar argument3. Second, suppose C = AND(C1, . . . , Cm), where each subcircuit

Ci is a DNF◦MOD2 circuit (i.e., DNF of parities); then because C(x, y) = IP(x, y) for every input,

each subcircuit Ci must compute IP with one-sided error only. Specifically, for every input (x, y)

with IP(x, y) = 1 and every i, Ci(x, y) = 1.

We invoke a consequence of the Discriminator Lemma of Hajnal et al. [HMP+93].

Claim 2.1 (Consequence of Lemma 1.6). There is a subcircuit Ci, i ∈ [m], such that

Pr
(x,y) : IP(x,y)=1

(Ci(x, y) = 1) = 1,

and

Pr
(x,y) : IP(x,y)=0

(Ci(x, y) = 1) ≤ 1− 1/m.

2In fact, we do not need the full power of discriminator’s lemma, since our circuits have AND top gates, in which

case the conclusion of the lemma can be directly proved by a simple averaging argument.
3One way to see this is to notice that our proof also shows the same lower bound for the negation of the Inner

Product function (since negating only incurs an affine shift that our methods are not sensitive to). Thus it suffices to

note that when the top gate is an OR one can just negate the layers and get a circuit in which the top gate is AND

that computes the negation of the Inner Product.
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We call such a depth-3 AC0 ◦MOD2 circuit Ci a one-sided 1/m-discriminator for IP. Our main

lemma is an upper bound on the discriminator parameter 1/m of such discriminators in terms of

its size.

Lemma 2.2 (Main). Suppose that a depth-3 AC0 ◦ MOD2 circuit of size s is a one-sided ε-

discriminator for IP. Then ε satisfies

ε ≤ 4 exp

(
−
√

n2

128s log2 n log2 s

)
+

4s

n4
+ 2−n/2.

The proof of Lemma 2.2 is discussed in Section 2.3. Assuming Lemma 2.2, the proof of Theo-

rem 1.3 is straightforward. If m ≥ n2, then we are done already. Suppose otherwise, so ε ≥ 1/n2.

Then by Lemma 2.2, the size of discriminator subcircuit Ci is of size at least s = Ω( n2

log6 n
) = Ω̃(n2).

2.2 Random y-restrictions

Let C ′ be a size-s depth-3 AC0 ◦ MOD2 circuit which is a one-sided ε-discriminator for IP. So

Pr(x,y) : IP(x,y)=0(C
′(x, y) = 0) ≥ ε, and C ′ = OR(f1, f2, . . . , fs′), where each fi is an AND of

parities and s′ < s. Without loss of generality, we can assume that none of these AND gates are

constant (i.e., always 0 or 1).

Reducing the fan-in of AND gates. Define the codimension of fi (each of which is an AND

of parities) to be the codimension of the affine subspace of the inputs on which fi evaluates to 1.

For example, if f1 = AND(x1+x2, x1+x3,¬(x2+x3)), then x1+x2 and x1+x3 both evaluating

to 1 necessarily implies that ¬(x2+x3) evaluates to 1. Hence, the set of inputs for which f1(x) = 1

is the affine subspace specified by {x1 + x2 = 1∧ x1 + x3 = 1}; consequently, the codimension of f1

is 2.

The codimension of fi measures the “effective” fan-in of the AND gate in C ′. It is straight-

forward that without loss of generality one can assume the co-dimension of each AND gate to be

equal to its fan-in. Namely, we observe the following.

Claim 2.3. For any AND gate in C ′, there is an equivalent AND of a subset of its inputs with

fan-in equal to its codimension.

Proof. Consider the input wires of the AND gate in any order. We say that the ith input is

redundant if, given that the first i − 1 input wires are 1, then in the subspace the ith input wire

must also be 1. Notice that eliminating the redundant wires yields an equivalent function. To see

that the fan-in of this new gate is equal to the codimension of the original AND gate, consider

the dimension of the coset of inputs that make the first i inputs 1. Observe that each with non-

redundant input, the dimension decreases by one; so, the codimension of the original gate equals

the number of non-redundant inputs, which is precisely the fan-in of this new AND gate.
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From now on, we assume that all redundant parity inputs have already been removed and each

AND gate in C ′ has its fan-in equal to its codimension. Our next step is trim those AND gates of

C ′ whose fan-in is large.

Call an AND gate in C ′ “bad” if its fan-in is larger than 4 log n. We reduce C ′ to a circuit C ′′

by trimming all “bad” AND gates to an arbitrary set of 4 log n inputs in their fan-in. Note that

each trimmed AND gate may cause an error, only from 0 to 1, and only when all its (non-trimmed)

inputs evaluate to 1 (an event that happens with probability at most 2−4 logn, since the inputs of

each gate are uniform and independent). Define

τ = Pr
x,y

(C ′(x, y) 6= C ′′(x, y)).

By the union bound, τ ≤ s2−4 logn = s/n4. Further, if C ′(x, y) 6= C ′′(x, y) then we must have

C ′(x, y) = 0 and C ′′(x, y) = 1. In other words, if ε′ := Pr(x,y) : IP(x,y)=0(C
′′(x, y) = 0), then

ε′ ≥ ε − τ , and moreover, if C ′ approximates IP with a one-sided error (i.e., C ′ = 1 whenever

IP = 1), then so does C ′′.

Definition 2.4. For a function F (x, y) (resp., a circuit C(x, y)) that maps {0, 1}n × {0, 1}n to

{0, 1}, a y-restriction ρ ∈ {0, 1}n is an assignment of all the y variables in the input according to ρ.

Denote the resulting function F (resp., circuit C) after applying restriction ρ by F |ρ (resp., C|ρ).

A simple fact exploited in the proof is that, for any y-restriction ρ, IP|ρ is a parity over the x

variables, which we denote by `ρ. Note that `ρ(x) =
∑

i:ρi=1 xi mod 2. We next argue that for any

fixed depth-3 AC0 ◦MOD2 circuit C ′′, the parity function `ρ resulting from a random y-restriction

ρ is of “high degree” with respect to the parity inputs of C ′′, and thus “hard” for the circuit.

Fix an arbitrary depth-3 AC0 ◦ MOD2 circuit C ′′, of which the fan-in of each AND gates is

at most 4 log n. Let the parity inputs for C ′′ be `(a1,Sx
1
,Sy

1
), . . . , `(as′ ,Sx

s′
,Sy

s′
), where ai ∈ {0, 1},

Sx
i , S

y
i ⊆ [n], `(ai,Sx

i ,S
y
i )
(x, y) = ai +

∑
j∈Sx

i
xj +

∑
j∈Sy

i
yj , and s′ < s.

Observe that after applying a y-restriction ρ to C ′′, the input parities of C ′′|ρ become the x-

part of the original parities or their negations, namely `(ai,Sx
i ,S

y
i )
|ρ = a′i +

∑
j∈Sx

i
xj and a′i = ai or

a′i = 1− ai. Since there is a natural one-to-one correspondence between subsets of [n] and vectors

in Fn
2 , we may use a set of vectors S ⊆ Fn

2 to identify the set of parities (or their negations), namely

{Sx
i }i∈[s′], that are fed into C ′′|ρ. A key point is that the subset S depends only on the circuit C ′′,

and is essentially independent of the choice of y-restriction ρ. Note also that |S| ≤ s′ < s. In the

following, we will slightly abuse notation and use a parity and the subset of [n] corresponding to

that parity interchangeably.

IP results in high degree parity under random restriction. Following standard addi-

tive combinatorial notation, for a subset S ⊆ Fn
2 and a positive integer k, let kS = {x1 + · · · +

xk : x1, . . . , xk ∈ S}. Clearly we have |S ∪ 2S ∪ · · · ∪ kS| ≤ (|S|+ 1)k.
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Definition 2.5. For any S ⊆ Fn
2 and z ∈ Fn

2 , the S-degree of z is the smallest integer d such that

z ∈ dS, or ∞ if no such d exists. Further, the S-degree of a parity function 〈α, x〉 for α ∈ Fn
2 is

the S-degree of α.

Our next claim shows that for any fixed size-s depth-3 AC0 ◦MOD2 circuit C ′′, after applying

a random y-restriction, then almost surely, the resulting parity function `ρ is of high degree with

respect to the parity inputs of C ′′|ρ.

Claim 2.6. Let S ⊆ Fn
2 be the set of input parities (or their negations) of C ′′|ρ. Then with

probability at least 1− 2−n/2 over the choice of ρ, `ρ has S-degree larger than n/(2 log s).

Proof. Set k = n/(2 log s). We have |S ∪ 2S ∪ · · · ∪ kS| ≤ (|S| + 1)k ≤ sk = sn/(2 log s) = 2n/2, so

the probability that the S-degree of `ρ being at most k is no more than 2n/2/2n = 2−n/2.

We will call a y-restriction ρ good (for circuit C ′′) if the S-degree of `ρ is larger than n/(2 log s)

and bad otherwise. Therefore a random ρ is bad with probability at most 2−n/2. Let Nρ : {0, 1}n →
N be the function that counts the number of AND gates of C ′′|ρ that are 1.

Lemma 2.7. Let S ⊆ Fn
2 be the set of input parities (or their negations) of C ′′|ρ. Suppose `ρ has

S-degree larger than k and each AND gate in C ′′|ρ has fan-in at most w, then N i
ρ is uncorrelated

with `ρ for i = 1, 2, . . . , k/w. In other words, Ex(N
i
ρ(x) | `ρ(x) = 0) = Ex(N

i
ρ(x) | `ρ(x) = 1) for

i = 1, 2, . . . , k/w.

This is an analogue of the well-known fact that high-degree monomials are uncorrelated with

smaller ANDs, used in the Razborov-Smolensky technique [Raz87,Smo87]. We extend this lemma

to our notion of S-degree, and include a proof for completeness.

Proof. For convenience, we switch to the {−1, 1} representation of Boolean values for parities,

i.e. χ(x) = (−1)`(x). Let χ1, . . . , χs′ be the input parities of C ′′|ρ, and let f ′
1, f

′
2, . . . , f

′
t′ (each

still taking value in {0, 1}) be the functions computed by the AND gates in C ′′|ρ. Then Nρ(x) =

f ′
1(x) + f ′

2(x) + · · · + f ′
t′(x). Note that since each f ′

j(x) is the AND of at most w parities from

{χ1, . . . , χs′}, f ′
j(x) can be expressed as a polynomial of degree at most w with χ1, . . . , χs′ as

variables (indeed, if f ′
1(x) = AND(χ1(x), . . . , χw(x)), then f ′

1 = (1−χ1

2 ) · · · (1−χw

2 )). Consequently,

N i
ρ is a polynomial of degree at most i ·w in χ1, . . . , χs′ . Now because `ρ is of S-degree larger than

k ≥ i ·w for i = 1, 2, . . . , k/w, we have that `ρ is not in the support of the polynomial representation

of N i
ρ. Finally, by the orthogonality of parities, letting χρ(x) := (−1)`ρ(x), we have

0 = 〈N i
ρ, `ρ〉 = Ex(N

i
ρ(x) · `ρ(x)) =

1

2

(
Ex(N

i
ρ(x) | χρ(x) = 0)−Ex(N

i
ρ(x) | χρ(x) = 1)

)
.

Since each of the AND gates in C ′′ has fan-in at most 4 log n and the S-degree of `ρ is larger

than n/(2 log s) for every good ρ, Lemma 2.7 implies that N i
ρ is uncorrelated with `ρ for i up to

d := n/(8 log n log s) for every good y-restriction.
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2.3 Linear programming and feasible solutions based on Chebyshev polynomials

(Proof of Lemma 2.2)

Let Xρ (resp., Yρ) be the (conditional) random variable of Nρ(x) | (`ρ(x) = 1) (resp., Nρ(x) |
(`ρ(x) = 0)). Our key observation is that, by Lemma 2.7, these two random variables both take

values in {0, 1, . . . , s′} and their moments match up to n/8 log n log s. So intuitively, if s′ is not

too large, these two random variables should have close to identical distributions; in particular, we

should have Pr(Xρ = 0) ≈ Pr(Yρ = 0). Since C ′ (and thus, C ′′) computes IP with only one-sided

error, we have that for every y-restriction ρ, Pr(C ′′|ρ(x) = 1 | `ρ(x) = 1) = 1 and consequently

Pr(Xρ = 0) = 0. Combining this with the consequence of moment-matching condition between Xρ

and Yρ implies that Pr(Yρ = 0) ≈ 0 for every good ρ.

Fix a good y-restriction ρ. The following key lemma provides the desired upper bound on

Pr(Yρ = 0) = Prx(C
′′|ρ(x) = 0 | `ρ(x) = 0). The lemma allows an additional parameter ξρ which

in our application is set to zero (since we have Prx(C
′′|ρ(x) = 0 | `ρ(x) = 1) = 0). However, since

the lemma applies to general random variables with matching moments and may be of independent

interest, it is stated in the more general form.

Lemma 2.8. Let Xρ and Yρ be random variables supported on {0, 1, . . . , s′} such that (i) E(Xi
ρ) =

E(Y i
ρ ) for i = 1, . . . , d; and (ii) Pr(Xρ = 0) = ξρ. Then Pr(Yρ = 0) ≤ ξρ + 4(1− ξρ)e

−d/
√
2s′.

Proof. We set up a linear program to maximize Pr(Yρ = 0) over the choices of random variables

Xρ and Yρ. The variables in the LP are xi and yi where xi = Pr(Xρ = i) and yi = Pr(Yρ = i).

Aside from nonnegativity and an upper bound constraint for x0, we have d+2 equality constraints;

2 of them to force Xρ and Yρ to have probability distributions, and the other d for the moment

matching condition. The linear program and the corresponding dual are listed in Figure 1.

In order to upper bound the value of the primal program (i.e., Pr(Yρ = 0)) and prove Lemma 2.8,

it suffices to find a feasible solution to the corresponding dual program. We show that by choosing

the polynomial p in the dual to be a Chebyshev polynomial (appropriately shifted and scaled), an

essentially optimal bound on the primal value can be found. Full details are deferred to Section 2.4.

The rest of the proof is based on the following intuition. Considering the overwhelming fraction

1 − 2−n/2 of good ρ’s and averaging on ρ, using Lemma 2.8 above we get that Prx,y(C
′′(x, y) =

0 | IP(x, y) = 0) ≈ 0. On the other hand, since C ′ is an ε-discriminator for IP, then C ′′ is an ε′-

discriminator for IP for some ε′ ≥ ε− τ (where we recall τ = Prx,y(C
′(x, y) 6= C ′′(x, y))). Therefore

ε′ must be small when the circuit size s of C ′ is small, and thus we obtain the desired upper bound

on ε.

More precisely, recall thatXρ (resp., Yρ) is the (conditional) random variable of Nρ(x) | (`ρ(x) =
1) (resp., Nρ(x) | (`ρ(x) = 0)), where Nρ(x) counts the number of AND gates in C ′′|ρ that evaluate

11



Max y0 (primal LP)

s.t.
∑s′

i=0
ijxi −

∑s′

i=0
ijyi = 0, j = 1, . . . , d

∑s′

i=0
xi = 1

∑s′

i=0
yi = 1

x0 = ξρ

xi, yi ≥ 0, i = 0, . . . , s′

Min 1− (1− ξρ)z (dual LP)

s.t. p is a polynomial of degree at most d

p(0) = 0

z ≤ p(i) ≤ 1 i = 1, . . . , s′

Figure 1: Primal LP for finding maximum Pr(Y = 0) (top), and the final form of the corresponding

dual LP (bottom).

to 1. Since C ′′|ρ provides a one-sided approximation of the function `ρ, we have that

ξρ := Pr
x
(Nρ(x) = 0 | `ρ(x) = 1) = 0.

Taking d = n
8 logn log s and s′ < s into Proposition 2.8, we have that for any good y-restriction ρ,

Pr
x
(C ′′|ρ(x) = 0 | `ρ(x) = 0) = Pr(Yρ = 0)

≤ ξρ + 4(1− ξρ) exp(−d/2
√
s)

= 4 exp(−d/2
√
s). (1)

Taking into account bad ρ’s, which happens with probability at most 2−n/2 (according to

Claim 2.6), the discriminator parameter ε′ for C ′′(x, y) can now be upper bounded as

ε′ = Pr
x,ρ

(C ′′|ρ(x) = 0 | `ρ(x) = 0)

= Eρ(Pr
x
(C ′′|ρ(x) = 0 | `ρ(x) = 0)) = Eρ(Yρ)

= Egood ρ(Yρ) Pr(ρ is good) +Ebad ρ(Yρ) Pr(ρ is bad)

≤ 4 exp(−d/2
√
s) + 2−n/2.

Finally, since ε′ ≥ ε − τ , where we recall that τ = Prx,y(C
′(x, y) 6= C ′′(x, y)) ≤ s/n4, the proof of

Lemma 2.2 is complete.

12



2.4 Proof details of Lemma 2.8

Denote by Pρ the value of the primal LP in Figure 1. The dual linear program is

minimize zd+1 + zd+2 + ξρzd+3

such that zd+1 + zd+3 ≥ 0

zd+2 ≥ 1

(
∑d

j=1 i
jzj) + zd+1 ≥ 0 i = 1, . . . , s′

(
∑d

j=1−ijzj) + zd+2 ≥ 0 i = 1, . . . , s′

We can interpret the dual as a problem involving polynomials. The feasible solutions correspond

to coefficients of degree-d polynomials p(x) =
∑d

j=1 zjx
j with p(0) = 0. By duality, the objective

value of the dual is nonnegative for any feasible solution. Thus, by scaling, we can assume zd+2 = 1.

Further, since zd+3 only appears in the first constraint in this minimization problem, we can always

take zd+3 = −zd+1.

Rearranging the last two constraints of this problem yields that the values {p(1), p(2), . . . , p(s′)}
must all lie in the interval [−zd+1, zd+2]. Setting z = −zd+1, the dual problem can be rephrased as

the final Dual LP showed in Figure 1.

Denote by Dρ the value of this dual LP. By the Strong Duality Theorem, Pρ = Dρ, and therefore

if V (p) is the value of any feasible solution corresponding to a polynomial p to the dual LP, we

have

Pr(Yρ = 0) ≤ Pρ = Dρ ≤ V (p).

The above modified problem about polynomials is strikingly similar to the problem of approx-

imating OR functions by low-degree polynomials, for which Nisan and Szegedy gave an optimal

solution based on Chebyshev polynomials [NS94]. Recall that Chebyshev polynomial (of the first

kind) Tk(x) is a degree k polynomial defined by Tk(x) = cos(k arccos(x)), or more explicitly

Tk(x) =
1

2

[(
x+

√
x2 − 1

)k
+
(
x−

√
x2 − 1

)k]
.

It is well-known that −1 ≤ Tk(x) ≤ 1 for all x ∈ [−1, 1] and Tk(x) > 1 when x > 1. For a detailed

treatment of Chebyshev polynomials see e.g. [Riv90].

We now construct a dual feasible polynomial p based on Chebyshev polynomials. Define

q(x) = 1−
Td(

s′−x
s′−1 )

Td(
s′

s′−1)
,

and let

p(x) =
q(x)

maxi∈{1,...,s′} q(i)
.

Clearly p(x) is a degree d polynomial, p(0) = 0 and p(i) ≤ 1 for i = 1, . . . , s′, hence a feasible

solution to the dual LP.
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Claim 2.9. The value of p(x) with respect to the dual LP satisfies that V (p) ≤ ξρ +
2(1−ξρ)

Td(1+
1

s′
)
.

Proof. Since −1 ≤ Td(w) ≤ 1 for all −1 ≤ w ≤ 1, then for i = 1, . . . , s′,

p(i) =
q(x)

maxi∈{1,...,s′} q(i)

=
Td(1 +

1
s′−1)− Td(

s′−i
s′−1)

Td(1 +
1

s′−1)−minj∈[s′] Td(
s′−j
s′−1)

≥
Td(1 +

1
s′−1)− 1

Td(1 +
1

s′−1) + 1
=

1− 1/Td(1 +
1

s′−1)

1 + 1/Td(1 +
1

s′−1)

≥ 1− 2

Td(1 +
1

s′−1)
≥ 1− 2

Td(1 +
1
s′ )

.

Therefore the value z in the objective function of dual LP is at least z ≥ 1− 2
Td(1+

1

s′
)
and the claim

follows.

We will need the following inequality lower bounding Tk(x)’s growth when x ≥ 1.

Claim 2.10. For any nonnegative integer k, we have Tk(1+µ) ≥ 1
2e

(
√

2µ+µ2)k/2 for all real number

0 ≤ µ ≤ 1.

Proof. Using the fact that 1 + x ≥ ex/2 for 0 ≤ x ≤ 2, we have

Tk(1 + µ) ≥ 1

2
(1 + µ+

√
2µ+ µ2)k

≥ 1

2
(1 +

√
2µ+ µ2)k

≥ 1

2
e(
√

2µ+µ2)k/2,

for all 0 ≤ µ ≤ 1.

Finally, by setting µ = 1/s′ in the first inequality of Claim 2.10, we have Td(1 + 1/s′) ≥
1
2e

(
√

2/s′+1/s′2)d/2 ≥ 1
2e
√

d2/2s′ . Combining this with Claim 2.9, we get

Pr(Yρ = 0) ≤ ξρ + 4(1− ξρ)e
−d/

√
2s′

which completes the proof of Lemma 2.8.

2.5 Limitations of our approach

We remark that the Ω̃(n2) lower bound is optimal (up to a polylogarithmic factor) for our current

approach. This follows from a theorem of Paturi [Pat92], which states that if p(x) is a degree d

polynomial such that 0 ≤ p(i) ≤ 1 for i = 0, 1, . . . , s and |p(1)− p(0)| ≥ c for some constant c, then

d = Ω(
√
s), or equivalently s = O(d2). Since in our setting d = Θ(n/ log n log s), the best lower

bound one can show in the current framework is Õ(n2).
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3 Superlinear lower bound for general circuits

In this section we prove the following superlinear lower bound for AC0 ◦MOD2 circuits of arbitrary

depth. Throughout this section we find it more convenient to use (x1, . . . , xn) as the entire input to

IP rather than the two-input notation (x1, . . . , xn, y1, . . . , yn) used previously. We remark that the

results of this section hold for a more general class of functions than IP, namely bent functions4.

Theorem 3.1. If C is an AC0 ◦MOD2 circuit of depth k and size s that computes IP: {0, 1}n →
{0, 1}, then s = Ω(n1+4−k

).

Deterministic restrictions. The high level idea of the proof is to adapt the technique of

“deterministic restrictions” [CR96] to AC0 ◦ MOD2 circuits. In contrast to random restrictions

which simplify circuits probabilistically, deterministic restrictions aim to show that, if the circuit

size is small, then one can find a (small) set of input variables deterministically based on the

structure of the circuit, such that fixing them forces the circuit to output a constant. This implies

that small circuits fail to compute functions that cannot be made constant without setting a large

number of input variables. The only twist when applying this framework to AC0 ◦MOD2 circuits

is, instead of fixing independent input variables, one now fixes linear functions which in general are

no longer independent.

Linear restrictions. Let f : Fn
2 → {0, 1} be a Boolean function. Define two sub-functions f0

(resp., f1) mapping F
n−1
2 to {0, 1} as f0(y) := f(0, y) (resp., f1(y) := f(1, y)), where (z, y) denotes

string concatenation of z and y. The function f0 (resp., f1) is the result of the restriction x1 = 0

(resp., x1 = 1). In other words, truth table of f0 and f1 are each restriction of truth table of f to

an affine subspace of co-dimension 1. Such restrictions can be naturally generalized with respect

to arbitrary affine constraints (rather than xi = 0 or xi = 1).

Let S be an affine subspace defined by a set of linearly independent affine constraints `α1
(x) =

b1, . . . , `αt(x) = bt, where α1, . . . , αt ∈ Fn
2 and b1, . . . , bt ∈ {0, 1}. Then, the sub-function resulting

from these affine restrictions, f |S(x) is a partial function defined by f |S(x) := f(x) for all x ∈ S.

Usually it is convenient to map the domain of such sub-functions to the Boolean hypercube. To this

end, one can define an invertible linear transformation L : Fn
2 → Fn

2 such that L(αi) = ei for i ∈ [t]

(where ei is the ith standard basis vector), and let (Lf)(x) := f(L(x)) be the function f under

the basis change defined by L. Under this change of basis, we see that an ordinary restriction of

variable of the function Lf (i.e., x1 = b1, . . . , xt = bt) corresponds to the restriction of the original

f to S. That is, the truth table of Lf under the restriction x1 = b1, . . . , xt = bt (which we denote

by (Lf)b1,...,bt) would be the same as the truth table of f on S. Therefore, we can conveniently

study sub-functions resulting from linear restrictions by first applying a linear transformation to the

4In fact, our result holds for any function whose Fourier coefficients are all exponentially small in magnitude.
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input space x1, . . . , xn and then applying restriction in the ordinary sense (i.e., setting individual

input bits) to the resulting function.

We use a folklore result that IP can not be made constant by imposing less than n/2 linear

constraints on the inputs; i.e., IP is not constant on a linear subspace of dimension more than n/2.

A formal statement of the general form of this claim for bent functions and its proof appears in

the Appendix (Lemma A.1).

Lemma 3.2. Let `α1
= b1, . . . , `αk

= bk be a set of k < n/2 linearly independent restrictions. If

IP |S is the subfunction resulting from these linear restrictions, then IP |S is not a constant function.

The main ingredient of the proof of Theorem 3.1 is the following lemma, which is the exact

analogue of a result of Chaudhuri and Radhakrishnan [CR96] for AC0 circuits.

Lemma 3.3. Let C(x) be an AC0 ◦ MOD2 circuit of depth k and size s, with variable inputs

x1, . . . , xn and bottom parity gates p1(x), . . . , pr(x). Then there exists a set of t linearly independent

linear restrictions, t < 5s1−4−k
, such that imposing them on x1, . . . , xn makes C(x) constant (on

the restricted space).

Proof. We adapt the argument of [CR96]. At an intuitive level, the idea is the following. The

algorithm of [CR96] constructs a partial assignment to the inputs of an AC0 circuits so that the

output is fixed and the number of fixed variables is small. In particular, it fixes the values of gates

at each level (by fixing the bottom variables and propagating the values up the circuit), starting

at level 0 (the input level), and proceeding successively up to the output gate at level k. The

specific way of fixing these gates ensures that after level i is fixed, all gates at levels j ≤ i have

both small fan-in and small fan-out (fan-ins and fan-outs are defined with respect to the current

partial restriction and gates that are not fixed yet). At the end of such fixing, a so-called “regular”

circuit is obtained. Then it is straightforward to show that one can fix an additional small number

of variables in such a regular circuit to make it output a constant. Our argument proceeds in an

almost identical way. However, we fix parities in addition to input variables, and once a new parity

gate is fixed, we need to fix the free parity gates which linearly depend on the fixed parity gates.

This can only possibly reduce the number of parity gates needed to be fixed in the process, thus

the original proof works in the setting of AC0 ◦MOD2 circuits as well.

More precisely, following the algorithm of [CR96], we fix the gates in the circuit from bottom

up. Let d = s2·4
−k
, and M = s4

−k
. Define a sequence of degrees d0 = 0, d1 = d ≥ 2, and di+1 = d4i ,

for i ∈ [k]. Let δ(g) be the number of input variables or parities that “influence” a free5 gate

g; that is, δ(g) is the size of the set of variables and parities such that switching the value of a

variable or parity in this set changes the value of the gate for some settings of the rest of the input

variables/parities. Note that δ(g) is at least the minimum number of bottom inputs that need to

be fixed in order to fix the output value of gate g. As the proof proceeds and fixes various input

5A free gate is one whose output is not fixed to a constant.
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variables or parity gates, the value of δ(g) may decrease for each gate (for gates that are already

fixed, δ(g) is defined to be zero).

To fix a gate g at level i, we perform either a FixIndegree(g, i) or a FixOutdegree(g, i)

operation. If the indegree of gate g at level i is larger than di then FixIndegree(g, i) fixes the

gate as follows: If g is an AND gate it fixes one of the free gates feeding into it to 0; If g is an OR

gate we fix a free gate feeding into it to 1. Note that at most δ(h) input variables or parities are

fixed this way, where h is some gate at level i− 1 that feeds into gate g.

If the outdegree of gate g at level i is larger than M · δ(g), then FixOutdegree(g, i) fixes

the gate as follows: If at least half the gates that g feeds into are OR gates it fixes the gate to

1, otherwise it fixes the gate to 0. This fixes a number of gates lower bounded by M/2 times the

number of bottom gates set.

Note that in order to fix gates at higher levels we need to fix the free gates at the bottom level,

and propagate them upwards. To ensure consistency, we maintain a set of bottom parities P (we

view input variables x1, . . . , xn as parities as well) that have been already set (for example, if a

bottom gate x1 + x3 needs to be set to 0, we update the set P ← P ∪ {x1 + x3 = 0}.) Once a

new parity is added to the set P , we accordingly fix the values of bottom parities that are linear

combinations of the parities in P . We then propagate the new gate values up the circuit, and then

continue fixing gates in this consistent manner, using FixIndegree and FixOutdegree of gates

at increasing levels. Note that we only add to P linear constraints that are linearly independent,

and thus consistency is always maintained.

We fix gates by sequentially fixing gates from the bottom level (i.e., the parity gates) to the

output level (i.e., the output gate). First, the outdegrees of all gates at level i are fixed, then

indegrees of all gates at level i+1, and then outdegrees of all gates at level i+1, and so forth until

the output gate is reached.

We may now show that this procedure fixes only 5s1−4−k
bottom parity inputs, by repeating

the computation from [CR96]. Let σ be the partial assignment to the variables (and parities) after

completing the gate fixing steps and reaching the output gate (essentially this assignment is saved

in the set of linear restrictions P ).

Note that the partial circuit obtained in the end has every gate g at level i of indegree at most

di, and outdegree of each gate is at most Mδ(g). Also note that the total number of bottom gates

fixed in calls to FixOutdegree(g, i), for all i, is at most 2s/M ; since the number of gates fixed is

at least M/2 times the number of bottom inputs fixed, which in turn is at most s.

Now we show that the number of bottom gates set during calls to FixIndegree(g, i), for all

i, is at most 2sM/d. Note that since we first fix indegrees at level i− 1 before fixing indegrees at

level i, the number of variables and parities set while fixing a gate at level i is at most d1d2 · · · di−1.

Similarly, since we fix outdegrees at level i − 1 before fixing outdegrees at level i, the outdegree

of any gate at level j < i is at most M(d1 · · · di−1). So the total number of gates at level i of

degree larger than di is at most sM(d1 · · · di−1)/di. Summing over all levels, the number of bottom
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gates set during calls to FixIndegree is at most sM
∑k

i=1(d1 · · · di−1)
2/di. It can be verified that

(d1 · · · di−1)
2/di ≤ 1/(2i−1d), which is at most sM

∑k
i=1(d1 · · · di−1)

2/di ≤ 2sM/d.

To fix the output gate, we might need to fix at most an additional d1 · · · dk−1 < s1/2 < s1−4−k

bottom gates or parities (since in the end, the indegree of each gate at level i is at most di). Thus,

overall it is enough to fix a total of 2s/M + 2sM/d + s1−4−k
= 5s1−4−k

bottom gates in order to

fix the final output of the circuit, and those are the inputs or parities collected in the set P .

Using Lemma 3.3, we can easily prove the main theorem of this section as follows.

Proof of Theorem 3.1. Suppose C has size s < 1
5n

1+4−k
(hence, it has at most that many parity

gates) and computes the IP function. By Lemma 3.3, there exists a set of linearly independent

linear restrictions of size at most 5s1−4−k
< (n1+4−k

)1−4−k
= n1−16−k

< n/2 (for large enough n),

under which C becomes a constant function. But by the Lemma A.1, we must impose at least n/2

linear restrictions to make IP a constant; a contradiction.

Since Lemma 3.3 holds for the more general class of bent functions, in fact the above argument

shows the following extension of Theorem 3.1 as well.

Theorem 3.4 (Extension of Theorem 3.1 to bent functions). If C is an AC0 ◦MOD2 circuit of

depth k and size s that computes a bent function f : {0, 1}n → {0, 1}, then s = Ω(n1+4−k
).
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A Proof of Lemma 3.2 for bent functions

In this section, we state and prove the folklore claim that IP cannot be made constant by imposing

less than n/2 linear restrictions on its inputs. Actually, we prove this claim for more general bent

functions, thus proving a stronger statement. We also observe one could similarly show that if a

Boolean function has all its Fourier coefficients bounded in magnitude by 2−Ω(n), then the function

is not constant on a subspace of Fn
2 of co-dimension o(n). Such a condition would also suffice to

prove superlinear lower bounds in our framework.

Lemma A.1. Let f be a bent function and let `α1
= b1, . . . , `αt = bt be a set of t < n/2 linearly

independent restrictions. If f |S is the subfunction resulting from these linear restrictions, then f |S
is not a constant function.

Proof. In an intuitive sense, the proof can be described as follows. We write down the polynomial

representation of f in the {−1,+1} representation as defined by its Fourier transform. We note

that a function is constant if and only if the Fourier coefficient corresponding to the empty set is

either −1 or +1. The restrictions can be applied to the polynomial representation and collapse

some of the monomials into the constant term. Since the coefficient of each monomial is equal to

2−n/2 in absolute value, and noting that the given restrictions collapse at most 2t of the monomials,

the function can not accumulate enough mass on the Fourier coefficient for the empty set to reduce

to the constant function, as long as t < n/2.

More formally, let L be any invertible linear transformation as defined above satisfying L(α1) =

e1, . . . , L(αt) = et. It suffices to show that g := (Lf)b1···bt is not constant, where g : Fn−t
2 → {0, 1}.

Since the Fourier spectrum of Lf satisfies L̂f(α) = f̂(L−1α) and L is invertible, hence Lf is also

a bent function (the Fourier coefficients of Lf are simply a reordering of the Fourier coefficients of

f). We now switch to the {−1, 1}-representation of Boolean functions (letting ĝ±(x) := (−1)g(x)
and ̂(Lf)±(x) := (−1)(Lf)(x)), and recall the well-known fact that for any γ ∈ F

n−t
2 ,

ĝ±(γ) =
∑

β∈Ft
2

(̂Lf)±(β, γ)χβ(b1, . . . , bt).

Since Lf is bent, |(̂Lf)±(β, γ)| = 2−n/2 for every β and γ; and since t < n/2, it follows that

|ĝ±(γ)| < 1 for all γ ∈ F
n−t
2 . In particular, |ĝ±(0)| < 1. But if g is a constant Boolean function,

ĝ±(0) = 1 or −1. Therefore, g is not constant.

20



B Comparison to Linial-Nisan

In this appendix, we describe two connections between our work and the work by Linial and Nisan

on approximate inclusion exclusion. First, we show that the bounds are actually equivalent: each

bound can be recovered from the other. Second, we show that approximate inclusion-exclusion can

be used in place of moment matching in the proof of our lower bound for depth-4 circuits. But,

we stress that we believe that moment-matching is more natural in many contexts (including the

proof of our lower bound), and is therefore of independent interest. Indeed, one may view our

moment-matching bounds as giving a new interpretation of approximate inclusion-exclusion.

B.1 Equivalence of moment matching and approximate inclusion-exclusion

Here, we show that our moment-matching technique can be recovered from Theorem 1 of [LN90].

Theorem B.1 ([LN90]). Let d and s′ be integers and let A1, A2, . . . , As′ and B1, B2, . . . , Bs′ be

two collections of arbitrary events in two probability spaces, where Pr(Bi) > 0 for at least one i.

Further, assume that

Pr(
⋂

i∈S
Ai) = Pr(

⋂

i∈S
Bi)

for every subset S ⊂ [s′] with |S| ≤ d. Then for d ≥ Ω(
√
s′), we have Pr(

⋃s′

i=1Ai)/Pr(
⋃s′

i=1Bi) =

1 +O(exp(−2d/
√
s′)).

We show that our moment matching bound follows from the above theorem.

Proof of Lemma 2.8 from Theorem B.1: LetX and Y be random variables supported on {0, 1, 2, . . . , s′}
such that E(Xj) = E(Y j) for 1 ≤ j ≤ d. For 0 ≤ i ≤ s′, let pi := Pr(X = i) and qi := Pr(Y = i).

Define two distributions P and Q over {0, 1}s′ such that

P (z) =
p|z|(
s′

|z|
) , and Q(z) =

q|z|(
s′

|z|
) ,

where |z| is the Hamming weight of z.

Finally, for 1 ≤ i ≤ s′, define the event Ai(z) (resp. Bi(z)) to be the event that the ith bit of a

random string z drawn from {0, 1}s′ according to distribution P (resp. Q) is 1.

Now the moment matching condition implies that

s′∑

w=1

pww
j =

s′∑

w=1

qww
j ,

for 1 ≤ j ≤ d; or if we let rw := pw − qw, then

s′∑

w=1

rww
j = 0,
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for all 1 ≤ j ≤ d. Viewing as vectors in the univariate polynomial vector space, the two sets of

polynomials {1, w, w2, . . . , wd} and the linear span of polynomials {
(
w
0

)
,
(
w
1

)
, . . . ,

(
w
d

)
} both form

a basis for the linear space of polynomials of degree at most d. In particular, each of degree-j

polynomial
(
w
j

)
can be expressed as a linear combination of {1, w, w2, . . . , wj} for every 1 ≤ j ≤ d,

and therefore
s′∑

w=1

rw

(
w

j

)
= 0, or equivalently,

s′∑

w=1

pw

(
w

j

)
=

s′∑

w=1

qw

(
w

j

)
,

for every 1 ≤ j ≤ d.

Claim B.2. For all 1 ≤ j ≤ d, we have
∑s′

w=1 pw
(
w
j

)
=
∑

S:|S|=j Pr
(⋂

i∈S Ai

)
=
(
s′

j

)
Pr
(⋂

i∈[j]Ai

)
.

Notice, it follows from Claim B.2 that for all S ⊂ [s′] with |S| ≤ d, Pr
(⋂

i∈S Ai

)
= Pr

(⋂
i∈S Bi

)
.

Proof of Claim B.2: Notice, the first quantity is

s′∑

w=1

(
w

j

)
Pr
z
(|z| = w) = Ez


 ∑

S:|S|=j

I

[⋂

i∈S
Ai(z)

]
 =

∑

S:|S|=j

Ez

(
I

[⋂

i∈S
Ai(z)

])

by linearity of expectation. The first equality is now immediate. The second equality is because

the Ai’s are symmetric events; given that exactly j of the Ai’s happen, all collections of j events

that happened are equally likely.

We can now invoke Theorem B.1 to find that

Pr(

s′⋃

i=1

Ai)/Pr(

s′⋃

i=1

Bi) = 1 +O(exp(−2d/
√
s′)),

where, since by construction Pr(
⋃s′

i=1Ai) = 1 − Pr(X = 0) and Pr(
⋃s′

i=1Bi) = 1 − Pr(Y = 0), we

find that since
1

1 +O(exp(−2d/
√
s′))
≥ 1−O(exp(−2d/

√
s′))

(1−O(exp(−2d/
√
s′)))(1− Pr(X = 0)) ≤ 1− Pr(Y = 0)

Pr(Y = 0) ≤ Pr(X = 0) + (1− Pr(X = 0)) ·O(exp(−2d/
√
s′))

This is essentially the claimed form of our moment matching bound (cf. Lemma 2.8).

We further note that it is also possible to derive a slightly weaker version of Theorem B.1 from

our moment matching bound; thus, the two are essentially equivalent.

Proof of Approximate Inclusion-Exclusion from Lemma 2.8: Consider X =
∑s′

i=1 I[Ai] and Y =∑s′

i=1 I[Bi]. Then, for all t ≤ d, we have

E(Xt) = E


 ∑

z∈[s′]t

t∏

i=1

I[Azi ]


 =

∑

z∈[s′]t
Pr


 ⋂

j:∃izi=j

Aj


 =

∑

z∈[s′]t
Pr


 ⋂

j:∃izi=j

Bj


 = E(Y t)
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since each Pr
(⋂

j:∃izi=j Aj

)
= Pr

(⋂
j:∃izi=j Bj

)
by the set-intersection conditions. Therefore, it

follows from Lemma 2.8 that

Pr(Y = 0) ≤ Pr(X = 0) + 4(1− Pr(X = 0)) exp(−(d/
√
2s′))

By construction, 1 − Pr(X = 0) = Pr
(⋃s′

i=1Ai

)
and 1 − Pr(Y = 0) = Pr

(⋃s′

i=1Bi

)
, so we

immediately have

Pr

(
s′⋃

i=1

Ai

)
(1− 4 exp(−d/

√
2s′)) ≤ Pr

(
s′⋃

i=1

Bi

)

Noting that (when d/
√
s′ is not too small)

1

1− 4 exp(−d/
√
2s′)

≤ 1 +O(exp(−d/
√
2s′))

we find
Pr
(⋃s′

i=1Ai

)

Pr
(⋃s′

i=1Bi

) ≤ 1 +O(exp(−d/
√
2s′))

B.2 Alternative proof of the depth-4 bound via approximate inclusion-exclusion

In addition to the use of approximate inclusion-exclusion as an alternative proof of the moment-

matching bound, we note that one of the corollaries to approximate inclusion-exclusion proved by

Linial and Nisan [LN90] can be used to give an alternative proof of our almost-quadratic lower

bound for depth-4 circuits. Specifically, Linial and Nisan obtained the following application of

approximate inclusion-exclusion to Boolean circuits:

Theorem B.3 (Theorem 5 of Linial and Nisan [LN90]). Let f1, f2, . . . , fs and g be Boolean func-

tions such that for every S ⊆ {1, . . . , s},
∣∣∣∣∣Pr
[∧

i∈S
fi(x) = g(x)]

]
− Pr

[∧

i∈S
fi(x) 6= g(x)

]∣∣∣∣∣ ≤ 2−t

for t ≥ Ω(
√
s log s). Then

∣∣∣∣∣Pr
[

s∨

i=1

fi(x) = g(x)

]
− Pr

[
s∨

i=1

fi(x) 6= g(x)

]∣∣∣∣∣ ≤ 2−Ω(t/
√
s log s)

Let the functions f1, . . . , fs of Theorem B.3 be the functions computed by the AND gates in the

depth-3 approximator we obtain from the Discriminator Lemma (i.e., feeding in into the output-

layer OR gate), and let g be the inner product function. Then ANDs of any subset of f1, . . . , fs
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is simply another AND gate, and we can obtain a sufficiently small bound on the advantage of an

AND◦MOD2 circuit (i.e., AND of parities) at computing IP in order to apply Theorem B.3 with t ≈
√
s poly log(s). The conclusion of Theorem B.3 then establishes that the depth-3 approximator is

sufficiently poorly correlated (has agreement less than 1/ poly(n)) with IP to complete our argument

when s = Õ(n2).
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