
LIST DECODING BARNES-WALL

LATTICES

ELENA GRIGORESCU AND CHRIS PEIKERT

Abstract.

The question of list decoding error-correcting codes over finite fields (under

the Hamming metric) has been widely studied in recent years. Motivated by

the similar discrete linear structure of linear codes and point lattices in R
N ,

and their many shared applications across complexity theory, cryptography,

and coding theory, we initiate the study of list decoding for lattices. Namely:

for a lattice L ⊆ R
N , given a target vector r ∈ R

N and a distance parameter d,

output the set of all lattice points w ∈ L that are within distance d of r.

In this work we focus on combinatorial and algorithmic questions related to

list decoding for the well-studied family of Barnes-Wall lattices. Our main

contributions are twofold:

1. We give tight combinatorial bounds on the worst-case list size, showing

it to be polynomial in the lattice dimension for any error radius bounded

away from the lattice’s minimum distance (in the Euclidean norm).

2. We use our combinatorial bounds to generalize the unique-decoding

algorithm of Micciancio and Nicolosi (IEEE International Symposium

on Information Theory 2008) to work beyond the unique decoding

radius, and still run in polynomial time up to the list-decoding radius.

Just like the Micciancio-Nicolosi algorithm, our algorithm is highly

parallelizable, and with sufficiently many processors can run in parallel

time only poly-logarithmic in the lattice dimension.

Keywords. Barnes-Wall lattices, Johnson bound, List decoding, Reed-Muller

codes

Subject classification. 68Q25

1. Introduction

A linear error-correcting code C of block length N and dimension K
over a field F is a K-dimensional subspace of F

N , generated as all



2 Grigorescu & Peikert

F-linear combinations of K linearly independent vectors. The code’s

minimum distance, denoted d(C), is the minimum Hamming distance

between any two distinct codewords in C, or equivalently the minimum

Hamming weight over all nonzero codewords. It is often convenient to

normalize distances by the dimension, yielding the relative (minimum)

distance δ(C) = d(C)/N of the code. Similarly, a point lattice of

dimension N and rank K (where often K = N ) is a discrete additive

subgroup of RN (or CN ), generated as all integer linear combinations of

K linearly independent vectors. The lattice’s minimum distance λ(L)
is the minimum Euclidean norm over all nonzero lattice points x ∈ L.

Here it can also be convenient to normalize by the dimension, and for a

closer analogy between the Hamming and Euclidean distances, in what

follows we work with the relative squared distance (abbreviated rsd)

δ(x, y) = δ(x− y) on R
N or CN , where δ(z) = 1

N
‖z‖2 = 1

N

∑N
i=1|zi|2.

The relative squared minimum distance (abbreviated rsmd) δ(L) of a

lattice is therefore δ(L) = λ(L)2/N .

Codes and lattices are well-studied studied objects, with many ap-

plications in computational complexity, cryptography, and coding the-

ory. In particular, both kinds of objects can be used to encode data

in order to achieve reliable communication in noisy channels: while

error-correcting codes are used over discrete channels, in which sym-

bols are possibly flipped during transmission, lattices are used over

Gaussian-noise channels, in which the noise is usually modeled by a

normal distribution.

A central question associated with codes is unique decoding: given

a received word r ∈ F
N within relative Hamming distance less than

δ(C)/2 of some codeword w ∈ C, find w. Similarly, the unique (also

known as bounded-distance) decoding problem on lattices is: given a

received word r ∈ R
N within rsd less than δ(L)/4 of some lattice vector

v ∈ L, find v. (Note that the 1/4 factor arises because distances are

squared in our formulation.)

It is also possible that the noise amount affecting the transmis-

sion exceeds the regime of unique decoding. To model this situation,

Elias (1957) and Wozencraft (1958) proposed extending the classical

unique-decoding problem for error-correcting codes to settings where

the amount of error could cause ambiguous decoding. More precisely,

the goal of list decoding is to find all codewords within a certain relative



List Decoding Barnes-Wall Lattices 3

distance (typically exceeding d(C)/2) of a received word; in many cases,

the list is guaranteed to contain few codewords. The first breakthrough

algorithmic list decoding results were due to Goldreich & Levin (1989)

for the Hadamard code, and to Sudan (1997) and Guruswami & Su-

dan (1999) for Reed-Solomon codes. These results and others have

had countless applications, e.g., in building hard-core predicates for

one-way functions Goldreich & Levin (1989), in hardness amplifica-

tion Sudan et al. (2001), in learning Fourier coefficients Akavia et al.

(2003); Gilbert et al. (2002); Kushilevitz & Mansour (1993), and in

constructing randomness extractors Guruswami et al. (2009); Ta-Shma

& Zuckerman (2001); Trevisan (2001).

There are two central tasks associated with list decoding: combi-

natorially bounding the number of codewords within a given radius

of a received word, and algorithmically finding these codewords. An

important question in understanding list decodability is finding the

list-decoding radius of the code, i.e., the maximum distance from a

received word within which the number of codewords is guaranteed to

be polynomial in the input parameters.

The Johnson bound. Under the Hamming metric, the Johnson bound

gives a distance up to which list decoding is guaranteed to be combi-

natorially efficient. One version of the Johnson bound states that for

any code C of relative distance δ, a Hamming ball of relative radius

J(δ)− ε contains at most 1/ε2 codewords, and a ball of relative radius

J(δ) contains at most δN2|F| codewords, where J(δ) = 1 −
√
1− δ.

The Johnson bound is generic since it does not use any structure of the

code (not even linearity), and in many cases it is not necessarily the

same as the list-decoding radius. It is, however, a barrier in the current

analysis of combinatorial list decoding for many well-studied families

like Reed-Solomon codes, algebraic geometry codes, Chinese remainder

codes, and others. The breakthrough works of Parvaresh & Vardy (2005)

and Guruswami & Rudra (2006) gave families of codes which could be

(efficiently) list decoded beyond the Johnson bound, and were followed

by several related combinatorial and algorithmic results for other codes

(e.g., Dinur et al. (2008); Gopalan et al. (2011, 2008); Kaufman et al.

(2010)). For more detailed surveys on list decoding of codes we refer to

Guruswami (2004, 2006, 2010); Sudan (2000).



4 Grigorescu & Peikert

1.1. Contributions. Motivated by the common discrete linear struc-

ture of codes and lattices, we initiate the study of efficient list decoding

for lattices, from both a combinatorial and algorithmic perspective. The

problem of finding all the lattice points within a given distance from

a target is also the problem of lattice enumeration, a technique com-

monly used in classical computational problems on lattices (e.g., Kannan

(1987); Pujol & Stehlé (2008)), but with exponential running time in

general lattices. Conway & Sloane (1998) promoted the applicability of

lattices in practice as alternatives to codes. Therefore, our study of effi-

cient list decoding is motivated by practical applications in error-tolerant

communication, but primarily by the naturalness of the list-decoding

problem from a mathematical and computational perspective, and we

hope that our work will find other applications in theoretical computer

science.

In this work we focus on the Barnes-Wall (BW) Barnes & Wall

(1959) family of lattices in C
N , which have been well-studied in coding

theory (see, e.g., Amir H. Banihashemi (1998); Forney (1988); Forney

& Vardy (1996); Nebe et al. (2001); Salomon & Amrani (2005)) and

share many connections to the Reed-Muller Muller (1954); Reed (1954)

family of error-correcting codes (we elaborate below). Barnes-Wall

lattices were first constructed in order to demonstrate dense sphere

packings, a feature that makes them useful in communications settings.

Specifically, Barnes-Wall lattices are particularly useful instantiations

of ‘Construction-D’ lattices, which themselves provide a general frame-

work for constructing lattices approaching the capacity of band-limited

channels. (For further details, see e.g., Conway & Sloane (1998); Forney

(1988).)

Minimum-distance decoding algorithms for BW lattices were given

in Forney (1988); Ran & Snyders (1998), but they are either for fixed

low dimensions or have runtimes exponential in the lattice dimension N .

Micciancio & Nicolosi (2008) gave the first poly(N)-time algorithms

for bounded-distance (unique) decoding of any BW lattice up to δ/4
relative error. In fact, Micciancio & Nicolosi (2008) give two algorithms,

a sequential one with O(N logN) running time, and a parallelizable one

with O(N2) circuit size. They also posed list decoding of BW lattices

as an open problem.

Our main contributions are twofold:



List Decoding Barnes-Wall Lattices 5

1. We give tight (up to polynomials) combinatorial bounds on the

worst-case list size for BW lattices, showing it to be polynomial

in the lattice dimension N for any relative squared distance (rsd)

bounded away from the rsmd δ of the lattice. (See Theorem 1.2

and Theorem 1.3 below for precise statements.) We note that it

was already known that the list size is super-polynomial NΘ(logN)

when the rsd equals δ (see, e.g., (Conway & Sloane 1998, Chapter

1, §2.2, page 24)).

2. We give a corresponding list-decoding algorithm that, for any

rsd, runs in time polynomial in the lattice dimension and worst-

case list size. Our algorithm generalizes the Micciancio-Nicolosi

parallel algorithm, and with sufficiently many processors it runs

in only poly-logarithmic O(log2 N) parallel time. (See Section 3

for further details.)

We note that Johnson-type bounds for lattices are known and easy

to obtain (in fact, the Johnson bound for codes under the Hamming

metric is typically proved by reducing it to a packing bound in R
N

under the Euclidean norm; see, e.g., Bollobás (1986); Guruswami &

Sudan (2001); Micciancio & Goldwasser (2002); Sudan (2001)). For

a lattice L ⊂ C
N with rsmd δ, the list size for rsd δ · (1

2
− ε) is at most

1
2ε

, and for rsd δ
2

is at most 4N (see Lemma 2.3). Interestingly, the latter

bound is tight for BW lattices (see Corollary 2.4). Since δ = 1 for every

BW lattice, our combinatorial and algorithmic results for rsd up to 1
therefore apply far beyond the Johnson bound.

To describe our results in more detail, we need to define Barnes-

Wall lattices. Let G = Z[i] be the ring of Gaussian integers, and let

φ = 1 + i ∈ G.

DEFINITION 1.1 (Barnes-Wall lattice). The nth Barnes-Wall lattice

BWn ⊆ G
N of dimension N = 2n is defined recursively as BW0 = G,

and for positive integer n ≥ 1 as

BWn = {[u, u+ φv] : u, v ∈ BWn−1} .

One can check that BWn is a lattice; indeed, it is easy to verify that

it is generated as the G-linear combinations of the rows of the n-fold



6 Grigorescu & Peikert

Kronecker product

W =

[

1 1
0 φ

]⊗n

∈ C
N×N .

A simple induction proves that the minimum distance of BWn is
√
N ,

i.e., its rsmd is δ = 1.1 Also observe that if [u, w = u + φv] ∈ BWn

for u, w ∈ C
N/2, then [w, u] ∈ BWn: indeed, we have w,−v ∈ BWn−1

and so [w, u = w + φ · −v] ∈ BWn. The mathematical and coding

properties of Barnes-Wall lattices have been studied in numerous works,

e.g., Agrawal & Vardy (2000); Conway & Sloane (1998); Forney (1988);

Forney & Vardy (1996); Micciancio & Nicolosi (2008); Nebe et al.

(2001); Salomon & Amrani (2005).

Combinatorial bounds. Let `(η, n) denote the worst-case list size

(over all received words) for BWn at rsd η. We prove the following

upper bound.

THEOREM 1.2. For any integer n ≥ 0 and ε ∈ (0, 1], we have

`(1− ε, n) ≤ 4 · (1/ε)16n = NO(log(1/ε)).

Moreover, we show that the dependence on log(1/ε) in the exponent is

necessary, and thus the above bound is tight, up to polynomials.

THEOREM 1.3. For any integer n ≥ 0 and ε ∈ [2−n, 1], we have

`(1− ε, n) ≥ 2(n−log 1

ε
) log 1

2ε .

In particular, for any constant ε > 0 (or even any ε ≥ N−c for c < 1),

we have `(1− ε, n) = NΩ(log(1/ε)).

As previously mentioned, it is also known that at rsd η = 1, the

maximum list size `(1, n) is quasi-polynomial NΘ(logN) in the lattice

dimension, and is achieved by letting the received word be any lattice

1The fundamental volume of BWn in C
N is det(W ) = 2nN/2, so its determinant-

normalized minimum distance is
√
N/ det(W )1/(2N) = 4

√
N . This is better than the

normalized minimum distance 1 of the integer lattice G
N , but worse that the largest

possible of Θ(
√
N) for N -dimensional lattices.



List Decoding Barnes-Wall Lattices 7

point (Conway & Sloane 1998, Chapter 1, §2.2, page 24). Because

the rsmd of BWn is exactly 1, here we are just considering the number

of lattice points at minimum distance from the origin, the so-called

“kissing number” of the lattice.

List-decoding algorithm. We complement the above combinatorial

bounds with an algorithmic counterpart, which builds upon the unique

(bounded-distance) decoding algorithm of Micciancio & Nicolosi (2008)

for rsd up to 1
4
.

THEOREM 1.4. There is a deterministic algorithm that, given any re-

ceived word r ∈ C
N and η ≥ 0, outputs the list of all points in BWn

that lie within rsd η of r, and runs in time O(N2) · `(η, n)2.

We also remark that the algorithm can be parallelized just as in Mic-

ciancio & Nicolosi (2008), and runs in only polylogarithmic O(log2 N)
parallel time on p ≥ N2 · `(η, n)2 processors.

Theorem 1.2 and Theorem 1.4 immediately imply the following corol-

lary for η = 1− ε.

COROLLARY 1.5. There is a deterministic algorithm that, given a re-

ceived word r ∈ C
N and ε > 0, outputs the list of all lattice points

in BWn that lie within rsd (1 − ε) of r, and runs in time (1/ε)O(n) =
NO(log(1/ε)).

Given the lower bounds, our algorithm is optimal in the sense that

for any constant ε > 0, it runs in poly(N) time for rsd 1− ε, and that

list decoding in poly(N) time is impossible (in the worst case) at rsd 1.

1.2. Proof Overview and Techniques.

Combinatorial bounds. Our combinatorial results exploit a few sim-

ple observations, some of which were initially used in obtaining the

algorithmic results of Micciancio & Nicolosi (2008). The first is that by

the Pythagorean theorem, if η = δ(r, w) is the rsd between a received

vector r = [r0, r1] ∈ C
N and a lattice vector w = [w0, w1] ∈ BWn

(where ri ∈ C
N/2 and wi ∈ BWn−1), then δ(rb, wb) ≤ η for some

b ∈ {0, 1}. The second observation (proved above) is that BW lattices



8 Grigorescu & Peikert

are closed under the operation of swapping the two halves of their vec-

tors, namely, [w0, w1] ∈ BWn if and only if [w1, w0] ∈ BWn. Therefore,

without loss of generality we can assume that δ(r0, w0) ≤ η, while

incurring only an extra factor of 2 in the final list size. A final important

fact is the relationship between the rsd’s for the two Barnes-Wall vectors

u = w0, v = 1
φ
(w1 − w0) ∈ BWn−1 that determine w; namely, we have

η = 1
2
δ(r0, u) + δ( 1

φ
(r1 − u), v).

(See Lemma 2.1.) Since δ(r0, u) ≤ η, we have must have δ( 1
φ
(r1 −

u), v) = η − 1
2
δ(r0, w0) ∈ [η/2, η].

Our critical insight in analyzing the list size is to carefully partition

the lattice vectors in the list according to their distances from the respec-

tive halves of the received word. Informally, a larger distance on the left

half (between r0 and u) allows for a larger list of u’s, but also implies

a smaller distance on the right half (between 1
φ
(r1 − u) and v), which

limits the number of possible corresponding v’s. We bound the total list

size using an inductive argument for various carefully chosen ranges of

the distances at lower dimensions. Remarkably, this technique along

with the Johnson bound allows us to obtain tight combinatorial bounds

on the list size for distances all the way up to the minimum distance.

As a warm-up example, which also serves as an important step when

analyzing larger rsd’s, Lemma 2.5 gives a bound of `(5
8
, n) ≤ 4 · 24n =

poly(N) for rsd η = 5
8
. This bound is obtained by partitioning according

to the two cases δ(r0, u) ∈ [0, 5
12
) and δ(r0, u) ∈ [ 5

12
, 5
8
], which imply

that the rsd between v and 1
φ
(r1 − u) is at most 5

8
and 5

12
, respectively.

When bounding the corresponding number of u’s and v’s, the rsd’s up to
5
12

< 1
2

are handled by the Johnson bound, and rsd’s up to 5
8

are handled

by induction on the dimension.

To extend the argument to rsd’s up to η = 1− ε, we need to partition

into three cases, including ones which involve rsd’s 1 − 3ε
2

and 3
4
. In

turn, the bound for rsd 3
4

also uses three cases, plus the above bound

for rsd 5
8
. Interestingly, all our attempts to use fewer cases or a more

direct analysis resulted in qualitatively worse list size bounds, such as

NO(log2(1/ε)) or worse.

Lastly, our lower bounds from Theorem 1.3 are obtained by using a

representation of BW lattices in terms of RM codes (see Fact 1.9), and



List Decoding Barnes-Wall Lattices 9

by adapting the lower bounds from Gopalan et al. (2008) for RM codes

to BW lattices.

List-decoding algorithm. A natural approach to devising a list-decoding

algorithm using the above facts (also used in the context of Reed-Muller

codes Gopalan et al. (2008)) is to first list decode the left half r0 of the

received word to get a list of u’s, and then sequentially run through the

output list to decode the right half 1
φ
(r1−u) and get a corresponding list

of v’s for each value of u. However, because the recursion has depth n,

the straightforward analysis reveals a super-polynomial runtime NΩ(n)

for rsd η ≥ 1/2, because the list size at depth d can be ≥ 4N/2d.

Instead, our list-decoding algorithm is based on the elegant divide-

and-conquer algorithm of Micciancio & Nicolosi (2008) for bounded-

distance (unique) decoding, which decodes up to half the minimum dis-

tance (i.e., η = 1
4
) in quasi-linear Õ(N) time, or even poly-logarithmic

O(logc N) parallel time on a sufficiently large poly(N) number of pro-

cessors.

The main feature of the algorithm, which we exploit in our algorithm

as well, is the use of a distance-preserving linear automorphism T of

the BW lattice, i.e., T (BWn) = BWn (see Fact 3.1). In particular, a

lattice vector w ∈ BWn can be reconstructed from just one arbitrary

half of each of w = [w0, w1] and T (w) = [T0(w), T1(w)]. Recall that

for a received word r = [r0, r1] (where ri ∈ C
N/2), we are guaranteed

that δ(rb, wb) ≤ δ(r, w) for some b ∈ {0, 1}, and similarly for T (r)
and T (w). These facts straightforwardly yield a divide-and-conquer,

parallelizable list-decoding algorithm that recursively list decodes each

of the four halves r0, r1, T0(r), T1(r) and reconstructs a list of solutions

by combining appropriate pairs from the sub-lists, and keeping only

those that are within the distance bound. The runtime of this algorithm

is only quadratic in the worst-case list size, times a poly(N) factor

(see Section 3). We emphasize that the only difference between our al-

gorithm and the Micciancio-Nicolosi algorithm is the simple but crucial

observation that one can replace single words by lists in the recursive

steps. The runtime analysis, however, is entirely different, because it

depends on the combinatorial bounds on list size.



10 Grigorescu & Peikert

1.3. Comparison with Reed-Muller Codes. Here we discuss several

common and distinguishing features of Barnes-Wall lattices and Reed-

Muller codes.

DEFINITION 1.6 (Reed-Muller code). For integers d, n ≥ 0, the Reed-

Muller code of degree d in n variables (over F2) is defined as

RMd
n =

{

〈p(α)〉α∈Fn

2
: p ∈ F2[x1, . . . , xn], deg(p) ≤ d

}

.

An equivalent recursive definition is RM0
n = {0̄, 1̄} ⊆ F

2n

2 for any

integer n ≥ 0, and

RMd
n =

{

[u, u+ v] : u ∈ RMd
n−1, v ∈ RMd−1

n−1

}

.

Here if u ∈ RMd
n−1, v ∈ RMd−1

n−1 correspond to polynomials pu, pv ∈
F2[x1, . . . xn−1] respectively, then the codeword [u, u+ v] ∈ RMd

n cor-

responds to the polynomial p = pu + xn · pv ∈ F2[x1, . . . , xn].

The recursive definition of RM codes already hints at structural

similarities between BW lattices and RM codes. Indeed, BW lattices

can be equivalently defined as evaluations modulo φn of (Gaussian)

integer multilinear polynomials in n variables over the domain {0, φ}n.

Recall that an integer multilinear polynomial p ∈ G[x1, . . . , xn] is one

whose monomials have degree at most one in each variable (and hence

total degree at most n), i.e.,

p(x1, . . . , xn) =
∑

S∈{0,1}n

aS ·
∏

i∈S

xi

where each aS ∈ G. A simple inductive argument proves the following

lemma.

LEMMA 1.7.

BWn = {〈p(x)〉x∈{0,φ}n : p ∈ G[x1, . . . , xn] is multilinear}+ φn
G

2n .

Thus, while RMd
n codewords correspond to low-degree polynomials

(when d is small), BW lattice points correspond to possibly high-degree

polynomials. As an immediate application, our main theorems imply the

following corollary regarding the set of integer multilinear polynomials

that approximate a function f : {0, φ}n → C.



List Decoding Barnes-Wall Lattices 11

COROLLARY 1.8. Given a map f : {0, φ}n → C (represented as a

lookup table) and ε = Ω(N−c) for some c < 1 and N = 2n, there exists

an algorithm that outputs in time NO(log(1/ε)) all the integer multilinear

polynomials g : {0, φ}n → C such that ‖f − g‖2 ≤ (1− ε)N .

Just as in our algorithmic results for BW lattices, the recursive

structure of RM codes is critically used in list-decoding algorithms

for these codes, but in a different way than in our algorithm. The list-

decoding algorithm for RMd
n given in Gopalan et al. (2008) recursively

list decodes one of the halves of a received word, and then for each

codeword in the list it recursively list decodes the other half of the

received word. The recursion has depth d and thus has a total running

time of poly(N) · `(η)d, where `(η) is the list size at relative (Hamming)

distance η. As mentioned above, a similar algorithm can work for BW

lattices, but the natural analysis implies a super-polynomial `(η)n lower

bound on the running time, since now the recursion has depth n. The

reason we can overcome this potential bottleneck is the existence of

the linear automorphism T of BWn, which allows us to make only a

constant number of recursive calls (independently of each other), plus

a poly(N) · `(η)2-time combining step, which yields a runtime of the

form O(1)n · poly(N) · `(η)2 = poly(N) · `(η)2.

We note that RMd
n codes are efficiently list decodable up to a radius

larger than the minimum distance Gopalan et al. (2008), and remark

that while RM codes are some of the oldest and most intensively studied

codes, it was not until recently that their list-decoding properties have

been very well understood Gopalan et al. (2008); Kaufman et al. (2010);

Pellikaan & Wu (2004).

We finally note that the connection to Reed-Muller codes can also be

made more explicit in the following alternate description of BW lattices,

which we use in Section 2.3.

FACT 1.9 (Forney 1988, §IV.B).

BWn = {
n−1
∑

d=0

φd · cd + φn · cn, with cd ∈ RMd
n, and

0 ≤ d ≤ n− 1, and cn ∈ G
N}

where the embedding of F2 into C is given by 0 7→ 0 and 1 7→ 1.



12 Grigorescu & Peikert

In particular, any codeword cd ∈ RMn
d gives rise to a lattice point

φd · cd ∈ BWn,

1.4. Other Related Work. Cohn & Heninger (2015) study a list-

decoding model on polynomial lattices, under both the Hamming metric

and certain ‘non-Archimedian’ norms. Their polynomial analogue

of Coppersmith’s theorem Coppersmith (2001) implies, as a special

case, Guruswami and Sudan’s result on list decoding Reed-Solomon

codes Guruswami & Sudan (1999).

Decoding and list decoding in the Euclidean space has been also

considered for embeddings into real vector spaces of codes classically

defined over finite fields. These embeddings can give rise to so-called

spherical codes, where the decoding problem has as input a received

vector on the unit sphere, and is required to output the points in the code

(also on the unit sphere) that form a small angle with the given target.

Another related decoding model is soft-decision decoding, where for

each position of the received word, each alphabet symbol is assigned a

real-valued weight representing the confidence that the received symbol

matches it. Soft decision unique decoding for RM codes was studied

in Dumer & Krichevskiy (2000); Dumer & Shabunov (2006a,b), and

list-decoding algorithms were shown in Dumer et al. (2008); Fourquet

& Tavernier (2008).

Further, the question of decoding lattices is related to the well-

studied vector quantization problem. In this problem, vectors in the

ambient space need to be rounded to nearby points of a discrete lattice;

for further details on this problem see, for example, Conway & Sloane

(1998).

Organization. In Section 2 we prove our combinatorial upper and

lower bounds for BW lattices. In Section 3 we present and analyze our

main list-decoding algorithm. We conclude in Section 4 with several

open problems.

2. Combinatorial Bounds

We start with a few basic definitions. For a lattice L, a vector r ∈
C

m (often called a received word) and any η ≥ 0, define LL(r, η) =
{x ∈ L : δ(r, x) ≤ η} to be the list of lattice points w ∈ L such that



List Decoding Barnes-Wall Lattices 13

δ(r, w) ≤ η. We often omit the subscript L when the lattice is clear

from context. For η ≥ 0 and nonnegative integer n with N = 2n, we

define `(η, n) = maxr∈Cn |LBWn
(r, η)| to be the maximum list size for

rsd η, for the nth Barnes-Wall lattice.

2.1. Helpful Lemmas. We start with two simple but important obser-

vations about Barnes-Wall lattices. The first relates the rsd’s between

the respective “left” and “right” halves of a received word and a lattice

point. The second relates the list sizes for the same rsd but different

dimensions.

LEMMA 2.1. Let r = [r0, r1] ∈ C
N with r0, r1 ∈ C

N/2, and w =
[u, u + φv] ∈ BWn for u, v ∈ BWn−1. Let η = δ(r, w), η0 = δ(r0, u)
and η1 = δ( 1

φ
(r1 − u), v). Then η = η0

2
+ η1.

PROOF. We have

δ(r, w) =
δ(r0, u) + δ(r1, u+ φv)

2

=
η0
2

+
|φ|2 · δ( 1

φ
(r1 − u), v)

2

=
η0
2

+ η1.

�

LEMMA 2.2. For any η ≥ 0 and n ≥ 1, we have `(η, n− 1) ≤ `(η, n).

PROOF. Let r ∈ C
N/2 and w ∈ L(r, η) ⊆ BWn−1. Then δ([r, r], [w,w]) =

δ(r, w), and since [w,w] ∈ BWn (because w ∈ BWn−1) it follows that

[w,w] ∈ L([r, r], η). �

We next state a Johnson-type bound on the list size for arbitrary

lattices; see, e.g., Bollobás (1986); Guruswami & Sudan (2001); Mic-

ciancio & Goldwasser (2002); Sudan (2001) for proofs. Note that these

sources work in R
N ; our form follows because the standard isomorphism

between C
N and R

2N as real vector spaces also preserves Euclidean

norm.



14 Grigorescu & Peikert

LEMMA 2.3 (Johnson bound). Let L ⊂ C
N be a lattice of rsmd δ =

δ(L) and let r ∈ C
N . Then

(i) |L(r, δ
2
)| ≤ 4N , and

(ii) |L(r, δ · (1
2
− ε))| ≤ 1

2ε
for any ε > 0.

(In reading these bounds, recall that δ(L)/4, not δ(L)/2, is the

relative unique-decoding distance of L, because δ(L) is the relative

squared minimum distance of the lattice.)

COROLLARY 2.4. For the lattice BWn ⊆ C
N and any ε > 0, we have

`(1
2
, n) = 4N and `(1

2
− ε, n) ≤ 1

2ε
.

PROOF. Since δ(BWn) = 1, the upper bounds follow immediately

by Lemma 2.3. For the lower bound `(1
2
, n) ≥ 4N , we give an inductive

argument showing that |L(r, 1
2
)| ≥ 4N for the received word r =

(φ
2
, . . . , φ

2
) ∈ C

N . To do this, we show by induction on n that L(r, 1
2
)

contains 2N pairwise disjoint (unordered) pairs {wi, w
′
i} where wi −

w′
i ∈ φ · BWn.

For the base case n = 0, notice that L(φ
2
, 1
2
) = {0, 1, i, 1 + i}, and

that (1 + i) − 0 = φ ∈ φ · BW0 and i − 1 = φ · i ∈ φ · BW0. Next,

let {wi, w
′
i} denote the pairs guaranteed by the inductive hypothesis for

some n, and recall that [a, b] ∈ BWn+1 if and only if a, b ∈ BWn and

a−b ∈ φ ·BWn. It is easy to verify that the pairs {[wi, wi], [w
′
i, w

′
i]} and

{[wi, w
′
i], [w

′
i, wi]} establish the inductive hypothesis for n+ 1. Indeed,

[wi, wi] − [w′
i, w

′
i] = φ · [w,w] ∈ φ · BWn+1 for some w ∈ BWn,

and similarly, [wi, w
′
i] − [w′

i, wi] = φ · [w,−w] ∈ φ · BWn+1, because

w − (−w) = 2w ∈ φ · BWn. Also, δ([r, r], [wi, wi]) = δ(r, wi) ≤ 1
2

and similarly for the other vectors. �

2.2. Beyond the Johnson Bound. In this section we prove our main

combinatorial bounds on the list size for Barnes-Wall lattices BWn ⊆
G

N . Our main result is that the list size at rsd (1 − ε) is (1/ε)O(n) =
NO(log(1/ε)) for any ε > 0. The proof strategy is inductive, and is based

on a careful partitioning of the lattice vectors in the list according to

the distances of their left and right halves from the respective halves of

the received word. Intuitively, the larger the distance on one half, the

smaller the distance on the other (Lemma 2.1 above makes this precise).



List Decoding Barnes-Wall Lattices 15

The total list size can therefore be bounded using list bounds for various

carefully chosen distances at lower dimensions. Our analysis relies on

a poly(N) list-size bound for rsd 3
4
, which in turn relies on a poly(N)

bound for rsd
5
8
. We first prove these simpler bounds, also using a

partitioning argument. (Note that the concrete constants appearing

below are chosen to simplify the analysis, and are likely not optimal.)

LEMMA 2.5. For any integer n ≥ 0, we have `(5
8
, n) ≤ 4 · 24n.

PROOF. For n = 0, it is easy to see that for all η < 1, there are at

most 4 Gaussian integers within a ball of radius η from any r ∈ G,

so `(η, 0) ≤ 4. Suppose now that n ≥ 1 with N = 2n. Let r =
[r0, r1] ∈ C

N with r0, r1 ∈ C
N/2 be an arbitrary received word, and let

w = [u, u + φv] ∈ L(r, 5
8
) for u, v ∈ BWn−1. Let η = δ(r, w) ≤ 5

8
,

η0 = δ(r0, u) and η1 = δ( 1
φ
(r1 − u), v).

Note that from Lemma 2.1 we have that η = η0
2
+ η1 =

1
2
(δ(r0, u) +

δ(r1, u + φv)) ≤ 5
8
. Without loss of generality, we can assume that

η0 = δ(r0, u) ≤ 5
8
. For if not, then we would have δ(r1, u + φv) ≤ 5

8
,

and since [a, b] ∈ BWn implies [b, a] ∈ BWn for a, b ∈ G
N/2, we could

instead work with the received word r′ = [r1, r0] and w′ = [u+φv, u] ∈
L(r′, 5

8
). This incurs a factor of at most 2 in the total list size, which we

account for in the analysis below.

Assuming η0 ≤ 5
8
, we now split the analysis into two cases: η0 ∈

[0, 5
12
), and η0 ∈ [ 5

12
, 5
8
]. By Lemma 2.1, these cases correspond to

η1 ≤ 5
8

and η1 ≤ 5
12

, respectively. Since u ∈ L(r0, η0) and v ∈
L( 1

φ
(r1 − u), η1), after combining the lists we obtain at most `( 5

12
, n−

1) · `(5
8
, n− 1) + `(5

8
, n− 1) · `( 5

12
, n− 1) potential vectors in the list.

Finally, after incorporating the factor of 2 from the argument above,

we have (where for conciseness we write `(η) for `(η, n− 1)):

`(5
8
, n) ≤ 2 ·

(

`( 5
12
) · `(5

8
) + `(5

8
) · `( 5

12
)
)

= 4 · `( 5
12
) · `(5

8
)

≤ 4 · 6 · `(5
8
) ( Corollary 2.4)

≤ 24n · `(5
8
, 0). (unwind the recurrence)

�



16 Grigorescu & Peikert

LEMMA 2.6. For any integer n ≥ 0, we have `(3
4
, n) ≤ 4 · 242n.

PROOF. As noted in the proof of Lemma 2.5, the claim is clearly true

for n = 0, so suppose n ≥ 1; we proceed by induction on n. Define the

same notation as in the proof of Lemma 2.5, using rsd bound 3
4

instead

of 5
8
.

As before, we assume that η0 ≤ 3
4

and account for the accompanying

factor of 2 in the list size. This time we split the analysis into three

cases: η0 ∈ [0, 1
4
), η0 ∈ [1

4
, 5
8
), and η0 ∈ [5

8
, 3
4
]. By Lemma 2.1, these

correspond to η1 ≤ 3
4
, η1 ≤ 5

8
, and η1 ≤ 7

16
, respectively.

For conciseness, in the calculation below we write `(η) for `(η, n−
1). We have

`(3
4
, n) ≤ 2 ·

(

`(1
4
) · `(3

4
) + `(5

8
) · `(5

8
) + `(3

4
) · `( 7

16
)
)

≤ 2 · (2 + 8) · `(3
4
) + 2 · `(5

8
)2

≤ 20 · 4 · 242(n−1) + 32 · 242(n−1)

≤ 4 · 242n,

where we used Corollary 2.4, the induction hypothesis and Lemma 2.5.

�

We are now ready to prove our main combinatorial bound (Theorem 1.2).

We restate it here for convenience.

THEOREM 1.2. For any integer n ≥ 0 and ε ∈ (0, 1], we have

`(1− ε, n) ≤ 4 · (1/ε)16n = NO(log(1/ε)).

PROOF. We need to show that `(1− ε, n) ≤ 4 · (1/ε)16n for any n ≥ 0
and ε > 0; obviously, we can assume ε ≤ 1 as well. As noted in the

proof of Lemma 2.5, the claim is clearly true for n = 0. We proceed by

induction on n; namely, we assume that for all γ > 0 it is the case that

`(1− γ, n− 1) ≤ 4 · (1/γ)16(n−1). Define the same notation as in the

proof of Lemma 2.5, using rsd bound 1− ε instead of 5
8
.

As in earlier proofs, we assume that η0 ≤ 1− ε and account for the

accompanying factor of 2 in the list size. We split the analysis into 3

cases: η0 ∈ [0, 1
2
− ε), η0 ∈ [1

2
− ε, 1 − 3ε

2
), and η0 ∈ [1 − 3ε

2
, 1 − ε].

By Lemma 2.1, these correspond to η1 ≤ 1− ε, η1 ≤ 3
4
− ε

2
< 3

4
, and

η1 ≤ 1
2
− ε

4
, respectively.



List Decoding Barnes-Wall Lattices 17

For conciseness, in the calculation below we write `(η) for `(η, n−
1). It follows that `(1− ε, n) is bounded by

2
(

`(1− ε)`(1
2
− ε) + `(1− ε)`(1

2
− ε

4
) + `(1− 3ε

2
)`(3

4
)
)

≤ 2`(1− ε)( 1
2ε
+ 2

ε
) + 2`(1− 3ε

2
) · 4 · 242(n−1)(Corollary 2.4, Lemma 2.6)

= 5
ε
· `(1− ε) + 8 · 242(n−1) · `(1− 3ε

2
)

≤ 20
ε
· (1

ε
)16(n−1) + 32 · 242(n−1) · ( 2

3ε
)16(n−1), (induction hypothesis)

= (1
ε
)16(n−1) · (20

ε
+ 32 · (242 · (2

3
)16)(n−1))

≤ (1
ε
)16(n−1) · (52

ε
)

≤ 4 · (1
ε
)16n

when ε ≤ 4
5
. If ε ∈ (4

5
, 1] then `(1 − ε, n) = 1 ≤ 4 · (1

ε
)16n, and the

proof is complete. �

Notice that in the above proof, it is important to use an upper bound

like η0 ≤ 1− 3ε
2

in one of the cases, so that the factor (2
3
)16(n−1) from the

inductive list bound can cancel out the corresponding factor of 242(n−1)

for the corresponding rsd bound η1 ≤ 3
4
. This allows the recurrence to

be dominated by the term

`(1− ε) · `(1
2
− ε

4
) = O(1

ε
) · `(1− ε),

yielding a solution of the form (1/ε)O(n).

2.3. Lower Bounds. For our lower bounds we make use of the rela-

tionship between Barnes-Wall lattices and Reed-Muller codes from Fact 1.9,

and then apply known lower bounds for the latter.

FACT 2.7 (MacWilliams & Sloane 1981, Chap. 13, §4).

(i) The minimum distance of RMd
n is 2n−d. In particular, the charac-

teristic vector cV ∈ F
2n

2 of any subspace V ⊆ F
n
2 of dimension

k ≥ n− d is a codeword of RMd
n.

(The characteristic vector cS ∈ F
2n

2 of a set S ⊆ F
n
2 is defined by

indexing the coordinates of F2n

2 by elements α ∈ F
n
2 , and letting

(cS)α = 1 if and only if α ∈ S.)



18 Grigorescu & Peikert

(ii) There are 2d ·
n−d−1
∏

i=0

2n−i − 1

2n−d−i − 1
> 2d(n−d) subspaces of dimension

n− d in F
n
2 .

We now prove Theorem 1.3, restated here for convenience.

THEOREM 1.3. For any integer n ≥ 0 and ε ∈ [2−n, 1], we have

`(1− ε, n) ≥ 2(n−log 1

ε
) log 1

2ε .

In particular, for any constant ε > 0 (or even any ε ≥ N−c for c < 1),

we have `(1− ε, n) = NΩ(log(1/ε)).

PROOF. Let k ≥ 0 be an integer such that 2nε ≤ 2k ≤ 2n+1ε. Let the

received word be r = φk · [1, 0, . . . , 0] ∈ G
N , where we assume that the

first coordinate is indexed by 0n ∈ F
n
2 . By Fact 2.7 and Fact 1.9, for any

subspace H ⊆ F
n
2 of dimension n− k, we have φk · cH ∈ BWn. Notice

that

‖r − φk · cH‖2 = |φk|2 · ‖cH − [1, 0, . . . , 0]‖2
= 2k · (2n−k − 1)

= 2n − 2k ≤ 2n(1− ε).

By Fact 2.7, there are at least 2k(n−k) ≥ 2(n−log 1

ε
) log 1

2ε subspaces H ⊂
F
n
2 of dimension n− k, which completes the proof. �

3. List-Decoding Algorithm

In this section we give a list-decoding algorithm that runs in time polyno-

mial in N and the list size; in particular, by Theorem 1.2 it runs in time

NO(log(1/ε)) for rsd (1−ε) for any fixed ε > 0. This runtime and error tol-

erance are optimal (up to polynomial overhead) in the sense that the list

size can be NΩ(log(1/ε)) by Theorem 1.3, and can be super-polynomial

in N for rsd 1 or more.

Our list-decoding algorithm is very similar to the (parallel) Bounded

Distance Decoding algorithm of Micciancio & Nicolosi (2008), which

outputs the unique lattice point within rsd η < 1
4

of the received word (if

it exists). In particular, both algorithms work by recursively (and inde-

pendently) decoding four words of dimension N/2 that are derived from



List Decoding Barnes-Wall Lattices 19

the received word, and then combining the results appropriately. In our

case, the runtime is strongly influenced by the sizes of the lists returned

by the recursive calls, and so the combinatorial bounds from Section 2

are critical to the runtime analysis.

We need the following easily-verified fact regarding the symmetries

(automorphisms) of BWn.

FACT 3.1. For N = 2n, the linear transformation T : CN → C
N given

by T ([u, v]) = φ
2
· [u+ v, u− v] is a distance-preserving automorphism

of BWn, namely T (BWn) = BWn and δ(x) = δ(T (x)) for all x ∈ C
N .

Algorithm 1 LISTDECODEBW: List-decoding algorithm for Barnes-

Wall lattices.

Input: r ∈ C
N (for N = 2n) and η ≥ 0.

Output: The list L(r, η) ⊂ BWn.

1: if n = 0 then

2: output L(r, η) ⊂ G by enumeration.

3: parse r = [r0, r1] for r0, r1 ∈ C
N/2, and let r+ = φ

2
(r0 + r1) and

r− = φ
2
(r0 − r1), so [r+, r−] = T (r).

4: for all j ∈ {0, 1,+,−} do

5: let Lj = LISTDECODEBW(rj, η).
6: for each (b, s) ∈ {0, 1}×{+,−} and (wb, ws) ∈ Lb×Ls, compute

the corresponding candidate vector w = [w0, w1] ∈ BWn as the

appropriate one of the following:

[w0,
2
φ
w+ − w0], [w0, w0 − 2

φ
w−],

[ 2
φ
w+ − w1, w1], [ 2

φ
w− + w1, w1].

7: remove all candidate vectors w such that δ(r, w) > η.

8: sort the remaining list of candidates lexicographically and remove

all duplicates.

9: return the set L of all the candidate vectors remaining.

The following theorem, when combined with our combinatorial up-

per bound (Theorem 1.2), yields Theorem 1.4 as an immediate corollary.

THEOREM 3.2. Algorithm 1 is correct and runs in O(N2) · `(η, n)2
scalar operations over C.



20 Grigorescu & Peikert

PROOF. We need to show that on input r ∈ C
N and η ≥ 0, Algo-

rithm 1 runs in time O(N2) · `(η, n)2 and outputs L = L(r, η).

We first prove correctness, by induction. The algorithm is clearly

correct for n = 0; now suppose that n ≥ 1 and the algorithm is correct

for n− 1. Adopt the notation from Algorithm 1, and let w = [w0, w1] ∈
L(r, η) for w0, w1 ∈ BWn−1 be arbitrary. Since δ(w, r) ≤ η, we have

δ(r0, w0) ≤ η or δ(r1, w1) ≤ η or both, so w0 ∈ L(r0, η) or w1 ∈
L(r1, η) or both. The same is true about the corresponding vectors after

applying the automorphism T . Namely, letting [w+, w−] = T (w) ∈
BWn for w+, w− ∈ BWn−1, we have [w+, w−] ∈ L([r+, r−], η) and so

w+ ∈ L(r+, η) or w− ∈ L(r−, η) or both.

By the inductive hypothesis and the above observations, we will have

(wb, ws) ∈ Lb × Ls for at least one choice of (b, s) ∈ {0, 1} × {+,−}.

The algorithm calculates the vector w = [w0, w1] as a candidate, simply

by solving for w0, w1 using wb, ws and the definition of T . Therefore,

w will appear in the output list L. And because L ⊆ L(r, η) by Step 7,

the claim follows.

We now analyze T (N), the number of operations over C for an input

of dimension N = 2n. We first observe that after filtering (Step 7), each

remaining vector can appear at most four times in the list. Indeed, by

induction L0, L1, L+ and L− themselves do not contain any duplicates,

and no two distinct elements from one of these lists can give rise to

the same lattice point in BWn. Therefore, sorting and de-duplicating

(Step 8) takes O(N) · `(n, η)2 operations, which implies that T (N)
satisfies

T (N) = 4 · T (N/2) + 4 ·O(N) · `(η, n− 1)2 +O(N) · `(η, n)2
= 4 · T (N/2) +O(N) · `(η, n)2
= O(N2) · `(η, n)2

by the Master Theorem for recurrences (since `(η, n− i) ≤ `(η, n) for

all i ≥ 0). �

REMARK 3.3. We note that the above algorithm, like the unique de-

coder of Micciancio & Nicolosi (2008), can be easily parallelized. On p
processors, the parallel runtime (measured in number of operations over



List Decoding Barnes-Wall Lattices 21

C) satisfies the recurrence

T (N, p) =

{

T (N), if n = 0 or p < 4

T (N/2, p/4) +O(N · `(η, n− 1)2/p+ logN), otherwise,

where T (N) is as in the proof of Theorem 3.2. This is because it

takes O(N · `(η, n − 1)2/p) operations per processor to combine the

lists in Step 6, and computing each of the `(η, n − 1)2 distances in

Step 9 requires computing a sum of N real numbers, for a total of

O(N · `(η, n − 1)2/p + logN) parallel runtime. Notice that when

p ≥ N2 · `(η, n − 1)2, the algorithm runs in only polylogarithmic

O(log2 N) parallel time. Note also that when the list size `(η, n−1) = 1,

this analysis specializes exactly to that of Micciancio & Nicolosi (2008).

4. Discussion and Open Problems

Some immediate open questions arise from comparison to the results

of Micciancio & Nicolosi (2008). Motivated by the sequential unique

decoder proposed in Micciancio & Nicolosi (2008), is there a (possibly

sequential) list decoder that runs in time quasilinear in N and the list

size, rather than quadratic? Also, as asked in Micciancio & Nicolosi

(2008), is there an efficient algorithm for solving the Closest Vector

Problem (i.e., minimum-distance decoding) on Barnes-Wall lattices?

Note that our combinatorial lower bounds do not rule out the existence

of such an algorithm, since for the Closest Vector Problem the algorithm

only needs to output a single vector, not the list of all closest vectors.

An important variant of the list-decoding problem for codes is local

list decoding. In this model, the algorithm is required to run in time

polylogarithmic in the block length, and output succinct representations

of all the codewords within a given radius. Defining a meaningful notion

of local decoding for lattices (and BW lattices in particular) would

require additional constraints, since lattice points do not in general

admit succinct representations (since one needs to specify an integer

coefficient for each basis vector). While by the Johnson bound we have a

poly(n) list size for rsd up to 1/2− poly(1/n), achieving a meaningful

notion of local decoding in this context would be interesting.

Another interesting direction is to find (or construct) more asymp-

totic families of lattices with nice list-decoding properties. In particular,



22 Grigorescu & Peikert

are there generic operations, which, when applied to lattices, guarantee

good list-decoding properties? For codes, list decodability has been

shown to behave well under the tensoring and interleaving operations,

as demonstrated in Gopalan et al. (2011). Tensoring is also well-defined

for lattices, but it does not behave so well as in codes. For example,

tensoring a code with itself results in a code whose minimum distance is

squared, while tensoring a lattice with itself does not square the distance.

This issue has appeared in deciding NP-hardness of the Shortest Vector

Problem Haviv & Regev (2012); Micciancio (2012) where the tensoring

technique turned out to be much trickier than a tensoring approach for

deciding the NP-hardness of the analogous minimum distance problem

in codes Dumer et al. (2003) 2. Understanding how list decoding be-

haves in the context of tensoring could bring up novel aspects of lattice

list decoding, and it remains an intriguing further direction.

Finally, it would be also interesting and potentially useful to consider

list decoding for norms other than the Euclidean norm, such as the `∞
or `0 norms.

Acknowledgements

A preliminary version appeared in the proceedings of Conference on

Computational Complexity, Porto, Portugal, 2012 Grigorescu & Peikert

(2012). E.G.’s work was supported by the NSF under Grant #1019343

to the Computing Research Association for the CI Fellows Project, and

C.P.’s work was supported by the NSF under CAREER Award CCF-

1054495 and the Alfred P. Sloan Foundation. The views expressed are

those of the authors and do not necessarily reflect the official policy or

position of the National Science Foundation of the Sloan Foundation.

We thank Eli Ben-Sasson, Daniele Micciancio, Madhu Sudan, and

Santosh Vempala for helpful discussions and comments.

References

DAKSHI AGRAWAL & ALEXANDER VARDY (2000). Generalized minimum

distance decoding in Euclidean space: Performance analysis. IEEE Transaction

on Information Theory 46(1), 60–83.

2We thank an anonymous reviewer for pointing this out to us.



List Decoding Barnes-Wall Lattices 23

ADI AKAVIA, SHAFI GOLDWASSER & SCHMUEL SAFRA (2003). Proving

Hard-Core Predicates Using List Decoding. In IEEE Symposium on Founda-

tions of Computer Science, 146–157.

IAN F. BLAKE AMIR H. BANIHASHEMI (1998). Trellis Complexity and

Minimal Trellis Diagrams of Lattices. IEEE Transaction on Information

Theory 44(5), 1829–1847.

E. S. BARNES & G. E. WALL (1959). Some extreme forms defined in terms of

Abelian groups. Journal of the Australian Mathematical Society 1(01), 47–63.

BELA BOLLOBÁS (1986). Combinatorics. Cambridge University Press,

Cambridge, U.K.

HENRY COHN & NADIA HENINGER (2015). Ideal forms of Coppersmith’s

theorem and Guruswami-Sudan list decoding. Advances in Mathematics of

Communications 9(3), 311–339.

JOHN H. CONWAY & NEIL J. A. SLOANE (1998). Sphere Packings, Lattices

and Groups. Springer-Verlag, New York.

DON COPPERSMITH (2001). Finding Small Solutions to Small Degree Poly-

nomials. In Cryptography and Lattices, International Conference, 20–31.

IRIT DINUR, ELENA GRIGORESCU, SWASTIK KOPPARTY & MADHU SUDAN

(2008). Decodability of group homomorphisms beyond the Johnson bound. In

ACM Symposium on Theory of Computing, 275–284.

ILYA DUMER, GREGORY A. KABATIANSKY & CÉDRIC TAVERNIER (2008).

List Decoding of Biorthogonal Codes and the Hadamard Transform With

Linear Complexity. IEEE Transactions on Information Theory 54(10), 4488–

4492.

ILYA DUMER & RAFAIL E. KRICHEVSKIY (2000). Soft-decision majority

decoding of Reed-Muller codes. IEEE Transactions on Information Theory

46(1), 258–264.

ILYA DUMER, DANIELE MICCIANCIO & MADHU SUDAN (2003). Hardness

of approximating the minimum distance of a linear code. IEEE Transaction on

Information Theory 49(1), 22–37.

ILYA DUMER & KIRILL SHABUNOV (2006a). Recursive error correction for

general Reed-Muller codes. Discrete Applied Mathematics 154(2), 253–269.



24 Grigorescu & Peikert

ILYA DUMER & KIRILL SHABUNOV (2006b). Soft-decision decoding of

Reed-Muller codes: recursive lists. IEEE Transactions on Information Theory

52(3), 1260–1266.

PETER ELIAS (1957). List decoding for noisy channels. Technical Report 335,

Research Laboratory of Electronics, MIT .

G. DAVID FORNEY (1988). Coset codes-II: Binary lattices and related codes.

IEEE Transactions on Information Theory 34(5), 1152–1187.

G. DAVID FORNEY & ALEXANDER VARDY (1996). Generalized minimum-

distance decoding of Euclidean-space codes and lattices. IEEE Transactions

on Information Theory 42(6), 1992–2026.

RAFAËL FOURQUET & CÉDRIC TAVERNIER (2008). An improved list de-

coding algorithm for the second order Reed-Muller codes and its applications.

Designs, Codes and Cryptography 49(1-3), 323–340.

ANNA C. GILBERT, SUDIPTO GUHA, PIOTR INDYK, S. MUTHUKRISHNAN

& MARTIN STRAUSS (2002). Near-optimal sparse Fourier representations via

sampling. In ACM Symposium on the Theory of Computing, 152–161.

ODED GOLDREICH & LEONID A. LEVIN (1989). A hard-core predicate for

all one-way functions. In In Proceedings of the Twenty First Annual ACM

Symposium on Theory of Computing, 25–32.

PARIKSHIT GOPALAN, VENKATESAN GURUSWAMI & PRASAD RAGHAVEN-

DRA (2011). List Decoding Tensor Products and Interleaved Codes. SIAM

Journal of Computing 40(5), 1432–1462.

PARIKSHIT GOPALAN, ADAM R. KLIVANS & DAVID ZUCKERMAN (2008).

List-decoding Reed-Muller codes over small fields. In ACM Symposium on the

Theory of Computing, 265–274.

ELENA GRIGORESCU & CHRIS PEIKERT (2012). List Decoding Barnes-Wall

Lattices. In IEEE Conference on Computational Complexity, 316–325.

VENKATESAN GURUSWAMI (2004). List Decoding of Error-Correcting Codes

(Winning Thesis of the 2002 ACM Doctoral Dissertation Competition), volume

3282 of Lecture Notes in Computer Science. Springer.

VENKATESAN GURUSWAMI (2006). Algorithmic Results in List Decoding.

Foundations and Trends in Theoretical Computer Science 2(2).



List Decoding Barnes-Wall Lattices 25

VENKATESAN GURUSWAMI (2010). Bridging Shannon and Hamming: List

Error-Correction with Optimal Rate. ICM Invited Survey.

VENKATESAN GURUSWAMI & ATRI RUDRA (2006). Explicit capacity-

achieving list-decodable codes. In ACM Symposium on the Theory of Comput-

ing, 1–10.

VENKATESAN GURUSWAMI & MADHU SUDAN (1999). Improved decoding

of Reed-Solomon and Algebraic-geometric codes. IEEE Transactions on

Information Theory 45, 1757–1767.

VENKATESAN GURUSWAMI & MADHU SUDAN (2001). Extensions to the

Johnson Bound. Manuscript. Available from http://people.csail.

mit.edu/madhu/papers/johnson.ps.

VENKATESAN GURUSWAMI, CHRISTOPHER UMANS & SALIL P. VADHAN

(2009). Unbalanced expanders and randomness extractors from Parvaresh-

Vardy codes. Journal of the ACM 56(4).

ISHAY HAVIV & ODED REGEV (2012). Tensor-based Hardness of the Shortest

Vector Problem to within Almost Polynomial Factors. Theory of Computing

8(1), 513–531.

RAVI KANNAN (1987). Minkowski’s Convex Body Theorem and Integer

Programming. Mathematics of Operations Research 12(3), 415–440.

TALI KAUFMAN, SHACHAR LOVETT & ELY PORAT (2010). Weight Dis-

tribution and List-Decoding Size of Reed- Muller Codes. In Innovations in

Computer Science, 422–433.

EYAL KUSHILEVITZ & YISHAY MANSOUR (1993). Learning Decision Trees

Using the Fourier Spectrum. SICOMP: SIAM Journal on Computing 22(6),

1331–1348.

FLORENCE J. MACWILLIAMS & NEIL J. A. SLOANE (1981). The Theory of

Error-Correcting Codes. Elsevier/North-Holland, Amsterdam.

DANIELE MICCIANCIO (2012). Inapproximability of the Shortest Vector

Problem: Toward a Deterministic Reduction. Theory of Computing 8(1),

487–512.



26 Grigorescu & Peikert

DANIELE MICCIANCIO & SHAFI GOLDWASSER (2002). Complexity of Lat-

tice Problems: a cryptographic perspective, volume 671 of The Kluwer In-

ternational Series in Engineering and Computer Science. Kluwer Academic

Publishers, Boston, Massachusetts.

DANIELE MICCIANCIO & ANTONIO NICOLOSI (2008). Efficient Bounded

Distance Decoder for Barnes-Wall Lattices. In IEEE International Symposium

on Information Theory, 2484–2488.

D. E. MULLER (1954). Application of Boolean algebra to switching circuit

design and to error detection. IEEE Transactions on Computers 3, 6–12.

GABRIELE NEBE, ERIC M. RAINS & NEIL J. A. SLOANE (2001). The

Invariants of the Clifford Groups. Designs, Codes and Cryptography 24(1),

99–122.

FARZAD PARVARESH & ALEXANDER VARDY (2005). Correcting Errors

Beyond the Guruswami-Sudan Radius in Polynomial Time. In Symposium on

Foundations of Computer Science, 285–294. Symposium on Foundations of

Computer Science.

RUUD PELLIKAAN & XIN-WEN WU (2004). List decoding of q-ary Reed-

Muller codes. IEEE Transactions on Information Theory 50(4), 679–682.

XAVIER PUJOL & DAMIEN STEHLÉ (2008). Rigorous and Efficient Short

Lattice Vectors Enumeration. In Advances in Cryptology - ASIACRYPT 2008,

14th International Conference on the Theory and Application of Cryptology

and Information Security, 390–405.

M. RAN & J. SNYDERS (1998). Efficient decoding of the Gosset, Coxeter-

Todd and the Barnes-Wall lattices. In IEEE International Symposium on

Information Theory, 92.

IRVING S. REED (1954). A class of multiple-error-correcting codes and the

decoding scheme. IEEE Transactions on Information Theory 4, 38–49.

AMIR J. SALOMON & OFER AMRANI (2005). Augmented product codes and

lattices: Reed-Muller codes and Barnes-Wall lattices. IEEE Transactions on

Information Theory 51(11), 3918–3930.

MADHU SUDAN (1997). Decoding of Reed Solomon Codes beyond the Error-

Correction Bound. Journal of Complexity 13(1), 180–193.



List Decoding Barnes-Wall Lattices 27

MADHU SUDAN (2000). List decoding: algorithms and applications. SIGACT

News 31(1), 16–27.

MADHU SUDAN (2001). Algorithmic Introduction to Coding Theory, Lec-

ture Notes. Available from http://people.csail.mit.edu/madhu/

FT01/.

MADHU SUDAN, LUCA TREVISAN & SALIL P. VADHAN (2001). Pseudoran-

dom Generators without the XOR Lemma. Journal of Computer and System

Sciences 62(2), 236–266.

AMNON TA-SHMA & DAVID ZUCKERMAN (2001). Extractor codes. In ACM

Symposium on Theory of Computing, 193–199.

LUCA TREVISAN (2001). Extractors and pseudorandom generators. Journal

of the ACM 48(4), 860–879.

JOHN M. WOZENCRAFT (1958). List Decoding. Quarterly Progress Report,

Research Laboratory of Electronics, MIT 48, 90–95.

Manuscript received 23 March 2015

ELENA GRIGORESCU

Purdue University,

West Lafayette, IN

elena-g@purdue.edu.

CHRIS PEIKERT

University of Michigan,

Ann Arbor, MI

cpeikert@umich.edu


	List Decoding Barnes-Wall Lattices
	Introduction
	Contributions
	Proof Overview and Techniques
	Comparison with Reed-Muller Codes
	Other Related Work

	Combinatorial Bounds
	Helpful Lemmas
	Beyond the Johnson Bound
	Lower Bounds

	List-Decoding Algorithm
	Discussion and Open Problems
	Acknowledgements


