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Abstract.

The question of list decoding error-correcting codes over finite fields (under
the Hamming metric) has been widely studied in recent years. Motivated by
the similar discrete linear structure of linear codes and point lattices in RY,
and their many shared applications across complexity theory, cryptography,
and coding theory, we initiate the study of list decoding for lattices. Namely:
for a lattice £ C R, given a target vector € R and a distance parameter d,
output the set of all lattice points w € L that are within distance d of r.

In this work we focus on combinatorial and algorithmic questions related to
list decoding for the well-studied family of Barnes-Wall lattices. Our main
contributions are twofold:

1. We give tight combinatorial bounds on the worst-case list size, showing
it to be polynomial in the lattice dimension for any error radius bounded
away from the lattice’s minimum distance (in the Euclidean norm).

2. We use our combinatorial bounds to generalize the unique-decoding
algorithm of Micciancio and Nicolosi (IEEE International Symposium
on Information Theory 2008) to work beyond the unique decoding
radius, and still run in polynomial time up to the list-decoding radius.
Just like the Micciancio-Nicolosi algorithm, our algorithm is highly
parallelizable, and with sufficiently many processors can run in parallel
time only poly-logarithmic in the lattice dimension.

Keywords. Barnes-Wall lattices, Johnson bound, List decoding, Reed-Muller
codes
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1. Introduction

A linear error-correcting code C of block length /N and dimension K
over a field IF is a K-dimensional subspace of FV, generated as all
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F-linear combinations of K linearly independent vectors. The code’s
minimum distance, denoted d(C), is the minimum Hamming distance
between any two distinct codewords in C, or equivalently the minimum
Hamming weight over all nonzero codewords. It is often convenient to
normalize distances by the dimension, yielding the relative (minimum)
distance 6(C) = d(C)/N of the code. Similarly, a point lattice of
dimension NV and rank K (where often & = V) is a discrete additive
subgroup of RY (or CV), generated as all integer linear combinations of
K linearly independent vectors. The lattice’s minimum distance (L)
is the minimum Euclidean norm over all nonzero lattice points x € L.
Here it can also be convenient to normalize by the dimension, and for a
closer analogy between the Hamming and Euclidean distances, in what
follows we work with the relative squared distance (abbreviated rsd)
S(z,y) = d(z —y) on RN or CV, where §(2) = L ||2]]> = & SN |2
The relative squared minimum distance (abbreviated rsmd) §(L) of a
lattice is therefore (L) = A(L)?/N.

Codes and lattices are well-studied studied objects, with many ap-
plications in computational complexity, cryptography, and coding the-
ory. In particular, both kinds of objects can be used to encode data
in order to achieve reliable communication in noisy channels: while
error-correcting codes are used over discrete channels, in which sym-
bols are possibly flipped during transmission, lattices are used over
Gaussian-noise channels, in which the noise is usually modeled by a
normal distribution.

A central question associated with codes is unique decoding: given
a received word r € FV within relative Hamming distance less than
d(C)/2 of some codeword w € C, find w. Similarly, the unique (also
known as bounded-distance) decoding problem on lattices is: given a
received word r € RY within rsd less than §(L£) /4 of some lattice vector
v € L, find v. (Note that the 1/4 factor arises because distances are
squared in our formulation.)

It is also possible that the noise amount affecting the transmis-
sion exceeds the regime of unique decoding. To model this situation,
Elias (1957) and Wozencraft (1958) proposed extending the classical
unique-decoding problem for error-correcting codes to settings where
the amount of error could cause ambiguous decoding. More precisely,
the goal of list decoding is to find all codewords within a certain relative
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distance (typically exceeding d(C)/2) of a received word; in many cases,
the list is guaranteed to contain few codewords. The first breakthrough
algorithmic list decoding results were due to Goldreich & Levin (1989)
for the Hadamard code, and to Sudan (1997) and Guruswami & Su-
dan (1999) for Reed-Solomon codes. These results and others have
had countless applications, e.g., in building hard-core predicates for
one-way functions Goldreich & Levin (1989), in hardness amplifica-
tion Sudan et al. (2001), in learning Fourier coefficients Akavia et al.
(2003); Gilbert et al. (2002); Kushilevitz & Mansour (1993), and in
constructing randomness extractors Guruswami et al. (2009); Ta-Shma
& Zuckerman (2001); Trevisan (2001).

There are two central tasks associated with list decoding: combi-
natorially bounding the number of codewords within a given radius
of a received word, and algorithmically finding these codewords. An
important question in understanding list decodability is finding the
list-decoding radius of the code, i.e., the maximum distance from a
received word within which the number of codewords is guaranteed to
be polynomial in the input parameters.

The Johnson bound. Under the Hamming metric, the Johnson bound
gives a distance up to which list decoding is guaranteed to be combi-
natorially efficient. One version of the Johnson bound states that for
any code C of relative distance §, a Hamming ball of relative radius
J(8) — € contains at most 1/¢* codewords, and a ball of relative radius
J(0) contains at most  N?|F| codewords, where J(§) = 1 — /1 — 0.
The Johnson bound is generic since it does not use any structure of the
code (not even linearity), and in many cases it is not necessarily the
same as the list-decoding radius. It is, however, a barrier in the current
analysis of combinatorial list decoding for many well-studied families
like Reed-Solomon codes, algebraic geometry codes, Chinese remainder
codes, and others. The breakthrough works of Parvaresh & Vardy (2005)
and Guruswami & Rudra (2006) gave families of codes which could be
(efficiently) list decoded beyond the Johnson bound, and were followed
by several related combinatorial and algorithmic results for other codes
(e.g., Dinur et al. (2008); Gopalan et al. (2011, 2008); Kaufman et al.
(2010)). For more detailed surveys on list decoding of codes we refer to
Guruswami (2004, 2006, 2010); Sudan (2000).
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1.1. Contributions. Motivated by the common discrete linear struc-
ture of codes and lattices, we initiate the study of efficient list decoding
for lattices, from both a combinatorial and algorithmic perspective. The
problem of finding all the lattice points within a given distance from
a target is also the problem of lattice enumeration, a technique com-
monly used in classical computational problems on lattices (e.g., Kannan
(1987); Pujol & Stehlé (2008)), but with exponential running time in
general lattices. Conway & Sloane (1998) promoted the applicability of
lattices in practice as alternatives to codes. Therefore, our study of effi-
cient list decoding is motivated by practical applications in error-tolerant
communication, but primarily by the naturalness of the list-decoding
problem from a mathematical and computational perspective, and we
hope that our work will find other applications in theoretical computer
science.

In this work we focus on the Barnes-Wall (BW) Barnes & Wall
(1959) family of lattices in CV, which have been well-studied in coding
theory (see, e.g., Amir H. Banihashemi (1998); Forney (1988); Forney
& Vardy (1996); Nebe et al. (2001); Salomon & Amrani (2005)) and
share many connections to the Reed-Muller Muller (1954); Reed (1954)
family of error-correcting codes (we elaborate below). Barnes-Wall
lattices were first constructed in order to demonstrate dense sphere
packings, a feature that makes them useful in communications settings.
Specifically, Barnes-Wall lattices are particularly useful instantiations
of ‘Construction-D’ lattices, which themselves provide a general frame-
work for constructing lattices approaching the capacity of band-limited
channels. (For further details, see e.g., Conway & Sloane (1998); Forney
(1988).)

Minimum-distance decoding algorithms for BW lattices were given
in Forney (1988); Ran & Snyders (1998), but they are either for fixed
low dimensions or have runtimes exponential in the lattice dimension V.
Micciancio & Nicolosi (2008) gave the first poly(/V)-time algorithms
for bounded-distance (unique) decoding of any BW lattice up to 6/4
relative error. In fact, Micciancio & Nicolosi (2008) give two algorithms,
a sequential one with O(V log V) running time, and a parallelizable one
with O(N?) circuit size. They also posed list decoding of BW lattices
as an open problem.

Our main contributions are twofold:
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1. We give tight (up to polynomials) combinatorial bounds on the
worst-case list size for BW lattices, showing it to be polynomial
in the lattice dimension N for any relative squared distance (rsd)
bounded away from the rsmd ¢ of the lattice. (See Theorem 1.2
and Theorem 1.3 below for precise statements.) We note that it
was already known that the list size is super-polynomial N ©U°gN)
when the rsd equals ¢ (see, e.g., (Conway & Sloane 1998, Chapter
1, §2.2, page 24)).

2. We give a corresponding list-decoding algorithm that, for any
rsd, runs in time polynomial in the lattice dimension and worst-
case list size. Our algorithm generalizes the Micciancio-Nicolosi
parallel algorithm, and with sufficiently many processors it runs
in only poly-logarithmic O(log® N) parallel time. (See Section 3
for further details.)

We note that Johnson-type bounds for lattices are known and easy
to obtain (in fact, the Johnson bound for codes under the Hamming
metric is typically proved by reducing it to a packing bound in R¥
under the Euclidean norm; see, e.g., Bollobés (1986); Guruswami &
Sudan (2001); Micciancio & Goldwasser (2002); Sudan (2001)). For
alattice £ C C" with rsmd 4, the list size for rsd § - (5 — €) is at most
i, and for rsd % is at most 4N (see Lemma 2.3). Interestingly, the latter
bound is tight for BW lattices (see Corollary 2.4). Since = 1 for every
BW lattice, our combinatorial and algorithmic results for rsd up to 1
therefore apply far beyond the Johnson bound.

To describe our results in more detail, we need to define Barnes-
Wall lattices. Let G = Z[i] be the ring of Gaussian integers, and let

p=14+1€G.

DEFINITION 1.1 (Barnes-Wall lattice). The nth Barnes-Wall lattice
BW,, C GV of dimension N = 2" is defined recursively as BW, = G,
and for positive integern > 1 as

BW,, = {[u,u+ ¢v] : u,v € BW,,_1}.

One can check that BW,, is a lattice; indeed, it is easy to verify that
it is generated as the G-linear combinations of the rows of the n-fold
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Kronecker product

O v
W-{O qb} eC .

A simple induction proves that the minimum distance of BW,, is /N,
i.e., its rsmd is § = 1.! Also observe that if [u,w = u + ¢v] € BW,
for u,w € CN/2, then [w,u] € BW,,: indeed, we have w, —v € BW,,_;
and so [w,u = w + ¢ - —v] € BW,,. The mathematical and coding
properties of Barnes-Wall lattices have been studied in numerous works,
e.g., Agrawal & Vardy (2000); Conway & Sloane (1998); Forney (1988);
Forney & Vardy (1996); Micciancio & Nicolosi (2008); Nebe et al.
(2001); Salomon & Amrani (2005).

Combinatorial bounds. Let ¢(n,n) denote the worst-case list size
(over all received words) for BW,, at rsd 1. We prove the following
upper bound.

THEOREM 1.2. For any integern > 0 and € € (0, 1], we have
U1 —e,n) < 4- (1/)1 = NOUr(1/9),

Moreover, we show that the dependence on log(1/¢) in the exponent is
necessary, and thus the above bound is tight, up to polynomials.

THEOREM 1.3. For any integern > 0 and € € [27™, 1], we have
01— e,n) > 2(loae)loa g

In particular, for any constant e > 0 (or even any ¢ > N~ ¢ forc < 1),
we have ((1 — e,n) = N®os(1/9)),

As previously mentioned, it is also known that at rsd n = 1, the
maximum list size £(1,n) is quasi-polynomial N®(°¢N) in the lattice
dimension, and is achieved by letting the received word be any lattice

!'The fundamental volume of BW,, in C¥ is det (W) = 2"V/2, 5o its determinant-
normalized minimum distance is v/ N / det(W)/(2N) = {/N. This is better than the
normalized minimum distance 1 of the integer lattice GV, but worse that the largest
possible of ©(v/N) for N-dimensional lattices.
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point (Conway & Sloane 1998, Chapter 1, §2.2, page 24). Because
the rsmd of BW,, is exactly 1, here we are just considering the number
of lattice points at minimum distance from the origin, the so-called
“kissing number” of the lattice.

List-decoding algorithm. We complement the above combinatorial
bounds with an algorithmic counterpart, which builds upon the unique
(bounded-distance) decoding algorithm of Micciancio & Nicolosi (2008)
for rsd up to 5.

THEOREM 1.4. There is a deterministic algorithm that, given any re-
ceived word r € CV and n > 0, outputs the list of all points in BW,,
that lie within rsd 1) of , and runs in time O(N?) - {(n,n)?.

We also remark that the algorithm can be parallelized just as in Mic-
ciancio & Nicolosi (2008), and runs in only polylogarithmic O(log® V)
parallel time on p > N2 - {(n,n)? processors.

Theorem 1.2 and Theorem 1.4 immediately imply the following corol-
lary forn =1 —e.

COROLLARY 1.5. There is a deterministic algorithm that, given a re-
ceived word r € CV and ¢ > 0, outputs the list of all lattice points
in BW,, that lie within rsd (1 — ¢) of r, and runs in time (1/¢)°™ =
NO(log(1/e))

Given the lower bounds, our algorithm is optimal in the sense that
for any constant € > 0, it runs in poly (V) time for rsd 1 — ¢, and that
list decoding in poly(/V) time is impossible (in the worst case) at rsd 1.

1.2. Proof Overview and Techniques.

Combinatorial bounds. Our combinatorial results exploit a few sim-
ple observations, some of which were initially used in obtaining the
algorithmic results of Micciancio & Nicolosi (2008). The first is that by
the Pythagorean theorem, if = §(r, w) is the rsd between a received
vector r = [rg,r;] € CV and a lattice vector w = [wp,w;] € BW,
(where 7; € CM/? and w; € BW,,_,), then §(r3, w;) < n for some
b € {0, 1}. The second observation (proved above) is that BW lattices
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are closed under the operation of swapping the two halves of their vec-
tors, namely, [wo, w;] € BW,, if and only if [w;, wy] € BW,,. Therefore,
without loss of generality we can assume that §(ro, wy) < 7, while
incurring only an extra factor of 2 in the final list size. A final important
fact is the relationship between the rsd’s for the two Barnes-Wall vectors
U= wpy,v = é(wl — wpy) € BW,,_; that determine w; namely, we have

n= %5(7’0,11) + 5(%(7”1 —u),v).

(See Lemma 2.1.) Since 6(rg,u) < 7, we have must have 5(%( —
u),v) =1 = 36(ro, wo) € [n/2, 7).

Our critical insight in analyzing the list size is to carefully partition
the lattice vectors in the list according to their distances from the respec-
tive halves of the received word. Informally, a larger distance on the left
half (between 7, and ) allows for a larger list of u’s, but also implies
a smaller distance on the right half (between %(rl — u) and v), which
limits the number of possible corresponding v’s. We bound the total list
size using an inductive argument for various carefully chosen ranges of
the distances at lower dimensions. Remarkably, this technique along
with the Johnson bound allows us to obtain tight combinatorial bounds
on the list size for distances all the way up to the minimum distance.

As a warm-up example, which also serves as an important step when
analyzing larger rsd’s, Lemma 2.5 gives a bound of ¢ (g, n) <4.-24" =
poly () forrsdn = g. This bound is obtained by partitioning according
to the two cases d(rg, u) € [O, ) and é(ro, u) E [, 8] which imply
that the rsd between v and + (7’1 — u) is at most 2 and 3, respectively.
When bounding the corresponding number of u’s and v’s, the rsd’s up to
5 <3 are handled by the Johnson bound, and rsd’s up to 2 are handled
by 1nduction on the dimension.

To extend the argument to rsd’s up to 7 = 1 — ¢, we need to partition
into three cases, including ones which involve rsd’s 1 — 36 and 3 . In
turn, the bound for rsd 2 1 also uses three cases, plus the above bound
for rsd 5 . Interestingly, all our attempts to use fewer cases or a more
direct analysis resulted in qualitatively worse list size bounds, such as
NOUg®(1/4) or worse.

Lastly, our lower bounds from Theorem 1.3 are obtained by using a
representation of BW lattices in terms of RM codes (see Fact 1.9), and
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by adapting the lower bounds from Gopalan et al. (2008) for RM codes
to BW lattices.

List-decoding algorithm. A natural approach to devising a list-decoding
algorithm using the above facts (also used in the context of Reed-Muller
codes Gopalan et al. (2008)) is to first list decode the left half r( of the
received word to get a list of u’s, and then sequentially run through the
output list to decode the right half é(ﬁ —u) and get a corresponding list
of v’s for each value of u. However, because the recursion has depth n,
the straightforward analysis reveals a super-polynomial runtime N
for rsd 7 > 1/2, because the list size at depth d can be > 4N /2%

Instead, our list-decoding algorithm is based on the elegant divide-
and-conquer algorithm of Micciancio & Nicolosi (2008) for bounded-
distance (unique) decoding, which decodes up to half the minimum dis-
tance (i.e., 7 = %) in quasi-linear O(N ) time, or even poly-logarithmic
O(log® N) parallel time on a sufficiently large poly(/N) number of pro-
CEsSOrs.

The main feature of the algorithm, which we exploit in our algorithm
as well, is the use of a distance-preserving linear automorphism 7 of
the BW lattice, i.e., 7(BW,,) = BW,, (see Fact 3.1). In particular, a
lattice vector w € BW,, can be reconstructed from just one arbitrary
half of each of w = [wy, w;] and T (w) = [To(w), T1(w)]. Recall that
for a received word r = [rg, 1| (where r; € CN/?), we are guaranteed
that 6(rp, wp) < 0(r,w) for some b € {0,1}, and similarly for 7 (r)
and 7 (w). These facts straightforwardly yield a divide-and-conquer,
parallelizable list-decoding algorithm that recursively list decodes each
of the four halves rq, 71, To(r), T1(r) and reconstructs a list of solutions
by combining appropriate pairs from the sub-lists, and keeping only
those that are within the distance bound. The runtime of this algorithm
is only quadratic in the worst-case list size, times a poly(/N) factor
(see Section 3). We emphasize that the only difference between our al-
gorithm and the Micciancio-Nicolosi algorithm is the simple but crucial
observation that one can replace single words by lists in the recursive
steps. The runtime analysis, however, is entirely different, because it
depends on the combinatorial bounds on list size.
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1.3. Comparison with Reed-Muller Codes. Here we discuss several
common and distinguishing features of Barnes-Wall lattices and Reed-
Muller codes.

DEFINITION 1.6 (Reed-Muller code). For integers d,n > 0, the Reed-
Muller code of degree d in n variables (over IF5) is defined as

RM = { (p(@))aces : p € Falan, ., ], deg(p) < d}

An equivalent recursive definition is RM® = {0,1} C F2" for any
integern > 0, and

RM! = {[u,u+v]:u€RM_;,0 € RM!_}}.

Here if u € RM?_, v € RM®"} correspond to polynomials p,,p, €
Fy[x1, ... 2, 1] respectively, then the codeword [u,u + v] € RM® cor-
responds to the polynomial p = p, + x,, - p, € Falz1, ..., x,].

The recursive definition of RM codes already hints at structural
similarities between BW lattices and RM codes. Indeed, BW lattices
can be equivalently defined as evaluations modulo ¢" of (Gaussian)
integer multilinear polynomials in n variables over the domain {0, ¢}".
Recall that an integer multilinear polynomial p € G|z, ..., x,] is one
whose monomials have degree at most one in each variable (and hence
total degree at most n), i.e.,

plrr,. . xn) = Y as- ]
Se{0,1}» ies
where each ag € G. A simple inductive argument proves the following
lemma.
LEMMA 1.7.

BW, = {(p(x))sciopy : p € Glan,...,x,] is multilinear} + ¢"G*".

Thus, while RM? codewords correspond to low-degree polynomials
(when d is small), BW lattice points correspond to possibly high-degree
polynomials. As an immediate application, our main theorems imply the
following corollary regarding the set of integer multilinear polynomials
that approximate a function f: {0, ¢}" — C.
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COROLLARY 1.8. Given a map f : {0,¢}" — C (represented as a
lookup table) and ¢ = Q(N~°) for some ¢ < 1 and N = 2", there exists
an algorithm that outputs in time N°1°8(/9) a]] the integer multilinear
polynomials g: {0,¢}" — C such that || f — g||* < (1 —¢)N.

Just as in our algorithmic results for BW lattices, the recursive
structure of RM codes is critically used in list-decoding algorithms
for these codes, but in a different way than in our algorithm. The list-
decoding algorithm for RM? given in Gopalan et al. (2008) recursively
list decodes one of the halves of a received word, and then for each
codeword in the list it recursively list decodes the other half of the
received word. The recursion has depth d and thus has a total running
time of poly (V) - £(n)¢, where £(n) is the list size at relative (Hamming)
distance 7. As mentioned above, a similar algorithm can work for BW
lattices, but the natural analysis implies a super-polynomial ¢(n)™ lower
bound on the running time, since now the recursion has depth n. The
reason we can overcome this potential bottleneck is the existence of
the linear automorphism 7 of BW,,, which allows us to make only a
constant number of recursive calls (independently of each other), plus
a poly(N) - £(n)?-time combining step, which yields a runtime of the
form O(1)" - poly(N) - £(n)* = poly(N) - £(n).

We note that RM? codes are efficiently list decodable up to a radius
larger than the minimum distance Gopalan et al. (2008), and remark
that while RM codes are some of the oldest and most intensively studied
codes, it was not until recently that their list-decoding properties have
been very well understood Gopalan et al. (2008); Kaufman ez al. (2010);
Pellikaan & Wu (2004).

We finally note that the connection to Reed-Muller codes can also be
made more explicit in the following alternate description of BW lattices,
which we use in Section 2.3.

FACT 1.9 (Forney 1988, §IV.B).

n—1

BW, = {Z ¢ cqg+ " - ¢, withcy € RMY, and
d=0
0<d<n-—1, andc, € GV}

where the embedding of Fy into C is given by 0 +— 0 and 1 > 1.
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In particular, any codeword c; € RM gives rise to a lattice point
¢ cq € BW,,

1.4. Other Related Work. Cohn & Heninger (2015) study a list-
decoding model on polynomial lattices, under both the Hamming metric
and certain ‘non-Archimedian’ norms. Their polynomial analogue
of Coppersmith’s theorem Coppersmith (2001) implies, as a special
case, Guruswami and Sudan’s result on list decoding Reed-Solomon
codes Guruswami & Sudan (1999).

Decoding and list decoding in the Euclidean space has been also
considered for embeddings into real vector spaces of codes classically
defined over finite fields. These embeddings can give rise to so-called
spherical codes, where the decoding problem has as input a received
vector on the unit sphere, and is required to output the points in the code
(also on the unit sphere) that form a small angle with the given target.
Another related decoding model is soft-decision decoding, where for
each position of the received word, each alphabet symbol is assigned a
real-valued weight representing the confidence that the received symbol
matches it. Soft decision unique decoding for RM codes was studied
in Dumer & Krichevskiy (2000); Dumer & Shabunov (2006a,b), and
list-decoding algorithms were shown in Dumer et al. (2008); Fourquet
& Tavernier (2008).

Further, the question of decoding lattices is related to the well-
studied vector quantization problem. In this problem, vectors in the
ambient space need to be rounded to nearby points of a discrete lattice;
for further details on this problem see, for example, Conway & Sloane
(1998).

Organization. In Section 2 we prove our combinatorial upper and
lower bounds for BW lattices. In Section 3 we present and analyze our
main list-decoding algorithm. We conclude in Section 4 with several
open problems.

2. Combinatorial Bounds

We start with a few basic definitions. For a lattice £, a vector r €
C™ (often called a received word) and any 1 > 0, define L. (r,n) =
{z € L:§(r,x) <n} to be the list of lattice points w € L such that
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d(r,w) < n. We often omit the subscript £ when the lattice is clear
from context. For » > 0 and nonnegative integer n with N = 2", we
define /(n,n) = max,ccn|Lpw, (7,7)| to be the maximum list size for
rsd 7, for the nth Barnes-Wall lattice.

2.1. Helpful Lemmas. We start with two simple but important obser-
vations about Barnes-Wall lattices. The first relates the rsd’s between
the respective “left” and “right” halves of a received word and a lattice
point. The second relates the list sizes for the same rsd but different
dimensions.

LEMMA 2.1. Letr = [rg,r1] € CV with ro,r, € CN/2, and w =
[u,u + ¢v] € BW,, foru,v € BW,_1. Letn = §(r,w), o = 0(ro, u)
andn = 0(3(r1 — u),v). Thenn =B + 1.

PROOF. We have

d(ro,u) + 0(r1, u + @v)

é(r,w) = 5
) |¢|2~5($(r1—U),v)
2 2
_ o
= 5 + .

0

LEMMA 2.2. Foranyn > 0andn > 1, we have {(n,n — 1) < {(n,n).

PROOF. Letr € CN2andw € L(r,n) € BW,,_y. Then 6([r, 7], [w, w]) =
d(r,w), and since [w,w] € BW,, (because w € BW,,_;) it follows that
[w,w] € L([r, 7], m). U

We next state a Johnson-type bound on the list size for arbitrary
lattices; see, e.g., Bollobas (1986); Guruswami & Sudan (2001); Mic-
ciancio & Goldwasser (2002); Sudan (2001) for proofs. Note that these
sources work in R : our form follows because the standard isomorphism
between CV and R?¥ as real vector spaces also preserves Euclidean
norm.
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LEMMA 2.3 (Johnson bound). Let £ C C¥ be a lattice of rsmd § =
§(L) and letr € CN. Then

(i) |L(r, 3)| < 4N, and
(i) |L(r,6- (5 —€))| < o forany e > 0.

(In reading these bounds, recall that 6(L£)/4, not 6(L£)/2, is the
relative unique-decoding distance of £, because §(L) is the relative
squared minimum distance of the lattice.)

COROLLARY 2.4. For the lattice BW,, C CV and any € > (0, we have
((3,n) =4N and ((5 — e,n) < o-.
PROOF. Since 6(BW,,) = 1, the upper bounds follow immediately
by Lemma 2.3. For the lower bound /¢ (%, n) > 4N, we give an inductive
argument showing that |L(r,3)| > 4N for the received word r =
(%, e %) € CV. To do this, we show by induction on n that L(r, })
contains 2N pairwise disjoint (unordered) pairs {w;, w}} where w; —
w; € ¢ - BW,,.

For the base case n = 0, notice that L(£,1) = {0,1,4,1+ i}, and
that (14+i) —0=¢ € ¢ -BWoandi—1 = ¢ -1 € ¢ - BW,. Next,
let {w;, w}} denote the pairs guaranteed by the inductive hypothesis for
some n, and recall that [a, b] € BW,,;; if and only if a,b € BW,, and
a—b e ¢-BW,,. Itis easy to verify that the pairs {[w;, w;], [w}, w}]} and
{[w;, w}], [w}, w;]} establish the inductive hypothesis for n + 1. Indeed,
[wi, w;] — [wi,w)] = ¢ - [w,w] € ¢-BW,4; for some w € BW,,
and similarly, [w;, w}] — [w, w;] = ¢ - [w, —w] € ¢ - BW,,;1, because
w— (—w) = 2w € ¢ - BW,,. Also, 6([r,r], [w;, w;]) = é(r,w;) < 3
and similarly for the other vectors. 0

2.2. Beyond the Johnson Bound. In this section we prove our main
combinatorial bounds on the list size for Barnes-Wall lattices BW,, C
G". Our main result is that the list size at rsd (1 — €) is (1/€)°™ =
NOWe(1/) for any e > 0. The proof strategy is inductive, and is based
on a careful partitioning of the lattice vectors in the list according to
the distances of their left and right halves from the respective halves of
the received word. Intuitively, the larger the distance on one half, the
smaller the distance on the other (Lemma 2.1 above makes this precise).
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The total list size can therefore be bounded using list bounds for various
carefully chosen distances at lower dimensions. Our analysis relies on
a poly (V) list-size bound for rsd 2, which in turn relies on a poly (V)
bound for rsd %. We first prove these simpler bounds, also using a
partitioning argument. (Note that the concrete constants appearing
below are chosen to simplify the analysis, and are likely not optimal.)

LEMMA 2.5. For any integern > 0, we have £(2,n) < 424"

PROOF. For n = 0, it is easy to see that for all < 1, there are at
most 4 Gaussian integers within a ball of radius 7 from any r € G,
so ¢(n,0) < 4. Suppose now that n > 1 with N = 2". Letr =
[ro,71] € CN with rg, 7, € CV /2 be an arbitrary received word, and let
w = [u,u+ ¢v] € L(r,2) for u,v € BW,_;. Letn = §(r,w) < 2,
Mo = 0(ro, u) and = 5(%(7"1 —u),v).

Note that from Lemma 2.1 we have that n = 2 + 1y = 2(6(ro, u) +
8(r1,u+ ¢v)) < 2. Without loss of generality, we can assume that
1o = 6(ro, u) < 2. For if not, then we would have d(ry,u + ¢v) < 2,
and since [a, b] € BW,, implies [b, a] € BW,, for a,b € G"/2, we could
instead work with the received word ' = [rq, 7] and w’ = [u+ v, u] €
L(r', g) This incurs a factor of at most 2 in the total list size, which we
account for in the analysis below.

Assuming 7y < g, we now split the analysis into two cases: 7y €
[0,%), and ny € [, 2]. By Lemma 2.1, these cases correspond to
m < 2 and n < 3, respectively. Since u € L(ro,7) and v €
L(=(r1 — u),m), after combining the lists we obtain at most £(Z,n —

1)-0(2,n—1)+€(2,n — 1) £(Z,n — 1) potential vectors in the list.
Finally, after incorporating the factor of 2 from the argument above,

we have (where for conciseness we write £(n) for £(n,n — 1)):

(G <2 () - 4Q) +4F) - 453))
)

o]

ot

©

2) ( Corollary 2.4)
< 24" 0(3,0). (unwind the recurrence)

O
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LEMMA 2.6. For any integer n > 0, we have K(i—i, n) < 4-24%",

PROOF. As noted in the proof of Lemma 2.5, the claim is clearly true
for n = 0, so suppose n > 1; we proceed by induction on n. Define the
same notation as in the proof of Lemma 2.5, using rsd bound % instead
of g.

As before, we assume that 77y < % and account for the accompanying
factor of 2 in the list size. This time we split the analysis into three
cases: 1o € [0, ) 770 € [4, g) and 7]0 € [2,3]. By Lemma 2.1, these
correspond to 7; < 4, m < and m < 15, respectively.

For conciseness, in the calculation below we write ¢(n) for £(n,n —
1). We have

0(5n) <2 () -6 +03) - 62+ £(3) - 0(35))
<2-(248)-0(3)+2-4(2)
<20-4-24207D 4 39 942(n—1)
< 4.24%"

where we used Corollary 2.4, the induction hypothesis and Lemma 2.5.
O

We are now ready to prove our main combinatorial bound (Theorem 1.2).
We restate it here for convenience.

THEOREM 1.2. For any integern > 0 and € € (0, 1], we have
((1—e,n) <4-(1/e)'0 = NOUo(1/9),

PROOF. We need to show that £(1 —¢,n) < 4-(1/€)'%" forany n > 0
and € > 0; obviously, we can assume ¢ < 1 as well. As noted in the
proof of Lemma 2.5, the claim is clearly true for n = 0. We proceed by
induction on n; namely, we assume that for all v > 0 it is the case that
(1 —~,n—1) <4-(1/7)'%"=1) Define the same notation as in the
proof of Lemma 2.5, using rsd bound 1 — € instead of %.

As in earlier proofs, we assume that 17y < 1 — € and account for the
accompanying factor of 2 in the list size. We split the analysis into 3
cases: 79 € (0,3 —€), m € [3 — €, )andnoe[l—%,l—e].
By Lemma 2.1, these correspond to 7; < 1 — €M < 7—5< %, and
m < 1 — <, respectively.
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For conciseness, in the calculation below we write ¢(n) for (1, n —
1). It follows that (1 — €, n) is bounded by

2(0(1—e)l(E —e)+ (1 —e)l(3 — <)+ 0(1—2)1(3))
< 2@(1 —e)(£ +2)+20(1 — %) - 4- 24" Y (Corollary 2.4, Lemma 2.6)
2.1 —€)+8-2427 (1 — &)
).

< @ (2 )16n=1) 4 39 . 942(n—1 (2 )16(" U (induction hypothesis)
— (@) (2432 242 (1))

< (LoD (2)

§4 ( )16n

whene < 2. If e € (3, 1] then £(1 —¢,n) = 1 < 4-(1)'%", and the
proof is complete. O

Notice that in the above proof, it is important to use an upper bound
like g < 1— % in one of the cases, so that the factor (2)'""~1) from the
inductive list bound can cancel out the corresponding factor of 24%("~1)
for the corresponding rsd bound 1; < %. This allows the recurrence to
be dominated by the term

((1—e€)-0(3 —
yielding a solution of the form (1/¢)°™

2.3. Lower Bounds. For our lower bounds we make use of the rela-
tionship between Barnes-Wall lattices and Reed-Muller codes from Fact 1.9,
and then apply known lower bounds for the latter.

FACT 2.7 (MacWilliams & Sloane 1981, Chap. 13, §4).

(i) The minimum distance of RMfL is 2"~4_ In particular, the charac-
teristic vector cy € F3' of any subspace V' C F3 of dimension
k > n — d is a codeword ofRMfL.

(The characteristic vector cs € 5 of a set S C F? is defined by
indexing the coordinates of F2" by elements o € F}, and letting
(¢s)a = lifand only ifa € S.)
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n—d—1 9Qn—i _
(ii) There are2¢- ]

i 17 24(n=d) gubspaces of dimension
i=0 —
n —d in F3.

We now prove Theorem 1.3, restated here for convenience.
THEOREM 1.3. For any integern > 0 and € € [27™, 1], we have
(1 —¢en)> 9(n—log ) log 5,

In particular, for any constant ¢ > 0 (or even any ¢ > N~ ¢ forc < 1),
we have (1 — e, n) = N$los(1/)),

PROOF. Let k£ > 0 be an integer such that 2"¢ < 2k < ontle 1et the
received word be = ¢* - [1,0,...,0] € G", where we assume that the
first coordinate is indexed by 0" € 7. By Fact 2.7 and Fact 1.9, for any
subspace H C [} of dimension n — k, we have " - cy € BW,,. Notice
that

Ir—¢" - cull® = 16" llew = [1,0,.... 0]
2" —2F < 2"(1 —e).

By Fact 2.7, there are at least 25("—%) > 2(n—log )log 3 gubspaces H C
F? of dimension n — k, which completes the proof. U

3. List-Decoding Algorithm

In this section we give a list-decoding algorithm that runs in time polyno-
mial in /V and the list size; in particular, by Theorem 1.2 it runs in time
NOUoe(1/9) for rsd (1—e¢) for any fixed € > 0. This runtime and error tol-
erance are optimal (up to polynomial overhead) in the sense that the list
size can be N*(°e(1/<)) by Theorem 1.3, and can be super-polynomial
in NV for rsd 1 or more.

Our list-decoding algorithm is very similar to the (parallel) Bounded
Distance Decoding algorithm of Micciancio & Nicolosi (2008), which
outputs the unique lattice point within rsd n < }L of the received word (if
it exists). In particular, both algorithms work by recursively (and inde-
pendently) decoding four words of dimension /N/2 that are derived from
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the received word, and then combining the results appropriately. In our
case, the runtime is strongly influenced by the sizes of the lists returned
by the recursive calls, and so the combinatorial bounds from Section 2
are critical to the runtime analysis.

We need the following easily-verified fact regarding the symmetries
(automorphisms) of BW,,.

FACT 3.1. For N = 2", the linear transformation T : CN — C given
by T([u,v]) = £ - [u+v,u—v] is a distance-preserving automorphism
of BW,,, namely T (BW,,) = BW,, and §(z) = (T (x)) forall x € CV.

Algorithm 1 LISTDECODEBW: List-decoding algorithm for Barnes-

Wall lattices.

Input: » € CV (for N = 2")and n > 0.

Output: The list L(r,n) C BW,,.

: if n = 0 then

output L(r,n) C G by enumeration.

3. parse r = [rg, 7] for rg,r; € CN/2, and let r, = %(ro + 1) and
r_=2(rg—m1),80 [r,r_] =T(r).

4: forall j € {0,1,+,—} do

5:  let L; = LISTDECODEBW(r;, 7).

6: foreach (b,s) € {0,1} x {+, —} and (w, w;) € Ly X Lg, compute
the corresponding candidate vector w = [wp, w;] € BW,, as the
appropriate one of the following:

N =

{U)(], %w-i- - ’UJO], [U)(], Wo — %w—]v
[%w‘f' — wy, wil, [%w_ + wr, wy].

7: remove all candidate vectors w such that §(r, w) > n.

8: sort the remaining list of candidates lexicographically and remove
all duplicates.

9: return the set L of all the candidate vectors remaining.

The following theorem, when combined with our combinatorial up-
per bound (Theorem 1.2), yields Theorem 1.4 as an immediate corollary.

THEOREM 3.2. Algorithm 1 is correct and runs in O(N?) - {(n,n)?
scalar operations over C.
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PROOF. We need to show that on input 7 € C and > 0, Algo-
rithm 1 runs in time O(N?) - £(n,n)? and outputs L = L(r,n).

We first prove correctness, by induction. The algorithm is clearly
correct for n = 0; now suppose that n > 1 and the algorithm is correct
for n — 1. Adopt the notation from Algorithm 1, and let w = [wy, w1] €
L(r,n) for wy, w; € BW,,_; be arbitrary. Since §(w,r) < 1, we have
d(ro, wo) < mor d(ry,w;) < norboth, so wy € L(rg,n) or wy €
L(ry,n) or both. The same is true about the corresponding vectors after
applying the automorphism 7. Namely, letting [w,w_] = T (w) €
BW,, for w,,w_ € BW,,_;, we have [w,,w_] € L([r,,r_],n) and so
wy € L(ry,n) orw_ € L(r_,n) or both.

By the inductive hypothesis and the above observations, we will have
(wp, ws) € Ly x Ly for at least one choice of (b, s) € {0,1} x {+, —}.
The algorithm calculates the vector w = [w, w;] as a candidate, simply
by solving for wy, w; using wy, wy and the definition of 7. Therefore,
w will appear in the output list L. And because L C L(r,n) by Step 7,
the claim follows.

We now analyze T'(N), the number of operations over C for an input
of dimension N = 2". We first observe that after filtering (Step 7), each
remaining vector can appear at most four times in the list. Indeed, by
induction Lg, L1, L, and L_ themselves do not contain any duplicates,
and no two distinct elements from one of these lists can give rise to
the same lattice point in BW,,. Therefore, sorting and de-duplicating
(Step 8) takes O(N) - £(n,n)? operations, which implies that T'(N)
satisfies

T(N)=4-T(N/2) +4-O(N)-£(n,n—1)*>+ O(N) - £(n,n)?
=4-T(N/2) + O(N) - £(n,n)’
= O(N?) - £(n,n)*

by the Master Theorem for recurrences (since ¢(n,n — i) < ¢(n,n) for
all 2 > 0). U

REMARK 3.3. We note that the above algorithm, like the unique de-
coder of Micciancio & Nicolosi (2008), can be easily parallelized. On p
processors, the parallel runtime (measured in number of operations over
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C) satisfies the recurrence

T(N.p) T(N), ifn=0o0rp <4

PIEN TN 2, p/4) + O(N - €(n, 1 — 1)2/p + log N), otherwise,
where T'(N) is as in the proof of Theorem 3.2. This is because it
takes O(N - £(n,n — 1)?/p) operations per processor to combine the
lists in Step 6, and computing each of the {(n,n — 1)? distances in
Step 9 requires computing a sum of N real numbers, for a total of
O(N - 4(n,n — 1)*/p + log N) parallel runtime. Notice that when
p > N?./{(n,n — 1), the algorithm runs in only polylogarithmic
O(log® N) parallel time. Note also that when the list size {(n,n—1) = 1,
this analysis specializes exactly to that of Micciancio & Nicolosi (2008).

4. Discussion and Open Problems

Some immediate open questions arise from comparison to the results
of Micciancio & Nicolosi (2008). Motivated by the sequential unique
decoder proposed in Micciancio & Nicolosi (2008), is there a (possibly
sequential) list decoder that runs in time guasilinear in N and the list
size, rather than quadratic? Also, as asked in Micciancio & Nicolosi
(2008), is there an efficient algorithm for solving the Closest Vector
Problem (i.e., minimum-distance decoding) on Barnes-Wall lattices?
Note that our combinatorial lower bounds do not rule out the existence
of such an algorithm, since for the Closest Vector Problem the algorithm
only needs to output a single vector, not the list of all closest vectors.

An important variant of the list-decoding problem for codes is local
list decoding. In this model, the algorithm is required to run in time
polylogarithmic in the block length, and output succinct representations
of all the codewords within a given radius. Defining a meaningful notion
of local decoding for lattices (and BW lattices in particular) would
require additional constraints, since lattice points do not in general
admit succinct representations (since one needs to specify an integer
coefficient for each basis vector). While by the Johnson bound we have a
poly(n) list size for rsd up to 1/2 — poly(1/n), achieving a meaningful
notion of local decoding in this context would be interesting.

Another interesting direction is to find (or construct) more asymp-
totic families of lattices with nice list-decoding properties. In particular,
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are there generic operations, which, when applied to lattices, guarantee
good list-decoding properties? For codes, list decodability has been
shown to behave well under the tensoring and interleaving operations,
as demonstrated in Gopalan et al. (2011). Tensoring is also well-defined
for lattices, but it does not behave so well as in codes. For example,
tensoring a code with itself results in a code whose minimum distance is
squared, while tensoring a lattice with itself does not square the distance.
This issue has appeared in deciding NP-hardness of the Shortest Vector
Problem Haviv & Regev (2012); Micciancio (2012) where the tensoring
technique turned out to be much trickier than a tensoring approach for
deciding the NP-hardness of the analogous minimum distance problem
in codes Dumer et al. (2003) 2. Understanding how list decoding be-
haves in the context of tensoring could bring up novel aspects of lattice
list decoding, and it remains an intriguing further direction.

Finally, it would be also interesting and potentially useful to consider
list decoding for norms other than the Euclidean norm, such as the /.,
or /o norms.
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