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drawn randomly from the input distribution, rather than directly accessing samples. Most natural algorithms
of interest in theory and in practice, e.g., moments-based methods, local search, standard iterative methods for
convex optimization, MCMC and simulated annealing can be implemented in this framework. Our framework
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1 INTRODUCTION

We study the complexity of problems where the input consists of independent samples from an
unknown distribution. Such problems are at the heart of machine learning and statistics (and their
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numerous applications) and also occur in many other contexts such as compressed sensing and
cryptography. While several methods have been developed to estimate the sample complexity of
such problems (e.g. VC dimension (Vapnik and Chervonenkis 1971) and Rademacher complexity
(Bartlett and Mendelson 2002)), proving lower bounds on the computational complexity of these
problems has been much more challenging. The traditional approach to proving lower bounds is via
reductions and by finding distributions that can generate instances of some problem conjectured to
be intractable (e.g., assuming NP # RP).

Here we present a different approach. We show that algorithms which access the unknown
distribution only via a statistical query (SQ) oracle have high complexity, unconditionally. Most algo-
rithmic approaches used in practice and in theory on a wide variety of problems can be implemented
using only access to such an oracle; these include Expectation Maximization (EM) (Dempster et al.
1977), local search, MCMC optimization (Gelfand and Smith 1990; Tanner and Wong 1987), simula-
ted annealing (Kirkpatrick et al. 1983; éern}'f 1985), first and second order methods for linear/convex
optimization, (Belloni et al. 2009; Dunagan and Vempala 2008), k-means, Principal Component
Analysis (PCA), Independent Component Analysis (ICA), Naive Bayes, Neural Networks and many
others (see (Chu et al. 2006) and (Blum et al. 2005) for proofs and many other examples). In fact,
we are aware of only one algorithm that provably does not have a statistical query counterpart:
Gaussian elimination for solving linear equations over a field (e.g. mod 2).

Informally, a statistical query oracle provides an estimate of the expected value of any given
bounded real-valued function within some tolerance. Many popular algorithms rely only on
the average value of various functions over random samples (commonly referred to as empirical
averages). Standard Chernoff-Hoeffding bounds imply that the average value of a bounded function
on the independent samples will be highly concentrated around the expectation on the unknown
distribution (and, indeed in many cases the empirical average is used precisely to obtain an estimate
of the expectation). As a result such algorithms can often be equivalently analyzed in our oracle-
based model.

Our approach also allows proving lower bounds against algorithms that rely on a 1-bit sampling
oracle, referred to as 1-bit sampling algorithms. This oracle provides the value of any Boolean
function on a fresh random sample from the distribution. Many existing algorithms require only
such limited access to random samples. Others can be implemented using such access to samples
(possibly using a polynomially larger number of samples). For brevity, we refer to algorithms that
rely on either of these types of oracles as statistical algorithms.

For example, many problems over distributions are solved using convex programs. Such a
problem is typically formulated as finding an approximation to min,ex Ex~p[f(x, z)] for some
convex set K and functions f(x, -) that are convex in the second parameter z. A standard approach
(both in theory and practice) to solve such a problem is to use a gradient descent-based technique.
The gradient of the objective function is

V. ELf(x.2)] = EIV. f(x,2)]
and is usually estimated using the average value of V,, f(x, z) on (some of) the given random samples.
However, standard analysis of gradient descent-based algorithms implies that a sufficiently accurate
estimate of each of the coordinates of Ex[V f(x,z)] would also suffice. Hence, for an objective
function of the form above, gradient descent can be implemented using either of the above oracles
(detailed analysis of such implementations can be found in a subsequent work (Feldman et al. 2015)).

The key motivation for our framework is the empirical observation that almost all algorithms
that work on random samples are either already statistical in our sense or have natural statis-
tical counterparts. Thus, lower bounds for statistical algorithms can be directly translated into
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lower bounds against a large number of existing approaches. We present the formal oracle-based
definitions of statistical algorithms in Section 2.

Our model is based on the statistical query learning model (Kearns 1998) defined as a restriction
of Valiant’s (1984) PAC learning model. The primary goal of the restriction was to simplify the
design of noise-tolerant learning algorithms. As was shown by Kearns and others in subsequent
works, almost all classes of functions that can be learned efficiently can also be efficiently learned
in the SQ model. A notable and so far unique exception is the algorithm for learning parities, based
on Gaussian elimination. As was already shown by Kearns (1998), parities require exponentially
many queries to learn in the SQ model. Further, Blum et al. (1994) proved that the number of SQs
required for weak learning (that is, for obtaining a non-negligible advantage over the random
guessing) of a class of functions C over a fixed distribution D is characterized by a combinatorial
parameter of C and D, referred to as SQ-DIM(C, D), the SQ dimension.

We consider SQ algorithms in the broader context of arbitrary computational problems over
distributions. We also define an SQ oracle that strengthens the oracle introduced by Kearns (1998).
For any problem over distributions we define a parameter of the problem that lower bounds the
complexity of solving the problem by any SQ algorithm in the same way that SQ-DIM lower bounds
the complexity of learning in the SQ model. Our techniques for proving lower bounds are also based
on methods developed for lower-bounding the complexity of SQ learning algorithms. However, as
we will describe later, they depart from the known techniques in a number of significant ways that
are necessary for our more general setting and our applications.

The 1-bit sampling oracle and its more general k-bit version was introduced by Ben-David and
Dichterman (1998). They showed that it is equivalent (up to polynomial factors) to the SQ oracle.
Using our stronger SQ oracle we sharpen this equivalence. This sharper relationship is crucial for
obtaining meaningful lower bounds against 1-bit sampling algorithms in our applications.

We demonstrate our techniques by applying them to the problems of detecting planted bipartite
cliques and planted bipartite dense subgraphs. We now define these problems precisely and give
some background.

Detecting Planted Cliques. In the planted clique problem, we are given a graph G whose edges
are generated by starting with a random graph G, 1/,, then “planting,” i.e., adding edges to form
a clique on k randomly chosen vertices. Jerrum (1992) and Kucera (1995) introduced the planted
clique problem as a potentially easier variant of the classical problem of finding the largest clique
in a random graph (Karp 1979). A random graph G, 1/, contains a clique of size 2logn with
high probability, and a simple greedy algorithm can find one of size log n. Finding cliques of size
(2 — €)logn is a hard problem for any € > 0. Planting a larger clique should make it easier to
find one. The problem of finding the smallest k for which the planted clique can be detected in
polynomial time has attracted significant attention. For k > c4/nlogn, simply picking vertices
of large degrees suffices (Kucera 1995). Cliques of size k = Q(+/n) can be found using spectral
methods (Alon et al. 1998; Coja-Oghlan 2010; McSherry 2001), via SDPs (Feige and Krauthgamer
2000), combinatorial methods (Dekel et al. 2011; Feige and Ron 2010), nuclear norm minimization
(Ames and Vavasis 2011) and belief propagation (Deshpande and Montanari 2015a).

While there is no known polynomial-time algorithm that can detect cliques of size below the
threshold of Q(+/n), there is a quasipolynomial algorithm for any k > 2log n: enumerate subsets of
size 2log n; for each subset that forms a clique, take all common neighbors of the subset; one of
these will be the planted clique. This is also the fastest known algorithm for any k = O(n'/?7%),
where § > 0.

Some evidence of the hardness of the problem was shown by Jerrum (1992) who proved that
a specific approach using a Markov chain cannot be efficient for k = o(y/n). Additional evidence
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of hardness is given in (Feige and Krauthgamer 2003), where it is shown that Lovasz-Schrijver
SDP relaxations, which include the SDP used in (Feige and Krauthgamer 2000), cannot be used to
efficiently find cliques of size k = o(+/n). Most recently, lower bounds against a constant level of the
more powerful Sum-of-Squares SDP hierarchy were shown by Meka et al. (2015) and Deshpande
and Montanari (2015b). The problem has been used to generate cryptographic primitives (Juels
and Peinado 2000), and as a hardness assumption in a large number of works (e.g. (Alon et al. 2007;
Berthet and Rigollet 2013; Dughmi 2014; Hazan and Krauthgamer 2011; Minder and Vilenchik
2009)).

We focus on the bipartite planted clique problem, where a (k X k)-biclique is planted in a random
bipartite graph. A densest-subgraph version of the bipartite planted clique problem has been used
as a hard problem for cryptographic applications (Applebaum et al. 2010). The bipartite version can
be easily seen to be at least as hard as the original version. At the same time all known bounds
and algorithms for the k-clique problem can be easily adapted to the bipartite case (e.g. (Ames and
Vavasis 2011)). Therefore it is natural to expect that new upper bounds on the planted k-clique
problem would also yield new upper bounds for the bipartite case.

The starting point of our investigation for this problem is the property of the planted k-biclique
problem that it has an equivalent formulation as a problem over distributions defined as follows.

PROBLEM 1.1. Fix an integer k, 1 < k < n, and a subset of k indices S C {1,2,...,n}. The input
distribution Dg on vectors x € {0, 1}" is defined as follows: with probability 1—(k/n), x is uniform over
{0, 1}"; and with probability k /n, x is such that its k coordinates from S are set to 1, and the remaining
coordinates are uniform in {0, 1}. For an integer t, the distributional planted k-biclique problem
with t samples is the problem of finding the unknown subset S using t samples drawn randomly from
Ds.

One can view samples xi, ..., X; as adjacency vectors of the vertices of a bipartite graph as
follows: the bipartite graph has n vertices on the right (with k marked as members of the clique)
and ¢ vertices on the left. Each of the ¢ samples gives the adjacency vector of the corresponding
vertex on the left. It is not hard to see that for ¢ = n, conditioned on the event of getting exactly k
samples with planted indices, we will get a random bipartite graph with a planted (k X k)-biclique
(we prove the equivalence formally in Appendix A).

One interesting approach for finding the planted clique was proposed by Frieze and Kannan
(2008). They gave a reduction from finding a planted clique in a random graph to finding a
direction that maximizes a 2nd order tensor norm; this was extended to general r’th order tensor
norm in (Brubaker and Vempala 2009).Specifically, they show that maximizing the r’th moment
(or the 2-norm of an r’th order tensor) allows one to recover planted cliques of size Q(n'/").
A related approach is to maximize the 3rd or higher moment of the distribution given by the
distributional planted clique problem. For this approach it is natural to consider the following
type of optimization algorithm: start with some unit vector u, then estimate the gradient at u
(via samples), move along that direction and return to the sphere; repeat to reach an approximate
local maximum. Unfortunately, over the unit sphere, the expected r’th moment function can have
(exponentially) many local maxima even for simple distributions. A more sophisticated approach
[Kannan, personal communication] is through Markov chains or simulated annealing; it attempts
to sample unit vectors from a distribution on the sphere which is heavier on vectors that induce a
higher moment, e.g., u is sampled with density proportional to e/ where f() is the expected r’th
moment along u. This could be implemented by a Markov chain with a Metropolis filter (Hastings
1970; Metropolis et al. 1953) ensuring a proportional steady state distribution. If the Markov chain
were to mix rapidly, that would give an efficient approximation algorithm because sampling from
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the steady state likely gives a vector of high moment. At each step, all one needs is to be able to
estimate f(u), which can be done by sampling from the input distribution.

As we will see presently, these approaches can be easily implemented in our framework and
will have provably high complexity. For the distributional planted biclique problem, SQ algorithms
need n(1°8™ queries to detect planted bicliques of size k < n2=9 for any 6 > 0. Even stronger
exponential bounds apply for the more general problem of detecting planted dense subgraphs of
the same size. These bounds match the known upper bounds. To describe these results precisely
and discuss exactly what they mean for the complexity of these problems, we will need to define
the models of statistical algorithms, the complexity measures we use, and our main tool for proving
lower bounds, a notion of statistical dimension of a set of distributions. We do this in the next
section. In Section 3 we prove our general lower bound results and in Section 5 we estimate the
statistical dimension of detecting planted bicliques and dense subgraphs.

2 DEFINITIONS AND OVERVIEW

Here we formally define statistical algorithms and the key notion of statistical dimension, and then
describe the resulting lower bounds in detail.

2.1 Problems over Distributions

We begin by formally defining the class of problems addressed by our framework.

Definition 2.1 (Search problems over distributions). For a domain X, let D be a set of distributions
over X, let F be a set called solutionsand Z : D — 2% be a map from a distribution D € D toa
subset of solutions Z(D) C ¥ that are defined to be valid solutions for D. The distributional search
problem Z over D and ¥ using t samples is to find a valid solution f € Z(D) given access (to an
oracle or samples from) an unknown D € D.

In some settings it is natural to parameterize the set of valid solutions by additional parameters,
such as accuracy. The extension of the definition to such settings is immediate. An example of a
distributional search problem is the distributional planted k-biclique we described in Definition
1.1. In this case the domain X is {0, 1}", the set of input distributions is all the distributions with
a planted k-biclique D = {Dgs | S C [n], |S| = k} and the set of solutions is the set of all subsets
of size k: F = {S | S c [n], |S| = k}. For each Dg there is a single valid solution S. For a second
example, we point the reader to the distributional MAX-XOR-SAT problem in Section 4.

We note that this definition also captures decision problems by having ¥ = {0,1}. A simple
example of a decision problem over distributions that is relevant to our discussion is that of
distinguishing a planted biclique distribution from the uniform distribution over {0, 1}" which we
denote by U. Here the set of input distributions is D = {U} U{Ds | S C [n], |S| = k}. The only
valid solution for a planted biclique distribution Dg is 1 and the only valid solution for U is 0. For a
solution f € ¥, we denote by Z the set of distributions in O for which f is a valid solution.

It is important to note that the number of available random samples ¢ can have a major influence
on the complexity of the problem. First, for most problems there is a minimum ¢ for which the
problem is information-theoretically solvable. This value is often referred to as the sample complexity
of the problem. But even for ¢ which is larger than the sample complexity of the problem, having
more samples can make the problem easier computationally. For example, in the context of attribute-
efficient learning, there is a problem that is intractable with few samples (under cryptographic
assumptions) but is easy to solve with a larger (but still polynomial) number of samples (Servedio
2000). Our distributional planted biclique problem exhibits the same phenomenon.
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2.2 Statistical Algorithms

The statistical query learning model of Kearns (1998) is a restriction of the PAC model (Valiant 1984).
It introduces an oracle that allows a learning algorithm to obtain an estimate of the expectation
of any bounded function of an example. A query to such an oracle is referred to as statistical
query. Kearns showed that many known PAC learning algorithms can be expressed as algorithms
using statistical queries instead of random examples themselves. The main goal of Kearns’ model
was to give a simple way to design algorithms tolerant to random classification noise. Since the
introduction of the model SQ algorithms have been given for many more learning tasks and the
model itself found applications in a number of other contexts such as differential privacy (Blum
et al. 2005; Kasiviswanathan et al. 2011), learning on massively parallel architectures (Chu et al.
2006) and evolvability (Feldman 2008).

In the same spirit, for general search problems over a distribution, we define SQ algorithms as
algorithms that do not see samples from the distribution but instead have access to a SQ oracle.
The first SQ oracle we define is the natural generalization of the oracle defined by Kearns (1998) to
samples from an arbitrary distribution.

Definition 2.2 (STAT oracle). Let D be the input distribution over the domain X. For a tolerance
parameter ¢ > 0, STAT(7) oracle is the oracle that for any query function h : X — [-1, 1], returns
a value

ve| E [hx)] -7, E [hx)]+7]|.
x~D x~D

The general algorithmic techniques mentioned earlier can all be expressed as algorithms using
STAT oracle instead of samples themselves, in most cases in a straightforward way. We would
also like to note that in the PAC learning model some of the algorithms, such as the Perceptron
algorithm, did not initially appear to fall into the SQ framework but SQ analogues were later found
for all known learning techniques except Gaussian elimination (for specific examples, see (Kearns
1998) and (Blum et al. 1998)). We expect the situation to be similar even in the broader context of
search problems over distributions.

The most natural realization of STAT(z) oracle is one that computes h on O(1/7?) random samples
from D and returns their average. Chernoff’s bound implies that the estimate is within the desired
tolerance (with constant probability). However, if h(x) is very biased (e.g. equal to 0 with high
probability), it can be estimated with fewer samples. Our primary application requires a tight
bound on the number of samples necessary to solve a problem over distributions. Therefore we
define a stronger version of STAT oracle which tightly captures the accuracy of an estimate of the
expectation given by random samples. More formally, for a Boolean query function h : X — {0, 1},
VSTAT(¢) can return any value v for which the Binomial distribution B(t, v) (sum of ¢ independent
Bernoulli variables with bias v) is statistically close (for some constant distance) to B(t, E[h]). See
Sec. 3.3 for more details on this correspondence.

Definition 2.3 (VSTAT oracle). Let D be the input distribution over the domain X. For a sample
size parameter t > 0, VSTAT(t) oracle is the oracle that for any query function h : X — [0, 1],

1 [p(-p) }

returns a value v € [p — 7,p + 7], where p = E,.p[h(x)] and 7 = max {;, ;
Note that VSTAT(t) always returns the value of the expectation within 1/+v/. Therefore it is no
weaker than STAT(1/v/) and no stronger than STAT(1/t).
The STAT and VSTAT oracles we defined can return any value within the given tolerance and
therefore can make adversarial choices. We also aim to prove lower bounds against algorithms that
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use a more benign, 1-bit sampling oracle'. The 1-bit sampling oracle gives the algorithm the true
value of a Boolean query function on a randomly chosen sample. This oracle is a special case of the
k-bit sampling oracle introduced by Ben-David and Dichterman (1998) who refer to it as the weak
Restricted Focus of Attention (wRFA) model and is also equivalent to the Honest SQ oracle of Yang
(2001). Learning in this model has been studied in more recent work motivated by communication
constraints on data processing in a distributed computing system. (Steinhardt and Duchi 2015;
Steinhardt et al. 2016; Zhang et al. 2013).

Definition 2.4 (1-STAT oracle). Let D be the input distribution over the domain X. The 1-STAT
oracle is the oracle that given any function & : X — {0, 1}, takes an independent random sample x
from D and returns h(x).

Note that the 1-STAT oracle draws a fresh sample upon each time it is called. Without re-sampling
each time, the answers of the 1-STAT oracle could be easily used to recover any sample bit-by-bit,
making it equivalent to having access to random samples. Note that the 1-STAT oracle can be
used to simulate VSTAT (with high probability) by taking the average of O(t) replies of 1-STAT for
the same function h. While it might seem that access to 1-STAT gives an algorithm more power
than access to VSTAT we will show that t samples from 1-STAT can be simulated using access to
VSTAT(O(t)). This will allow us to translate our lower bounds on SQ algorithms with access to
VSTAT to lower bounds against 1-bit sampling algorithms.

2.3 Statistical Dimension

The main tool in our analysis is an information-theoretic bound on the complexity of statistical
algorithms. Our definitions originate from the statistical query (SQ) dimension (Blum et al. 1994)
used to characterize SQ learning algorithms. Roughly speaking, the SQ dimension corresponds to
the number of nearly uncorrelated labeling functions in a class (see Section 6.1 for the details of
the definition and the relationship to our bounds).

We introduce a natural generalization and strengthening of this approach to search problems over
arbitrary sets of distributions and prove lower bounds on the complexity of statistical algorithms
based on the generalized notion. Our definition departs from SQ dimension in three aspects. (1)
Our notion applies to any set of distributions; in the learning setting all known definitions of
statistical dimension require fixing the distribution over the domain and only allow varying the
labeling function. Such an extension was not known even in the context of PAC learning. (2)
Instead of relying on a bound on pairwise correlations, our dimension relies on a bound on average
correlations in a large set of distributions. This weaker condition allows us to derive tight bounds
on the complexity of SQ algorithms for the planted k-biclique problem. (3) We show that our notion
of dimension also gives lower bounds for the stronger VSTAT oracle (without incurring a quadratic
loss in the parameter).

We now define our dimension formally. For two functions f,g : X — R and a distribution D
with probability density function D(x), the inner product of f and g over D is defined as

(o = E [f)geol.

The norm of f over D is ||f|lp = V{f, f)p. We remark that, by convention, the integral from
the inner product is taken only over the support of D, i.e. for x € X such that D(x) # 0. Given a
distribution D over X let D(x) denote the probability density function of D relative to some fixed
underlying measure over X (for example uniform distribution for discrete X or Lebesgue measure
over R™). Our bound is based on the inner products between functions of the following form:

1n the STOC 2013 extended abstract, this oracle is also called the unbiased statistical oracle

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:8 Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S. Vempala, and Ying Xiao

(D’(x) — D(x))/D(x) where D’ and D are distributions over X. For this to be well-defined, we will
only consider cases where D(x) = 0 implies D’(x) = 0, in which case D’(x)/D(x) is treated as 1. To
see why such functions are relevant to our discussion, note that for every real-valued function f
over X,

D' -D
f(x)]— [f(x)]—< 0 f>D.

E
x~D

’
B (ol B = 5 |2

x~D’ x~D x~D D(x)
This means that the inner product of any function f with (D’ — D)/D is equal to the difference
of expectations of f under the two distributions. Analyzing this quantity for an arbitrary set of
functions f was the high-level approach of statistical query lower bounds for learning. Here we
depart from this approach, by defining a pairwise correlation of two distributions, independent
of any specific query function. For two distributions Dy, D; and a reference distribution D, their
pairwise correlation is defined as:

D D
xp(D1,Dz) = '<—l -1, =2 - 1> .
D

When D; = D, the quantity (% - % — 1)p is known as the y?(Dj, D) distance and is widely
used for hypothesis testing in statistics (Pearson 1900).

A key notion for our statistical dimension is the average correlation of a set of distributions D’
relative to a distribution D. We denote it by p(9’, D) and define as follows:

1 1 D, D;
D',D)= — Dy,D;) = — —-1,—=-1) |.
p( ) e Z xp(D1, D) D2 Z <D D >D

Dy, D, Dy, DyeD’
Bounds on pairwise correlations easily imply bounds on the average correlation (see Lemma 3.10
for a proof). In Section 3.2 we describe a pairwise-correlation version of our bounds. It is sufficient

for some applications and generalizes the statistical query dimension from learning theory (see
Section 6.1 for the details). However, to obtain our nearly tight lower bounds for planted biclique,
we will need to bound the average pairwise correlation directly, and with significantly better bounds
than what is possible from pairwise correlations alone.

We are now ready to define the concept of statistical dimension. We first define the statistical
dimension with average correlation of a set of distributions relative to some reference distribution.
It captures the complexity of distinguishing distributions in O from D.

Definition 2.5. For y > 0, domain X, a set of distributions O over X and a reference distribution
D over X the statistical dimension of D relative to D with average correlation y is defined to
be the largest value d such that for any subset D’ C D, where |D’| > |D|/d, p(D’,D) < 7. We
denote it by SDA(D, D, y).

Intuitively, the definition says that any 1/d fraction of the set of distributions has low pairwise
correlation; the largest such d is the statistical dimension.

For general search problems over distributions we define the statistical dimension by reducing it
to the statistical dimension of some set of input distributions relative to some reference distribution.

Definition 2.6. For y > 0, domain X, a search problem Z over a set of solutions ¥ and a class
of distributions D over X, let d be the largest value such that there exists a reference distribution
D over X and a finite set of distributions Dp € D with the following property: for any solution
f € F the set Dy = Dp \ Zr is non-empty and SDA(Dy, D, 7) > d. We define the statistical
dimension with average correlation y of Z to be d and denote it by SDA(Z, ).
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The statistical dimension with average correlation y of a search problem over distributions gives
a lower bound on the complexity of any deterministic statistical algorithm for the problem that
uses queries to VSTAT(1/(37)).

THEOREM 2.7. Let X be a domain and Z be a search problem over a set of solutions ¥ and a class
of distributions D over X. Fory > 0 let d = SDA(Z, 7). Any SQ algorithm requires at least d calls to
VSTAT(1/(3y)) oracle to solve Z.

In Section 3.1 we give a refinement of SDA, by introducing a parameter which additionally
bounds the size of the set Dy (and not just that it is non-empty). This refined notion allows us to
extend the lower bound to randomized SQ algorithms. In Section 3.3 we use this refined notion
of SDA to also show that (with high probability) one can simulate ¢ samples of 1-STAT using
VSTAT(O(t)). This implies that lower bounds on SDA imply lower bounds on the number of queries
required by any 1-bit sampling algorithm (Theorem 3.17).

In Section 6 we show that our bounds generalize and strengthen the known results for SQ
learning that are based on SQ-DIM (Blum et al. 1994; Yang 2005). In the statement below, the
statistical dimension SDA(C, D’, y) uses the average pairwise correlation of Boolean functions from
a set C relative to a distribution D’ over a domain X’, that is {fi, f2)p/, where fi, fo € C (rather
than distributions as in the definitions above). It is formally defined in Section 6 and is always at
least as large as the statistical query dimension used in earlier work in learning theory.

THEOREM 2.8. Let C be a set of Boolean functions, D’ be a distribution over X’ and let d =
SDA(C,D’,y) for somey > 0. Then any SQ algorithm that, with probability at least 2/3, learns C
over D’ with error e < 1/2 —\/1/(3y) requires at least d/3 — 1 queries to VSTAT(1/(37)).

At a high level, our proof works as follows. The first step of the proof is a reduction from a
decision problem in which the algorithm only needs to distinguish all the distributions in the set
Dp (except those in Z¢ for some f) from the reference distribution D. To distinguish between
distributions the algorithm needs to ask a query g such that Ep[g] cannot be used as a response of
VSTAT(1/(37)) for D’ € Dy. In the key component of the proof we show that if a query function g
to VSTAT(1/(3y)) distinguishes between a distribution D and any distribution D’ € D’, then D’
must have average correlation of at least y relative to D. The condition that for any |D’| > |Dy|/d,
p(D’,D) < y then immediately implies that at least d queries are required to distinguish any
distribution in Dy from D. We remark that an immediate corollary of this proof technique is that
the decision problem in which the algorithm needs to decide whether the input distribution is in
Dy or is equal to the reference distribution D also has statistical dimension at least d. We elaborate
on this in Theorem 3.7 where we give a simplified version of our lower bound for decision problems
of this type.

2.4 Applications to the Planted Biclique Problem
We prove the following lower bound for the distributional planted biclique problem.

THEOREM 2.9. For any constant § > 0, any k < n'/*=% and r > 0, at least n®1°8") queries to

VSTAT(n?/(rk?)) are required to solve the distributional planted k-biclique with probability at least
2/3. In particular, no polynomial-time statistical algorithm can solve the problem using queries to
VSTAT(0(n?/k?)) and any SQ algorithm requires n*1°6™ queries to VSTAT(n>=® /k?). This lower bound
also applies to the problem of distinguishing any planted k-biclique distribution from the uniform
distribution over {0, 1}" (no planting).

This bound is essentially tight. For every index in the planted set S, the probability that the
corresponding bit of a randomly chosen point is set to 1is 1/2 + k/(2n), whereas for every index
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not in S, this probability is 1/2. Therefore using n queries to VSTAT(16n2/k?) (i.e., of tolerance
k/4n) it is easy to recover S. Indeed, this can be done by using the query functions h;(x) = x;, for
each i € [n]. So, the answers of the VSTAT oracle represent the expected value of the ith bit over
the sample.

There is also a SQ algorithm that uses n°1°8™ queries to VSTAT(25n/k) (corresponding to a
significantly smaller number of samples) to find the planted set for any k > log n. In fact, the same
algorithm can be used for the standard planted clique problem that achieves complexity n®°gm.
We enumerate over subsets T C [n] of log n indices and query VSTAT(25n/k) with the function
gr : {0,1}" — {0, 1} defined as 1 if and only if the point has ones in all coordinates in T. Therefore,
if the set T is included in the planted set then

E[gT]=E~1+(1—E)21°g"e [E,kﬂ
D n n

n n

With this expectation, VSTAT(25n/k) has tolerance at most v/k(k + 1)/25n% < (k + 1)/5n and will
return at least k/n — (k + 1)/(5n) > 3k/(4n). If, on the other hand, at least one element of T
is not from the planted set, then Ep[gr] < k/(2n) + 1/n and VSTAT(25n/k) will return at most
(k +2)/(2n) + (k + 2)/(5n) < 3k/(4n). Thus, we will know all (log n)-sized subsets of the planted
set and hence the entire planted set. We remark that this algorithm demonstrates the difference
between STAT and VSTAT oracles. Implementing this algorithm using the STAT oracle would
require tolerance of Q(k/n) which corresponds to O(n?/k?) samples. This is the same tolerance as
the polynomial-time degree-based algorithm needs (estimate degree of each vertex), so one cannot
hope to have a superpolynomial lower bound against STAT(k/n).

To summarize, n samples directly correspond to having access to VSTAT(O(n)). The discussion
above shows that the distributional planted biclique problem can be solved in polynomial time
when k = Q(+/n). At the same time, Theorem 2.9 implies that for k < n'/>~%, any SQ algorithm will
require n®(°€™ queries to VSTAT(n'+9).

We now turn to stating our bounds for 1-bit sampling algorithms.

THEOREM 2.10. For any constant 8 > 0 and anyk < n'/*=%, any 1-bit sampling algorithm that with

probability at least 2/3 can distinguish between the uniform distribution and any planted k-biclique
distribution requires Q(n®/k?) queries to 1-STAT.

Each query of a 1-bit sampling algorithm uses a new sample from D. Therefore this bound
implies that any algorithm that does not reuse samples will require Q(n?/k?) samples. To place
this bound in context, we note that it is easy to detect whether a biclique of size k has been planted
using O(n?/k?) samples (as before, to detect if a coordinate i is in the planted set we can compute
the average of x; on O(n?/k?) samples). Of course, finding all coordinates in the set would require
reusing samples (which 1-bit sampling algorithms cannot do). Note that n?/k? < n if and only if
k> +/n.

A closely related problem is the planted densest subgraph problem, where edges in the planted
subset appear with higher probability than in the remaining graph. This is a variant of the densest
k-subgraph problem, which itself is a natural generalization of k-clique that asks to recover the
densest k-vertex subgraph of a given n-vertex graph (Bhaskara et al. 2010, 2012; Feige 2002; Khot
2004). The conjectured hardness of its average case variant, the planted densest subgraph problem,
has been used in public key encryption schemes (Applebaum et al. 2010) and in analyzing parameters
specific to financial markets (Arora et al. 2010). We define the following distributional version of
this problem:
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ProBLEM 2.11. Fix0 < q <p < 1. For1 < k < n, letS C [n] be a set of k vertex indices and
Dg be a distribution over {0, 1}" such that when x ~ Dg, with probability 1 — (k/n) the entries of x
are independently q-biased Bernoulli variables, and with probability k /n the k coordinates in S are
independently chosen p-biased Bernoulli variables, and the rest are independently chosen q-biased
Bernoulli variables. The distributional (p, q)-planted densest k-subgraph problem is to find the

unknown subset S given access to samples from Dg.

Our approach and lower bounds extend in a straightforward manner to this problem. In Section
5.2 we analyze this general setting and give lower bounds for all settings of p and q. Here we
describe a special case of our lower bounds when g = 1/2 and p = 1/2 + a. Our lower bound
becomes exponential as @ becomes (inverse-polynomially) close to 0. Specifically:

COROLLARY 2.12. For any constant § > 0, any k < n'/>% o > 0, £ < min{k, 1/(4a?)}, at least
n®O queries to VSTAT(n? /(48€a®k?)) are required to solve the distributional (1/2 + a, 1/2)-planted
densest k-subgraph with probability at least 2/3.

For example, consider the setting k = ¢ = n'/®> and @ = n~'/%. It is not hard to see that for
this setting the problem can be solved on a random bipartite graph with n vertices on both sides
(in exponential time). Our lower bound for this setting implies that at least no') queries to
VSTAT(n*?) will be required. Additional corollaries for the distributional (p, q)-planted densest

k-subgraph can be found in Section 5.2.

Relation to the planted k-biclique problem. The upper and lower bounds we described for statistical
algorithms match the state of the art for the average-case planted k-biclique and planted k-clique
problems. Moreover, our lower bounds for the distributional versions of the planted k-biclique
problem have implications for the hardness of the average-case planted k-biclique problem. An
instance of the latter problem is a random n X n bipartite graph with a k X k biclique planted
randomly. In Appendix A, we show that the average-case planted k-biclique is equivalent to our
distributional planted k-biclique with n samples. Specifically, a single sample corresponds to the
adjacency list of a vertex on the left, and n samples correspond to the adjacency matrix of the
bipartite graph. By this equivalence, an algorithm that solves the average-case planted bipartite
k-clique problem will also solve the distributional planted k-biclique with n samples. Our lower
bounds for the distributional problem therefore imply that the planted k-biclique problem would
require a non-statistical approach, i.e., one for which there is no statistical analogue.

2.5 Subsequent Work

In subsequent work, Feldman, Perkins and Vempala (2013) introduced a notion of statistical di-
mension that is based on the spectral norm of the correlation matrix of large sets of distributions.
It is always at least as large as the average correlation-based dimension defined here and also
leads to lower bounds on the complexity of SQ algorithms using VSTAT. Using this dimension
they proved tight lower bounds on the complexity of statistical algorithms for planted k-SAT and
Goldreich’s pseudo-random generator. In addition, they described statistical algorithms based on
power iteration with nearly matching upper bounds. Finally, they demonstrate that lower bounds
against SQ algorithms can be used to derive concrete lower bounds for convex relaxations of the
problem.

Feldman et al. (2013) have also extended the lower bounds against 1-STAT to lower bounds
against the k-bit version of 1-STAT at the expense of factor 2¥ blow-up in the number of queries.
Steinhardt, Valiant and Wager (2016) gave a more direct approach for proving lower bounds against
this oracle that is closely related to the techniques here and in Feldman et al. (2013). They have
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further showed that statistical queries can be used to simulate the oracle that that extracts k bits
from each sample in an interactive way (rather than at once).

Building on our approach, Feldman (2016) described new notions of statistical dimension and
proved that they tightly characterize the SQ complexity of solving general search problems over
distributions for both STAT and VSTAT oracle. He also simplified the analysis of VSTAT(t) by
showing that it is equivalent (up to constant factors) to returning any value v such that |vv —
VEp[h]| < 1/+/t. Some additional recent applications of SQ lower bounds that are related to our
work include learning of the Ising model (Bresler et al. 2014), convex optimization (Feldman et al.
2015) and distribution-independent PAC learning of lines over finite fields (Feldman 2016).

The distributional planted k-biclique problem introduced here is a simple and natural problem
that shows a remarkable property: information-theoretically it can be solved with many fewer
samples than is necessary for any known efficient algorithm (and no efficient statistical algorithm
exists). In particular, any algorithm that solves our problem with less than n samples will also
solve the average-case k-biclique problem (that is at least as hard as the usual planted k-clique
problem). In several more recent works, reductions from the planted clique problem were used to
demonstrate a similar phenomenon in a number of important problems in statistics and machine
learning (Berthet and Rigollet 2013; Cai et al. 2015; Gao et al. 2014; Hajek et al. 2015; Ma and Wu
2015; Wang et al. 2014).

3 LOWER BOUNDS FROM STATISTICAL DIMENSION

In this section we prove the general lower bounds. In later sections, we will compute the parameters
in these bounds for specific problems of interest.

3.1 Lower Bounds for Statistical Query Algorithms

We start by proving Theorem 2.7 which is the basis of all our lower bounds. In fact, we will prove a
stronger version of this theorem which also applies to randomized algorithms. For this version we
need an additional parameter in the definition of SDA.

Definition 3.1. For y > 0, n > 0, domain X and a search problem Z over a set of solutions ¥
and a class of distributions D over X, let d be the largest value such that there exists a reference
distribution D over X and a finite set of distributions Dp € D with the following property: for
any solution f € ¥ the set Dy = Dp \ Ly has size at least (1 - ) - [Dp| and SDA(Dy, D, ) = d.
We define the statistical dimension with average correlation y and solution set bound 7 of Z to be
d and denote it by SDA(Z, 7, n).

Note that for any n < 1, SDA(Z,y) > SDA(Z,7,n) and fory = 1 —1/|Dp|, we get SDA(Z,7) =
SDA(Z,7,n), where Dp is the set of distributions that maximizes SDA(Z, 7).

THEOREM 3.2. Let X be a domain and Z be a search problem over a set of solutions ¥ and a class of
distributions D over X. Fory > 0 andn € (0,1) letd = SDA(Z, 7, 1). Any randomized SQ algorithm
that solves Z with probability a > n requires at least %d calls to VSTAT(1/(37)).

Theorem 2.7 is obtained from Theorem 3.2 by setting « = 1 and using any 1 — 1/|Dp| < n < 1.
Further, for any n < 1, SDA(Z,7) > SDA(Z,7,n) and therefore for any n < 1, a bound on
SDA(Z,y,n) can be used in Theorem 2.7 in place of bound on SDA(Z, y). We now prove Theorem
3.2.

oF THEOREM 3.2. We prove our lower bound by exhibiting a distribution over inputs (which are
distributions over X) for which every deterministic SQ algorithm that solves Z with probability «

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2017.



Statistical Algorithms and a Lower Bound for Detecting Planted Cliques 1:13

(over the choice of input) requires at least (@ — 1) - d/(1 — n) calls to VSTAT(1/(3y)). The claim of
the theorem will then follow by Yao’s minimax principle (Yao 1977).

Using the notation of Definition 3.1, let D be the reference distribution and Dp, be a set of
distributions for which the value d is achieved. Let A be a deterministic SQ algorithm that uses g
queries to VSTAT(1/(3y)) to solve Z with probability « over the random and uniform choice of
a distribution from Dp. Consider the execution of A in which to each query h of A, the oracle
returns exactly Ep[h] and let f denote the output. Let the set D} C Dp be the set of distributions
on which A is successful for all valid responses of VSTAT(1/(37)). Let D* = D N D} (recall that
we defined Dy = Dp \ Zy). We observe that D* = D} \ (Dp \ Dy) and therefore

a|Dp| - |Dp \ Dy|
|Dpl - [Dp \ D]

o —
1D > |D5| = Dp \ Dyl = a|Dp| = |Dp \ Dyl = |Dr| > 1_Z|Df|- (1)
By the definition of SDA(Z, y), it holds that SDA(Z)f, D,y) = d. In Lemma 3.3 given below, we
will show that under the conditions of this proof, SDA(Dy, D, 7) > d implies that A must use at
least g > d|D|/|Dy| queries. By inequality (1), ¢ > <71 . d giving the desired lower bound.

1-n
m}

The proof of Theorem 3.2 relies on the following lemma that translates a lower bound on
SDA(Dy, D, ) into a lower bound on the number of queries that A needs to use. Its proof is based
on ideas from (Szorényi 2009) and (Feldman 2012).

LEmMA 3.3. Let X be a domain and Z be a search problem over a set of solutions F and a class of
distributions D over X. Let A be a (deterministic) SQ algorithm for Z that uses at most q queries to
VSTAT(1/(3y)). For a distribution D, consider the execution of A on D in which to each query h of A,
the oracle returns exactly Ep[h] and let f denote the output. For a set of distributions Dy € D \ Zr
andy > 0, letd = SDA(Dy, D, 7). Let D* be the set of all distributions in Dy for which A successfully
solves Z for all valid responses of VSTAT(1/(37)). Thenq > d - |D*|/|Dy|.

Proor. Let hy, hy, ..., hy be the queries asked by A when executed on D with the exact responses
of the oracle. Let m = |D™| and we denote the distributions in D* by {Dy, D», ..., Dp,}. For every
k < g, let Ag be the set of all distributions D; such that

. {1 /Pi,k(l—Pi,k)}
> Tjk = max N[

where we use t to denote 1/(3y) and p; x to denote Ep,[h(x)]. To prove the desired bound we first
prove the following two claims:

(1) Zk<q Akl = m;
(2) for every k < q, |Ax| < |Dyl/d.

Combining these two implies that g|Dy|/d > m or, equivalently, g > d|D*|/|Dy|.

In the rest of the proof for conciseness we drop the subscript D from inner products and norms.
To prove the first claim we assume, for the sake of contradiction, that there exists D; ¢ Uy <qAk.
Then for every k < g, | Ep[hk(x)] — Ep,[hr(x)]| < 7. This implies that Ep[hi(x)] are within
7;.k of Ep,[hr(x)]. By the definition of VSTAT(t), this implies that the responses we used in our
execution of A on D are also valid responses of VSTAT(#) when A is executed on D;. The output
of this execution is f and hence it must be a valid solution for D;. This contradicts the definition of

D7 since it is a subset of Dy € D\ Zy.

E[hi(x)] = E[hi(x)]
D D;

i
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To prove the second claim, suppose that for some k € [d], |Ax| > [Drl|/d. Let pr = Ep[hi(x)]
and assume that py < 1/2 (when px > 1/2 we just replace hy by 1 — h in the analysis below). First
we note that:

E[he(x)] - E[hi(x)] = E [ D;(x)
D; b E

D(x)

huto)| = ) = (e, 2 =1) = pus = .

Let D;(x) = L]:))i((;)) — 1, (where the convention is that D;(x) = 0 if D(x) = 0). We will next show

upper and lower bounds on the following quantity

®= <hk, Z D; - sign(hk,ﬁi)> .

D;eAg

By Cauchy-Schwartz we have that

2 2
<I>2=<hk, Z ﬁi'sign<hk,l5i>> < [l Z D; - sign(hi, D;)
D;eAx D;eAx
< el DS kDu Dy
D;, D €Ay
< Ihll® - p(Ag, D) - [Ax|*. (2)

We also have that

2
P = <hk, Z D; 'Sign<hk,ﬁi>>

D;eAy

( D, (he.D) - sign(he, D)

D;eAg

2
(Z |Pi,k_Pk|) : (3)

D;eAy

v

To evaluate the last term of this inequality we use the fact that

i,k = picl > 7ik = max{1/t, \[pi k(1 = pix)/1}.
Next we use a simple fact (to be proved in Lemma 3.5 below), namely that |p; x — pr| =

max{1/t,/pi k(1 — pix)/t} implies that [px — p; k| = \[w to obtain: For every D; € Ag,

s [min{pr, 1-pi} _ [px
I = pikl 2\ —— 0 =4[5, (4)

By substituting equation (4) into (3) we get that ®* > £~ . |A; |2,

We note that, hj is a [0, 1]-valued function and therefore ||h¢||?> < px. Substituting this into
equation (2) we get that ®* < py - p(Ag, D) - |Ax|?. By combining these two bounds on ®? we obtain
that p(Ag, D) > 1/(3t) = y which contradicts the definition of SDA. O

REMARK 3.4. We remark that for algorithms using the STAT oracle, the proof can be simplified
somewhat. Fort = 1y,
2
o > ( > |p,-,k—pk|) > % Ag[?
D;eAg
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and the proof could be obtained by directly combining equations (2) and (3) to get a contradiction. This
also eliminates the factor of 3 in the bound and the assumption that queries are [0, 1]-valued can be
relaxed to [—1, 1]-valued queries since it suffices that ||hy||* < 1. This leads to an identical lower bound

on the number of queries for STAT(\}) in place of VSTAT(1/(37)).

We now prove a bound on the distance between any p € [0, 1] and p” which is returned by
VSTAT(¢) on a query with expectation p in terms of p’ that we used in the proof of Lemma 3.3.

LeEMMA 3.5. For an integer t and any p € [0,1], let p’ € [0,1] be such that |p’ —p| = 7 =
max {%, p—(lt_p)}. Then |p’ —p| = \/—mm{[g’tl_p’}.

Proor. First note that our conditions and bounds do not change if we replace both p and p” with
1—pand1-p’, respectively. Therefore it is sufficient to prove the bound when p < 1/2. We know

that |p” — p| = r = max{1/t,/p(1 — p)/t}. If p > 2p’/3 then certainly

. [pa-p) _ |55 _ [
" =pl= P ¢ N3t

Otherwise (when p < 2p’/3),p" —p > p’ — 2p’/3 = p’/3. We also know that |p — p’| > 7 > 1/t and

therefore [p — p’| > \/g. O

3.1.1 Decision Problems. For decision problems, our dimension and lower bounds can be simpli-
fied. We denote by B(D, D) a decision problem in which the input distribution D’ either equals
D or belongs to D and the goal of the algorithm is to identify whether D" = D or D’ € D. For
example, for the distributional planted k-biclique problem, the decision version is to determine
whether the given input distribution corresponds to a planted k-biclique or to one with no planting
(uniform distribution on {0, 1}".

For the decision problem B(D, D) our notion of dimension simplifies to the following.

Definition 3.6. For y > 0, domain X and a decision problem B(D, D), let SDA(B(D, D), y) be
defined as the largest value d such that there exists a finite set of distributions Dp C D such that
SDA(Dp, D, 7) = d.

Our technique gives the following lower bound for decision problems:

THEOREM 3.7. Let D be a distribution and D be a set of distributions over a domain X such that
for some y, SDA(B(D, D), y) = d. Any (randomized) SQ algorithm that solves B(D, D) with success
probability a > 1/2 requires at least (2a — 1)d queries to VSTAT(1/(37)).

Proor. As before, we exhibit a hard distribution over input distributions for which every deter-
ministic SQ algorithm that solves B(D, D) with probability « (over the choice of input) requires
at least (2a — 1)d queries to VSTAT(1/(37)). Let Dp be the set of distributions that witnesses the
statistical dimension, namely, SDA(Dp, D,y) = d. Consider the following distribution over the
input distribution D’: D’ equals D with probability 1/2 and D’ equals a random uniform element
of Dp with probability 1/2.

A has success probability @ > 1/2 and therefore, when executed on D with exact responses to
queries, it must correctly identify D (say it outputs 0 in this case). We then define D* C Dp, as the
set of distributions on which A is successful (that is outputs 1). The probability of success of A
implies that |D*| > (2 — 1)|Dp|. Now, the set Dp is included in the set of distributions D for
which 0 is not a valid solution. Therefore we can apply Lemma 3.3 with Dy = Dp to obtain that
the number of queries to VSTAT(1/(37)) is ¢ = (2a — 1)d. O
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3.2 Statistical Dimension Based on Pairwise Correlations

In addition to SDA which is based on average correlation we introduce a simpler notion based on
pairwise correlations. It is sufficient for some applications and is easy to relate to SQ-DIM used in
learning (as we do in Section 6).

Definition 3.8. We say that a set of m distributions D = {Dy, ..., D,,} over X is (y, f)-correlated
relative to a distribution D over X if:

D; D;
2,2 o) | <
D "D '/,

Definition 3.9. Fory, > 0, domain X and a search problem Z over a set of solutions ¥ and a class
of distributions D over X, let m be the largest integer such that there exists a reference distribution
D over X and a finite set of distributions Dp € D such that for any solution f € ¥, Dy = Dp\ Zr
is (y, B)-correlated relative to D and |Dy| > m. We define the statistical dimension with pairwise
correlations (y, ) of Z to be m and denote it by SD(Z, v, ).

For decision problems SD(8(D, D), y, f) is defined as the largest integer m such that there exists
a set of distributions Dp C D of size m that is (y, f)-correlated relative to D.

pfori=je[m]
y fori #j € [m].

It is easy to bound SDA of any (y, f)-correlated set of distributions.
LEMMA 3.10. Let D = {D1,D,,...,Dp} be a (y, p)-correlated set of distributions relative to a
distribution D. Then for everyy’ > 0, SDA(D, D,y +y’) = %.

Proor. Take d = my’/(f — y); we will prove that SDA(D, D,y +y’) = d. Consider a set of
distributions D’ € D, where |D’| > |D|/d = m/d =(f-y)/y’:

’ Dl DZ
P I S G
1Df? .oty I\ P b D
1
<—— (D18 + (D> - |D’
ID'|2(| 1B+ (D']* - 1D)y)
B-vy
<y+
T
<y+y

]

As an immediate corollary we obtain a bound on SDA of a search or decision problem from a
bound on SD.

COROLLARY 3.11. Let X be a domain and Z be a search or decision problem over a set of solutions
F and a class of distributions D over X. Fory, > 0, let m = SD(Z,y, p). Then for everyy’ > 0,

n s myl
SDA(Z.y +v) 2 7%

We now apply Theorem 2.7 to obtain the following lower bound on SQ algorithms in terms of
SD.

COROLLARY 3.12. Let X be a domain and Z be a search or decision problem over a set of solutions
¥ and a class of distributions D over X. Fory, > 0, letm = SD(Z,y, ). For anyy’ > 0, any SQ
algorithm requires at least my’ /(p — y) queries to the STAT(\y + y’) or VSTAT(1/(3(y + y’))) oracle
to solve Z.

2/3

In this corollary if, for example, SD(Z,y = 25—, = 1) > m then at least m'/®/2 queries to
VSTAT(m??/3) or STAT(m~'/3) oracle are required to solve the problem.
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3.3 Lower Bounds for 1-bit Sampling Algorithms

Next we address lower bounds on algorithms that use the 1-STAT oracle. We recall that the 1-STAT
oracle returns the value of a function on a single randomly chosen point. To estimate the expectation
of a function, an algorithm can simply query this oracle multiple times with the same function and
average the results.

We note that responses of 1-STAT do not have the room for the possibly adversarial deviation
afforded by the tolerance of the STAT and VSTAT oracles. The ability to use these slight deviations
in a coordinated way is used crucially in our lower bounds against VSTAT and in all known
lower bounds for SQ learning algorithms. While it is possible to derive lower bounds against
1-bit sampling algorithms using m queries from lower bounds against algorithms that use O(m)
queries to STAT(1/m) (Ben-David and Dichterman 1998), such lower bound will not suffice for
our main application. It would only imply the trivial lower bound of Q(n/k) queries to 1-STAT for
the planted k-biclique problem. Proving tighter lower bounds against 1-bit sampling algorithms
directly is harder and indeed lower bounds for the equivalent Honest SQ learning model required a
substantially more involved argument than lower bounds for the regular SQ model (Yang 2005).

Our lower bounds for 1-bit sampling algorithms rely on a direct simulation of the 1-STAT oracle
using the VSTAT oracle. This simulation allows us to derive lower bounds against 1-bit sampling
algorithms from Theorem 3.2. We also provide a reverse simulation of VSTAT oracle using 1-STAT
oracle.

THEOREM 3.13. Let Z be a search problem and let A be a (possibly randomized) 1-bit sampling
algorithm that solves Z with probability at least a using m samples from 1-STAT. For any é € (0,1/4],
there exists a SQ algorithm A’ that uses at most m queries to VSTAT(m/5%) and solves Z with
probability at least o — 6.

Our proof relies on a simple simulation. Given query h; : X — {0,1} from A to 1-STAT, we
make the same query h; to VSTAT(t) for t = m/5°. Let p] be the response. We flip a coin with bias
p; (that is one that outputs 1 with probability p; and 0 with probability 1 — p7) and return it to the
algorithm. We do the same for the remaining m — 1 queries which we denote by hy, hs, . . ., hp,. We
then prove that the true m samples of 1-STAT and our simulated coin flips are statistically close by
upper bounding the expected ratio of their density functions (which is equal to the y? divergence
plus 1) . This implies that the success probability of the simulated algorithm is not much worse
than that of the 1-bit sampling algorithm.

In our proof we will, for simplicity and without loss of generality, assume that VSTAT(t) always
outputs a value in the interval [1/t, 1 — 1/t]. We can always replace a value v returned by VSTAT(%)
by v’ which is the closest value to v in the above interval. It is easy to see that if v is a valid answer
of VSTAT(¢) then so is v’.

We will need the following lemmas for our proof. The first one bounds the total variation distance
between two distributions in terms of the expected ratio of probability density functions.

LEMMA 3.14. Let D; and D, be two distribution over a domain X of finite’ size such that Dy(x)
is non-vanishing. Denote the total variation distance between Dy and D; by Ary(Dy, D;). Then

Arv(D1,D,) < +/p/2, where p = Ep, [gig;] - 1.

2This assumption is simply for convenience of notation. It holds in our applications.
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ProoF. The key observation is that the y?-divergence between D; and D, is exactly the expected

ratio minus 1.
(Dl(x) 3 1)2
2 DZ(x) .

p:

D (x) _ [Df(x)
D; T b

DXx)  Dyx) ]
Dy(x) D(x) g[ i +1]_

Dz(x) Dg(x)

By Jensen’s inequality this implies that

Dy(x) Di(x)  \*|_
g2 -l < J B |-
Finally,
1 1 Dl(x) :| 1%
Ary(D1,Dz) = = Y |Di(x) = Dy(x)| = - E <=
o Y70 xze;( 2 2 b, || Da(x) 2

]

The second lemma is that if p’ is an answer of VSTAT(¢) for a query h, such that Ep[h] = p, then
the expected ratio of density functions of Bernoulli random variables with biases p and p’, denoted

B(p) and B(p’), is small.

LEMMA 3.15. Foran integert andp € [0,1] letp’ € [1/t,1-1/t] such that |p’—p| < max {%, \/M}
Then
P =
LELEP
b~B(p) \ Pr[B(p’) = b] t
Proor. If b = 1, the ratio is p/p’ and when b = 0, then it is (1 — p)/(1 — p’). Thus, the expected
ratio is
2 (1 p)? 2
37+( pr_ =)
p1-p p'(-p’)
We can assume without loss of generality that p’ < 1/2.

Now if p < 3p” then p(1—p) < 3p’(1—p’). Otherwise (when, p > 3p’), we know that p > 3p” > 3/t.
This implies that p — p” > 2p/3 > 2/t. This means that

2y B

This can only be true when p < (3/2)%/t = 9/(4t), contradicting our assumption that p > 3/t. This

implies that
ax E p—(l—p) < max 1 \/3P’(1—P/) <\/3p’(1—p’)
t’ t - t’ t - t '

By using this bound in the ratio equation we get that

_ 2 3p’(1-p")
p'(1-p’) p’(1-p’)

~ | W

We can now complete the proof of Theorem 3.13.
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ProoOF oF THEOREM 3.13. We simulate A using VSTAT(t) as described above. We now prove
that for any algorithm the total variation distance between the true answers of 1-STAT and the
simulated distribution is at most §. Formally, let R denote the set of all outcomes of A’s random
bits and for r € R, let A" denote the execution of A when its random bits are set to r. let I
denote the distribution over the m bits obtained by the algorithm A when it is run with 1-STAT
oracle. Similarly, let IT’; denote the distribution over {0, 1} obtained by running the algorithm A
simulated using VSTAT(¢) as above. By definition, Iz = E,cr I14- and similarly Hfﬂ = Erer [Ty,
This implies that,

Ary(a,11p) < E [Arv(Tar, Ty, )] < max Ary(Mar, g,).
r

The algorithm A" is deterministic and it is therefore sufficient to prove the bound on total variation
distance for deterministic algorithms. For conciseness we assume henceforth that A is deterministic.

For any i € [m] let IT #, denote the probability distribution on the first i samples of A executed
with 1-STAT. For j < i let 2/ denote the first j bits of z. Let I1 #,(z | z'~!) denote the probability that
the first i samples of A executed with 1-STAT oracle are equal to z conditioned on the probability
that the first i — 1 samples are equal to z'~1. We define H:ﬂi(z) and H’ﬂi(z | zi~1) analogously. We
also denote by h, the query that A asks after getting z as the response to first i samples and let
pz = Ep[h;]. Let p, denote the response of VSTAT(t) on k.

For i € [m] and any z € {0,1}, Il#,(z | z2°!) = Pr[B(p,i1) = z;] and hence I #,(z) =
Ma, ,(z7"Y) Pr[B(p,i-1) = z;]. Similarly, H,ﬂ;(z | zi71) = Pr[B(p/, ) = zi] and

Wy (2) = Wy (Z7 ) Pr[B(pi) = 2i].

This implies that:

Mg, (2)|
I, (2)

H»’ﬂm(zi_l)Pr[B(PzH) = zi]
'y (Z)Pr{B(p],.) = zi]

Hﬂi—l(y) . FE [PY[B(Py) = b]}
' ) b~Bley [PrB(py) = b] '

z~Ila; z~Ila;

Y~z

Now by Lemma 3.15, this implies that for any z of length i € [m],

7,(2) M, () ) (1 + g)
g [y (2)| 7 y-lla, H,ﬂ,—fl(y) t
Applying this iteratively we obtain that
Ta(z)

3 m
s(1+—) <emit
t

By our definition, t = m/&% > 16m. Therefore, 3m/t < 1/5 and hence e*™/* < 1 + 4m/t. By
Lemma 3.14, we get that Aty (I1a,I1;) < /(1 +4m/t —1)/2 = \/m/t = . This implies that the

success probability of A using the simulated oracle is at least a — .

ZNH}(

I (2)

]

We now combine Theorems 3.7 and 3.13 to obtain the following lower bound for decision
problems.
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THEOREM 3.16. Let X be a domain and D be a distribution over X and D be a set of distributions
over X. Fory > 0, let d = SDA(B(D, D), 7). Any 1-bit sampling algorithm that solves B(D, D) with
probability a requires at least m queries to 1-STAT for

. {d(Za -1) Qa+ 1)2}
m = min )

)

2 48y

In particular, any algorithm with success probability of at least 2/3 requires at least min{d /6, 1/(432y)}
queries to 1-STAT.

Proor. Assuming the existence of a 1-bit sampling algorithm using less than m queries, we
apply Theorem 3.13 for § = (2a — 1)/4 to simulate the algorithm using VSTAT. The bound on
m ensures that the resulting algorithm uses less than d(2a — 1)/2 queries to VSTAT(%) and has

success probability of at least @ — § = (2 + 1)/4. By substituting these parameters into Theorem
3.7 we obtain a contradiction. O

For general search problems this leads to the following lower bound.

THEOREM 3.17. Let X be a domain and Z be a search problem over a set of solutions F and a class
of distributions D over X. Fory > 0 and n € (0,1), let d = SDA(Z, 7, n). Any (possibly randomized)
1-bit sampling algorithm that solves Z with probability a requires at least m calls to 1-STAT for

d(a—n) (a—n)
21-n)" 127 ] 7

In particular, ifn < 1/6 then any algorithm with success probability of at least 2/3 requires at least
min{d/4,1/(487)} queries to 1-STAT.

mzmin{

To conclude, we formally state a simple reduction in the other direction, namely that VSTAT(¢)
oracle can be simulated using the 1-STAT oracle. It has been observed that, given a Boolean query
function h one can obtain an estimate of Ep[h] using t = O(log(1/8)/7?) 1-bit samples which with
probability at least 1 — ¢ will be within 7 of Ep[h] (Ben-David and Dichterman 1998). Using the
multiplicative Chernoff bound, it is not hard to see that O(t log(1/5)) samples are sufficient to
estimate p = Ep[h] within tolerance guaranteed by VSTAT(¢). In addition, we will show how to
use 1-STAT oracle to estimate the expectation of real-valued queries.

THEOREM 3.18. Lett,q > 0 be any integers and § > 0. There exists an algorithm A’ that for any
input distribution D and any algorithm A that asks at most q queries to VSTAT, with probability
at least 1 — 8, provides valid for VSTAT(t) answers to all the queries of A. A’ uses O(qt - log(q/9))
queries to 1-STAT for the same input distribution D.

Proor. For every query h : X — [0, 1] of A, the algorithm A’ estimates p = Ep[h] as follows.
To generate a random Bernoulli variable with bias p, 8 draws 8 € [0, 1] randomly and uniformly
and defines: hy(x) = 1if h(x) < 6 and hg(x) = 0 otherwise. It then makes the query hg to 1-STAT.
Observe that

P [ho(x) =11 = E [Prike(x) = 1] = E [h()] = p.

The algorithm B repeats this m times (each time choosing a new random 6) and then answers the
query h with the mean of the obtained samples (for m to be defined later). We denote the mean by
v.

Assuming that p < 1/2, multiplicative Chernoff bounds imply that

Pr [|v -pl = +/p(1 —p)/t] < 2¢73mP/(P(-p)t) < 9,—6m[t
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The bound in the case of p > 1/2 follows from the symmetric argument.

Choosing m = 6t - In(2q/5) ensures that Pr[|v — p| > /p(1 —p)/t] < §/q. This implies that
q arbitrary queries for VSTAT(¢) can be answered correctly with probability at least 1 — § using
6qt - In(2g/5) queries to 1-STAT. O

4 WARM-UP: MAX-XOR-SAT

In this section, we demonstrate our techniques on a warm-up problem, MAX-XOR-SAT. For this
problem, it is sufficient to use pairwise correlations, rather than average correlations.

For € > 0, the e-approximate MAX-XOR-SAT problem is defined as follows. Given samples
from some unknown distribution D over XOR clauses on n variables, find an assignment that
maximizes up to additive error € the probability a random clause drawn from D is satisfied.

In the worst case, it is known that MAX-XOR-SAT is NP-hard to approximate to within 1/2 — §
for any constant § (Hastad 2001). In practice, local search algorithms such as WalkSat (Selman et al.
1995) are commonly applied as heuristics for maximum satisfiability problems. We give strong
evidence that the distributional version of MAX-XOR-SAT is hard for algorithms that locally seek
to improve an assignment by flipping variables as to satisfy more clauses, giving some theoretical
justification for the observations of (Selman et al. 1995). Moreover, our proof even applies to the case
when there exists an assignment that satisfies all the clauses generated by the target distribution.

The bound we obtain can be viewed as a restatement of the known lower bound for learning
parities using statistical query algorithms (indeed, the problem of learning parities is a special case
of our distributional MAX-XOR-SAT).

To formalize the search problem, we will denote by C = {0,1}" the set of XOR clauses in n
variables, such that for ¢ € C, if for i € [n] we have ¢; = 1 then the ith variable appears in ¢, and
otherwise it does not; for simplicity, no variables are negated in the clauses. Let A = {0, 1}" denote
the set of possible assignments to the variables. We will say that the assignment a € A satisfies the
clause c € Cifa - c = 1 (where a - ¢ denotes the inner product modulo 2).

Let D be the set of distributions over clauses in C. For a distribution D € D and an assignment
a € A let fp(a) = Ec~pla - c] be the fraction of clauses that a satisfies under D. For D € D let
Mp = maxgea fp(a). The MAX-XOR-SAT problem asks to find a € A that maximizes fp(a), given
samples from an unknown distribution D.

We are now ready to formalize the search problem that we are interested in, using the notation
above and that of Definition 2.1.

PROBLEM 4.1. (e-approximate MAX-XOR-SAT) Let X = C = {0, 1}" (the set of clauses), D be the
set of distributions over X, F = A = {0, 1}" (the set of assignments). Let Z : D — 27 be defined as
Z(D) ={a€ Al fp(a) 2 Mp - €}.

THEOREM 4.2. For any § > 0, any SQ algorithm requires at least 2"/* — 1 queries to STAT(27"/?) to
solve (3 — &)-approximate MAX-XOR-SAT.

We will first determine the statistical dimension of our search problem. This will immediately
imply Theorem 4.2 using Corollary 3.11 (by choosing y’ = 27/3).

LEMMA 4.3. Forad > 0, let Z denote the (1/2—8)-approximate MAX-XOR-SAT. Then the statistical
dimension of Z with pairwise correlation (y, ) = (0,1) isSD(Z,0,1) > 2" — 1.

Proor. We verify the properties of Definition 3.9.

Let the reference distribution D = Ug, the uniform distribution over C = {0,1}". For a €
A ={0,1}" = F,let D, € D be the uniform distribution over ¢ € C such that a- ¢ = 1. Let
Dp ={D, | a€ A}, so|Dp|=2".
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For a,b € A, we have

fo.b)= Ebecd=—l ).

c~D
@ ceC | a-c=1,b-c=1

Note that if b = a then fp, (b) = 1,and if b # a, fp,(b) = 1/2 (indeed, [{c e C|a-c=1,b-c =
1}| = 2" /4 since it is the size of two intersecting affine subspaces in {0, 1}").
Therefore, fora € Aand € = 1/2 — § > 0, the set of solutions is

Z(Da) = {b € Al fp,(b) 2 1/2 + 6} = {a},

and so Z,; = {D,}.

To conclude the proof we will show that for any assignment a € ¥ = A the set D, = Dp \ {D,}
of distributions is (0, 1)-correlated (see Definition 3.8).

Note that fora € A, and ¢ € C,

D, —lifc-a=0
— —1)(0) = .
D lifc-a=1.

In other words, (% - 1) (c) = =(-1)*°. A well-known (and easy to verify) property of {—1,1}-

valued parity functions is that they are (0, 1)-correlated over the uniform distribution. That is, for

a,be A
<&_1’&_1> < Ofora=5b
D D D 1fora#b.

5 PLANTED BICLIQUE AND DENSEST SUBGRAPH

5.1 Statistical Dimension of Planted Biclique

We now prove the lower bound claimed in Theorem 2.9 on the problem of detecting a planted
k-biclique in the given distribution on vectors from {0, 1}" as defined above.

Throughout this section we will use the following notation. For a subset S C [n], let Ds be the
distribution over {0, 1}" with a planted set S. Let Sy denote the set of all (}) subsets of [n] of size k
and m = (Z) We index the elements of Sy in some arbitrary order as Sy, . .., Sp,. For i € [m], we
use D; to denote Ds,. We will also assume, whenever necessary, that k and n are larger than some
fixed constant.

The reference distribution in our lower bounds will be the uniform distribution over {0, 1}" and
let Ds denote Ds/D — 1. In order to apply our lower bounds based on statistical dimension with
average correlation we now prove that for the planted biclique problem average correlations of
large sets of distributions must be small. We start with a lemma that bounds the correlation of two
planted biclique distributions relative to the reference distribution D as a function of the overlap
between the planted sets:

LEmMA 5.1. Fori,j € [m],
s 24k?
pp(Di, Dj) = |<DiaDj>D‘ S
where A = |S; N §;.
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Proor. For the distribution D;, we consider the probability D;(x) of generating the vector x.
Then,

Difx) = (5% + (52 if Vs € S, xs = 1
' ("—;k)zi,, otherwise.
Now we compute the vector D; = % -1
k .
D; 1= k%—% lfVSESi,stl
D —% otherwise.

We then bound the inner product:

o on=2k+A (pok 2 on—k  gn-2k+A\ (kok k k\2
iy = S5 (A T )
2n n n 2n 2n n n n n

21 k2
n2

which holds when k > 3. We also note that <ﬁi,ﬁj>D > 0. O

i

We now give a bound on the average correlation of any Dg with a large number of distinct
biclique distributions.

LEMMA 5.2. Let§ > 1/logn and k < n'/?7%. For any integer < k, S € Sy and any set A C Sy
where |A| > 3(m — 1)/n?(?,

LS b ] < 2K
|A|Si§4 S i n?’

Proor. In this proof we first show that if the total number of sets in A is large then most of sets
in A have a small overlap with S. We then use the bound on the overlap of most sets to obtain a
bound on the average correlation of Dg with distributions for sets in A.

Formally, we let a = ﬁ—i and using Lemma 5.1 get the bound [(D;, D;)| < 2!5"S/lq. Summing

over S; € A,
3 s D] < 3 205
S;i€eA S;€eA

For any set A C Sk of size t this bound is maximized when the sets of A include S, then all sets
that intersect S in k — 1 indices, then all sets that intersect S in k — 2 indices and so on until the
size bound ¢ is exhausted. We can therefore assume without loss of generality that A is defined in
precisely this way.

Let T) = {S; | |SN S;| = A} denote the subset of all k-subsets that intersect with S in exactly
A indices. Let Ay be the smallest A for which A N T} is non-empty. We first observe that for any
1<j<k-1,

i 6D Grnn-2k+j+) _ G+ -28)
Tl (5D (5 (k= j)? - (k-)y
2(j+1)(n—2n1/2‘5)2(j+1)(1—2n*1/2*5) Z(j+lﬁﬂa' o)
nl-26 n-26 2
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By applying this equation inductively we obtain,

T < YL 2-(m-1)
TET g n2d jl-n2i

where the last inequality holds since |Ty| < m — 2 whenever n > 2k + 1. For n larger than some
fixed constant

2b-(m-1) m-1 24 3(m—1)
Z ITal < Z T Z W20 = gz
k>A>j k>A>j ’ k>A>j "

By definition of Ao, |A| < X5, [T < 3(m — 1)/n?%%_ In particular, if |A] > 3(m — 1)/n?’® then

n?% < 2% or ) < €. Now we can conclude that

k
D KDs, D < > 2Ty 0 Ale

Si€A Jj=A0
k
<|2M|Ty, N Al + Z 2Ty |«
Jj=Ao+1

IA

(zMTAO NAl+2- 2*0+1|TAO+1|) a
< 22| Ala < 274 Ala.

To derive the second to last inequality we need to note that for every j > 0, 2/|T;| > 2(2/*!|Tj44])
whenever n?® > 4. We can therefore telescope the sum. O

We can now bound the statistical dimension (with average correlation) of the planted k-biclique
problem.

THEOREM 5.3. For§ > 1/logn and k < n'/>=% let Z the distributional planted k-biclique problem.
Then for any € < k, SDA(Z, 20+'k?/n?, 1/(3) = n?(% /3. In addition, let D be the uniform distribution
and denote the set of all planted distributions by D. Then, SDA(D, D, 2(+1k?/n?) > n?(9 /3.

Proor. For every solution S € ¥, Zs = {Ds} and let D5 = D \ {Ds}. Note that |Ds| = () - 1
and therefore |Dg| > (1 — 1/(2))|D| This means that we can use 1/(Z) as the solution set bound.
Let D’ be a set of distributions D’ C Dg such that |D’| > 3(m — 1)/n*‘?. Then by Lemma 5.2,
for every S; € D',
IR k?
Z |<D1,D]>| < 2€+1F.

S;eD’

1
1D’

In particular, p(D’,D) < 2“1’;—2. By the definition of SDA (Definition 3.1), this means that
SDA(Z, 2071 k% /n?,1/(})) = n* /3.

The second claim holds by exactly the same argument since [D’| > m/d implies |D’| > (m —
1)/d. O

For a positive r we choose ¢ = logr — 1. Our lower bound for the planted bi-clique problem
stated in Theorem 2.9 follows from substituting the bound SDA(Z, rk?/n?,1/(})) > n®1e()=19 3
into Theorem 3.2 (with n = 1/(}) and § = 2/3). In addition, by Theorem 3.7 used with @ = 1/2+1/t,
we obtain hardness of the decision version of the problem for randomized SQ algorithms which
also implies Theorem 2.9.
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THEOREM 5.4. For any constant § > 0, any k < n'/?=% andr > 0, let D be the uniform distribution
over {0,1}" and D be the set of all planted k-biclique distributions. For some t = n®1%€") any
randomized SQ algorithm that solves the decision problem B(D, D) with probability 1/2+ 1/t requires
t queries to VSTAT(n?/(rk?)).

Theorem 3.13 used with § = 1/9 implies that an algorithm that uses m queries to 1-STAT and
has success probability 2/3 gives an algorithm that uses m queries to VSTAT(81m) and has success
probability 2/3 — 1/9 = 5/9. For some m = Q(n?/k?), Theorem 5.4 applied with r = Q(1) implies
that such algorithm cannot exist. This implies the lower bound for 1-bit sampling algorithms stated
in Theorem 2.10.

5.2 Generalized Planted Densest Subgraph

We will now show lower bounds on detecting a (p, q)-planted densest subgraph, a generalization of
the distributional planted biclique problem we defined in Definition 2.11. Note thatp = 1,q = 1/2
is precisely the distributional planted k-biclique problem. For this generalized problem, we will
take D, the reference distribution, to be that of n independent Bernoulli variables with bias g.

Before we give our results for this problem, we have to fix some further notation: for x € {0, 1}",
we define ||x||; = X x; (i.e. the number of 1’s in x); similarly for ||X||; = > 1 — x; (the number of 0’s
in x). We will denote the restriction of a set by subscripting so that xs is x restricted to the subset
S C [n]. We use S to denote the complement of S in the current ground set.

First, we give a computation of the correlation. This is a generalized version of Lemma 5.1.
-9
q(1-9)

LEMMA 5.5. Fix0<qg<p<landletAp; =1+ . Fori,j € [m],

where A = |S; N §;.
Proor. For any x, we have D(x) = g!*li(1 — ¢)I¥lli. For D;(x):
D;(x) = Pr[x|planted] Pr[planted] + Pr[x|not planted] Pr[not planted]

. (1 _ S) i1 = g

=Kl - pil bl 1 - gl

For D;(x)/D(x) — 1, we have:

- gl

Do)k plslha- oyl gl ok
D(x) n gIxlhi(1 = g)Ixlh

v (p)nxs,-ul (1 _p)nxsinl 0

n\q 1-¢ n

Now, for S; where |Si N Sj| = A, we want to compute:

2
(Di.Dy), = (S) 3 gl — gyl

xe{0,1}n

(I_))HXSi”l (1 _p)”sz”l _ 1- .
q 1-¢g |

[ = |

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2017.




1:26 Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S. Vempala, and Ying Xiao

There are three types of terms in the product in the summand. We deal with all these terms by
repeated applications of the Binomial theorem. The first term illustrates this approach:

S g -gFl = g+ (1-q)" =1

xe{0,1}n

The second type of term is given by:

Z q”xlll(l _ q)||f||1 (1_))||x5i“1 (1;p)||x51“1
q

xe{0,1}n 1-q
= 3 sl gl pl - i,
xe{0,1}"
- Z pllylll(l_p)llﬂ\h Z pIIZIll(l_p)llflll
ye{o,1}Iil ze{0,1}15il
=1.

The third type of term is more complicated — using the above trick, we can restrict x to sets
T = S; US; because the sum taken over the remaining x; yields 1.
( )||’% i (1 - )H s,
q l-gq

>0 gl - g (§)||x5i||1(1:q)llxsllll
esill, 1= p\IFs H
(CI) (l—q)

xe{0,1}n
(p)uxsinl (1 _p)nxs,»nl
q I-q

Z qIIXII1(1 _ q)llflll
Similarly, we can sum x over coordinates in S; \ S; and S; \ S;. Hence, the sum simplifies:

xe{0,1}I71
_ lsilly (1= py I, Ixsil, 11 = py sl
Ixlh (1 — AIEIL [ (2
3 amamar | (57 () ()
Nl Iy Il 12
lelly ¢ _ Il | (2 1;1“)
> a2 (1)

xe{0,1}|5"”5f|

5 (] e

1-¢q
xe{O,l}ISinsj|

A
=(p_2+(1—p)2)
g 1-gq

_ AL
AV

Combining these three calculations yields:

(05,1 = (5] (330-1)

n
[m]
Next, in analogy with Lemma 5.2, we give a bound on average correlation for sufficiently many

distributions.
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LEMMA 5.6. Fix0 <q<p <landletAyg=1+ (121 ;) Ford > 0 and k < n'/?7% ifn® > 84,

then for any integer { < k, S € Sx and A C Sk ofszze at least 2(m — 1)/n*¢?,

14| Z [(Ds. D nz (Af )

Proor. We proceed as in the proof of Lemma 5.2. Recall that T = {S; | |S N S;| = A} denotes
the subset of all k-subsets that intersect with S in exactly A indices. Let Ay be the smallest A for
which A N T) is non-empty. As before, we obtain that 1y < €.

We now bound the average correlation with Dg as follows:

k
PN NESY ';—z (Mg - 1) T 0l

Si€A Jj=Ao
k? k
) .
<= |TAOOA|(AP?]—1)+ > T, - D).
j=Ag+1

To bound the sum
k
J
2 (g =17
Jj=Ao+1
it suffices to show that it is geometrically decreasing as:
(A = DT > 2+ (M) = 1) [Tj] .-
We first note that A, > 1 and therefore for j > 1,

Aj+1 _
Pq

Aj— S Apg +1 <204

From equation (5) in the proof of Lemma 5.2 and our assumption on A,, we obtain the necessary

property:

Tl G+on® 200 - 1)
|T | 5 24-Npg > —AJ —
Jj+1 pq

To conclude,

k
Z [(Ds. D) < ]:l—z (|Txlo mA| - 1) + Z |Ti|(A£q -1

Si€A j=Ap+1
kZ
< 5 (1T n Al (a3 = 1) + 2+ Tuelagy™ - 1)
k? Ag+1
<2 —-1Al (A - 1)
§2~;~|A|(AM—1).

]
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From here the bound on statistical dimension SDA of detecting the (p, g)-planted densest subgraph
now follows in the same way as in Theorem 5.3.

THEOREM 5.7. Fix0 < q < p < 1. For§ > 0 andk < n'/>=% let Z be the distributional (p, q)-planted
densest k-subgraph problem. Then for any { < k,

2k* (¢ 1 205
z,?(%_l),@) 2 2

)

SDA

provided that n*® > 8Apq-
This SDA bound yields lower bounds for the VSTAT oracle:

; — »-9)°
COROLLARY 5.8. Fix0 < g < p < 1andlet Apg = 1+ prgmmp

k < n'?7% ¢ < k, at least n*O queries to VSTAT(nZ/(6k2(A£q - 1))) are required to solve the
distributional (p, q)-planted densest k-subgraph problem with probability at least 2/3 provided that
n% > 8Apq.

For any constant 5§ > 0, any

Similarly, by Theorem 3.7, the same lower bound applies to the decision version of the problem.

One is often interested in the case when g = 1/2 and p = 1/2 + « (the classical planted densest
k-subgraph problem). In this setting Apy = 1+ 4a® and Ay, -1 < '’ 1 < 8a2( whenever
¢ < 1/(4a®). This gives a lower bound of n*?) against VSTAT(n?/(48£a*k?)) as stated in Corollary
2.12.

Finally, we give an example of a corollary for the 1-STAT oracle.

COROLLARY 5.9. For constantsc,d > 0, densityp = 1/2+1/n¢, andk < n!/2=8 Let D be the uniform
distribution over {0, 1}" and D be the set of all (p, 1/2)-planted densest k-subgraph distributions. Any
(randomized) 1-bit sampling algorithm that solves the decision problem B(D, D) with probability at
least 2/3, requires Q((n**2¢)/k?) queries to 1-STAT.

PRrOOF. By the argument above with @ = 1/n°, SDA(B(D, D), 16k*€/n**%¢) > n?‘®/2. For
¢ = 4/28 we obtain that SDA(B(D, D), 64k? /n**2¢) > n*/2. By applying Theorem 3.16 for success
probability 2/3, we obtain a lower bound of

C{d/3 (4/3 + 1) . [n* 49/9 n?tee n¥tie
m=min{—,——=miny —, — - —— 1 = Q| —| .
2 487 12° 48  64k? k2

samples to 1-STAT. O

6 APPLICATIONS TO STATISTICAL QUERY LEARNING

We will now use Corollary 3.12 to demonstrate that our results generalize the notion of statistical
query dimension in learning theory and the statistical query lower bounds based on SQ-DIM. We
then show that our lower bounds imply stronger and more general lower bounds in the context of
learning.

We start with a few relevant definitions. In an instance of a PAC learning problem, the learner
has access to random examples of an unknown boolean function ¢ : X’ — {-1,1} from a set of
Boolean functions C. A random example is a pair including a point and its label (x’, ¢(x")) such
that x’ is drawn randomly from a distribution D’, which might or might not be known to the
learning algorithm (whenever necessary, we use ' to distinguish variables from the identically
named ones in the context of general search problems). Specifically, for a target function ¢ € C and
distribution D’ over X’ we denote by D, over X = X’ X {—1, 1}, where D.(x’, ¢(x")) = D’(x’) and
D¢(x’,—c(x")) = 0.
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For € > 0, the goal of an e-accurate learning algorithm is to find, with high probability, a Boolean
hypothesis h for which Pry . [h(x”) # c(x")] < €. A statistical query learning algorithm (Kearns
1998) has access to the STAT oracle for the input distribution D, in place of random examples.

6.1 Relationship to SQ-DIM

Blum et al. (1994) defined the statistical query dimension or SQ-DIM of a set of functions C and
distribution D’ over X’ as follows (we present a simplification and strengthening due to Yang
(2005)).

Definition 6.1 (Blum et al. 1994)). For a concept class C and distribution D’, SQ-DIM(C,D’) = d’
if d’ is the largest value for which there exist d’ functions ¢y, ¢z, ..., cg € C such that for every
i#j, Keiep)p| < 1/d".

We first observe that correlations of Boolean functions relative to a distribution D’ are equivalent
to correlations of corresponding distributions over examples relative to some reference distribution.
Namely, let the reference distribution D be the distribution for which for every (x’, €) € X, D(x’, €) =
D’(x’)/2. This is the distribution in which points are distributed according to D’ and labels are
random unbiased coin flips. We denote it by D’ x {1/2,1/2}.

De(x',0)

LEmMA 6.2. For a distribution D’ and any Boolean functionsc, ¢y and ¢, Forallx” € X', L=
€ c(x’) and
D, D,
- 1’ — -1 = (C1, C /.
< D D . (c1, €2)p

Proor. We first note that the definition of D ensures that D(x’, £) is non-vanishing only when
D’(x’) is non-vanishing and hence the function (% - 1) is well-defined for any Boolean ¢ € C.
For every ¢ € C, we have

D¢(x’, c(x")) B D¢(x’, —c(x")) B

——-1=2-1=1 d —————-1=0-1=-1.
D', c(x")) D =)
Therefore, 11);((;};’)) —1=+¢-c(x’). This implies that for any c;,c; € C,
D 1 D ’ ’ ’ 7
<—c—l,ﬁ—1> = E [-ai) - cix)]=E[a)-c(x)] =, c2)p-
D D p  (x,O~D D’

]

The direct implication of this is that if SQ-DIM(C, D’) = d’ then there exist d’ distributions over
examples that are (1/d’, 1)-correlated relative to D. In particular, the decision problem of distin-
guishing example distributions from D has large statistical dimension with pairwise correlations.
We state this formally:

THEOREM 6.3. For a concept class C and distribution D’ over X let d’ = SQ-DIM(C, D’). Then for
De={D;|ceC}andD =D"x{1/2,1/2},SD(B(D¢,D),1/d’,1) > d".

Blum et al. (1994) proved that if a class of functions is learnable using only a polynomial number of
statistical queries of inverse polynomial tolerance then its statistical query dimension is polynomial.
Yang (2005) strengthened their result and proved the following bound (see (Szorényi 2009) for a
simpler proof).

THEOREM 6.4 ((YANG 2005)). Let C be a class of functions and D’ be a distribution over X’ and let
d’ = SQ-DIM(C, D'). Any SQ algorithm that learns C over D’ with error e < 1/2 —1/(2d"/?) requires
at least d’'/* |2 — 1 queries to STAT(1/d"*/?).
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In this result, the distribution D’ is fixed and known to the learner (such learning is referred to as
distribution-specific) and it can be used to lower bound the complexity of learning C even in a weak
sense. Specifically, when the learning algorithm is only required to output a hypothesis #’ such
that Pr,v.p/[h'(x”) # c(x”)] < 1/2 — y’ for some inverse polynomial y’. It is well-known that weak
learning of functions from C implies ability to distinguish examples of any function in C from
points labeled randomly. This implies that we can apply our lower bound for decision problems to
obtain a lower bound for weak learning that is essentially the same as the result of Yang (2005).

COROLLARY 6.5. Let C be a class of functions and D’ be a distribution over X’ and let d’ =
SQ-DIM(C,D’). Any SQ algorithm that learns C over D’ with error e < 1/2 —1/d’"* requires at least
2d"'3 — 1 queries to STAT(1/d""/3).

Proor. Let Do = {D. | ¢ € C} and D = D’ x {1/2,1/2}. We convert the weak learning
algorithm into the algorithm for 8(D¢, D) as follows. Run the weak learning algorithm. Given
hypothesis h estimate the prediction error within d’~'/3/2 by using the query ¢(x’, £) = h(x") - £
with tolerance d’~'/3. If the answer to the query is > d’~'/* output 1 (meaning the input distribution
is in D¢), otherwise output 0 (meaning that the input distribution is D). Note that Ep[¢] = 0 and
therefore this algorithm will always output 0 on D. Further, if the input distribution is D, and
Prp [h(x’) # c(x’)] < 1/2 — 1/d""/? then

E [¢&x.0l= E [hx)-€]l= E [h(x')-c(x’)]=1-2 Pr [h(x)) # c(x")] > 2/d"/>.
(x’,€)~D, (x’,€)~D, x/'~D’ x'~D’

)~

Therefore in this case the answer to the query will be > 2/d"'/3 —1/d"'/ = 1/d""/3 and the algorithm
will output 1.

By Theorem 6.3, SD(B(D¢, D), 1/d’, 1) > d’. We can now apply the lower bound in Corollary
3.12 with y’ = d’~%/%/2 to obtain that our algorithm must use 2d’'/* queries to STAT(d"~/?) to
solve the problem. Our algorithm used one more query than the learning algorithm (of the same
tolerance) which gives the stated lower bound. O

This corollary implies that lower bounds based on SQ-DIM are a special case of our lower bounds.
One can also similarly show that the lower bounds based on the statistical query dimension of
Feldman (2012) that characterizes learning to high accuracy are also a special case of our lower
bounds.

6.2 Lower Bounds for 1-bit Sampling Oracle

We now show how our results can be used to obtain lower bounds against 1-bit sampling algorithms
based on SQ-DIM. Such lower bounds have been previously proved by Yang (2005) who referred to
his model as Honest SQ model (apparently unaware of the connection to the model in (Ben-David
and Dichterman 1998)). In the Honest SQ model, the learner has access to an HSQ oracle. A
query to HSQ oracle is a function ¢ : X’ X {-1,1} — {-1, 1} and a sample size ¢ > 0. The oracle
draws x{,...,x; ~ D’, and returns the value % le d(x’, c(x")). The total sample complexity of an
algorithm is the sum of the sample sizes it passes to HSQ.

We note that using 1-STAT is equivalent to a call to HSQ with sample size 1. Also 1-STAT can
simulate estimation of queries from a larger number of samples in a straightforward way while
obtaining the same total sample complexity. Therefore HSQ is equivalent to the 1-STAT oracle.

Using Lemma 3.10 with y’ = 1/Vd’ to convert a bound on pairwise correlations to a bound
on average correlation, we can obtain that SDA(B(D¢, D), 1Nd +1)d’,1) > Vd'/(1 - 1/d").
Plugging this bound into Theorem 3.16, we can derive sample complexity bounds on 1-bit sampling
algorithms for learning in the same way as in the proof of Corollary 6.5.
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COROLLARY 6.6. Let C be a class of functions, D’ be a distribution over X', d’ = SQ-DIM(C, D) and
€ =1/2—1/d"V*. Then any 1-bit sampling algorithm that, with probability at least 2/3, e-accurately
learns C over D’ requires Q(Nd') queries to 1-STAT.

This lower bound is similar to the result of Yang (2005) who shows a bound of Q(d’/log d”) using
a stronger 1/d”® upper bound on correlations (and a substantially more involved proof). Note
that the inverse of the maximum pairwise correlation is usually much lower than the number of
functions. Therefore our result will give a stronger lower bound in most cases.

6.3 New Lower Bound for Learning

We now briefly describe a version of our lower bound for weak distribution-specific learning.
It is stronger than known SQ-DIM-based bounds in several ways. First, it explicitly decouples
the tolerance (or number of samples) from the number of queries. This is particularly relevant
for attribute-efficient learning that is learning when the dimension is high but the target function
depends on few variables (see (Feldman 2014) for more details on SQ learning in this setting). Second,
it captures sample complexity in a tighter way by going to average correlations and proving lower
bounds against VSTAT. Lower bounds against VSTAT also imply tighter lower bounds for 1-STAT
and, via the reductions in (Feldman et al. 2013), against stronger oracles.

We now give versions of our main definitions specialized to the case of distribution-specific
PAC learning. Although the target distribution is fixed, by varying the concept by which examples
are labeled, we effectively generate a large set of different distributions as before. The average
correlation can be defined directly for a set of functions C’ relative to a distribution D’:

’ ’ . 1
pC.D) = s D) Henednl.

c1,c2€C’

Definition 6.7. For y > 0, a distribution D’ over domain X’ and a set of Boolean functions C over
X’ the statistical dimension of C over D’ with average correlation y is defined to be the largest
integer d for which there exists a finite set of functions C; C C such that for any subset C’ C Cjy,
where |C’| > Cy/d, p(C’,D’) < y. We denote it by SDA(C, D', 7).

Using Theorem 3.7 and the reduction in Corollary 6.5 imply Theorem 2.8.
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A AVERAGE-CASE VS DISTRIBUTIONAL PLANTED BIPARTITE CLIQUE

In this section we show the equivalence between the average-case planted biclique problem (where
a single graph is chosen randomly) and the distributional biclique problem (where a bipartite graph
is obtained from independent samples over {0, 1}"). The primary issue is that in the distributional
biclique problem the biclique does not necessarily have the same size on the left side of vertices as
it does on the right side. We show that this is easy to fix by producing planted bicliques of smaller
size on one of the sides. We do this by replacing vertices of the graph with randomly connected
ones. We now describe the reductions more formally.

Definition A.1. [Average-case planted biclique APBC(n, k1, k;)] Given integers 1 < ki, k; < n,
consider the following distribution Gu.4(n, k1, k2) on bipartite graphs on [n] X [n] vertices. Pick
two random sets of k; and k; vertices each from left and right side, respectively, say S; and S,. Plant
a bipartite clique on S; X S; and add an edge between all other pairs of vertices with probability
1/2. The problem is to recover S; and S, given a random graph sampled from Ga4(n, k1, k2).

We will refer to the distributional biclique problem with n samples as DPBC(n, k). Recall that in
this problem we are given n random and independent samples from distribution Ds over {0, 1}"
for some unknown S C [n] of size k (see Definition 1.1). The goal is to recover S.

THEOREM A.2. Suppose that there is an algorithm that solves APBC(n,k’,k’) in time T'(n,k’)
and outputs the correct answer with probability p’(n,k”). Then there exists an algorithm that solves
DPBC(n, k) in time T(n, k) = O(nkT’(n, k/2)) and outputs the correct answer with probability p(n, k) =
p’(n,k/2) — n27%k),

Proor. We will think of the distribution Gao4(n, k', k’) on graphs as a distribution on their
respective adjacency matrices from {0, 1}"*". Let A(n, k’) be the algorithm that solves an instance
of APBC(n, k’, k’). Given k and n, and access to n samples from Dy for some set S of size k, we will
design an algorithm that finds S by making O(nk) calls to the algorithm A(n, k’) that solves an
instance of APBC(n, k', k’).

Let M be the n X n binary matrix whose rows are the n samples from Dg. First apply a random
permutation x : [n] — [n] to the columns of M to obtain M’ (this will ensure that the planted set is
uniformly distributed among the n coordinates, which is necessary in order to obtain instances
distributed according to Gao4(n, k', k).

In what follows we will denote by k’ X k a biclique with k’ vertices on the left and k vertices on
the right. Note that M” has a k” X k planted biclique for some k’ that is distributed according to the
binomial distribution B(n, k/n). We denote the vertices on the left side of this biclique by L. By a
multiplicative Chernoff bound, Pr[k/2 < k’ < 2k] > 1 — 2¢™*/®. From now on we will condition on
this event occurring.

We first suppose that k < k’ < 2k. We aim at obtaining instances of APBC(n, k, k) but recall
that the left side of the planted bliclique has size k” > k. To reduce the size of the left side of the
planted biclique to k we will be replacing the vertices on the left side by randomly connected ones,
one-by-one in a random order. That is, start with Mj = M’. To obtain M;,_,, we choose a random
and uniform row of M; that was not previously picked and replace it with a random and uniform
{0, 1}" vector. This gives a sequence of random matrices: M;, My, ..., M, Clearly, M; has a planted
biclique of size k’ X k and M, does not have a planted biclique (or, equivalently, has a 0 X k biclique).
A single step reduces the size of the left side of the biclique by at most 1. Therefore for some i,
M, has a k X k biclique. We denote the left side of this biclique by L*. It is also easy to see that
for every step i, conditioned on M; containing k’’ out of vertices in L, M is distributed exactly
according to Gao4(n, k", k). We now condition on the event that for all i, M; does not contain a
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k X k biclique such that its right side is different from 7(S). It is not hard to see that this event
happens with probability at least 1 — n27%(k),

To recover S, we run A(n, k) on all the matrices M. Let L; X S; be the biclique that A outputs
on M/. We verify that L; X S; is a k x k biclique in M/. If so we output 77'(S;). Note that when
executed on M., with probability p’(n, k) this procedure will return L* X 7(S). In this case we will
return exactly S. Further, by our conditioning, if the output of A is a k X k biclique then its right
side must be 7(S).

We can now assume that k/2 < k’ < k. We aim at obtaining instances of APBC(n, k’, k). To
achieve this we reduce the size of the right side of the planted biclique to k" in the same way as
we reduced the size of the left side above: we will be replacing the vertices on the right side by
randomly connected ones, one-by-one in a random order. As before we start with M; = M’. To
obtain M;, |, we choose a random and uniform column of M; that was not previously picked and
replace it with a random and uniform {0, 1}" vector. This gives a sequence of random matrices:
M, My, ..., M;. We know that for some i*, M/, has a k’ X k’ biclique. We denote the right side
of this biclique by 5*. We now condition on the event that for all i, M; does not contain a k" X k’
biclique such that its left side is different from L. It is not hard to see that this event happens with
probability at least 1 — n2~%*") = 1 — p2=@k)

Assume for now that we know k’. To recover S, we run A(n, k) on all the matrices M;. Let
L; x S; be the biclique that A outputs on M;. We verify that L; X S; is a k” X k” biclique in M. If so
we let S’ be the set of all vertices on the right side connected to each vertex in L; (in the original
graph after the permutation). If |S’| = k, we output 77(5’). Note that when executed on M/,, with
probability p’(n, k’), this procedure will return L X S*. Further, by our conditioning if the output
of A is a k’ X k’ biclique then its left side must be L. All vertices in 7(S) are connected to L. The
probability that any other vertex on the right side of M’ is connected to all vertices in L is at most
n - 27%. Hence, conditioned on this event not occurring, we will recover exactly S.

To address the fact that k’ is not known, for each value of k; = k — 1,k — 2,...,k/2, we run
the algorithm under the assumption that k” = k; and stop once the algorithm has found a k” X k’
biclique. If k; > k’ then, by our conditioning on none of M; containing a k" X k’ biclique such
that its left side is different from L there cannot exist a k; X k;y biclique in the graph. Therefore the
algorithm will not output anything until k; = k” at which point our analysis above applies.

To analyze the success probability and running time we can assume for simplicity that it is harder
to find smaller planted bicliques than larger ones, and so for k; € [k/2,k], T'(n, k1) < T'(n,k/2)
and p’(n, k’) < p’(n, k/2). Therefore the running time of our algorithm is T(n, k) = O(nkT’(n, k/2)),
and its success probability is p(n, k) = p’(n, k/2) — n2=2K), )

We now prove the converse of Theorem A.2.

THEOREM A.3. Suppose that there is an algorithm that solves DPBC(n, k) that runs in time T(n, k)
and outputs the correct answer with probability p(n, k). Then there exists an algorithm that solves
APBC(n, k', k") in time T'(n, k") = O(nk’T(n, k' /2)) and outputs the planted biclique with probability
p'(n, k') > p(n, k’/2) — n2%=K),

Proor. Let A(n, k) denote the algorithm for solving DPBC(n, k), which, for any S C [n] of size k,
takes n samples chosen according to Ds and outputs the planted set S with probability p(n, k). We
will construct an algorithm for APBC(n, k', k) that takes as input an adjacency matrix M chosen
randomly according to Gaug4(n, k’, k'), (as in Definition A.1) and outputs a biclique S; x S, of size
k’ x k’. Note that, with probability 1 — n2=%*") the set S; x S, is the unique k’ x k” biclique in M
and we will condition on this event.
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We first observe that an instance of DPBC(n, k) can be equivalently thought of as follows: first
pick an arbitrary set S of k vertices on the right side of the graph; then pick £ according to B(n, k/n);
pick a random subset S’ of £ vertices on the left side of the graph; make S’ X S a biclique and connect
all the other pairs of vertices randomly and independently with probability 1/2. The probability that
¢ € [5k/6,6k/5] is at least 1 —27%) and therefore the probability that A(n, k) succeeds conditioned
on this event is at least p(n, k) — 2~*%)_ This implies that there exists {; € [5k/6, 6k/5] such that
conditioned on £ = £, the probability that A(n, k) succeeds is at least p(n, k) — 27**) (we note
that £, might depend on S).

Let M be the adjacency matrix of the given instance of APBC(n, k’, k). For each column of M
(corresponding to a vertex on the right side), with probability 3/4 we replace it with a random and
uniform vector from {0, 1}" and let M’ denote the obtained adjacency matrix. We denote by S the
subset of S, containing vertices that were not replaced by randomly connected vertices. Let k = |S].
With probability at least 1 — 27°®) k € [3k’/5, 5k’ /6] and we will condition on this event.

We aim at obtaining an instance of DPBC(n, k) in which exactly €} vertices on the left are
connected to all vertices in the planted set S. By the argument above, we know that we can assume
that £, € [5k/6,6k/5] C [k’/2,k’] and A succeeds with probability at least p(n, k) — 27%) given
an instance in which exactly ) vertices on the left are connected to all vertices in S.

M’ has a k’ x k biclique so to reduce the size of the left side of the planted biclique to £, we will be
replacing the vertices on the left side by randomly connected ones, one-by-one in a random order as
in the proof of Theorem A.2. This gives a sequence of random matrices: M’ = M{, Mj, M, ..., M;,.
For every i, Let S| denote the subset of vertices in S; that were not replaced by a randomly connected
vertex in M]. It is also easy to see that for every i, conditioned on |S]| = k", M is distributed
exactly as n samples from Dg in which k"’ samples were chosen to be connected to all vertices in S.

To recover S; and Sy, we run A(n, k) on all the matrices M; (where, we assume for now that
k is known). Let L; X R; be the biclique that A outputs on M;. Let S} be the set of all (left side)
vertices connected in the original input graph to all vertices in R; and S; be the set of all (right
side) vertices in the input graph connected to all vertices in S}. If |S]| = |S;| = k’ then we output
the biclique S7 x S;. Otherwise we go to the next step (if none of the steps produces a biclique
the algorithm fails). We first note that, unless the algorithm fails, it outputs a k” X k’ biclique in
the input graph which, by our conditioning, can only be the true planted biclique. Further, there
exists i* such that [S.| = {x. M]. is distributed as n samples from Dgs in which {; samples were
chosen to be connected to all vertices in S. Therefore by our conditioning, with probability at least
p(n, k) — 276) A(n, k) will output S. The vertices in S; are connected to all vertices in § and with
probability at least 1—n27% no other vertex in the original graph is. The vertices in S, are connected
to all vertices in S; and, by our conditioning no other vertex is. Therefore, with probability at least
p(n, k) — n27°®) the algorithm will produce the true k’ x k’ biclique.

To address the fact that k is not known, for each value of k; = [5k’/6],...,[2k’/3], we run
the algorithm under the assumption that k = k; and stop once the algorithm has found a k” X k’
biclique. The algorithm can only output the true planted biclique and therefore this will not reduce
the success probability.

As before, to analyze the success probability and running time we assume for simplicity that
it is harder to find smaller planted sets than larger ones, and so for k; € [|2k’/3], [5k’/6]],
T(n,k;) < T(n,k’/2) and p(n,k) < p(n,k’/2). Therefore the running time of our algorithm is
T'(n, k') = O(nk’T(n, k’/2)), and its success probability is p’(n, k) > p(n, k’/2) — n27%*"), O
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