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Abstract— Microscale additive manufacturing processes have
a great potential to manufacture microscale sensors and de-
vices in a layer-to-layer fashion with freeform control of
device architecture. However, the layer-to-layer dynamics in
microscale additive manufacturing are not well understood.
This manuscript investigates layer-to-layer dynamics from a
system identification perspective. This work defines a class of
input signals, system identification algorithm for microscale
additive manufacturing modeled as a discrete repetitive system,
and the experimental protocol to empirically the plant model
and validate the model for a different input signal. A case study
applied to the microscale additive manufacturing process elec-
trohydrodynamic jet printing demonstrates that the identified
model from a training set is extensible to a validation data set,
with less than 4% error between the system identification of
the training and validation data sets.

I. INTRODUCTION
Additive manufacturing (AM) systems technology have

attracted significant attention in recent years. In AM, a 3D
object model is sliced into multiple layers in a computer
program and the AM system selectively adds material on
each layer on top of the existing material [1]. AM has advan-
tages over traditional manufacturing techniques, including:
1) the ability to fabricate complex structures that are not
feasible by traditional manufacturing techniques; 2) rapid
prototyping of new designs; 3) reduced material waste; 4)
meeting custom manufacturing requirements; and 5) does not
expensive tooling, hence reducing cost.

The majority of the applications of AM are in the
macroscale. However, AM techniques have been expanded to
the microscale, termed Microscale-Additive Manufacturing
(µ-AM). One of the representative µ-AM technologies is
electrohydrodynamic jet (e-jet) printing. In e-jet, a voltage
difference is applied between a conductive nozzle and a
conductive printing substrate, pulling the ink material at the
nozzle tip from spherical meniscus to a conical shape and
then ejecting the ink drop onto the substrate. Structures are
fabricated by coordinate nozzle position and droplet ejec-
tion. E-jet is advantageous because it can fabricate objects
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in microscale and nanoscale [2] because the electric field
deforms a spherical droplet into a cone, hence reducing the
fundamental droplet size and thus resolution; resolution is
on a comparable lengthscale to lithographic micromachining,
making e-jet a compelling technology for fabrication of
biological micro-assays [3], charge printing for self assembly
[4], electronics [5], [6] and many others [7], [8].

Current µ-AM techniques primarily fabricate objects in
2D [2], [9], [10]. However, the real potential of µ-AM is
the ability to fabricate in 3D. In contrast to 2D µ-AM, in
3D µ-AM, once a base layer of material has been deposited,
subsequent layers build upon each other, creating dynamics
in the layer-to-layer domain [11], [12]. Ultimately, µ-AM
control methods like those published by the authors [13], [14]
and others [12] will be applied to multi-layer, multi-material
fabrication; to realize stable feedback loops, we must have an
accurate model of the in-layer and layer-to-layer dynamics.
The authors’ previous work [13], [14] demonstrate 2D µ-
AM regulated autonomously with iterative learning control,
while this manuscript will demonstrate layer-to-layer system
identification.

In this manuscript, the in-layer and layer-to-layer dynam-
ics of a 3D µ-AM system are formulated as a spatial, discrete
repetitive process. We define and demonstrate an empirical
method to obtain a model, using established tools from
system identification. Section II defines the discrete repet-
itive system model posed to capture in-layer and layer-to-
layer dynamics. Section III defines the system identification
method, including the definition of 2D pseudo random binary
sequence (PRBS) input signals as the system excitation and
µ-AM appropriate constraints on the algorithm. Section IV
defines the specific µ-AM system used for a case study,
electrohydrodynamic jet (e-jet) printing, and the specific of
system identification application. Section V presents system
identification results and then Section VI provides conclu-
sions and future directions.

II. DISCRETE REPETITIVE SYSTEM MODEL

On each layer in the layer-to-layer sequence of material
addition in µ-AM, material is selectively added at a given po-
sition {x, y} . The accumulated topography on layer j+1 at
{x, y}, gj+1(x, y), is the sum of the previously accumulated
layers of material, gj(x, y) and the newly added material,
Hffj+1 (Fig. 1). While material addition is commanded at
position {x, y}, there is also material spill-over from material
added at adjacent positions (e.g. {x−1, y}). Note that in this
study, as with previous work from the authors [13], [14], we
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assume that temporal dynamics are not observable with the
sensors we used and thus temporal dynamics are ignored.

This sequence of material addition is naturally a discrete
repetitive process (DRP), so it can be abstractly modeled by
the general DRP formulation in operator form (Fig. 2)

gj+1 = Hffj+1 +Hggj . (1)

where Hg denotes the material spill-over to adjacent coordi-
nates caused by the previously accumulated topography, and
w is the layer shift operator: wgj = gj+1.

Remark 1: We expect that Hg is a pure integrator where
previous layers simply add to the cumulative layer height.
In agreement with systems identification practice, we do not
suppose a model for Hg and we evaluate whether or not our
expectation of a pure integrator is confirmed.

A. 2D convolution representation
Spatially-invariant forms of the operators Hf and Hg , (1)

can be rewritten as a discrete, 2D convolution

gj+1(x, y) = (fj+1 ∗ hf ) (x, y) + (gj ∗ hg) (x, y)

=
M−1∑
u=0

N−1∑
v=0

fj+1(u, v)hf (x− u, y − v)

+

M−1∑
u=0

N−1∑
v=0

gj(u, v)hg(x− u, y − v),

(2)

where hf is the discrete impulse response to the current layer
input and hg is the discrete impulse response to the previous
layer output. fj+1 and g(·) are discrete functions at x =
0, 1, . . . ,M − 1 and y = 0, 1, . . . , N − 1.

Hf fj

gj

gj+1

Layer j Layer j+1

Fig. 1. Schematic of material accumulation in µ-AM. The accumulated
material height, gj+1, at layer j+1 is a function of the underlying material
accumulation from previous layers, gj , and the current layer material
addition, Hffj .

H

f (x,y)

g (x,y)
Σ

j+1

j+1

g
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w-1

g (x,y)
j

Fig. 2. Operator model for a spatial discrete repetitive system.

B. Lifted-domain representation

To leverage standard temporal-domain system identifica-
tion algorithms, the system representation in (2) can be
transformed to the lifted-form

gj+1 = Hf f j+1 + Hggj , (3)

where fj+1 = V(fj+1) ∈ RMN×1 and g(·) =
V(g(·)) ∈ RMN×1. The spatial dynamics matrices Hf ,Hg ∈
RMN×MN are Block Circulant matrices with Circulant
Blocks (BCCB) composed of the entries of the impulse
response hf , hg as has been done before by the authors
in [13]. V is the vectorization operator and V−1 is the
matricization operator [15].

C. Finite Impulse Response (FIR) model

In practice for µ-AM systems, both hf and hg are finite
horizon impulse response functions because there are two
finite limits: 1) added material will spread to a finite extent;
2) the influence of the underlying topography has a finite
extent. Therefore, the set of unknown parameters of hf and
hg can be represented by an unknown parameter vector

θ =
[
hf 1, hf 2, . . . , hfm, hg1, hg2, . . . , hgn

]T
where hf is composed of m unknown parameters and hg is
composed of n unknown parameters. The values of m and n
are determined by the dynamics of the system. The system
dynamics in (3) can be rewritten as

gj+1 = Φ(fj+1,gj)θ, (4)

where Φ(fj+1,gj) is the transformation between θ and gj+1.
In the general case, the vector θ can be written as

θ =



hf (1−M, 1−N)
hf (1−M, 2−N)

...
hf (1−M,N − 1)
hf (2−M, 1−N)

...
hf (2−M,N − 1)

...
hf (M − 1, N − 1)
hg(1−M, 1−N)
hg(1−M, 2−N)

...
hg(1−M,N − 1)
hg(2−M, 1−N)

...
hg(2−M,N − 1)

...
hg(M − 1, N − 1)



. (5)

The corresponding Φ(fj+1,gj) ∈ RMN×2(2M−1)(2N−1) can
be written as
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Φ[u, v]

=

(
1− b v

(2M − 1)(2N − 1)
c
)

× fj+1{b
u

N
c −

(
b v′

2N − 1
c+ 1−M

)
,

(u mod N)− ((v′ mod 2N − 1) + 1−N)}
+ b v

(2M − 1)(2N − 1)
c

× gj{b
u

N
c −

(
b v′

2N − 1
c+ 1−M

)
,

(u mod N)− ((v′ mod 2N − 1) + 1−N)},

(6)

where u ∈ {0, 1, 2, . . . ,MN − 1} and v ∈
{0, 1, 2, . . . , 2(2M − 1)(2N − 1) − 1} are the row
index and column index of Φ(fj+1,gj), respectively.
The notation b·c denotes the floor function, and
v′ = v mod (2M − 1)(2N − 1). The detailed derivation
to obtain (6) is provided in Appendix I. The formulation
in (6) is the general form. In practice, the formulation may
be simplified based on the dynamics of the specific system.
Sections IV-D and IV-E include an example of how to
reduce the dimension and complexity of θ in practice.

III. SYSTEM IDENTIFICATION

System identification is a well-known tool to obtain a
mathematical model of a dynamic system using empirical
input and output signal data [16]. In this study, the purpose
of system identification is to identify an estimate, θ̂, of the
unknown parameters, θ in (4). Specifically, find θ̂ such that
‖gj+1−Φ(fj+1,gj)θ̂‖22 is minimized, where gj+1 and Φ are
known or measured from an experiment. This section details
unique aspects of system identification for spatial discrete
repetitive systems models for µ-AM.

A. Input signals

Multiple standard input signals used in temporal system
identification can be adapted to 2D spatial layer-to-layer
system identification. In this study, pseudo random binary
sequence (PRBS) signals are adapted to 2D PRBS input
signal matrices. PRBS signals are advantageous because they
are deterministic, they possess frequency spectrum properties
similar to white noise, and generate responses with better
signal-to-noise ratios than white noise [17]. The construction
details of a 1D PRBS can be easily found in many references
such as [18], and are omitted in this manuscript. There are
many standard software packages providing functions con-
structing 1D PRBS signals. Here, the built-in idinput()
function in MATLAB is used. To identify 2D dynamics, 2D
PRBS input signals are constructed using the method given in
[18]. This manuscript provides the fundamental construction
operations without mathematical proof. Readers interested in
the mathematical details should reference [18].

The 2D PRBS signals can be constructed by folding a 1D
PRBS signal. The operation begins with taking a number of

the form l = 2k1k2 − 1 such that l1 = 2k1 − 1 and l2 = l/l1
are relatively prime and greater than 1. Examples are

l = 15 = 24 − 1 with k1 = k2 = 2, l1 = 3, l2 = 5

l = 63 = 26 − 1 with k1 = 3, k2 = 2, l1 = 7, l2 = 9

l = 511 = 29 − 1 with k1 = 3, k2 = 3, l1 = 7, l2 = 73.

The starting point is a 1D PRBS signal with the length of l.
Fig. 3 shows an instructive example of folding a l = 15 1D
PRBS signal to a 3× 5 2D PRBS signal.

Original 1D PRBS

a1
a2
a3

a4

a4

a1
a2
a3

a4
a5

a6 a6

a1 a2 a3 a4 a5 a6 a7 a8 a10 a11 a12 a13 a14 a15a9

a9

a1
a2
a3

a4
a5

a6

a7

a7

a8

a10

a10

a9

a1
a2
a3

a4
a5

a6

a7
a8

a10
a11
a12

a13
a14
a15

Start at north-west coner and move 

south-east (along main diagonal)

Continue from opposite side when an edge is reached

The complete 2D PRBS signal

Fig. 3. Constructing a 2D PRBS signal from a 1D PRBS sequence.

B. System identification algorithm

The system identification problem is defined as

min
θ̂
‖gj+1 − Φ(fj+1,gj)θ̂‖22

subject to:
θlower 6 θ̂ 6 θupper
Aeθ̂ = Be

Aθ̂ > B

(7)

where matrices {Ae,Be} and {A,B} contain equality and
inequality constraint parameters, respectively. The practical
aspects of these constraints as they pertain to µ-AM are
described in Section IV. Many standard software packages
provide built-in solvers that can solve (7); here, we use the
built-in solver lsqlin() in MATLAB.

IV. EXPERIMENT SETUP

System identification is performed on a µ-AM system
housed in the Barton Research Group at the University of
Michigan (Fig. 4a). This section provides details of the
experimental system and the experiment procedure.

A. System description

The µ-AM system used in this study is an electrohy-
drodynamic jet (e-jet) printing system. The mechanism of
material addition in e-jet is liquid-phase drop ejection where
an electrostatic force from a voltage potential draws build
material out of a microcapillary, with nozzle diameters orders
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Fig. 4. µ-AM system in the Barton Research Group at the University
of Michigan. a) A photograph presenting the components of the integrated
system. b) Schematic of a standard e-jet system and the voltage pulse driving
the drop ejection. c) Schematic of the AFM scan mechanism.

typically ranging from 100 nm to 10 µm, into a conical
shape, termed a Taylor cone, and then ejects the material
onto an underlying substrate. By coordinating the position of
the nozzle with voltage actuation, structures with microscale
features can be built from a variety of different function
materials, including: silver- and gold-nanoparticles [19]–
[22], polymers [23]–[25], and biological materials [3], [26],
[27]. Readers interested in e-jet printing mechanism and
other applications should reference [2], [28].

E-jet can be modeled in the context of the spatial dis-
crete repetitive system in (4). The XY plane in Fig. 4b is
discretized into a normal grid x = 0, 1, . . . ,M − 1 and
y = 0, 1, . . . , N − 1 with pitch p. At each grid coordinate
(x, y), a voltage pulse is applied with pulse width fj+1(x, y),
depositing an ink drop. The ink drop spreads to neighboring
coordinates (e.g. (x− 1, y)). The steady state topography
height distribution is determined by the spatial dynamics
hf , input map, fj+1, and the preexisting topography, gj .
For multi-layer fabrication, this process of ejecting drops at
specific coordinates is repeated to produce the 3D object.

For the specific setup used in this study, the grid pitch is
5 µm. The inner diameter of the printing nozzle is 2 µm
(World Precision Instruments TIP2TW1-L), and the standoff
height between the nozzle and the substrate is 40 µm. An
electrically grounded silicon wafer with a deposited layer of
SiO2 is used as the substrate. The topography is measured by
an integrated atomic force microscope (AFM) that permits

facile, registered measurements, as described in [14], [29];
here, we use a commercial tip-scanning AFM (Nanosurf
NaniteAFM) with controller (Nanosurf C3000) and custom-
written image processing algorithm. The ink material used
is Loctite 3526, which is a UV curable adhesive. After
deposition, the ink is cured by our UV curing station (Dymax
BlueWave 200 Ver. 1.1).

B. System identification workflow

The aim of system identification for the discrete repetitive
model (4) is to estimate the unknown parameter vector θ̂.
There are unique considerations for the multi-layer structures
printed by µ-AM. In particular, the surface energy of the
substrate is different from the build material, meaning that
a sessile drop will spread differently on the substrate than it
will on a previous layer of the material. Therefore, system
identification tests are performed on a pad of deposited ink.
Accordingly, we use a two-layer deposition procedure (Fig. 5
and 6) and use only second layer input data for θ̂ estimation
(algorithm in Section III-B). A first layer is deposited with
pulse width map f1, scanned by AFM, and then processed,
providing a base topography profile g1. Then a second
layer is deposited on top of the first layer with pulse width
map f2 and then scanned and processed to obtain g2. As
presented in the workflow in Fig. 5, the workflow is repeated
for 10 cycles with different f1, f2 maps to best represent
the actual system responses to different inputs. Another 10
cycles with different f1, f2 maps are performed afterwards
as validation. The input maps f1, f2 are constructed in the
following manner:

fj = dif̄j , i = 0, 1, . . . , 9 and j = 1, 2 (8)

where di is a pulse width scaling factor that spans the typical
operating pulse width of the system and f̄j is a 2D PRBS
function template. To guarantee periodic boundary conditions
for the identification of dynamics for the second layer, an
augmented input f̃1 is used to e-jet print the first layer. As
shown in Fig. 6, f̃1 is constructed by repeating f1 in the XY
plane and cropping a map 4 rows and 4 columns larger than
f1. Note that f̃1 is not used for θ̂ estimation, which is given
in Section III-B.

The model is validated using the same workflow as shown
in Fig. 5, except using a set of validation PRBS templates
¯̄fj for j = 1, 2. The identification model error and validation
model error are quantitatively compared using the error
metrics

Eexp
rms =

√√√√(‖gexp
2 − Φ(gexp

1 , f exp2 )θ̂‖2
)2

7× 9× 10
,

Eval
rms =

√√√√(‖gval
2 − Φ(gval

1 , fval2 )θ̂‖2
)2

7× 9× 10
,

(9)

where θ̂ is the solution to problem (7). f exp2 is the vector-
ized form of the input vectors in the 10 cycles of system
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Fig. 5. Diagram of the experiment workflow.

identification runs:

f exp2 =
[
V
(
d0f̄2

)
,V
(
d2f̄2

)
, . . . ,V

(
d9f̄2

)]T
.

gexp
(·) are the vectorized forms of the corresponding outputs

in the system identification runs. fval2 is the vectorized form
of the input vectors in the 10 cycles of validation runs with
different pulse width scaling factor, hencing different drop
sizes:

fval2 =
[
V
(
d0

¯̄f2

)
,V
(
d2

¯̄f2

)
, . . . ,V

(
d9

¯̄f2

)]T
.

gval
(·) are the vectorized forms of the corresponding outputs

in the system identification runs.

C. Experimental Parameters

For both the identification and validation prints, the input
map templates f̄1, f̄2 are 7× 9 2D PRBS maps as shown in
Fig. 7. The 2D PRBS matrices are generated from maximum
length (63) 1D PRBS signals. The white pixels denote f̄j =
1, and the gray pixels denote f̄j = 0.5. The validation input
template ¯̄f2 is formed identically to f̄1 via the approach
illustrated in Fig. 3, except with a different initial condition
for the 1D PRBS.

Fig. 6. Schematic of the two-layer printing experiment.

f1 ,  f2 f2 ,  f1
a) b)

Fig. 7. 2D PRBS signals used to construct the input maps for the system
identification experiments. Both a) and b) are constructed from length 63
1D PRBS signals under the manner in Fig. 3. The only difference between
a) and b) is the initial condition of the 1D PRBS signals.

hf 1

hf 6

hf 3

hf 5

hf 2

hf 4

Fig. 8. From assumptions A1 and A2, hf is defined by six param-
eters {hf1, hf2, . . . , hf6}. hg is similarly defined by six parameters
{hg1, hg2, . . . , hg6}.

D. Model assumptions and corresponding constraints

The model makes four assumptions about the size and
composition of hf and hg .
A1. Previous single-drop models indicate that the maxi-

mum spread of a drop to be less than 25 µm [30].
Using a d = 5 µm pitch, hf and hg take the form of
5× 5 matrices.

A2. The e-jet printing system has discontinuous stage
shifting operations in the experiment workflow. The
substrate is stationary with respective to the nozzle
when a drop is printed, then is shifted to the next
coordinate for the next drop printing. Sessile drop
theory predicts rotational symmetry for liquid drops
[31], so hf and hg have center-inversion and 90-degree
rotational symmetry so that the 25 elements of each of
hf and hg are completely defined by six parameters
each (Fig. 8).

A3. A sessile drop topography monotonically decreases
from it center [31], so hf1 ≥ hf2 ≥ . . . ≥ hf6.

A4. Material can only be added, so hfi, hgi ≥ 0. Addition-
ally, the layer-by-layer operator hg conserves volume,
so 1hg1 + 4hg2 + 4hg3 + 4hg4 + 8hg5 + 4hg6 = 1.

E. Constraints

Assumptions A1 and A2 dictate the form of θ̂,

θ̂ =
[
hf 1, hf 2, . . . , hf 6, hg1, hg2, . . . , hg6

]T
. (10)

Assumption A3 sets
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A =

[
∆ 06×6

06×6 ∆

]
; B = 012×1 (11)

where the difference matrix

∆ =


1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1

 . (12)

The non-negative component of Assumption A4 sets
θlower = 0 and leaves θupper unbounded and the conser-
vation of volume component is enforced by the selection of

Ae =
[

01×6 1 4 4 4 8 4
]

; Be = 1. (13)

The non-zero elements in Ae indicate the counts that the
corresponding parameter appears in hg (e.g. hg1 appears 1
time and hg5 appears 8 times in hg from A1. and A2.. The
construction of hf and hg is shown in Fig. 8.)

V. SYSTEM IDENTIFICATION RESULTS
A. Nominal models

Nominal models for hf and hg were obtained as described
in Section IV-B. The identified 5× 5 hf matrix has all
nonzero elements, and its central element value is 14% of the
sum of all 25 element values, shown in Fig. 9. The spatial
dispersion of the identified hf is indicated by its weighted
standard distance (Appendix II) of 1.7 pixel pitches (8.5 µm)
from the matrix center. This mass transport beyond the
central pixel consistent with coalescence of viscous, densely
packed drops [14]. The identified hg , however, has no spatial
dispersion, as shown in Fig. 10, indicating the material at the
previous layer almost perfectly maps to material addition in
the second layer. This behavior ideal and means that layer-to-
layer dynamics act like a pure integrator; this result confirms
our expectation introduced in Remark 1.
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Fig. 9. Nominal hf model obtained via system identification.
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Fig. 10. Nominal hg model obtained via system identification. The negative
signs are caused by the software numerical precision.
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Fig. 11. Worst case prediction error from the validation set, as defined in
(14).

B. Model validation

The error metrics as defined in (9) are compared to
quantitatively evaluate the models. The values of Eexp

rms and
Eval

rms are presented in Table I. The values of Eexp
rms and Eval

rms

are close to each other. Eval
rms is 3.6% smaller than Eexp

rms.

TABLE I
ERROR METRICS (UNIT: µM)

Eexp
rms Eval

rms

0.0386 0.0372

A more visual model evaluation is presented in Fig.
11. The figure presents the worst-case topography height
prediction of the validation run out of 10 runs,

max
i
‖g2 − Φ(f2,g1)θid‖2, (14)

where i is the run index, f2 = V
(
di

¯̄f2

)
is the input and g(·)

is the corresponding output. Qualitatively, the model error is
a fraction of the model parameter values.

VI. CONCLUSIONS

This manuscript describes a system identification method
to define a discrete spatial repetitive process model for
microscale additive manufacturing. The identified model
accurately represents both the in-layer and layer-to-layer
dynamics of electrohydrodynamic jet printing, demonstrated
by a less than 4% error between the training set data and the
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validation data using a different input. Note that the system
identification routine used a pseudo random binary sequence
input signal, hence exciting the system with a broad-band of
frequencies, and also used multiple input magnitudes, and
thus may have excited nonlinearities in the system that are
not captured by our linear discrete repetitive process model.
Future work will investigate the extensibility of this model
to other material systems used with electrohydrodynamic jet
printing and investigations using the identified models in
model-based controllers to regulate part topograpy in multi-
layer and multi-material fabrication.

APPENDIX I: FORMULATION OF Φ(fj+1,gj)

This section provides the derivation to obtain Φ(fj+1,gj).
The element in the u-th row and the v-th column of Φ is
written as Φ[u, v]. From (4) and linear algebra, the following
relation can be obtained,

gj+1[u] =

2(2M−1)(2N−1)−1∑
v=0

Φ[u, v]θ[v], (15)

where gj+1[u] is the u-th element of vector gj+1, and θ[v] is
the v-th element of θ. From the definition of the vectorization
operator V [15], gj+1[u] can be written as gj+1(ux, uy),
where

ux = b u
N
c,

uy = u mod N.
(16)

The notation b·c denotes the floor function. From (5), θ[v]
can be written as hf (vx, vy) if 0 6 v < (2M − 1)(2N − 1),
or hg(vx, vy) if v > (2M − 1)(2N − 1) where

vx = b v′

2N − 1
c+ 1−M,

vy = (v′ mod 2N − 1) + 1−N,
(17)

where v′ = v mod (2M − 1)(2N − 1). Therefore, (15) can
be rewritten as

gj+1(ux, uy) =

(2M−1)(2N−1)−1∑
v=0

Φ[u, v]θ[v]

+

2(2M−1)(2N−1)−1∑
v=(2M−1)(2N−1)

Φ[u, v]θ[v]

=

(2M−1)(2N−1)−1∑
v=0

Φ[u, v]hf (vx, vy)

+

2(2M−1)(2N−1)−1∑
v=(2M−1)(2N−1)

Φ[u, v]hg(vx, vy).

(18)

From the commutative property of convolution, the system

dynamics in (2) can be rewritten as

gj+1(x, y) = (fj+1 ∗ hf ) (x, y) + (gj ∗ hg) (x, y)

=
M−1∑

u=1−M

N−1∑
v=1−N

hf (u, v)fj+1(x− u, y − v)

+
M−1∑

u=1−M

N−1∑
v=1−N

hg(u, v)gj(x− u, y − v),

(19)
where

fj+1(x, y) = 0 and gj(x, y) = 0

if x /∈ {0, 1, . . . ,M − 1} or y /∈ {0, 1, . . . , N − 1}.

From (18) and (19),

Φ[u, v] = fj+1(ux − vx, uy − vy)

if 0 6 v < (2M − 1)(2N − 1);

Φ[u, v] = gj(ux − vx, uy − vy)

if v > (2M − 1)(2N − 1).

(20)

Equivalently, (20) can be written as

Φ[u, v] =

(
1− b v

(2M − 1)(2N − 1)
c
)

× fj+1(ux − vx, uy − vy)

+ b v

(2M − 1)(2N − 1)
c × gj(ux − vx, uy − vy).

(21)
The universal formulation of Φ[u, v] can be obtained by
substituting (16) and (17) into (21):

Φ[u, v]

=

(
1− b v

(2M − 1)(2N − 1)
c
)

× fj+1{b
u

N
c −

(
b v′

2N − 1
c+ 1−M

)
,

(u mod N)− ((v′ mod 2N − 1) + 1−N)}
+ b v

(2M − 1)(2N − 1)
c

× gj{b
u

N
c −

(
b v′

2N − 1
c+ 1−M

)
,

(u mod N)− ((v′ mod 2N − 1) + 1−N)}.

APPENDIX II: COMPUTATION OF WEIGHTED STANDARD
DISTANCE OF A SQUARE MATRIX

Let A ∈ R2 be a square matrix of size N with elements
ai,j∀(i, j) ∈ {0, 1, ..., N − 1} × {0, 1, ..., N − 1}. The x
position xi and y position yj of element ai,j are i+1

2 and
j+1
2 , respectively, relative to the top left corner of the matrix.

The weighted mean x and y positions x̄ and ȳ of the matrix
are
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x̄ =

∑N−1
i=0

∑N−1
j=0 ai,jxi∑N−1

i=0

∑N−1
j=0 ai,j

, and (22)

ȳ =

∑N−1
i=0

∑N−1
j=0 ai,jyj∑N−1

i=0

∑N−1
j=0 ai,j

. (23)

The weighted standard distance of the matrix is(∑N
i=0

∑N
j=0 ai,j

(
(xi − x̄)2 + (yi − ȳ)2

)
N2−2
N2

∑N
i=0

∑N
j=0 ai,j

) 1
2

. (24)
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