
Starting from Scratch: Outcomes of Early Computer Science
Learning Experiences and Implications for What Comes Next

David Weintrop
University of Maryland
College Park, MD, USA

weintrop@umd.edu

Alexandria K. Hansen
UC Santa Barbara

Santa Barbara, CA, USA
akhansen@ucsb.edu

Danielle B. Harlow
UC Santa Barbara

Santa Barbara, CA, USA
dharlow@education.ucsb.edu

Diana Franklin
University of Chicago

Chicago, IL, USA
dmfraklin@uchicago.edu

ABSTRACT

Visual block-based programming environments (VBBPEs) such as
Scratch and Alice are increasingly being used in introductory
computer science lessons across elementary school grades. These
environments, and the curricula that accompany them, are
designed to be developmentally-appropriate and engaging for
younger learners but may introduce challenges for future
computer science educators. Using the final projects of 4th, 5th,
and 6th grade students who completed an introductory
curriculum using a VBBPE, this paper focuses on patterns that
show success within the context of VBBPEs but could pose
potential challenges for teachers of follow-up computer science
instruction. This paper focuses on three specific strategies
observed in learners’ projects: (1) wait blocks being used to
manage program execution, (2) the use of event-based
programming strategies to produce parallel outcomes, and (3) the
coupling of taught concepts to curricular presentation. For each
of these outcomes, we present data on how the course materials
supported them, what learners achieved while enacting them, and
the implications the strategy poses for future educators. We then
discuss possible design and pedagogical responses. The
contribution of this work is that it identifies early computer
science learning strategies, contextualizes them within
developmentally-appropriate environments, and discusses their
implications with respect to future pedagogy. This paper advances
our understanding of the role of VBBPEs in introductory
computing and their place within the larger K-12 computer
science trajectory.

CCS CONCEPTS
• Social and professional topics → Professional topics →
Computing Education

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ICER '18, August 13–15, 2018, Espoo, Finland
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM ISBN 978-1-4503-5628-2/18/08…$15.00
https://doi.org/10.1145/3230977.3230988

KEYWORDS
Elementary Computer Science Education; Introductory
Computing Curricula; Block-based programming; Learning

ACM Reference format:

D. Weintrop, A. K. Hansen, D. B. Harlow, and D. Franklin. 2018. In
Proceedings of the 2018 ACM Conference on International Computing
Education Research (ICER '18). ACM, New York, NY, USA, 21-29. DOI:
https://doi.org/10.1145/3230977.3230988

1 INTRODUCTION

The call to bring computer science (CS) to all learners has
reached a roar as districts, states, and countries around the world
are increasingly making CS part of the school experience for
learners across the K-12 spectrum. While there exists a diversity
of languages, programming environments, and curricula for the
oldest K-12 learners, a narrower set of introductory experiences
exist for younger students. In elementary school (grades K-8, ages
5-13), CS instruction is largely being taught using visual block-
based programming environments (VBBPEs) like Scratch [39] and
Alice [9]. Curricula including Creative Computing [6] and the K-
8 code.org materials utilize VBBPEs. VBBPEs are popular due to
the affordances they provide young learners. Transitioning
learners from introductory learning experiences with VBBPEs to
more conventional text-based programming environments poses
challenges to educators and curriculum designers. The very
features of VBBPEs that allow novice learners to be successful
may present challenges to future educators, requiring them to
more closely consider learners’ previous experiences and
potentially modify instructional strategies to support learners as
they progress.

It is these considerations that we explore in this paper,
specifically with the goal of understanding outcomes of using
VBBPEs with elementary learners and how this decision should
inform subsequent curriculum design and pedagogy. More
specifically, we answer the following research questions:

What are examples of strategies that learners develop through
introductory experiences with VBBPEs that future educators
should be aware of? How and when might these strategies differ
from what is taught in subsequent classes where text-based
programming languages are used?

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

142

mailto:Permissions@acm.org
https://doi.org/10.1145/3230977.3230988

To begin to answer these questions, we draw on data from a
classroom implementation of a VBBPE and accompanying
curriculum. Specifically, we present data on three outcomes of
students learning CS with a VBBPE that have potential
implications for future instruction: 1) wait blocks being used to
manage program execution in two distinct ways, (2) the use of
event-based programming strategies to produce parallel
outcomes, and (3) the coupling of taught concepts to curricular
presentation. For each of these strategies, we present data on how
the course materials supported these outcomes, what learners
achieved through enacting them, and discuss potential design and
pedagogical responses. The goal of this work is to advance our
understanding of what learners are able to achieve in a
developmentally-appropriate introductory course with a VBBPE
and to consider what the implications of these outcomes are for
future CS instruction that moves beyond VBBPEs. This paper
begins with a review of relevant work before presenting the
LaPlaya environment and KELP-CS curriculum. We then present
the three strategies and discuss implications of this work.

2 PRIOR WORK

2.1 Visual Block-based Programming
Environments

In this paper, we use the term visual block-based programming
environment (VBBPE) to capture the set of programming tools
that introduce learners to programming through a block-based
interface and have a visual execution environment (e.g. sprites on
a stage). This type of environment is exemplified by Scratch [39],
Alice [9], and Pencil Code [3]. Numerous widely-used
introductory environments do not meet this definition of a VBBPE
as they only include some of the defining VBBPE features, like
MIT App Inventor’s [54] use of block-based programming and
Greenfoot’s use of sprite-like actors [26]. In this section, we
discuss three key features of VBBPEs that are pertinent to this
study.

The first key component of VBBPEs is the use of a block-based
programming interface that leverages a programming-primitive-
as-puzzle-piece metaphor to provide visual cues to the user about
how and where blocks can be used [4, 30]. Users compose
programs in these environments by dragging blocks onto a canvas
and snapping them together to form scripts. If two blocks cannot
be joined to form a valid syntactic statement, the environment
prevents them from snapping together, thus preventing syntax
errors but retaining the practice of assembling programs
instruction-by-instruction. Along with using block shape to
denote use, there are other visual cues to help programmers,
including color coding by conceptual use and nesting of blocks to
denote scope [30, 47, 53].

A second key characteristic of VBBPEs is the notion of a Sprite
– an on-screen, two-dimensional character that follows
programming instructions defined by the user. The sprite can be
viewed as the modern incarnation of Logo’s turtle [36]. In
discussing the development and role of the Turtle, Papert invokes
Piaget’s notion of a mother structure – an intellectual construct
from which concepts can be created. In the Turtle, Papert saw the

embodiment of differential geometry in a way that could be
anthropomorphized by the learner [35]. While the Sprite can still
be used towards these mathematical ends, increasingly it’s role is
as a computational mother structure, i.e. a means to develop
foundational computational ideas. As we will argue in this paper,
whereas the path one follows using the turtle as the means to
express differential geometry concepts has been mapped [1], it is
less clear what path one follows when moving from sprite-driven
programming towards more advanced computational ideas that
may not be executed visually.

A third central feature of VBBPEs is their support for open-
ended and exploratory programming activities. This feature draws
directly from the Constructionist design principle of being
“discovery rich” [35]. Scratch and other VBBPEs accomplish this
by providing an accessible and intuitive set of programming
blocks but little in the way of constraints with respect to how they
can or should be used. Through designing a platform for open-
ended exploratory activities, VBBPEs do not prescribe specific
practices, instead supporting an epistemological pluralism [49]
that does not favor one specific program approach or one type of
project.

2.2 Computer Science in Elementary School
In the last decade, bringing CS to K-8 has become more
widespread, facilitated by programming tools designed for young
learners [12, 25]. Early work on programming as a means for
learning conducted by Papert and colleagues with the Logo
language found that programming was accessible to younger
learners and could serve as a powerful learning practice [20, 34,
36]. Following these successes, much of the curricular and
programming environment design effort has employed
Constructionist design principles, foregrounding learning-by-
doing and learner-directed activities. This can be seen in growing
library of curricula designed for elementary learning, including:
Creative Computing [6], Foundations for Advancing
Computational Thinking [17], Animal Tlatoque [13], and the
KELP-CS curriculum [23]. There are also growing online
communities where classroom activities designed for elementary
students are curated and shared, like the ScratchEd website and
the CS for All Consortium, which includes over 100 organizations
that self-identify as content providers for elementary learners.
Code.org also offers nine distinct CS courses for students across
grades K-8 (ages 5-13), including both conventional computer-
based curricula as well as offline activities based on the CS
unplugged curriculum [5] and computing activities designed for
science classrooms based on Project GUTS [38]. Collectively,
these resources capture part of the quickly expanding ecosystem
of ways that CS is being introduced into elementary education.

2.3 Research on Learning In VBBPEs
A growing body of research is investigating how block-based
programming shapes learners’ conceptual understanding of CS
concepts and emerging programming strategies. For example,
researchers have documented a number of ‘habits’ of
programming learners develop while working in block-based
tools, such as an emphasis on bottom-up programming where

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

143

learners focus on using specific blocks [33]. Other strategies
investigated include documenting how learners at different ages
design for their audiences [19] and debugging strategies and the
requisite knowledge to implement them [28]. Further work has
documented programming strategies specific to VBBPEs, looking
at how the scaffolds present in the environment support unique
patterns of interaction [52]. Likewise, a growing body of research
is documenting how novices learn with block-based tools;
identifying misconceptions learners may develop in VBBPEs and
developmentally-appropriate content for learners [15, 16, 42]. For
example, research looking at learners’ emerging understanding of
the initialization of state and variables in VBBPEs identified four
distinct conceptual components of the topic (e.g. when to
initialize) and showed how they are differentially manifested in
VBBPEs compared to conventional text-based languages [14]. The
findings presented herein build on and complement this work by
continuing to fill in our understanding of what it means for young
learners to develop foundational understandings of computational
ideas in VBBPEs. Likewise, our analysis considers if and how ideas
and strategies developed in VBBPEs do or do not relate to future
instruction and learning in conventional text-based languages.

3 METHODS

The work presented in this paper is part of a larger, design-based
research study focusing on the creation of elementary CS
classroom materials. We begin this section by presenting the
LaPlaya VBBPE and KELP-CS curriculum. We then present details
on the participants and study design before concluding the section
discussing the data collected and analytic approach used.

3.1 Materials
LaPlaya (Fig. 1) is a VBBPE built on top of the Snap! programming
environment [22]. Like Scratch, students program via a drag-and-
drop interaction, producing scripts of blocks to control on-screen
sprites. LaPlaya is designed to support both guided and open-
ended exploration for upper elementary school students (grades
4-6; ages 8-12). To help make programming more accessible to
younger learners, LaPlaya includes a number of unique
pedagogical scaffolds. For example, when introducing new
concepts, students are provided with pre-programmed and locked
scripts (Fig. 2a) at the beginning of the new activity. These scripts
are visible and accompanied by text descriptions to serve as
examples. LaPlaya also includes white, inert scripts (Fig. 2b) that
are not executable and serve as templates of how blocks can be
used to accomplish a desired outcome.

LaPlaya’s blocks were also modified with respect to the
original Snap! language in order to remove more advanced
mathematical concepts such as percentages, negative numbers,
and decimals for our younger students (ages 9-10). In addition, to
support learners at varying reading levels, LaPlaya has an audio,
read-aloud function so task instructions can be heard. This is
particularly important for English language learners. For
additional information about LaPlaya and the modifications made
to make it more accessible to novice learners, see [21, 23].

Figure 1. The LaPlaya programming environment.

(a) (b)

Figure 2. LaPlaya scaffolds: (a) Predefined, locked scripts
with textual hints and (b) inert scripts used as templates.

The KELP-CS curriculum was designed for the LaPlaya
programming environment with the goal of providing a
developmentally-appropriate introduction to foundational CS
concepts. KELP-CS consists of a predefined sequence of modules
comprised of activities that gradually introduce CS concepts and
the associated blocks to students as they progress. KELP-CS
includes both these structured tasks with specific conceptual
learning objectives as well as an open-ended play area with the
module’s full set of blocks to keep more advanced learners
engaged and provide a space for learner-directed exploration
throughout the curriculum. The KELP-CS curriculum has two
main types of activities: 1) On-computer assignments and 2)
“unplugged” activities completed away from a computer. On-
computer activities consisted of small, incremental tasks designed
to move students to higher levels of programming sophistication.
Unplugged activities were modeled after CS-Unplugged [5] with
the goal of connecting computing to students everyday lives.
Modules culminate with open-ended projects.

KELP-CS features two main curricular modules, each designed
around a different theme: 1) Digital Storytelling and 2) Game
Design. Each module is designed to be completed in
approximately 15-18 hours of instruction. The modules are meant
to be completed sequentially. The first Module (Digital
Storytelling) covers the following concepts: Sequencing, Breaking
down actions, Events, Initialization, Animating sprites, and
Changing scenes. The second module (Game Design) continues
with Broadcasting messages, Loops, Conditional logic, and
Variables. Both modules culminated with an open-ended
programming activity, allowing the learner to employ the
concepts learned throughout the unit.

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

144

3.2 Participants and Study Design
The data for this paper are drawn from one school located in the
Southwestern United States where 4th, 5th, and 6th grade students
(ages 9-12) worked through the KELP-CS curriculum over the
course of two consecutive school years. In the first year, two
classes in each grade, totaling 44 fourth graders, 48 fifth graders
and 43 sixth graders, completed the first KELP-CS module (Digital
Story Telling). The second year consisted of a single fifth grade
class of 18 students who completed the second KELP-CS module
(Game Design). This resulted in a total of 135 unique students over
the two years. The school where the study was conducted is
racially diverse (54% White, 35% Hispanic or Latino, 5% Asian, and
3% Black or African American) with approximately 31% of
students coming from economically disadvantaged households
and 16% of students schoolwide designated as English-language
learners.

Each year, students spent roughly 1 hour per week for 15
weeks working in the KELP-CS curriculum. Each class session
was observed by researchers and video recorded for later analysis.
Additionally, the LaPlaya VBBPE was modified so as to
automatically collect student projects, which serves as the
primary data source for the analysis presented in this paper.

3.3 Analytic Approach
The analysis presented in this paper focuses on the 135 summative
programs authored by the participants in this study. Our decision
to focus on student-authored programs stems from the
constructivist learning orientation and the constructionist design
philosophy we bring to this work. Constructivist learning theory
posits that new knowledge is built through the processes of
assimilation and accommodation with learners’ existing
knowledge. In Constructionist learning environments, that
understanding is manifest through the artifacts built by learners,
which in this case, are the programs authored [34]. As such, we
use these constructed artifacts as a means to gain insight into
learners’ emerging understanding of CS concepts and look at how
concepts are used within the larger program to understand
emerging programming strategies.

To analyze this data, each program was statically analyzed
using a custom-written script to catalog its contents with respect
to type and frequency of blocks used. Next, we undertook a
grounded-theory approach [44] with one researcher analyzing
each program individually looking for evidence of strategies,
patterns, or emerging programming strategies. This initial set of
strategies was presented to the larger research team, who further
refined the defining characteristics of each strategy and created a
qualitative coding manual to describe the usages. The coding
manual was then applied to the full set of programs to understand
the frequency of each pattern. This approach allows us to situate
each pattern within the curriculum as a way to help us understand
potential implications with respect to pedagogy and future CS
learning.

4 FINDINGS

This section presents three outcomes of learners as expressed in
their culminating projects following the completion of modules in
KELP-CS. The analysis focuses on emerging learner strategies that

are developmentally-appropriate and productive within the
context of the KELP-CS curriculum and have potential
implications for how teachers of subsequent classes that use
traditional programming languages design instruction. As such,
educators should be aware of these strategies and think about how
best to productively utilize them to scaffold and support learners
as they progress in their CS learning careers. For each strategy,
we first present student data demonstrating the strategy in use
and documenting its frequency across the participant pool. We
then link the strategy to features of KELP-CS or LaPlaya and
discuss how the environment productively supports the strategy
as well as future challenges that may emerge. We conclude each
section discussing ways future educators can respond to it.

It bears repeating that the goal of this work is to identify
strategies students develop in VBBPEs that are different from
those conventionally used in non-VBBPE introductory CS
instruction. This is not meant to imply that VBBPEs are
inappropriate for introductory computing contexts, instead, we
seek to advance our understanding of how best to support learners
as they progress along a CS learning trajectory.

4.1 Managing Execution with Wait Blocks
A frequent goal of programs in VBBPE is to coordinate a series of
on-screen events such as the speed at which a sprite dances or
how and when two sprites interact. Achieving this coordination
requires the learner to define specific instructions in their
programs. One common way to achieve these behaviors is to
manually control the speed of the execution of scripts using the
wait block. Seventy-four participants (54.8%) used the wait block
at least once in their final projects, while 13 (9.6%) used it more
than 10 times. In our analysis, we found this strategy employed in
two distinct forms: intra-sprite delays and inter-sprite
synchronization, both of which are accomplished using the wait
block.

(a) (b)

Figure 3. Two examples of students using wait block to
control the execution of their programs

4.1.1 Intra-script Delays. As part of their final projects, students
often wanted to slow down the execution of a script for a single
sprite and used the wait block to accomplish this goal. Fig. 3a
shows a student project that demonstrates an intra-script delay.
In this case, the wait blocks added between the costume change
blocks are used for this purpose. The result is that the sprite’s
appearance changes at the specified rate. This strategy was used

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

145

as both a storytelling mechanism and a way to animate sprites. Of
the 135 projects analyzed, 58 of them (43%) utilized this strategy
to control the speed of execution within a script.

4.1.2 Inter-Sprite Synchronization with Wait Blocks. The second
use of the wait block to control program execution was to
coordinate the timing of actions between sprites. Fig. 3b shows
two scripts from a student project that implements a conversation
between two sprites. Because the synchronization spans two
sprites, the scripts that define this synchronization cannot be
viewed on screen at the same time. This means authoring and
debugging programs that use this strategy relies heavily on
interpreting the outcome of the visual execution environment.
Across the full set of participants, 37.8% of final projects included
this type of intra-sprite coordination.

4.1.3 Introductory Benefits and Potential Future Challenges. In
these two examples, we see how young learners take advantage
of the access that VBBPEs give to manipulate how and when
scripts are run. Through the use of the wait block, novice
programmers were able to create animations and achieve
synchronization through parallelization of their programs, both of
which are outcomes that would come much later in a
conventional, non-VBBPE-based CS instructional sequence.
However, these strategies do introduce potential mismatches with
future CS instruction. For example, in manipulating execution
speed with the wait block, learners both manually control the rate
of execution of a program and use that control to slow down the
rate of execution. These are reasonable for this context as doing
so makes animations clearer and sets the pace of sprite
interactions such that the user has time to interpret what is
happening on the screen.

However, the characteristic of wanting to control the speed of
execution is rarely a goal in early text-based instruction found in
K-12 classrooms. High school courses taught in languages like
Java, Python, or JavaScript rarely include animations or ask
students to control the rate at which things happen, instead, the
focus is on non-temporal aspects of programming (like
algorithms, sequencing, state, etc.). Further, when time is
considered in most introductory text-based programming
instruction, the goal is to speed up execution time, not slow it
down. These strategies suggest to learners that the speed at which
computers perform tasks can be easily predicted or controlled.

Additionally, the use of wait blocks to manually and explicitly
control timing to achieve parallelization is quite distinct from the
parallel programming approaches students might encounter early
in text-based programming instruction. This fact can be seen in
the design of many VBBPEs directly as many include message
passing and broadcasting features to achieve parallel outcomes.
Previous work looking at how parallel outcomes are achieved
found that students were substantially less likely to use this
mechanism than the simpler wait blocks [19]. This finding is
replicated by this work as only 16 students used this feature of the
VBBPE. Because of the age of the students, the simplicity of wait
blocks, and the relative predictability when on a single machine,
it is appropriate that students solve problems with wait blocks.

4.1.4 Considerations for Future Educators and Designers.
Educators teaching a class comprised of students that recently

completed a course using a VBBPE should be aware of the
strategies their students may have developed related to the wait
block and other temporal blocks, such as say for. Learners may
begin to think that speed is a characteristic of the computer that
is meant to be programmatically manipulated, alongside aspects
like sequential flow and program state. While manually
controlling when instructions are evaluated or focusing on speed
or timing of a piece of code is an authentic programming strategy,
temporal characteristics of programming (such as optimization or
parallel computing) usually occur much later in CS instruction. In
terms of how this affects educators, the first step is raising
awareness of the difference between programming when an event
occurs versus how it occurs. As more students enter second and
third computing curricula with prior experience in VBBPEs,
teachers may want to include explicit instruction on the temporal
dimension of the programs being authored and attend to students’
potential desire to pursue solutions that seek to manipulate the
speed at which instructions execute as a means to achieve a
desired outcome.

Future educators should also be aware of the implication of
learners coordinating parallel execution with wait blocks. Using
wait block to control the behavior of the program connotes the
idea that each object has an internal clock that controls how and
when it operates, and that there is a shared universal clock on
which they can rely for timing. When learners do eventually
encounter synchronization in parallel systems, they will need to
be explicitly taught about absolute timing and the assumptions
that can and cannot be made based on the technologies and tools
being used. This again ties back to the larger theme of
deemphasizing when commands execute, instead focusing
learners’ attention on how they are used.

4.2 Coordination with Event-based
Programming

Visual block-based programming environments often employ an
event-based programming approach. In this paradigm, to run a
program, you associate a sequence of blocks with an action, be it
clicking the green flag (akin to a start button), waiting for an in-
program event (like receiving a message), or binding a script to a
key press. Events are an intuitive and accessible way to engage
novices and younger learners with programming and were very
common in student final projects. Students used an average of 13.5
events blocks (SD 20.8) per project, with 27 students using more
than 20 event blocks, and 6 students defining more than 50 events.

Event-driven programming makes it easy to create interactive
programs. It also gives the programmer direct control over how
and when behaviors in their programs are run. In addition, it
allows a programmer to think and program separately about what
should happen at different points in the program, reducing the
length of any piece of code. In this way, it helps achieve the low-
threshold to programming sought by the designers of VBBPEs and
contributes to the engagement and enjoyment of the environment
[30].

4.2.1 Introductory Benefits and Potential Future Challenges. The
inclusion of a suite of event blocks (such as when key pressed and
when sprite clicked) gives the learner a number of intuitive hooks
for inserting programmed behavior. This approach is different

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

146

from many general-purpose programming languages, in which
early instruction often focuses on a single main function (often
called main) that is called that begins the serial execution of the
program. Event-based programming provides a pair of
introductory benefits that may turn into potential challenges for
future educators.

The first outcome of introducing learners to programming in
event-based VBBPEs is tied to the fact that event-based
programming environments are inherently parallel. In VBBPEs,
multiple sprites can operate in parallel in response to the same
event, or a single sprite can perform two tasks in parallel in
response to the same event. These parallel programming
capabilities are present in the text-based languages that learners
may transition to but students are unlikely to encounter these
features until later in their CS education paths. Looking across the
full set of projects, 106 of the 135 student-created projects utilized
concurrency by having multiple scripts linked to the same event.

A second potential outcome from learning to program in
event-driven programming is developing habits that are unique to
the event-based paradigm and do not have natural analogs in
conventional text-based programming languages. For example,
students can bind multiple scripts to the same event for the same
sprite even though the events are not intended to execute in parallel.
Fig. 4 depicts an example of this found in a final project showing
four of the 12 scripts the student defined for the when left arrow

key pressed event of a single sprite. In composing these blocks,
the learner directly mapped an event with multiple actions.
Conceptually, this both makes sense and is an intuitive approach
to achieving a behavior such as making multiple things happen
after a single key press. However, this also circumvents the need
to define the steps of the program sequentially in a single script.
While this is a functional solution, it is not how the same outcome
would be achieved in a non-event-based context. A total of 36 final
projects included parallel implementations of serial behaviors,
which suggests this is a relatively common occurrence and
something educators should be made aware of. This distinction is
meaningful because if all the commands shown in Fig. 4 were
moved into a single script, the numerical values in the wait block
would need to change, meaning the shift is not just reorganizing
commands, but the underlying logic needs to be modified as well.

4.2.2 Considerations for Future Educators and Designers. The
program shown in Fig. 4 is one example of the more general
outcome of learners developing programming strategies that

Figure 4. Four of the 12 when left arrow key pressed scripts
defined in one students’ final project.

leverage features of event-based programming. This is to be
expected of novices with little prior experience and shows how
they take advantage of affordances present in VBBPEs. This
finding suggests that teachers of more advanced courses should

be aware of and prepared to help students move from the parallel
thinking supported by events toward the linear, sequential
ordering of commands imposed by the languages used in later
instruction.

4.3 Coupling Concepts with Specific Contexts
The strategy used to introduce new CS concepts to elementary
learners in the KELP-CS curriculum was to situate the concept in
a specific context and provide scaffolds to facilitate learners in
writing a program to use the concept in a specific way. This
strategy serves as the first step in the Use-Modify-Create
pedagogical strategy common to introductory computational
thinking instruction [27]. KELP-CS had novices first Use a new
concept, then provided opportunities to incorporate the concept
into later programs, either in the same role but different context
(Modify) or in new ways altogether (Create). For example, to
introduce learners to conditional logic (the if block), the KELP-CS
curriculum helped learners create a maze game, using conditional
logic to make sure the player’s sprite did not walk through any
walls or touch any of the obstacles along the way. In a different
game, the if block was used to detect when two sprites touched.
In both cases, an if block with a touching block inside it was used
to implement collision detection in the game. Fig. 5a shows how
these blocks were first introduced to learners through LaPlaya’s
inert blocks feature. The thing to note about this example is the
pattern of nesting the if block inside a forever loop and using the
touching block as the test condition of the if block.

To understand the relationship between the way concepts
were introduced in the KELP-CS curriculum and how they were
used in students’ open-ended final project, we developed an
analytic coding scheme to situate the use of a concept within the
Use-Modify-Create trajectory. In this analytic scheme, concepts
can be presented in students’ final projects at four levels of
sophistication delineated based on their similarity to how the
concept was introduced in the curriculum. First, the concept could
be absent (as was the case for conditional logic in 6 of the 18
Module 2 projects). Second, the Use level of sophistication
describes instances where learners use the concept in their final
projects in the exact same role as it was used within the lesson.
Meaning the use of the forever, if and touching blocks matches
the structure shown in Fig. 5a.

The third level of expertise is illustrated by Fig. 5b. In this case,
the student applied conditional logic in the same way (i.e. as a
mechanism for detecting collisions) and programmed it with the
same general structure (an if block nested in a forever block with
a touching block as its test condition), but Modified its application
to integrate other concepts such as a score, sprite placement,
timing, and visibility. Two-thirds of the final projects (12 projects)
demonstrated the ability to incorporate conditional logic in their
programs in a role similar to how it was used in the curriculum.
Finally, three students used conditional logic in a different way
(beyond a mechanism for detecting collisions), demonstrating a
Create level of understanding. These data show

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

147

(a) (b)

Figure 5. (a) The first conditional logic template and (b) an
example of how it was incorporated into a final project.

how the Use-Modify-Create progression implemented in KELP-
CS is developmentally-appropriate and helped learners at
different levels, but also suggests the opportunity for educators to
adjust pedagogical strategies to effectively build on these early
successes.

4.3.1 Introductory Benefits and Potential Future Challenges.
Firstly, it is important to note that in introductory contexts, any
application of the concept in a learner-authored program should
be viewed as a success. The strategy of students using code exactly
as it was taught to them or as it exists in another project can help
novices have programming successes early in their exposure to
CS content. This form of remixing is a central strategy to
computational thinking [7] and a common practice of
programmers at all levels of expertise. Likewise, CS educators
have argued that it is important to introduce concepts in context
to help learners see the relevance and applicability of what is
being learned [8, 41]. However, there is also research showing that
students are more successful in learning when extraneous
material (i.e. context) is absent, arguing the decontextualized
presentation is more effective as it decreases the cognitive load
associated with the learning task [32, 45]. Based on these
seemingly contradictory findings, we came to the same
conclusion as Guzdial [18], who concluded: “The only way to
achieve decontextualized knowledge is to teach beyond a single
context.”

As such, in the KELP-CS curriculum, concepts were taught in
multiple contexts. In the case of conditional logic in Module 2, that
meant using the if block to create different styles of games. The
goal in showing these two different applications of conditional
logic was to help learners understand the underlying concept and
see how it can be used in two distinct ways. However, the results
show that it is unclear the degree to which the two contexts
helped. In particular, it could have provided two concrete ways of
using the concepts as opposed to providing a generalized
understanding of the concept of conditional logic.

4.3.2 Considerations for Future Educators and Designers. While
the Use-Modify-Create approach was pedagogically productive,
our analysis suggests it does pose a potential challenge for future
CS educators. By teaching concepts situated in a specific context,
there is potential that the concept gets coupled to that particular
use (e.g. for building games).

The data presented above, and the characterization of usages
within the Use-Modify-Create progression, shows learners using

the concept at all four levels of sophistication. There are two direct
implications of this for future educators. First, educators should
be aware of how concepts were presented and situated in early
lessons so as to be able to present new and complementary uses
of concepts. When a concept is presented in a new context,
educators should also try and link the new presentation with prior
contexts and implement bridging and hugging strategies
suggested by research [11, 37].

Second, these data reinforce the fact that full understanding of
a concept may require several courses in which concepts are
taught in a variety of ways – educators targeting second or third
experiences should not consider that “conditionals have already
been covered” and assume full understanding. For a subsequent
Scratch curriculum, in the case of conditional logic, this may mean
using the construct for something other than collision detection
or using it outside of a loop. Examples include comparing
numerical values as part of a score-keeping mechanism or
comparing x or y positions on the screen as to coordinate a dance
across multiple sprites. Further, this is especially true when the
new context is in a different language, modality, or environment.
Doing so will further help students build conceptual bridges
between the different forms of programming they will see
throughout future CS instruction.

5 DISCUSSION

5.1 Preparing Expert Computer Science
Teachers

One of the many challenges faced by districts and schools is
recruiting, training, and retaining capable CS teachers. As the
demand for CS across K-12 grows, so, too, does the need to bring
new teachers into the discipline. One of the goals of this work is
to show that when it comes to supporting learners as they
progress through the K-12 CS trajectory, teachers should be aware
of both previous and future CS courses to best support learners.

This paper documents three specific strategies that teachers
charged with moving learners on to the next step in their CS
careers should be prepared for. The strategies span curriculum
design (defining new contexts to situate content), CS content
knowledge (situations where learners focus on temporal aspects
of execution), and CS pedagogical content knowledge (how
different paradigms affect programming strategies). Collectively,
this highlights the challenge that new CS teachers face. We make
this point at the same time that one of the prevailing approaches
to training new CS teachers is to provide them with a full suite of
classroom materials (lessons, environments, assessments, etc.) to
make it as easy as possible for them to get up and running quickly
in their new discipline. While this is a prudent strategy given the
immediate demand, the work presented above gives pause to the
view that such an approach is sufficient for training teachers to
support learners across the K-12 spectrum. Instead, our hope is
this all-in-one approach for teachers serves as only the first step
in the career-spanning undertaking of learning how best to
support students in learning CS.

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

148

5.2 Giving Agency to the Learner
A second discussion point that relates to this work speaks to an
emerging trend in the continually shifting landscape of
introductory programming. Throughout this paper introductory
programming environments have been treated as relatively static
entities, i.e. they present a single interface and only support one
form of interaction. In the case of VBBPEs, that means block-based
programming in a sprite-driven context. This characterization is
becoming less-and-less accurate with the emergence of new and
more flexible programming environments. For example, dual-
programming environments such as Pencil Code [3] and Tiled
Grace [24] allow the learner to seamlessly transition back and
forth between block-based and text-based modalities. Research is
finding that this approach is useful for novice programmers [31,
50].

While the LaPlaya programming environment did provide a
scaffolded programming interface that expanded as learners’
knowledge and confidence grew in the form of introducing new
blocks and categories, this shift was determined by the curriculum
rather than the learner. It is easy to imagine what a learner-
directed version of this form of scaffolding could look like where
the learners themselves are free to decide how and when they
want to see more blocks or simplify the programming
environment. Scratch offers features similar to this in the form of
extensions and Microwrolds [48]. Likewise, it is easy to imagine a
curriculum that is designed to give the learner more agency in
deciding how and when they progress, a feature that has been
implemented by numerous online learning tools. The challenge
with this approach is figuring out how to support individual
agency while still ensuring shared content coverage across the
classroom in order to ensure all learners are suitably prepared for
future learning opportunities.

5.3 Choosing the Right Tools and Curricula for
Your Classroom

One of the challenges of teaching CS is choosing the right
curricula and programming languages and environments for your
classroom. This is especially challenging for teachers with little or
no prior CS experience. As this work highlights, features of the
programming environment and the chosen curriculum both shape
leaners emerging understandings of CS concepts and the
programming strategies they develop. The challenge of picking
the best tools and curricula for the classroom is magnified by the
lack of a consensus on sequencing of CS concepts, guidelines for
how in depth to cover concepts at different grade levels, and
agreement in the community about what programming languages
to use for instruction. These are problems that are actively being
addressed both in the CS education research community [40, 43]
as well as through wide-scale community initiatives to provide
guidance to states, standards writers, and curriculum designers
[10, 55]. When creating and choosing a curriculum and then
deciding what environment (or environments) to accompany it in
the classroom, it is important to make sure the two are aligned. At
the same time, figuring out when, how or even if it is necessary
to transition learners from environments that prioritize
accessibility versus computational power and broad applicability,
is another line ongoing work [2, 11]. There is also a growing body
of research investigating VBBPEs and their affordances and
drawbacks for elementary CS classrooms [23] and high school
classrooms [51]. As this work progresses, hopefully, clarity will

emerge as to how best to match environments with curricula and
support teachers in effectively bringing them into their
classrooms.

It is also important to note, that throughout this work, we have
focused on the goal of conceptual learning of CS concepts. While
this is an important goal, it is not always the focus of introductory
classrooms, nor should it be. A second goal for introductory CS
curricula, and one where VBBPEs have historically excelled, is
getting learners excited about the field and changing their
perceptions about what CS is and who can be a computer scientist
[29, 39]. Getting learners interested, excited, and engaged with CS
is potentially more important than conceptual learning, especially
for young learners as it can change students views of potential
future educational goals [46]. The take away from this discussion
is the importance of having clear goals as an educator, and
aligning those goals with the tools and curricula you choose. One
contribution of this work is providing a deeper understanding of
the consequences of this decision, especially if the goal for the
course is to prepare students for future computer science learning.

6 CONCLUSION
Whereas computer science was once a subject reserved for the
final years of high school and beyond, the subject has a growing
presence across the K-12 spectrum. In response to the need for
computing education in earlier grades, a growing ecosystem of
novice programming environments and curricula has emerged.
Increasingly, educators and curriculum designers are turning to
VBBPEs to serve as the way novices are introduced to
programming. While these environments have excelled in
informal spaces, their transition to formal classrooms, and their
use to prepare all learners for future CS instruction is not without
its challenges. In this work, we sought to identify programming
strat4gies novices developed while working in VBBPEs that are
distinct from what is typically taught in text-based languages and
then consider their implications for educators. In particular, using
data from student-authored, open-ended summative projects, we
show how novices’ uses of the wait block, their coordination of
execution through events, and the coupling of concepts to the
contexts in which they were first introduced all have potential
implications for future instruction. The contribution of this work
is to deepen our understanding of the use of VBBPEs in the
classroom early in learners’ CS careers, especially when the goal
is preparation for future CS instruction. In doing so, we shed light
on open challenges we face as educators and advance the goal of
creating effective, accessible CS learning experiences and
bringing CS to all learners.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
Awards CNS-1240985 and CNS-1738758. We would also like to thank
all of the teachers, students, and schools involved in this project.

REFERENCES
[1] Abelson, H. and diSessa, A.A. 1986. Turtle geometry: The computer as a medium

for exploring mathematics. The MIT Press.
[2] Armoni, M., Meerbaum-Salant, O. and Ben-Ari, M. 2015. From Scratch to

“Real” Programming. ACM Transactions on Computing Education (TOCE). 14, 4
(2015), 25:1–15.

[3] Bau, D., Bau, D.A., Dawson, M. and Pickens, C.S. 2015. Pencil Code: Block Code
for a Text World. Proc. of the 14th International Conference on Interaction Design
and Children (New York, NY, USA, 2015), 445–448.

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

149

[4] Bau, D., Gray, J., Kelleher, C., Sheldon, J. and Turbak, F. 2017. Learnable
programming: blocks and beyond. Comm. of the ACM. 60, 6 (2017), 72–80.

[5] Bell, T.C., Witten, I.H. and Fellows, M.R. 1998. Computer Science Unplugged:
Off-line activities and games for all ages. Citeseer.

[6] Brennan, K. 2013. Learning computing through creating and connecting.
Computer. 46, 9 (2013), 52–59.

[7] Brennan, K. and Resnick, M. 2012. New frameworks for studying and assessing
the development of computational thinking. Paper Presented at the American
Education Researchers Association Conference. (Vancouver, Canada, 2012).

[8] Cooper, S. and Cunningham, S. 2010. Teaching computer science in context.
ACM Inroads. 1, 1 (2010), 5–8.

[9] Cooper, S., Dann, W. and Pausch, R. 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges. 15, 5 (2000),
107–116.

[10] CSTA Standards Task Force 2016. K–12 Computer Science Standards.
[11] Dann, W., Cosgrove, D., Slater, D., Culyba, D. and Cooper, S. 2012. Mediated

transfer: Alice 3 to Java. Proc. of the 43rd ACM SIGCSE Technical Symposium on
Computer Science Education (2012), 141–146.

[12] Duncan, C., Bell, T. and Tanimoto, S. 2014. Should Your 8-year-old Learn
Coding? Proc. of the 9th Workshop in Primary and Secondary Computing
Education (New York, NY, USA, 2014), 60–69.

[13] Franklin, D., Conrad, P., Aldana, G. and Hough, S. 2011. Animal tlatoque:
attracting middle school students to computing through culturally-relevant
themes. Proc. of the 42nd ACM technical symposium on Computer science
education (2011), 453–458.

[14] Franklin, D., Hill, C., Dwyer, H., Hansen, A., Iveland, A. and Harlow, D. 2016.
Initialization in Scratch: Seeking Knowledge Transfer. Proc. of the 47th ACM
Technical Symposium on Computing Science Education (2016), 217–222.

[15] Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V., Hansen, A.,
Weintrop, D. and Harlow, D. 2017. Using Upper-Elementary Student
Performance to Understand Conceptual Sequencing in a Blocks-based
Curriculum. Proc. of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education (New York, NY, USA, 2017), 231–236.

[16] Grover, S. and Basu, S. 2017. Measuring Student Learning in Introductory
Block-Based Programming: Examining Misconceptions of Loops, Variables,
and Boolean Logic. Proc. of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (New York, NY, 2017), 267–272.

[17] Grover, S., Pea, R. and Cooper, S. 2015. Designing for deeper learning in a
blended computer science course for middle school students. Computer Science
Education. 25, 2 (Apr. 2015), 199–237.

[18] Guzdial, M. 2010. Does contextualized computing education help? ACM
Inroads. 1, 4 (2010), 4–6.

[19] Hansen, A., Iveland, A., Carlin, C., Harlow, D. and Franklin, D. 2016. User-
Centered Design in Block-Based Programming: Developmental & Pedagogical
Considerations for Children. Proc. of the 15th International Conference on
Interaction Design and Children (2016), 147–156.

[20] Harel, I. and Papert, S. 1990. Software design as a learning environment.
Interactive Learning Environments. 1, 1 (1990), 1–32.

[21] Harlow, D., Dwyer, H., Hansen, A., Iveland, A. and Franklin, D. Accepted.
Ecological design based research in computer science education: Affordances
and effectivities for elementary school students. Cognition and Instruction.

[22] Harvey, B. and Mönig, J. 2010. Bringing “no ceiling” to Scratch: Can one
language serve kids and computer scientists? Proc. of Constructionism 2010
Conference (Paris, France, 2010), 1–10.

[23] Hill, C., Dwyer, H., Martinez, T., Harlow, D. and Franklin, D. 2015. Floors and
Flexibility: Designing a programming environment for 4th-6th grade
classrooms. Proc. of the 46th ACM Technical Symposium on Computer Science
Education (2015), 546–551.

[24] Homer, M. and Noble, J. 2014. Combining Tiled and Textual Views of Code.
IEEE Working Conference on Software Visualisation (BC, CA 2014), 1–10.

[25] Kelleher, C. and Pausch, R. 2005. Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers. ACM Computing Surveys. 37, 2 (2005), 83–137.

[26] Kölling, M. 2010. The greenfoot programming environment. ACM Transactions
on Computing Education (TOCE). 10, 4 (2010), 14.

[27] Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith,
J. and Werner, L. 2011. Computational thinking for youth in practice. ACM
Inroads. 2, 1 (2011), 32–37.

[28] Lewis, C.M. 2012. The Importance of Students’ Attention to Program State: A
Case Study of Debugging Behavior. Proc. of the 9th Annual International
Conference on International Computing Education Research (New York, NY,
USA, 2012), 127–134.

[29] Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M. and Rusk, N. 2008.
Programming by choice: Urban youth learning programming with Scratch.
ACM SIGCSE Bulletin. 40, 1 (2008), 367–371.

[30] Maloney, J.H., Resnick, M., Rusk, N., Silverman, B. and Eastmond, E. 2010. The
Scratch programming language and environment. ACM Transactions on
Computing Education (TOCE). 10, 4 (2010), 16.

[31] Matsuzawa, Y., Ohata, T., Sugiura, M. and Sakai, S. 2015. Language Migration
in non-CS Introductory Programming through Mutual Language Translation
Environment. Proc. of the 46th ACM Technical Symposium on Computer Science
Education (2015), 185–190.

[32] Mayer, R.E. 2002. Multimedia learning. Psychology of learning and motivation.
41, (2002), 85–139.

[33] Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M. 2011. Habits of
programming in Scratch. Proc. of the 16th Annual Joint Conference on Innovation
and Technology in Computer Science Education (Darmstadt, Germany, 2011),
168–172.

[34] Papert, S. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
books.

[35] Papert, S. 1988. The conservation of Piaget: The computer as grist for the
constructivist mill. Constructivism in the computer age. Lawrence Erlbaum. 3–
13.

[36] Papert, S., Watt, D., diSessa, A. and Weir, S. 1979. Final report of the Brookline
Logo Project: Project summary and data analysis (Logo Memo 53). MIT Logo
Group.

[37] Perkins, D.N. and Salomon, G. 1988. Teaching for transfer. Educational
leadership. 46, 1 (1988), 22–32.

[38] Project GUTS: 2016. http://www.projectguts.org/. Accessed: 2017-04-10.
[39] Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk,

N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E. and Silver, J. 2009.
Scratch: Programming for all. Comm. of the ACM. 52, 11 (2009), 60.

[40] Rich, K., Strickland, C. and Franklin, D. 2017. A Literature Review through the
Lens of Computer Science Learning Goals Theorized and Explored in Research.
Proc. of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (Seattle, Wa., 2017).

[41] Rich, L., Perry, H. and Guzdial, M. 2004. A CS1 course designed to address
interests of women. ACM SIGCSE Bulletin (2004), 190–194.

[42] Seiter, L. and Foreman, B. 2013. Modeling the Learning Progressions of
Computational Thinking of Primary Grade Students. Proc. of the 9th Annual
ACM Conference on International Computing Education Research (New York,
NY, USA, 2013), 59–66.

[43] Stefik, A. and Hanenberg, S. 2014. The Programming Language Wars:
Questions and Responsibilities for the Programming Language Community.
Proc. of the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software (New York, NY, USA, 2014), 283–
299.

[44] Strauss, A. and Corbin, J. 1994. Grounded Theory Methodology: An Overview.
Strategies of Qualitative Inquiry. Sage Publications, Inc. 158–183.

[45] Sweller, J. and Chandler, P. 1994. Why some material is difficult to learn.
Cognition and instruction. 12, 3 (1994), 185–233.

[46] Tai, R.H., Liu, C.Q., Maltese, A.V. and Fan, X. 2006. Career choice: Enhanced:
Planning early for. Science. 312, 26 (2006).

[47] Tempel, M. 2013. Blocks Programming. CSTA Voice. 9, 1 (2013).
[48] Tsur, M. and Rusk, N. 2018. Scratch Microworlds: Designing Project-Based

Introductions to Coding. (2018), 894–899.
[49] Turkle, S. and Papert, S. 1990. Epistemological pluralism: Styles and voices

within the computer culture. SIGNS: : Journal of Women in Culture and Society.
16, 1 (1990), 128–157.

[50] Weintrop, D. and Holbert, N. 2017. From Blocks to Text and Back:
Programming Patterns in a Dual-Modality Environment. Proc. of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (New York, NY,
USA, 2017), 633–638.

[51] Weintrop, D. and Wilensky, U. 2017. Comparing Block-Based and Text-Based
Programming in High School Computer Science Classrooms. ACM
Transactions on Computing Education (TOCE). 18, 1 (Oct. 2017), 3.

[52] Weintrop, D. and Wilensky, U. 2018. How block-based, text-based, and hybrid
block/text modalities shape novice programming practices. International
Journal of Child-Computer Interaction. (May 2018).

[53] Weintrop, D. and Wilensky, U. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-based Programming. Proc. of the 14th
International Conference on Interaction Design and Children (New York, NY,
USA, 2015), 199–208.

[54] Wolber, D., Abelson, H., Spertus, E. and Looney, L. 2011. App Inventor: Create
Your Own Android Apps. O’Reilly Media.

[55] 2016. K–12 Computer Science Framework.

Session 6: K12 Computing Education ICER ’18, August 13–15, 2018, Espoo, Finland

150

