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ABSTRACT 

Visual block-based programming environments (VBBPEs) such as 
Scratch and Alice are increasingly being used in introductory 
computer science lessons across elementary school grades. These 
environments, and the curricula that accompany them, are 
designed to be developmentally-appropriate and engaging for 
younger learners but may introduce challenges for future 
computer science educators. Using the final projects of 4th, 5th, 
and 6th grade students who completed an introductory 
curriculum using a VBBPE, this paper focuses on patterns that 
show success within the context of VBBPEs but could pose 
potential challenges for teachers of follow-up computer science 
instruction. This paper focuses on three specific strategies 
observed in learners’ projects: (1) wait blocks being used to 
manage program execution, (2) the use of event-based 
programming strategies to produce parallel outcomes, and (3) the 
coupling of taught concepts to curricular presentation. For each 
of these outcomes, we present data on how the course materials 
supported them, what learners achieved while enacting them, and 
the implications the strategy poses for future educators. We then 
discuss possible design and pedagogical responses. The 
contribution of this work is that it identifies early computer 
science learning strategies, contextualizes them within 
developmentally-appropriate environments, and discusses their 
implications with respect to future pedagogy. This paper advances 
our understanding of the role of VBBPEs in introductory 
computing and their place within the larger K-12 computer 
science trajectory. 

CCS CONCEPTS 
• Social and professional topics → Professional topics → 
Computing Education 
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1 INTRODUCTION 

The call to bring computer science (CS) to all learners has 
reached a roar as districts, states, and countries around the world 
are increasingly making CS part of the school experience for 
learners across the K-12 spectrum. While there exists a diversity 
of languages, programming environments, and curricula for the 
oldest K-12 learners, a narrower set of introductory experiences 
exist for younger students. In elementary school (grades K-8, ages 
5-13), CS instruction is largely being taught using visual block-
based programming environments (VBBPEs) like Scratch [39] and 
Alice [9]. Curricula including Creative Computing [6] and the K-
8 code.org materials utilize VBBPEs. VBBPEs are popular due to 
the affordances they provide young learners. Transitioning 
learners from introductory learning experiences with VBBPEs to 
more conventional text-based programming environments poses 
challenges to educators and curriculum designers. The very 
features of VBBPEs that allow novice learners to be successful 
may present challenges to future educators, requiring them to 
more closely consider learners’ previous experiences and 
potentially modify instructional strategies to support learners as 
they progress.  

It is these considerations that we explore in this paper, 
specifically with the goal of understanding outcomes of using 
VBBPEs with elementary learners and how this decision should 
inform subsequent curriculum design and pedagogy. More 
specifically, we answer the following research questions: 

 
What are examples of strategies that learners develop through 
introductory experiences with VBBPEs that future educators 
should be aware of? How and when might these strategies differ 
from what is taught in subsequent classes where text-based 
programming languages are used? 
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To begin to answer these questions, we draw on data from a 
classroom implementation of a VBBPE and accompanying 
curriculum. Specifically, we present data on three outcomes of 
students learning CS with a VBBPE that have potential 
implications for future instruction: 1) wait blocks being used to 
manage program execution in two distinct ways, (2) the use of 
event-based programming strategies to produce parallel 
outcomes, and (3) the coupling of taught concepts to curricular 
presentation. For each of these strategies, we present data on how 
the course materials supported these outcomes, what learners 
achieved through enacting them, and discuss potential design and 
pedagogical responses. The goal of this work is to advance our 
understanding of what learners are able to achieve in a 
developmentally-appropriate introductory course with a VBBPE 
and to consider what the implications of these outcomes are for 
future CS instruction that moves beyond VBBPEs. This paper 
begins with a review of relevant work before presenting the 
LaPlaya environment and KELP-CS curriculum. We then present 
the three strategies and discuss implications of this work. 

2 PRIOR WORK 

2.1 Visual Block-based Programming 
Environments 

In this paper, we use the term visual block-based programming 
environment (VBBPE) to capture the set of programming tools 
that introduce learners to programming through a block-based 
interface and have a visual execution environment (e.g. sprites on 
a stage). This type of environment is exemplified by Scratch [39], 
Alice [9], and Pencil Code [3]. Numerous widely-used 
introductory environments do not meet this definition of a VBBPE 
as they only include some of the defining VBBPE features, like 
MIT App Inventor’s [54] use of block-based programming and 
Greenfoot’s use of sprite-like actors [26]. In this section, we 
discuss three key features of VBBPEs that are pertinent to this 
study. 

The first key component of VBBPEs is the use of a block-based 
programming interface that leverages a programming-primitive-
as-puzzle-piece metaphor to provide visual cues to the user about 
how and where blocks can be used [4, 30]. Users compose 
programs in these environments by dragging blocks onto a canvas 
and snapping them together to form scripts. If two blocks cannot 
be joined to form a valid syntactic statement, the environment 
prevents them from snapping together, thus preventing syntax 
errors but retaining the practice of assembling programs 
instruction-by-instruction. Along with using block shape to 
denote use, there are other visual cues to help programmers, 
including color coding by conceptual use and nesting of blocks to 
denote scope [30, 47, 53].  

A second key characteristic of VBBPEs is the notion of a Sprite 
– an on-screen, two-dimensional character that follows 
programming instructions defined by the user. The sprite can be 
viewed as the modern incarnation of Logo’s turtle [36]. In 
discussing the development and role of the Turtle, Papert invokes 
Piaget’s notion of a mother structure – an intellectual construct 
from which concepts can be created. In the Turtle, Papert saw the 

embodiment of differential geometry in a way that could be 
anthropomorphized by the learner [35]. While the Sprite can still 
be used towards these mathematical ends, increasingly it’s role is 
as a computational mother structure, i.e. a means to develop 
foundational computational ideas. As we will argue in this paper, 
whereas the path one follows using the turtle as the means to 
express differential geometry concepts has been mapped [1], it is 
less clear what path one follows when moving from sprite-driven 
programming towards more advanced computational ideas that 
may not be executed visually. 

A third central feature of VBBPEs is their support for open-
ended and exploratory programming activities. This feature draws 
directly from the Constructionist design principle of being 
“discovery rich” [35]. Scratch and other VBBPEs accomplish this 
by providing an accessible and intuitive set of programming 
blocks but little in the way of constraints with respect to how they 
can or should be used. Through designing a platform for open-
ended exploratory activities, VBBPEs do not prescribe specific 
practices, instead supporting an epistemological pluralism [49] 
that does not favor one specific program approach or one type of 
project.  

2.2 Computer Science in Elementary School 
In the last decade, bringing CS to K-8 has become more 
widespread, facilitated by programming tools designed for young 
learners [12, 25]. Early work on programming as a means for 
learning conducted by Papert and colleagues with the Logo 
language found that programming was accessible to younger 
learners and could serve as a powerful learning practice [20, 34, 
36]. Following these successes, much of the curricular and 
programming environment design effort has employed 
Constructionist design principles, foregrounding learning-by-
doing and learner-directed activities. This can be seen in growing 
library of curricula designed for elementary learning, including: 
Creative Computing [6], Foundations for Advancing 
Computational Thinking [17], Animal Tlatoque [13], and the 
KELP-CS curriculum [23]. There are also growing online 
communities where classroom activities designed for elementary 
students are curated and shared, like the ScratchEd website and 
the CS for All Consortium, which includes over 100 organizations 
that self-identify as content providers for elementary learners. 
Code.org also offers nine distinct CS courses for students across 
grades K-8 (ages 5-13), including both conventional computer-
based curricula as well as offline activities based on the CS 
unplugged curriculum [5] and computing activities designed for 
science classrooms based on Project GUTS [38]. Collectively, 
these resources capture part of the quickly expanding ecosystem 
of ways that CS is being introduced into elementary education. 

2.3 Research on Learning In VBBPEs 
A growing body of research is investigating how block-based 
programming shapes learners’ conceptual understanding of CS 
concepts and emerging programming strategies. For example, 
researchers have documented a number of ‘habits’ of 
programming learners develop while working in block-based 
tools, such as an emphasis on bottom-up programming where 
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learners focus on using specific blocks [33]. Other strategies 
investigated include documenting how learners at different ages 
design for their audiences [19] and debugging strategies and the 
requisite knowledge to implement them [28]. Further work has 
documented programming strategies specific to VBBPEs, looking 
at how the scaffolds present in the environment support unique 
patterns of interaction [52]. Likewise, a growing body of research 
is documenting how novices learn with block-based tools; 
identifying misconceptions learners may develop in VBBPEs and 
developmentally-appropriate content for learners [15, 16, 42]. For 
example, research looking at learners’ emerging understanding of 
the initialization of state and variables in VBBPEs identified four 
distinct conceptual components of the topic (e.g. when to 
initialize) and showed how they are differentially manifested in 
VBBPEs compared to conventional text-based languages [14]. The 
findings presented herein build on and complement this work by 
continuing to fill in our understanding of what it means for young 
learners to develop foundational understandings of computational 
ideas in VBBPEs. Likewise, our analysis considers if and how ideas 
and strategies developed in VBBPEs do or do not relate to future 
instruction and learning in conventional text-based languages.  

3 METHODS  

The work presented in this paper is part of a larger, design-based 
research study focusing on the creation of elementary CS 
classroom materials. We begin this section by presenting the 
LaPlaya VBBPE and KELP-CS curriculum. We then present details 
on the participants and study design before concluding the section 
discussing the data collected and analytic approach used. 

3.1 Materials 
LaPlaya (Fig. 1) is a VBBPE built on top of the Snap! programming 
environment [22]. Like Scratch, students program via a drag-and-
drop interaction, producing scripts of blocks to control on-screen 
sprites. LaPlaya is designed to support both guided and open-
ended exploration for upper elementary school students (grades 
4-6; ages 8-12). To help make programming more accessible to 
younger learners, LaPlaya includes a number of unique 
pedagogical scaffolds. For example, when introducing new 
concepts, students are provided with pre-programmed and locked 
scripts (Fig. 2a) at the beginning of the new activity. These scripts 
are visible and accompanied by text descriptions to serve as 
examples. LaPlaya also includes white, inert scripts (Fig. 2b) that 
are not executable and serve as templates of how blocks can be 
used to accomplish a desired outcome. 

LaPlaya’s blocks were also modified with respect to the 
original Snap! language in order to remove more advanced 
mathematical concepts such as percentages, negative numbers, 
and decimals for our younger students (ages 9-10). In addition, to 
support learners at varying reading levels, LaPlaya has an audio, 
read-aloud function so task instructions can be heard. This is 
particularly important for English language learners. For 
additional information about LaPlaya and the modifications made 
to make it more accessible to novice learners, see [21, 23]. 

 

 
Figure 1. The LaPlaya programming environment. 

 
 

(a) (b) 

Figure 2. LaPlaya scaffolds: (a) Predefined, locked scripts 
with textual hints and (b) inert scripts used as templates. 

The KELP-CS curriculum was designed for the LaPlaya 
programming environment with the goal of providing a 
developmentally-appropriate introduction to foundational CS 
concepts. KELP-CS consists of a predefined sequence of modules 
comprised of activities that gradually introduce CS concepts and 
the associated blocks to students as they progress. KELP-CS 
includes both these structured tasks with specific conceptual 
learning objectives as well as an open-ended play area with the 
module’s full set of blocks to keep more advanced learners 
engaged and provide a space for learner-directed exploration 
throughout the curriculum. The KELP-CS curriculum has two 
main types of activities: 1) On-computer assignments and 2) 
“unplugged” activities completed away from a computer. On-
computer activities consisted of small, incremental tasks designed 
to move students to higher levels of programming sophistication. 
Unplugged activities were modeled after CS-Unplugged [5] with 
the goal of connecting computing to students everyday lives. 
Modules culminate with open-ended projects. 

KELP-CS features two main curricular modules, each designed 
around a different theme: 1) Digital Storytelling and 2) Game 
Design. Each module is designed to be completed in 
approximately 15-18 hours of instruction. The modules are meant 
to be completed sequentially. The first Module (Digital 
Storytelling) covers the following concepts: Sequencing, Breaking 
down actions, Events, Initialization, Animating sprites, and 
Changing scenes. The second module (Game Design) continues 
with Broadcasting messages, Loops, Conditional logic, and 
Variables. Both modules culminated with an open-ended 
programming activity, allowing the learner to employ the 
concepts learned throughout the unit. 
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3.2 Participants and Study Design 
The data for this paper are drawn from one school located in the 
Southwestern United States where 4th, 5th, and 6th grade students 
(ages 9-12) worked through the KELP-CS curriculum over the 
course of two consecutive school years. In the first year, two 
classes in each grade, totaling 44 fourth graders, 48 fifth graders 
and 43 sixth graders, completed the first KELP-CS module (Digital 
Story Telling). The second year consisted of a single fifth grade 
class of 18 students who completed the second KELP-CS module 
(Game Design). This resulted in a total of 135 unique students over 
the two years. The school where the study was conducted is 
racially diverse (54% White, 35% Hispanic or Latino, 5% Asian, and 
3% Black or African American) with approximately 31% of 
students coming from economically disadvantaged households 
and 16% of students schoolwide designated as English-language 
learners. 

Each year, students spent roughly 1 hour per week for 15 
weeks working in the KELP-CS curriculum. Each class session 
was observed by researchers and video recorded for later analysis. 
Additionally, the LaPlaya VBBPE was modified so as to 
automatically collect student projects, which serves as the 
primary data source for the analysis presented in this paper.  

3.3 Analytic Approach 
The analysis presented in this paper focuses on the 135 summative 
programs authored by the participants in this study. Our decision 
to focus on student-authored programs stems from the 
constructivist learning orientation and the constructionist design 
philosophy we bring to this work. Constructivist learning theory 
posits that new knowledge is built through the processes of 
assimilation and accommodation with learners’ existing 
knowledge. In Constructionist learning environments, that 
understanding is manifest through the artifacts built by learners, 
which in this case, are the programs authored [34]. As such, we 
use these constructed artifacts as a means to gain insight into 
learners’ emerging understanding of CS concepts and look at how 
concepts are used within the larger program to understand 
emerging programming strategies.  

To analyze this data, each program was statically analyzed 
using a custom-written script to catalog its contents with respect 
to type and frequency of blocks used. Next, we undertook a 
grounded-theory approach [44] with one researcher analyzing 
each program individually looking for evidence of strategies, 
patterns, or emerging programming strategies. This initial set of 
strategies was presented to the larger research team, who further 
refined the defining characteristics of each strategy and created a 
qualitative coding manual to describe the usages. The coding 
manual was then applied to the full set of programs to understand 
the frequency of each pattern. This approach allows us to situate 
each pattern within the curriculum as a way to help us understand 
potential implications with respect to pedagogy and future CS 
learning. 

4  FINDINGS 

This section presents three outcomes of learners as expressed in 
their culminating projects following the completion of modules in 
KELP-CS. The analysis focuses on emerging learner strategies that 

are developmentally-appropriate and productive within the 
context of the KELP-CS curriculum and have potential 
implications for how teachers of subsequent classes that use 
traditional programming languages design instruction. As such, 
educators should be aware of these strategies and think about how 
best to productively utilize them to scaffold and support learners 
as they progress in their CS learning careers. For each strategy, 
we first present student data demonstrating the strategy in use 
and documenting its frequency across the participant pool. We 
then link the strategy to features of KELP-CS or LaPlaya and 
discuss how the environment productively supports the strategy 
as well as future challenges that may emerge. We conclude each 
section discussing ways future educators can respond to it.  

It bears repeating that the goal of this work is to identify 
strategies students develop in VBBPEs that are different from 
those conventionally used in non-VBBPE introductory CS 
instruction. This is not meant to imply that VBBPEs are 
inappropriate for introductory computing contexts, instead, we 
seek to advance our understanding of how best to support learners 
as they progress along a CS learning trajectory. 

4.1 Managing Execution with Wait Blocks 
A frequent goal of programs in VBBPE is to coordinate a series of 
on-screen events such as the speed at which a sprite dances or 
how and when two sprites interact. Achieving this coordination 
requires the learner to define specific instructions in their 
programs. One common way to achieve these behaviors is to 
manually control the speed of the execution of scripts using the 
wait block. Seventy-four participants (54.8%) used the wait block 
at least once in their final projects, while 13 (9.6%) used it more 
than 10 times. In our analysis, we found this strategy employed in 
two distinct forms: intra-sprite delays and inter-sprite 
synchronization, both of which are accomplished using the wait 
block.  
 

 

 

 
(a) (b) 

Figure 3. Two examples of students using wait block to 
control the execution of their programs 

4.1.1 Intra-script Delays. As part of their final projects, students 
often wanted to slow down the execution of a script for a single 
sprite and used the wait block to accomplish this goal. Fig. 3a 
shows a student project that demonstrates an intra-script delay. 
In this case, the wait blocks added between the costume change 
blocks are used for this purpose. The result is that the sprite’s 
appearance changes at the specified rate. This strategy was used 
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as both a storytelling mechanism and a way to animate sprites. Of 
the 135 projects analyzed, 58 of them (43%) utilized this strategy 
to control the speed of execution within a script. 

4.1.2 Inter-Sprite Synchronization with Wait Blocks. The second 
use of the wait block to control program execution was to 
coordinate the timing of actions between sprites. Fig. 3b shows 
two scripts from a student project that implements a conversation 
between two sprites. Because the synchronization spans two 
sprites, the scripts that define this synchronization cannot be 
viewed on screen at the same time. This means authoring and 
debugging programs that use this strategy relies heavily on 
interpreting the outcome of the visual execution environment. 
Across the full set of participants, 37.8% of final projects included 
this type of intra-sprite coordination. 

4.1.3 Introductory Benefits and Potential Future Challenges. In 
these two examples, we see how young learners take advantage 
of the access that VBBPEs give to manipulate how and when 
scripts are run. Through the use of the wait block, novice 
programmers were able to create animations and achieve 
synchronization through parallelization of their programs, both of 
which are outcomes that would come much later in a 
conventional, non-VBBPE-based CS instructional sequence. 
However, these strategies do introduce potential mismatches with 
future CS instruction. For example, in manipulating execution 
speed with the wait block, learners both manually control the rate 
of execution of a program and use that control to slow down the 
rate of execution. These are reasonable for this context as doing 
so makes animations clearer and sets the pace of sprite 
interactions such that the user has time to interpret what is 
happening on the screen.  

However, the characteristic of wanting to control the speed of 
execution is rarely a goal in early text-based instruction found in 
K-12 classrooms. High school courses taught in languages like 
Java, Python, or JavaScript rarely include animations or ask 
students to control the rate at which things happen, instead, the 
focus is on non-temporal aspects of programming (like 
algorithms, sequencing, state, etc.). Further, when time is 
considered in most introductory text-based programming 
instruction, the goal is to speed up execution time, not slow it 
down. These strategies suggest to learners that the speed at which 
computers perform tasks can be easily predicted or controlled.  

Additionally, the use of wait blocks to manually and explicitly 
control timing to achieve parallelization is quite distinct from the 
parallel programming approaches students might encounter early 
in text-based programming instruction. This fact can be seen in 
the design of many VBBPEs directly as many include message 
passing and broadcasting features to achieve parallel outcomes. 
Previous work looking at how parallel outcomes are achieved 
found that students were substantially less likely to use this 
mechanism than the simpler wait blocks [19]. This finding is 
replicated by this work as only 16 students used this feature of the 
VBBPE. Because of the age of the students, the simplicity of wait 
blocks, and the relative predictability when on a single machine, 
it is appropriate that students solve problems with wait blocks. 

4.1.4 Considerations for Future Educators and Designers. 
Educators teaching a class comprised of students that recently 

completed a course using a VBBPE should be aware of the 
strategies their students may have developed related to the wait 
block and other temporal blocks, such as say for. Learners may 
begin to think that speed is a characteristic of the computer that 
is meant to be programmatically manipulated, alongside aspects 
like sequential flow and program state. While manually 
controlling when instructions are evaluated or focusing on speed 
or timing of a piece of code is an authentic programming strategy, 
temporal characteristics of programming (such as optimization or 
parallel computing) usually occur much later in CS instruction. In 
terms of how this affects educators, the first step is raising 
awareness of the difference between programming when an event 
occurs versus how it occurs. As more students enter second and 
third computing curricula with prior experience in VBBPEs, 
teachers may want to include explicit instruction on the temporal 
dimension of the programs being authored and attend to students’ 
potential desire to pursue solutions that seek to manipulate the 
speed at which instructions execute as a means to achieve a 
desired outcome.  

Future educators should also be aware of the implication of 
learners coordinating parallel execution with wait blocks. Using 
wait block to control the behavior of the program connotes the 
idea that each object has an internal clock that controls how and 
when it operates, and that there is a shared universal clock on 
which they can rely for timing. When learners do eventually 
encounter synchronization in parallel systems, they will need to 
be explicitly taught about absolute timing and the assumptions 
that can and cannot be made based on the technologies and tools 
being used. This again ties back to the larger theme of 
deemphasizing when commands execute, instead focusing 
learners’ attention on how they are used. 

4.2 Coordination with Event-based 
Programming  

Visual block-based programming environments often employ an 
event-based programming approach. In this paradigm, to run a 
program, you associate a sequence of blocks with an action, be it 
clicking the green flag (akin to a start button), waiting for an in-
program event (like receiving a message), or binding a script to a 
key press. Events are an intuitive and accessible way to engage 
novices and younger learners with programming and were very 
common in student final projects. Students used an average of 13.5 
events blocks (SD 20.8) per project, with 27 students using more 
than 20 event blocks, and 6 students defining more than 50 events. 

Event-driven programming makes it easy to create interactive 
programs. It also gives the programmer direct control over how 
and when behaviors in their programs are run. In addition, it 
allows a programmer to think and program separately about what 
should happen at different points in the program, reducing the 
length of any piece of code. In this way, it helps achieve the low-
threshold to programming sought by the designers of VBBPEs and 
contributes to the engagement and enjoyment of the environment 
[30]. 

4.2.1 Introductory Benefits and Potential Future Challenges. The 
inclusion of a suite of event blocks (such as when key pressed and 
when sprite clicked) gives the learner a number of intuitive hooks 
for inserting programmed behavior. This approach is different 
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from many general-purpose programming languages, in which 
early instruction often focuses on a single main function (often 
called main) that is called that begins the serial execution of the 
program. Event-based programming provides a pair of 
introductory benefits that may turn into potential challenges for 
future educators. 

The first outcome of introducing learners to programming in 
event-based VBBPEs is tied to the fact that event-based 
programming environments are inherently parallel. In VBBPEs, 
multiple sprites can operate in parallel in response to the same 
event, or a single sprite can perform two tasks in parallel in 
response to the same event. These parallel programming 
capabilities are present in the text-based languages that learners 
may transition to but students are unlikely to encounter these 
features until later in their CS education paths. Looking across the 
full set of projects, 106 of the 135 student-created projects utilized 
concurrency by having multiple scripts linked to the same event.  

A second potential outcome from learning to program in 
event-driven programming is developing habits that are unique to 
the event-based paradigm and do not have natural analogs in 
conventional text-based programming languages. For example, 
students can bind multiple scripts to the same event for the same 
sprite even though the events are not intended to execute in parallel. 
Fig. 4 depicts an example of this found in a final project showing 
four of the 12 scripts the student defined for the when left arrow 

key pressed event of a single sprite. In composing these blocks, 
the learner directly mapped an event with multiple actions. 
Conceptually, this both makes sense and is an intuitive approach 
to achieving a behavior such as making multiple things happen 
after a single key press. However, this also circumvents the need 
to define the steps of the program sequentially in a single script. 
While this is a functional solution, it is not how the same outcome 
would be achieved in a non-event-based context. A total of 36 final 
projects included parallel implementations of serial behaviors, 
which suggests this is a relatively common occurrence and 
something educators should be made aware of. This distinction is 
meaningful because if all the commands shown in Fig. 4 were 
moved into a single script, the numerical values in the wait block 
would need to change, meaning the shift is not just reorganizing 
commands, but the underlying logic needs to be modified as well. 

4.2.2 Considerations for Future Educators and Designers. The 
program shown in Fig. 4 is one example of the more general 
outcome of learners developing programming strategies that  
 

 
Figure 4. Four of the 12 when left arrow key pressed scripts 
defined in one students’ final project. 

leverage features of event-based programming. This is to be 
expected of novices with little prior experience and shows how 
they take advantage of affordances present in VBBPEs. This 
finding suggests that teachers of more advanced courses should 

be aware of and prepared to help students move from the parallel 
thinking supported by events toward the linear, sequential 
ordering of commands imposed by the languages used in later 
instruction. 

4.3 Coupling Concepts with Specific Contexts 
The strategy used to introduce new CS concepts to elementary 
learners in the KELP-CS curriculum was to situate the concept in 
a specific context and provide scaffolds to facilitate learners in 
writing a program to use the concept in a specific way. This 
strategy serves as the first step in the Use-Modify-Create 
pedagogical strategy common to introductory computational 
thinking instruction [27]. KELP-CS had novices first Use a new 
concept, then provided opportunities to incorporate the concept 
into later programs, either in the same role but different context 
(Modify) or in new ways altogether (Create). For example, to 
introduce learners to conditional logic (the if block), the KELP-CS 
curriculum helped learners create a maze game, using conditional 
logic to make sure the player’s sprite did not walk through any 
walls or touch any of the obstacles along the way. In a different 
game, the if block was used to detect when two sprites touched. 
In both cases, an if block with a touching block inside it was used 
to implement collision detection in the game. Fig. 5a shows how 
these blocks were first introduced to learners through LaPlaya’s 
inert blocks feature. The thing to note about this example is the 
pattern of nesting the if block inside a forever loop and using the 
touching block as the test condition of the if block. 

To understand the relationship between the way concepts 
were introduced in the KELP-CS curriculum and how they were 
used in students’ open-ended final project, we developed an 
analytic coding scheme to situate the use of a concept within the 
Use-Modify-Create trajectory. In this analytic scheme, concepts 
can be presented in students’ final projects at four levels of 
sophistication delineated based on their similarity to how the 
concept was introduced in the curriculum. First, the concept could 
be absent (as was the case for conditional logic in 6 of the 18 
Module 2 projects). Second, the Use level of sophistication 
describes instances where learners use the concept in their final 
projects in the exact same role as it was used within the lesson. 
Meaning the use of the forever, if and touching blocks matches 
the structure shown in Fig. 5a. 

The third level of expertise is illustrated by Fig. 5b. In this case, 
the student applied conditional logic in the same way (i.e. as a 
mechanism for detecting collisions) and programmed it with the 
same general structure (an if block nested in a forever block with 
a touching block as its test condition), but Modified its application 
to integrate other concepts such as a score, sprite placement, 
timing, and visibility. Two-thirds of the final projects (12 projects) 
demonstrated the ability to incorporate conditional logic in their 
programs in a role similar to how it was used in the curriculum. 
Finally, three students used conditional logic in a different way 
(beyond a mechanism for detecting collisions), demonstrating a 
Create level of understanding. These data show  
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Figure 5. (a) The first conditional logic template and (b) an 
example of how it was incorporated into a final project. 

how the Use-Modify-Create progression implemented in KELP-
CS is developmentally-appropriate and helped learners at 
different levels, but also suggests the opportunity for educators to 
adjust pedagogical strategies to effectively build on these early 
successes.  

4.3.1 Introductory Benefits and Potential Future Challenges. 
Firstly, it is important to note that in introductory contexts, any 
application of the concept in a learner-authored program should 
be viewed as a success. The strategy of students using code exactly 
as it was taught to them or as it exists in another project can help 
novices have programming successes early in their exposure to 
CS content. This form of remixing is a central strategy to 
computational thinking [7] and a common practice of 
programmers at all levels of expertise. Likewise, CS educators 
have argued that it is important to introduce concepts in context 
to help learners see the relevance and applicability of what is 
being learned [8, 41]. However, there is also research showing that 
students are more successful in learning when extraneous 
material (i.e. context) is absent, arguing the decontextualized 
presentation is more effective as it decreases the cognitive load 
associated with the learning task [32, 45]. Based on these 
seemingly contradictory findings, we came to the same 
conclusion as Guzdial [18], who concluded: “The only way to 
achieve decontextualized knowledge is to teach beyond a single 
context.” 

As such, in the KELP-CS curriculum, concepts were taught in 
multiple contexts. In the case of conditional logic in Module 2, that 
meant using the if block to create different styles of games. The 
goal in showing these two different applications of conditional 
logic was to help learners understand the underlying concept and 
see how it can be used in two distinct ways. However, the results 
show that it is unclear the degree to which the two contexts 
helped. In particular, it could have provided two concrete ways of 
using the concepts as opposed to providing a generalized 
understanding of the concept of conditional logic. 

4.3.2 Considerations for Future Educators and Designers. While 
the Use-Modify-Create approach was pedagogically productive, 
our analysis suggests it does pose a potential challenge for future 
CS educators. By teaching concepts situated in a specific context, 
there is potential that the concept gets coupled to that particular 
use (e.g. for building games).  

The data presented above, and the characterization of usages 
within the Use-Modify-Create progression, shows learners using 

the concept at all four levels of sophistication. There are two direct 
implications of this for future educators. First, educators should 
be aware of how concepts were presented and situated in early 
lessons so as to be able to present new and complementary uses 
of concepts. When a concept is presented in a new context, 
educators should also try and link the new presentation with prior 
contexts and implement bridging and hugging strategies 
suggested by research [11, 37].  

Second, these data reinforce the fact that full understanding of 
a concept may require several courses in which concepts are 
taught in a variety of ways – educators targeting second or third 
experiences should not consider that “conditionals have already 
been covered” and assume full understanding. For a subsequent 
Scratch curriculum, in the case of conditional logic, this may mean 
using the construct for something other than collision detection 
or using it outside of a loop. Examples include comparing 
numerical values as part of a score-keeping mechanism or 
comparing x or y positions on the screen as to coordinate a dance 
across multiple sprites. Further, this is especially true when the 
new context is in a different language, modality, or environment. 
Doing so will further help students build conceptual bridges 
between the different forms of programming they will see 
throughout future CS instruction. 

5 DISCUSSION 

5.1  Preparing Expert Computer Science 
Teachers 

One of the many challenges faced by districts and schools is 
recruiting, training, and retaining capable CS teachers. As the 
demand for CS across K-12 grows, so, too, does the need to bring 
new teachers into the discipline. One of the goals of this work is 
to show that when it comes to supporting learners as they 
progress through the K-12 CS trajectory, teachers should be aware 
of both previous and future CS courses to best support learners.  

This paper documents three specific strategies that teachers 
charged with moving learners on to the next step in their CS 
careers should be prepared for. The strategies span curriculum 
design (defining new contexts to situate content), CS content 
knowledge (situations where learners focus on temporal aspects 
of execution), and CS pedagogical content knowledge (how 
different paradigms affect programming strategies). Collectively, 
this highlights the challenge that new CS teachers face. We make 
this point at the same time that one of the prevailing approaches 
to training new CS teachers is to provide them with a full suite of 
classroom materials (lessons, environments, assessments, etc.) to 
make it as easy as possible for them to get up and running quickly 
in their new discipline. While this is a prudent strategy given the 
immediate demand, the work presented above gives pause to the 
view that such an approach is sufficient for training teachers to 
support learners across the K-12 spectrum. Instead, our hope is 
this all-in-one approach for teachers serves as only the first step 
in the career-spanning undertaking of learning how best to 
support students in learning CS. 
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5.2  Giving Agency to the Learner 
A second discussion point that relates to this work speaks to an 
emerging trend in the continually shifting landscape of 
introductory programming. Throughout this paper introductory 
programming environments have been treated as relatively static 
entities, i.e. they present a single interface and only support one 
form of interaction. In the case of VBBPEs, that means block-based 
programming in a sprite-driven context. This characterization is 
becoming less-and-less accurate with the emergence of new and 
more flexible programming environments. For example, dual-
programming environments such as Pencil Code [3] and Tiled 
Grace [24] allow the learner to seamlessly transition back and 
forth between block-based and text-based modalities. Research is 
finding that this approach is useful for novice programmers [31, 
50]. 

While the LaPlaya programming environment did provide a 
scaffolded programming interface that expanded as learners’ 
knowledge and confidence grew in the form of introducing new 
blocks and categories, this shift was determined by the curriculum 
rather than the learner. It is easy to imagine what a learner-
directed version of this form of scaffolding could look like where 
the learners themselves are free to decide how and when they 
want to see more blocks or simplify the programming 
environment. Scratch offers features similar to this in the form of 
extensions and Microwrolds [48]. Likewise, it is easy to imagine a 
curriculum that is designed to give the learner more agency in 
deciding how and when they progress, a feature that has been 
implemented by numerous online learning tools. The challenge 
with this approach is figuring out how to support individual 
agency while still ensuring shared content coverage across the 
classroom in order to ensure all learners are suitably prepared for 
future learning opportunities. 

5.3 Choosing the Right Tools and Curricula for 
Your Classroom 

One of the challenges of teaching CS is choosing the right 
curricula and programming languages and environments for your 
classroom. This is especially challenging for teachers with little or 
no prior CS experience. As this work highlights, features of the 
programming environment and the chosen curriculum both shape 
leaners emerging understandings of CS concepts and the 
programming strategies they develop. The challenge of picking 
the best tools and curricula for the classroom is magnified by the 
lack of a consensus on sequencing of CS concepts, guidelines for 
how in depth to cover concepts at different grade levels, and 
agreement in the community about what programming languages 
to use for instruction. These are problems that are actively being 
addressed both in the CS education research community [40, 43] 
as well as through wide-scale community initiatives to provide 
guidance to states, standards writers, and curriculum designers 
[10, 55]. When creating and choosing a curriculum and then 
deciding what environment (or environments) to accompany it in 
the classroom, it is important to make sure the two are aligned. At 
the same time, figuring out when, how or even if it is necessary 
to transition learners from environments that prioritize 
accessibility versus computational power and broad applicability, 
is another line ongoing work [2, 11]. There is also a growing body 
of research investigating VBBPEs and their affordances and 
drawbacks for elementary CS classrooms [23] and high school 
classrooms [51]. As this work progresses, hopefully, clarity will 

emerge as to how best to match environments with curricula and 
support teachers in effectively bringing them into their 
classrooms.  

It is also important to note, that throughout this work, we have 
focused on the goal of conceptual learning of CS concepts. While 
this is an important goal, it is not always the focus of introductory 
classrooms, nor should it be. A second goal for introductory CS 
curricula, and one where VBBPEs have historically excelled, is 
getting learners excited about the field and changing their 
perceptions about what CS is and who can be a computer scientist 
[29, 39]. Getting learners interested, excited, and engaged with CS 
is potentially more important than conceptual learning, especially 
for young learners as it can change students views of potential 
future educational goals [46]. The take away from this discussion 
is the importance of having clear goals as an educator, and 
aligning those goals with the tools and curricula you choose. One 
contribution of this work is providing a deeper understanding of 
the consequences of this decision, especially if the goal for the 
course is to prepare students for future computer science learning. 

6  CONCLUSION 
Whereas computer science was once a subject reserved for the 
final years of high school and beyond, the subject has a growing 
presence across the K-12 spectrum. In response to the need for 
computing education in earlier grades, a growing ecosystem of 
novice programming environments and curricula has emerged. 
Increasingly, educators and curriculum designers are turning to 
VBBPEs to serve as the way novices are introduced to 
programming. While these environments have excelled in 
informal spaces, their transition to formal classrooms, and their 
use to prepare all learners for future CS instruction is not without 
its challenges. In this work, we sought to identify programming 
strat4gies novices developed while working in VBBPEs that are 
distinct from what is typically taught in text-based languages and 
then consider their implications for educators. In particular, using 
data from student-authored, open-ended summative projects, we 
show how novices’ uses of the wait block, their coordination of 
execution through events, and the coupling of concepts to the 
contexts in which they were first introduced all have potential 
implications for future instruction. The contribution of this work 
is to deepen our understanding of the use of VBBPEs in the 
classroom early in learners’ CS careers, especially when the goal 
is preparation for future CS instruction. In doing so, we shed light 
on open challenges we face as educators and advance the goal of 
creating effective, accessible CS learning experiences and 
bringing CS to all learners. 
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