Maverick: Discovering Exceptional Facts from Knowledge
Graphs

Gensheng Zhang" Damian Jimenez Chengkai Li
gezhang@google.com damian.jimenez@mavs.uta.edu cli@uta.edu
Google, Inc. The University of Texas at Arlington The University of Texas at Arlington
ABSTRACT (2) “This was Brazil’s first own goal in World Cup history ..” (

We present Maverick, a general, extensible framework that discov-
ers exceptional facts about entities in knowledge graphs. To the
best of our knowledge, there was no previous study of the prob-
lem. We model an exceptional fact about an entity of interest as a
context-subspace pair, in which a subspace is a set of attributes and
a context is defined by a graph query pattern of which the entity is
a match. The entity is exceptional among the entities in the context,
with regard to the subspace. The search spaces of both patterns and
subspaces are exponentially large. Maverick conducts beam search
on the patterns which uses a match-based pattern construction
method to evade the evaluation of invalid patterns. It applies two
heuristics to select promising patterns to form the beam in each
iteration. Maverick traverses and prunes the subspaces organized
as a set enumeration tree by exploiting the upper bound properties
of exceptionality scoring functions. Results of experiments and user
studies using real-world datasets demonstrated substantial perfor-
mance improvement of the proposed framework over the baselines
as well as its effectiveness in discovering exceptional facts.

ACM Reference Format:

Gensheng Zhang, Damian Jimenez, and Chengkai Li. 2018. Maverick: Dis-
covering Exceptional Facts from Knowledge Graphs. In SIGMOD’18: 2018
International Conference on Management of Data, June 10-15, 2018, Hous-
ton, TX, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3183713.3183730

1 INTRODUCTION

Knowledge graphs such as DBpedia [4], Freebase [6], Wikidata [37],
and YAGO [31] record properties of and relationships between
real-world entities. These data are used in numerous applications,
including search, recommendation, and business intelligence. This
paper introduces Maverick, a framework that, given an entity in
a knowledge graph, discovers exceptional facts about the entity.
Informally, such exceptional facts separate the entity from many
other entities. Consider several factual statements in published
news articles:

(1) “Denzel Washington followed Sidney Poitier as only the second

black to win the Best Actor award.” (abcnews.go.com)

“The bulk of the work was done while the author was at UT-Arlington.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06...$15.00

https://doi.org/ 10.1145/3183713.3183730

yahoo.com)
(3) “Hillary Clinton becomes first female presidential nominee”
(chicagotribune.com)
An exceptional fact consists of three components: an entity of inter-
est, a context, and a set of qualifying attributes. In each exceptional
fact, among all entities in the context, the entity of interest is one
of the few or even the only one that bears a particular value com-
bination on the qualifying attributes. For example, in the above
statement 1, the entity of interest is Denzel Washington, the context
is the Academy Award Best Actor winners, and the qualifying at-
tribute is ethnicity.

Discovery of exceptional facts is useful to important applica-
tions such as computational journalism [11, 12], recommendation
systems, and data cleaning. a) In fact-finding [21, 22, 32, 41, 44],
journalists are interested in monitoring data and discovering at-
tention-seizing factual statements such as the aforementioned ex-
amples. These facts help make news stories substantiated and in-
teresting, and they may even become leads to news stories. b) In
fact-checking [20, 42], for vetting the statements made by humans,
fact-checkers at news organizations such as The Washington Post,
CNN, and PolitiFact can compare the statements with automatical-
ly-discovered facts. For example, an algorithm may find that Hillary
Clinton is the second female presidential nominee, which contradicts
with the statement 3 above. ! ¢) Exceptional facts can help promote
friends, news, products, and search results in various recommenda-
tion systems. d) When the discovered facts are inconsistent with
known truth or apparent common sense, it reveals incomplete data
or data errors. Such insights aid knowledge base cleaning and com-
pletion. For example, the above statement 3 may be generated using
an incomplete source that misses the nomination of Victoria Woodhull.

Given an entity in a knowledge graph, an integer k, and an
exceptionality scoring function, the objective of exceptional fact
discovery is to find the top-k highest scored pairs of (context, at-
tribute set). The entity is exceptional with regard to the attributes,
while at the same time belonging to the context together with other
entities. This description hinges upon two concepts—context and
attribute—which we explain below.

o The attributes of an entity are the entity’s incoming/outgoing
edge labels, and the attribute values are the entity’s direct neigh-
bors. For example, Fig. 1 is an excerpt of a knowledge graph
about FIFA World Cup, in which the edge labeled awarded-to from
node G1 to cro captures the fact that the goal is awarded to the
team Croatia. Entity 61 has two attributes scored-by and awarded-to,
with values s1 and cro, respectively.

!The first female presidential nominee was Victoria Woodhull, accord-
ing to http:// www.snopes.com/victoria-woodhull- hillary-clinton/.

https://doi.org/10.1145/3183713.3183730
https://doi.org/10.1145/3183713.3183730
http://abcnews.go.com/Entertainment/halle-denzel-make-oscar-history/story?id=101254
https://doi.org/10.1145/3183713.3183730
http://sports.yahoo.com/blogs/soccer-dirty-tackle/brazil-start-first-match-of-the-world-cup-with-their-first-ever-own-goal-in-the-tournament-202820264.html
http://www.chicagotribune.com/news/opinion/commentary/ct-hillary-clinton-first-woman-nominee-millennials-20160608-story.html
http://www.snopes.com/victoria-woodhull-hillary-clinton/

o

S3 scored-by
1 —scored-by \ \
\ SL— g play-for awarded-to
awarded-to play- or\
BRA‘?awarded-toi G5
CRO, P

play-for

play-for awarded-to / scored-by ESP

/

§5 __play-for

awarded-to

S84 scored-by G4 s2 scored-by /
-~ G2

Figure 1: An excerpt of a knowledge graph.

scored-by play-for scored-by play-for
7g —> 7% —>BRA Gl —> S1 —>BRA
b Match M,

scored-by play-for scored-by play-for
G2—> S2 —> BRA G3—>» S3 —>BRA

a Pattern P

¢ Match M, d Match M;

Figure 2: Pattern P; and variable 7z define a context consisting of
all the goals scored by BRA players; M;, M, M3 are matches to P; in
Fig. 1.

o A context is a set of entities sharing some common characteristics
defined in a pattern query. In Fig. 2a, pattern P; and the variable
% in it define a context C; of all the goals scored by players of
team Brazil. Figs. 2b-2d show P;’s matches in Fig. 1. For instance,
match M; (Fig. 2b) is a subgraph of Fig. 1, in which 2 of P; is
mapped to c1. Hence, 61 belongs to context C;. Similarly, c2 and
c3 in Fig. 1 also belong to C; based on M, and M3, while ¢4 and
cs are not part of Cj.

e With respect to a subspace (i.e., a set of attributes), an entity is
exceptional in a context if its attribute values deviate from the
values of other entities in the same context. For example, the
value of attribute awarded-to for G1is cro, while the value is Bra for
both G2 and c3. The degree of exceptionality of an entity varies by
different contexts and subspaces. For instance, one interpretation
of statement 1 is that the context is the Academy Award Best
Actor winners and the qualifying attribute is ethnicity; an alter-
native interpretation is that the context is all African Americans
and the qualifying attribute is the award. Under some definitions
of exceptionality, the second interpretation may render Denzel
Washington more exceptional, since there are a lot more African
Americans than winners of the award.

A holistic solution to exceptional fact discovery may be expected
to synthesize whatever types of available data (structured databases,
graphs, text, and so on), which is beyond the scope of this paper.
Instead, our focus is on knowledge graphs which are becoming
increasingly important to analytics and intelligence applications. To
the best of our knowledge, there is no previous study on discovering
exceptional facts about entities in knowledge graphs. The two most
related areas are outlier detection in graphs [17, 28, 33, 38] and
outlying aspect mining [2, 3, 15, 21, 32, 36, 40]. Duan et al. [15]
and Vinh et al. [36] discussed the differences between these two
areas. They achieve different goals. Outlier detection searches for
all outlying objects among a set of objects. Outlying aspect mining,
however, focuses on only one given object and returns the subspaces
of attributes in which the object is relatively outlying, regardless of
its true degree of outlyingness. In terms of objectives and problem
modeling, the exceptional fact discovery problem formulated in
this paper is closer to outlying aspect mining than outlier detection.

However, it focuses on graph data. In contrast, existing outlying
aspect mining methods [3, 21, 32, 40] assume a single relational
table. These methods take a tuple as input and returns two disjoint
attribute sets. The first set of attributes define the context, i.e.,
the tuples having values identical to that of the input tuple on
the attributes. On the second set of attributes, the input tuple has
peculiar values compared to other tuples belonging to the context.

However, these methods for outlying aspect mining cannot be
effectively applied to knowledge graphs, since they are specifically
devised for single tables only. A seemingly plausible idea can be to
represent a knowledge graph as a single table and then to apply
the existing methods on the table. Consider the single-table model
of RDF proposed in [8]. When adapting it for a knowledge graph,
each tuple (row) is for an entity v and each attribute (column) cor-
responds to an edge label in the knowledge graph. The attribute is
also associated with an edge direction—either incoming into or out-
going from v. The value at the junction of the row and the column
is an entity or a set of entities adjacent to v via edges with the label
and direction given by the column. Given this single-table represen-
tation of the knowledge graph, at least a few major problems render
the existing outlying aspect mining methods inapplicable. First, in
these methods a context, defined by a set of attributes, consists
of the tuples having values identical to that of the input tuple. In
other words, the context is the result of a conjunctive query over
the attributes. For knowledge graphs, however, a context is defined
by a graph pattern query, which cannot be captured by conjunctive
queries on attributes in the aforementioned single-table representa-
tion. More specifically, an edge in the pattern may not be adjacent
to the input entity and thus does not correspond to any of the en-
tity’s attributes. Hence, evaluating a pattern may involve self-joins
of the single-table. Existing outlying aspect mining methods are
not designed to accommodate joins. Second, the aforementioned set
values in the single-table representation are not considered in the
existing methods. An adaptation of the methods will thus require
at least joins which, as mentioned above, are not supported by the
methods. Third, due to the heterogeneity and scale of a large knowl-
edge graph, such a single-table is extremely wide and sparse, which
is well beyond the capacity of the existing methods because of the
intrinsic exponential complexity of the problem’s search space.

To discover the exceptional facts about an entity, we must ex-
plore two extremely large search spaces, one of patterns and the
other of attribute subspaces. Section 5.1 shows that the number of
patterns is at least exponential in the size of the graph. It is also
clear that the number of subspaces is exponential in the number
of attributes since a subspace is a combination of attributes. It is
not computationally feasible to exhaustively enumerate all possible
patterns and subspaces. Furthermore, it is challenging to prune
patterns and subspaces, due to the non-existence of downward clo-
sure property (i.e., anti-monotone property) on typical exceptionality
scoring functions.

To tackle these challenges, this paper introduces Maverick, a
beam-search based framework. Given an input entity, Maverick
discovers the top-k context-subspace pairs that give the entity the
highest expectionality scores. Maverick allows an application to
plug in any exceptionality scoring function based on the applica-
tion needs. Conceptually, Maverick organizes the search space of
patterns as a partial order defined by the subsumption relation on

patterns and the search space of attribute subspaces as a set enumer-
ation tree [30]. Intuitively, the search for top-k context-subspace
pairs is performed in a nested-loop fashion in which the outer
loop enumerates patterns and the inner loop enumerates subspaces.
Maverick conducts breath-first beam search [43] on the space of
patterns, starting from a pattern with a single variable node. On
each visited pattern, Maverick applies a set of heuristics to prune
its children so that Maverick visits at most w patterns at each level,
where w is the beam width. Each visited pattern is evaluated over
the knowledge graph to obtain the contexts it defines. For each
context, Maverick calculates the input entity’s exceptionality scores
in different subspaces. It exploits an upper bound for exceptional-
ity score to guide the traversal of the subspaces. The supersets of
a subspace are pruned if their upper-bound scores are below the
current top-k scores.

The paper reports the results of experiments on two real-world
knowledge graphs, which verify Maverick’s effectiveness in finding
exceptional facts. The experiments compared the performance of a
breath-first search method and the beam search method coupled
with different candidate-selection heuristics. The experiment results
establish that, even though the breath-first search method may
evaluate more patterns in a fixed time frame than the beam search
methods, it is not as effective as the beam search method using the
proposed heuristics. We have also included some exceptional facts
discovered by Maverick to demonstrate its practicality.

2 PROBLEM FORMULATION

In this section we formally define the data model of knowledge
graphs, the concepts of context, attribute, and subspace, and the
problem of exceptional fact discovery.

Knowledge Graphs

A knowledge graph G(Vi, Eg) is a set of RDF [13] triples with
node set Vg C I and edge set Eg € Vg X I X Vg, where I is the
universe of IRIs.? In Fig. 1, there are three kinds of entities: goals
(e.g., G1), players (e.g., s1), and teams (e.g., 8rA). (Without loss of gen-
erality, we use an entity’s name as its identifier (IRI) in the ensuing
examples, assuming entity names are unique.) Three different types
of edge labels represent different relationships: each player plays
for a team (play-for), and each goal is scored by a player (scored-by)
and is awarded to a team (awarded-to). For example, there is an own
goal, as c1is scored by s1, a player of 8ra, but awarded to cro.

Patterns and Contexts

Definition 1 (Pattern P). A pattern is a weakly connected graph®
P(Vp,Ep), where Vp € T UV,Ep C Vp X I X Vp, and V is the
universe of variables. We also denote by Xp C Vp the variables
occurring in P. A

Definition 2 (Match M). A match M(V), Epf) to a pattern P(Vp, Ep)
is a subgraph of G (V31 SV and EjfCEg) such that there exists a
bijection f : Vp—V); satistying the following conditions:
o [Val =1Vpl, IEm| = |Epl;
o ¥ (vi,1,vj) € Ep = (f(vi). L, f(v))) € Ens;
o V' (u;,luj) € Ep = (f1wi). L 7' ())) € Ep;

2For the sake of simplicity, we do not consider blank nodes and literals.

3 A weakly connected graph is a directed graph of which the correspond-
ing undirected graph is connected.

eVvel= f(v)=no.
In short, a subgraph M of G is a match to pattern P if M is edge-
isomorphic to P and, for each non-variable node v in P, f(v) has
the same identifier. A
Note that the semantics of patterns in our definition is similar
to that of basic graph patterns in [19, 27]. However, there are two
main differences. One is that patterns in this work are weakly
connected. The other is that a match to a pattern is required to
be edge-isomorphic to the pattern. Neither of them is enforced in
[19, 27].

Definition 3 (Range of Variable RE). Let Mp be all the matches to
pattern P in a knowledge graph G. (Le., Mp is [[P]] G, the evaluation
of P against G, using the terminology in [27].) For a variable x € Xp,
the range of x, denoted RY, is a set of entities defined as
RE=1{f(x)IMeMp,f:Vp— Vylh A
For example, P; in Fig. 2a has two variable nodes, 2 and ». (To
distinguish variables from entities, the names of variable nodes
always start with the symbol ».) Figs. 2b-2d show P;’s matches in
Fig. 1. Rf; = {61, G2, 63} and R,,PS1 = {s1, s2, s3}.

Definition 4 (Context cﬁf”‘). Given an entity v, a pattern P, a
variable x € Xp such that v € RE, the context of v defined by P
and x is denoted cg”‘ and Cg’szf?. A

For example, the context of c1 in the running example—goals
scored by Bra players—is defined by pattern P; in Fig. 2a and variable

Pue _ pPr {G1, G2, 63}. On the other hand,

?g in the pattern: C; %

since G1 ¢ Ril , % in P; does not define a context of G1. Note that a
pattern may define multiple contexts of v, since v may be mapped
to different variables in the pattern. For example, consider pattern
P = {(2%, awarded-to, 7), (%, scored-by,), (%, play-for, 2t)}. It defines

. 2 2
two different contexts of BRra: Cgé;‘ = {Cro, BRA}, Cg;’{/‘: = {Esp, BRA}.

Entity Attributes and Subspaces

Given an entity of interest v, an attribute corresponds to the
label of an edge incoming into or outgoing from v, and its value
is the entity at the other end of the edge. Note that we need to
distinguish between incoming attributes and outgoing attributes
since an entity can be both sources and destinations of edges of
the same label. For instance, a person can have a manager and
meanwhile be the manager of someone else.

Definition 5 (Entity Attributes A;). Given an entity v, its at-
tributes A, is the union of its incoming and outgoing attributes:
Ay, = AL U A9 The incoming attributes are a set of edge labels
Aiv = {(I,<) | (x, I, v) € Eg}. Given an incoming attribute
a=(I,«) € AL, v’s value on attribute a is the set v.a = {x | (x, [,
v) € Eg}. Similarly, the outgoing attributes are A?, = {(/, =) | (v,
I, x) € Eg}. Given an outgoing attribute a = (I, —) € A9, v’s value
isv.a={x|(v1, x)€Eg}. A

Definition 6 (Subspace A). A subspace A is a subset of v’s at-

tributes, i.e., A € A,. The projection of v’s attribute values onto

subspace A is denoted v.A, and v.@ = null. A
i

For example, in Fig. 1, A, = {(play-for, <), (awarded-to, <)};

cro.(awarded-to, <) = {{c1.Ga}) and A2 = {(scored-by, —), (awarded-to, —

)}; G1.(awarded-to, =) = ({cro}). Let subspace A = {(scored-by, <),
(play-for,—)}. As; = A and s1.A = ({c1}, {BRA}).

Exceptionality Score

Definition 7 (Exceptionality Scoring Function y). An exception-
ality scoring function y (v, A, C) € R measures entity v’s degree of
exceptionality with regard to subspace A in comparison with other
entities in context C. Without loss of generality, we assume the
range of y is [0, 1], with larger y implying greater exceptionality.
We also set y(v,A,C)=0if A € Ay, or v ¢ C, to make y a total
function. A

The Maverick framework is indifferent to the choice of the excep-
tionality scoring function. It can accommodate many different in-
terestingness/outlyingness functions (see surveys such as [18, 24]).
Hence, the focus of this paper is not on the design, evaluation and
comparison of such exceptionality scoring functions. Rather, the
goal is to develop a general framework for efficiently finding excep-
tional facts under various scoring functions. Nevertheless, to make
the discussion concrete, we consider several representative func-
tions, of which one is introduced below and two more are discussed
in Section 4.2 and in Appendix A.2. To ensure consistency, the dis-
cussion uses our own notations and terminologies in presenting
the adaptation of existing functions.

One-of-the-Few)y The one-of-the-few concept is adapted from
[41]. The crux of the idea is that a factual claim about an entity is
interesting when equally or more significant claims can be made
about only few other entities. For example, in Fig. 1, it is interesting
to claim “c1is the only own goal among the goals scored by sra
players”, since such a unique claim cannot be made about any other
goal scored by a Bra player. On the contrary, “c1 is the only goal
scored by s1” is not impressive, because the same kind of claim “cx
is the only goal scored by sy” can be made for all 5 goals in Fig. 1.

The one-of-the-few measure [41] is based on multi-criteria dom-
inance relationship which is irrelevant to this work. Our adaptation
of [41] quantifies the rareness of attribute values based on frequency.
Consider a context C, a subspace A, and any entity u in the context.
We denote by p?, or simply ps when A is clear, the probability (or
“frequency” as in [3]) of u taking values S in subspace A4, i.e.,

p?zp(u.A=S|u€C): [{fulueC, uA=S}|/IC|. (1)
Ranking facts directly by frequency is not robust, regarding which
detailed analysis can be found in [41]. To intuitively understand the
insight, consider an extreme example. Suppose in an organization
everyone has a unique name. Given an particular individual x, a
fact “x is the only person with that name” has high exceptionality
measured by frequency itself. However, it is not truly exceptional
since the same kind of fact can be stated for everyone.

Based on the definition of pg‘, the one-of-the-few yy quantifies
the exceptionality of an entity of interest v by the pessimistic rank
of the frequency of v.A. Specifically, the exceptionality of v is:

Xr(@AC) = [{ulu€eC, pya>poatl/ICI.)

For example, consider entity of interest vp = ¢1in Fig. 1 and
context C defined by pattern P; and variable % in Fig. 2a, i.e.,
C= Cgi’?y = {G1, G2, 63}. Table 1 shows the frequencies of attribute
values in all subspaces. According to Table 1, pc,. 4 = pg3.A =
P(sra) = 5 > Pcr.a = P((cro)y = 3. Hence, xf(c,AC) =
% = % For A = {(awarded-to, —), (scored-by, —)},)(f(m,

A, C) = 0, since there exists no u € C such that p, 4 > pg;.A.

Table 1: The frequencies of attribute values in all subspaces for
entity of interest G1 with regard to context C = {G1, G2, G3}.

A v.A:pC G1.A
{(awarded-to, —)} ({cro}):1/3, ({BRA}):2/3 ({cro})
{(scored-by, —)} ({s1}1):1/3, ({s2}):1/3, ({s3}):1/3 ({s1})
{(awarded-to, —), ({cro}, {s1}):1/3, ({BRA}, {s2}):1/3, ({cro}, {s1})
(scored-by, —)} ({BRA}, {s3}):1/3

Definition 8 (Top-k Exceptional Facts F;,). With regard to an en-
tity v, the rank of a context-subspace pair (C, A) is the number
of context-subspace pairs with greater exceptionality scores, i.e.,
rank(C,A) = | {(C',A”) € Cy X Ay | x(v,A’,C") > x(v,A,C)} |.
Cp is the universe of v’s contexts: C, = {CE’X | P e Px €
P,v e Rf;}, in which ? is the universe of patterns over G, i.e.,
P = {P(Vp,Ep) | Vp € X UVg,Ep C (XUVG)XLx (XU
Vi), P(Vp, Ep) is weakly connected} where X is the universe of
variables. (C, A) is a top-k exceptional fact if its rank is lower than
k. Hence, the set of top-k exceptional facts about v, F,, is defined
as Fy, = {(C,A) € Cp X Ay | rank(C, A) < k}.* A

Problem Statement Given a knowledge graph G, an entity of
interest v, an integer k, and an exceptionality scoring function y,
the problem of exceptional fact discovery is to find F,,,—the top-k
exceptional facts about vy.

Continue the running example. With regard to 61, the context-
subspace pair (Cgi’?g, {(awarded-to, —)}) may be exceptional. The

context Cgi’?g is {c1, G2, a3}, i.e., the goals scored by Bra players.
An interpretation of G1’s exceptionality with regard to the pair is:
among all the goals scored by Bra players, 1 is the only own goal.

Alternative Problem Modeling

There could be other ways of defining context and subspace.
Definition 4 allows contexts based on arbitrary patterns. It is possi-
ble to adopt a more simplified and restricted definition that only
allows such patterns to be in certain “shapes” such as paths, star
graphs, and trees. Definition 6 dictates that a subspace must be a
set of entity attributes. In other words, when comparing an entity
with other entities in a context, the entity stands out with respect
to a subspace if it satisfies the conjunctive condition formed on the
attributes in the subspace (i.e., a star query) while most other enti-
ties do not. It is plausible to adopt a more complex and expressive
definition that allows the framework to assess exceptionality of
entities using more complex, general graph queries instead of only
star queries.

The current choices of Definitions 4 and 6 are formed based
on several considerations related to usability and practicality. Par-
ticularly, the exceptionality scoring functions in this section and
Section 4.2, adapted from functions in the literature that define
outlyingness of tuples in relational tables, are defined on the afore-
mentioned star queries. It is thus unclear how to define a scoring
function using more complex graph queries. While such is an in-
teresting question to ponder, it falls outside this paper’s scope. As
mentioned earlier, the Maverick framework is indifferent to the
choice of the exceptionality scoring function. The current simple
definition of subspace also eases the task of ensuring the discovered
facts can be intuitively expressed by the system and interpreted by

“The size F,, may be greater than k due to ties in exceptionality scores
and thus ranks.

,,,,,,,,,,,,, Beam

. Pattern
B (w=2) I ’?‘earch Generator
\Y [T — N . ree
' i) B« g
,,,,,,,,,,,,, 2
Knowledge Graph M
———————————— Context E tionalit
x(odazhCpliay)] xceptionality
(Cy A Evaluator o Evaluator
(CpA) i X(Vg{apa53,C.)
(CyA) Set P Y
7777777777777 Enumeration] : i
Top-k (C,A) Pairs Tree ‘_ __________]

Figure 3: The framework of Maverick.

users. On a related note, while conducting the experiments (Sec-
tion 6) we limited the sizes of the context-defining patterns and
subspaces to be very small, only involving at most a handful of
nodes and edges.

There could also be other ways of defining attributes. For exam-
ple, one can define an entity’s attributes as a vector of values either
independent to or derived from the graph. For instance, [17, 28]
consider, for each node, an associated mini-table containing in-
formation from external sources. A prevalent model of entities in
knowledge graphs is embedding-based [7, 25, 39, 45], in which each
entity is represented by a vector capturing its neighborhood infor-
mation. Such vectors can also be used as entities’ attributes. How-
ever, the vectors are indecipherable to human beings. Furthermore,
in general knowledge graphs, an entity may have sub-properties,
functional properties, and transitive properties [9, 14]. This work
does not consider such models and thus is lack of reasoning ca-
pacity based on such properties. Some of such properties may be
leveraged by pre-processing. For example, one may materialize the
transitive properties. This can be an interesting future direction to
explore.

3 OVERVIEW OF FRAMEWORK

We propose Maverick, an iterative framework for exceptional fact
discovery. Intuitively, the process of discovering context-subspace
pairs can be viewed as nested loops. The outer loop enumerates con-
texts, while the inner loop enumerates subspaces for each context.
Given the entity of interest vy, while subspace enumeration in the
inner loop enumerates the subsets of A, the outer loop enumer-
ates contexts by patterns, since each context of an entity is defined
by a pattern and one of the pattern’s variables (c.f. Definition 4).
Conceptually, Maverick organizes all the possible contexts as a par-
tial order on patterns, i.e., a Hasse diagram, in which each node
is a pattern and each edge represents the subsumption (subgraph-
supergraph) relationship between the two patterns. The essence of
the outer loop is thus a traversal of the search space of patterns.

Given that the search space of patterns can be extremely large
(Section 5), it is impractical to adopt breath-first, depth-first, or
heuristic search approaches due to memory and time constraints
[29]. To address this challenge, we propose to traverse the search
space by beam search [5]. Since beam search maintains a “beam”
of heuristically w best nodes and prunes all other nodes, it is not
guaranteed to be complete or optimal. However, good solutions can
be found quickly if the heuristic is sound enough.

Fig. 3 and Alg. 1 illustrate the framework of Maverick, which has
three main components: Context Evaluator (CE), Exceptionality
Evaluator (EE), and Pattern Generator (PG). The beam search at

Algorithm 1: Discovering exceptional context-subspace pairs.

1 FACT-DISCOVER (G, vg, x, k, w)

Input: G : the knowledge graph; vy € Vg : the entity of interest;
X : the exceptionality scoring function; k : the size of
output; w : the beam width
Output: H : k most exceptional context-subspace pairs
2 Py < (Vp, = {x0}, Epy, = @) ; // Initial state. x is a variable.
3 B« {Py}; // Beam.
4 i—1; // Iteration number.
5 while B # @ and i < MAX_ITERATION do
6 i<—i+1;Btmp<—®;
7 foreach P € B do
// Obtain contexts of vy and matches to P. (Section 3.1)
8 Cffo, Mp < CONTEXT-EVALUATOR(P, v, G);
9 foreach C ¢ Cf,:) do
// Exceptionality Evaluation. (Section 4)
10 A EXCEPTIONALITY-EVALUATOR(vy, C, k, x);
11 foreach A € Ado H«— HU{(C, A)};
// Find Y — the children of P. (Section 5)
12 Y« PATTERN-GENERATOR(vyg, P, Mp, w, G);
13 | Bimp < Bimp U Y;
14 B « top-w of Bty based on heuristics h ; // Section 5.4
15 return top-k pairs in H based on exceptionality scores;

the outer loop starts with a pattern Py with a single variable node
xo (Lines 2-3 in Alg. 1). The search results in a pattern search tree,
of which the root is Py. At each iteration, Maverick maintains a
beam B of a fixed size w (Lines 6, 13, 14). The beam consists of
heuristically the best w patterns (e.g., P2, P3 in Fig. 3 where w = 2)
at the visited level of the pattern search tree. For each pattern P
in B, component CE obtains the matches Mp to the pattern and
the corresponding contexts Cfo of vy (Line 8). For each context
Cin Cgo (e.g. C; in Fig. 3), component EE finds the top-k scored
subspaces according to a given exceptionality scoring function y
(Line 10, and Section 4). Component PG finds the children of the
visited pattern based on its matches (Line 12, and Section 5). Since
there are usually much more children than what the beam size
w allows, PG applies a set of heuristics (Section 5.4) to prune the
child patterns. Each child pattern is given a score that measures
how promising it is according to the heuristics. The best w patterns
among all the children of patterns in B will become the new beam
B (Line 14), which is the input to the next iteration, e.g., {P7, P9} in
Fig. 3. The process ends when the limit on the number of iterations
has reached. The limit is set to avoid overly-complex patterns which
correspond to facts that are only convolutedly interesting. It also
practically bounds the resource spent for running the algorithm.
When the algorithm terminates, Maverick returns the k context-
subspace pairs with the highest exceptionality scores (Line 15).
Below, we discuss component CE in Section 3.1, EE in Section 4,
and PG in Section 5.

3.1 Context Evaluator

The context evaluator (CE, Line 8 in Alg. 1) is responsible for ob-
taining the matches to a given pattern as well as the corresponding
contexts. Its working is depicted in Alg. 2. We expect a graph query
system to take a pattern as the input and return all the matches
to the pattern (Line 3). The Maverick framework is agnostic to the

choice of the specific query processing system. According to Defi-
nition 4, for each variable in the pattern (x € Xp), CE returns its
range RE as a context if the entity of interest vy is in the range
(Line 5).

For example, consider graph G in Fig. 1, the entity of interest
v = G1, and the pattern Py in Fig. 2a. Mp, = {My, My, M3}, where
My, My, and M3 are in Figs. 2b—2d. P; has two variables, ?g and ?s.
Since 61 € ngl ={c1,62,63} and c1 ¢ R?Psl, P; defines one and only

P1,?g P1,%g

one context of ¢1, whichis C;;7 = R,fgl. Therefore, Cé ={Cs 7}

Algorithm 2: Context evaluator.

1 CONTEXT-EVALUATOR (P, vy, G)

2 Cg:) — D // The set of contexts defined by P.
3 Mp « match(G, P) ; // Matches to P.
4 foreach x € Xp do

// Refer to Definitions 3 and 4 for RY and Cg(’)x.
if vy € RL then 050 — c},’o u{cﬂ;"} ;
6 return (CZI,JO, Mp);

4 EXCEPTIONALITY EVALUATOR

The Exceptionality Evaluator (EE) operates in the inner loop of the
Maverick framework (function exceprionaLity-gvaLuator (vg, C, k, y) at
Line 10 of Alg. 1). For each context C of the entity of interest v,
it finds the k subspaces A with the highest y(v, A, C) scores. Note
that it is sufficient to find these k subspaces, since the eventual
output of Maverick is the top-k context-subspace pairs across all
contexts of v. A naive solution of EE can exhaustively enumerate
all possible subspaces of A, and calculate the exceptionality score
of v in each subspace. The apparent O(24¢) complexity of this ap-
proach renders it prohibitively expensive since many entities may
have a lot of attributes. For instance, Denzel Washington has more than
40 attributes in the August 9, 2015 Freebase graph. It is thus crucial
for Maverick to have an efficient subspace enumeration method
in order to discover more exceptional context-subspace pairs. Sec-
tion 4.1 discusses how Maverick uses a set enumeration tree to
avoid exhaustively enumerating subspaces. Specifically, Maverick
exploits the upper bound properties of exceptionality scoring func-
tions to guide the traversal of the set enumeration tree. Section 4.2
introduces three representative exceptionality scoring functions
along with their upper bound functions.

4.1 Finding Top-k Subspaces

EE applies a set enumeration tree (SE-tree) [30] to avoid exhaustively
enumerating subspaces. Each node in the tree is a subspace—a
subset of v’s attributes A,,. The children of a node correspond to
various supersets of the node’s associated attributes. Formally, let
r be an (arbitrary) total order on A,,. The root of an SE-tree for A,
is the empty set. The children of a node A C A, in the tree form
the set {AU{a} |a € Ay, \ A,Va’ € A,a’ <, a}. An SE-tree for
Ay = {a1,az, a3} is shown in Fig. 3. The gist is to explore the set
enumeration tree using heuristic search methods such as best-first
search and to prune branches that are guaranteed to not contain
highly-scored subspaces.

What is particularly challenging is that an exceptionality scoring
function y usually does not have the downward closure property with
respect to subspace inclusion, i.e., y(v, A, C) can be greater than,

Algorithm 3: Exceptionality evaluator.

1 EXCEPTIONALITY-EVALUATOR (v, C, k, x)
// cs: current subspace; UA: attributes to visit; Tk: top-k subspaces.

2 CS ¢ D UA — Ay Tk « @
3 return EXPLORE-SUBSPACE(D, C, k, x, CS, UA, Tk);
4 EXPLORE-SUBSPACE (v, C, k, x, CS, UA, Tk)
5 while uA # @ do
// Calculate upper bounds.

6 Amax < argmax ., upper(ov, csU {a}, C);
7 Amax < CSU {amax }; UPPermax < upper(v, Amax, C),
8 UA < UA\ {@max };
9 if |Tk| < k then

// =1 indicates the top-k list Tk is not full.
10 SCOremin < —1; Amin <« @;
11 else (Amin, Scoremin) < arg min(a_ score)eTk SCOre ;
12 if upperpay > scorepin then
13 score < x (v, Amax. C);
14 if score > scorepn then
15 if scorepmiy, > 0 then
16 L Tk <= Tk \ {(Amin, SCOremin) };
17 Tk ¢« Tk U {(Amax, score) };

// Explore children subspaces.
18 Tk < EXPLORE-SUBSPACE(w, C, k, X, Amax, UA, Tk);
19 l‘gtlll‘;l Tk;

less than, or equal to y (v, A’, C) for any A’ 2 A. As a matter of fact,
none of the three representative functions that will be introduced
in Section 4.2 satisfies the property (proof omitted). The lack of
downward closure property makes it infeasible to prune the set
enumeration tree based on exact exceptionality scores.

EE uses upper bounds on the exceptionality scoring function y
to allow for pruning of the set enumeration tree. Alg. 3 presents
its pseudo code. The set enumeration tree nodes (i.e., subspaces)
are visited in the descending order of their upper bounds (Line 6).
If the upper bound score of a node is not greater than the score
of the current k-th ranked subspace, the node and all its children
are pruned (Line 12). Otherwise, the exact exceptionality score of
the node is calculated (Line 13). The subspace is used to purge the
current k-th subspace if its exact score is still greater (Lines 14—
17). Regardless of whether the node makes into the top-k list, its
children are enumerated recursively (Line 18).

The general upper bound function upper in Alg. 3 is defined as
follows. By the definition, it is sound to prune a node and all its
children if the condition in Line 12 is not satisfied.

Definition 9 (Upper bound of an exceptionality scoring function
upper). Given an exceptionality scoring function y, an upper bound
of y is a function that, for any entity v, context C, and subspace
A C Ay, bounds the exceptionality score of v with respect to C and
any superset of A, i.e.,

upper(v,A,C) > maxacarca, x(v,A",C). A

The general upper bound function upper must be instantiated
for specific exceptionality scoring functions y. The Maverick frame-
work expects an application developer to supply upper while spec-
ifying y. Various outlying aspect mining methods [2, 3, 15] also
devise upper bound functions for pruning set enumeration tree.
They operate on the single-table data model and are thus inappli-
cable for graphs, as explained in Section 1. EE must use different

scoring functions and upper bound functions designed for knowl-
edge graphs. The ensuing discussion in this section entails that.

4.2 Exceptionality Scoring Functions

As mentioned in Section 2, the general Maverick framework ac-
commodates different exceptionality scoring functions beyond the
one-of-the-few function y;. We discuss two more representative
functions in this section and in Appendix A.2.

Outlyingness y, This measure, adopted from [3], is based on the
distribution of attribute values. An entity receives a high score
if it has rare attribute values while a lot of other entities share
common attribute values. It quantifies the rareness of attribute
values byp? =p(u.A=5]u € C) (the same as for). Let Ss be
all possible attribute values on subspace A and in context C, i.e.,
S84 ={u.A| u € C}. The outlyingness score of an entity v is given
by:

Xo@.AC) =D o ps X (ps = Ppo.a) X L(ps > po.a) (3)

where 1(-) is the indicator function that returns 1 for a true condi-
tion and 0 otherwise. Essentially, the outlyingness score is the area
above the accumulated frequency histogram of the context C with
respect to the subspace A, starting from the frequency of v.A. The
score is designed to quantify the “degree of unbalance” between
the frequencies of entities in the context [3].

For instance, consider the same example used in explaining

P1,?g

Xfivo = 61, C = Cg = {G1,62,63}, and A = {(awarded-to, —

)}. According to Table 1, xo(c1, {(awarded-to, =)}, C) = p((cro}y X

(P(icro) =P((cro}y) X0+ P((era)y X (P((sraly —P((crO))) X1 = 3 (53

= %. Another example is, for A = {(awarded-to, —), (scored-by, =)},
Xo(c1, A, C) = 0 since there exists no u € C such that p;, 4 > pci.A-

4.3 Upper Bound Functions

In this section we devise upper bound functions for the three repre-
sentative exceptionality functions introduced in Section 2 (ys) and
Section 4.2 (y, and y;). We prove that these designs satisfy Defini-
tion 9 and thus ensure the soundness of Alg. 3, with regard to any
given entity v, context C, and subspaces A C A” C A, Recall that
we denote by pg\, or simply pg, the frequency of entity’s attribute
value S in subspace A (Eq. (1)).

Theorem 1 (Upper bound of yr). uppers(v, A C) 2 xr(v, A’,C),
given the following definition in which Co=C\ {v}:
uppery (v,A,C) = | {u|u€Co, pua>1/ICIHI[ICI (4
The theorem holds because ﬁ <pua <py.aforany A’ 2 A
We omit the detailed proof here.

Theorem 2 (Upper bound of y,). upper,(v,A,C) > yo(v, A’,C),
given the following definition where Sy = {u.A| u € C}:
_ 2_(2Pv.A+1)X|C|—2
uppero(v.A.C) =) (ps) :

L ®)

Our final note is that an upper bound function may have lim-
ited pruning power when it gives loose bounds on exceptionality
scores, resulting in exponential complexity in subspace enumera-
tion. Our empirical results in Section 6.2, though, verified that the
several upper bound functions proposed in this paper (Eqgs. (5)—(7))
substantially reduced the overhead of subspace enumeration.

5 PATTERN GENERATOR

The Pattern Generator (PG) is used in Line 12 of Alg. 1 in the
Maverick framework. Its pseudo code is in Alg. 4. At each iteration
of the beam search on patterns, it finds the children of each visited
pattern P (Line 3, see Alg. 5) in the current beam. A child pattern,
if not pruned (see Section 5.3), is given a score that measures how
promising it is according to a few heuristics (Line 5, see Section 5.4).
Among all the children of the patterns in the current beam, the
w children with the highest scores are returned to form the new
beam (Line 14 in Alg. 1), where w is the predefined beam width.
The new beam becomes the input to the next iteration. This section
first describes the search space of patterns (Section 5.1) and then
discusses how to efficiently explore the space by applying pruning
rules (Section 5.3) and selection heuristics (Section 5.4).

Algorithm 4: Pattern generator.

1 PATTERN-GENERATOR (vg, P, Mp, w, G)
2 Y« a;
// Find P’s children, see Alg. 5.
children « FIND-cHILDREN(wg, P, Mp, G);
foreach child € children do

L Y « Y U {(child, h(vy, child))};
return top-w of Y based on score;

// Promising children of P.

(™)

// See Section 5.4 for h.

o @ s

5.1 Search Space of Patterns

The search space of patterns is a Hasse diagram of valid patterns,
where a pattern is valid if it contains at least one variable node
and it has a match (Definition 2) in the knowledge graph G. We
exclude invalid patterns since they cannot lead to relevant facts. For
example, pattern { (2, scored-by, 1), (s, scored-by, 22)} does not have
a match and is thus invalid because no goal is scored by more than
one player. Formally, the search space of patterns is a Hasse diagram
P(Vp, Ep), where Vp is the set of valid patterns and Ep C Vp X Vp
is the set of edges. There exists an edge from parent pattern P; to
child pattern P; if P; is an immediate subgraph of P;, i.e., P; has
exactly one edge less than P;. A pattern can have multiple children
and multiple parents. Fig. 4 shows an excerpt of the search space of
patterns over the data graph in Fig. 1. In the figure, Ps and P7 are
the children of Py, and both P, and Ps3 are the parents of P;.

One may realize already that P can be extremely large. We prove
in Theorem 3 that the order of P (i.e., the cardinality of Vp) is
exponential to the orders of G’s weakly connected components
(WCCs). A WCC is a maximal subgraph of a directed graph, in
which every pair of vertices are connected, ignoring edge direction.
Given that knowledge graphs are all well connected, it is impossible
to exhaustively enumerate the patterns. For example, according to
Theorem 3, the data graph in Fig. 1 has at least 21371 =2 -13+13 =

Pyl og !
——————— S S
<71 ¥ R >
! 1l [i ! i
l 9¢—>»S1 1!l 2%—>» 2% 1 | 29— 9% 1 | 293 CRO I
pfTs T ety eSSt !
1 , I , ;o J__ 1)
| 4 Y 4 ®4 | 4 X Tt
[S i S i S 1 S 1 a i
I 2g—>»SI |l 2g—>» Sl || 2g—>» 2% || 2g—>» s || 7g —»CRO|
I 1 I Il Il |
! pY ¥ iav i pY sV !
Py BRA} 7 Pslt 2 P, iiPg BRA} 7 Py

Figure 4: An excerpt of the search space of patterns over Fig. 1. Edge
labels: a: awarded-to, p: play-for, s: scored-by.

{ ! 26 3CRO|
o o
i S1 9l 17 9]

((- (

;GliCRoH GliCROH ?giCRoi; ?ggCROH Vg3CRo§ | 26 >CRO|
is¥ is¥ ,rha lisy sy 0 sV e halisy ¢ Aal
is1SBRAJIST G4 [l osBBRAJ 5Dt jl s ox [los Ga |
- e T TTTTTTTTTTT T el 77777777 eZ 777777777777777777777777

Figure 5: Illustration of how the child patterns of a pattern are con-
structed. Pjy and P;; are obtained based on M;; and edge e. P;; and
P53 can be obtained based on M;; and edge e’, but they are pruned
based on rules in Section 5.3.

16,382 patterns. (The graph itself is the only WCC, with 13 nodes.)
Note that Theorem 3 only provides a loose bound. In practice, the
number is even much larger, exacerbating the challenge. Section 6.2
shows that the tiny graph has more than 69,000 patterns with
merely no more than 5 edges.

Theorem 3. Let ‘W be the set of WCCs in a knowledge graph G,
a lower bound on P’s order is:

[Vw [+1
> — —
|V]P|—§W€,W(2 2) =1 Ve [+ max | Vi |.

5.2 Match-based Construction of Patterns

Given the current beam of patterns, Maverick finds top context-
subspace pairs using its context evaluator (Section 3.1) and excep-
tionality evaluator (Section 4). Among the child patterns of the
evaluated patterns, the promising ones are chosen to form the new
beam for the next iteration. While Section 5.4 discusses how to se-
lect the promising patterns, this section proposes an efficient way of
generating the child patterns. Note that the aforementioned Hasse
diagram of patterns is not pre-materialized. Rather, the patterns
need to be constructed before we can evaluate them.

To construct the child patterns of an evaluated pattern P, a simple
approach is to enumerate all possible ways of expanding P by
adding one more edge. A major drawback of this approach is it
may construct many invalid patterns that do not have any match.
Some invalid patterns can be easily recognized by referring to the
schema graph of the data. However, chances are most of the schema-
abiding patterns are still invalid because they do not have matching
instances in the data graph, given the sheer diversity of a knowledge
graph. The system will evaluate such patterns in vain to get empty
results in order to realize they are invalid.

To avoid evaluating invalid patterns, we propose a match-based
pattern construction method. Instead of constructing the child pat-
terns by directly expanding P, this method expands the matches
of P and constructs the child patterns from the expanded matches.
It guarantees to construct only valid patterns and evade the eval-
uation of invalid patterns. The method is based on the following
theorem.

Theorem 4. Suppose P’ is a child of P € P, ie, (P,P’) € Ep
and thus P’ is a valid pattern with matches. Given any match M’
to P’, there exists a match M to P that is a subgraph of M’, i.e.,
YM’ € Mp:, AM € Mp st. Vay € Vap and Epp C Epp.

Based on Theorem 4, the method that constructs the child pat-
terns of P is illustrated in Alg. 5. For a match M of P, it finds each of
its weakly connected supergraphs by adding an edge that exists in
the data graph G and is adjacent to a node in M (Line 6). Given each
such resulting supergraph M’, let (u, [, w) = Epp \ Epr and, without
loss of generality, assume u € V. If w € Vjy, then the only child of
P obtained from M’ is P + (f (), L, f~}(w)) (Line 13), where we

denote by P + e the supergraph of P by adding edge e for brevity. If
w & Vi, then two child patterns are obtained: P+ (f ! (u), I, w) and
P+ (fY(u), 1, z), where z is a variable and z ¢ Xp (Line 16; Line 19
for the symmetric case). Fig. 5 shows an example of obtaining a
pattern’s children. For instance, P1g can be obtained by adding e;,
which is obtained by replacing s1 of edge e with variable .

Algorithm 5: Find all the children of a given pattern.

1 FIND-CHILDREN (vg, P, Mp, G)

2 D « @; // The set of P’s children.
3 Me{MeMp | f:Vp—Vjrand IxeXp s.t. f(x)=vp}; //Rule 1
4 foreach M € M do

5 Let f be the bijection f : Vp — Vjr;

6 TM:{(u,l,W)EEG\EA[|u€V/\[01’W€V1\[};

7 foreach (u, I, w) € Eas do

8 z « anew variable and z ¢ Xp;

o x = fTHu), y « fHw);

10 if x € Xp s.t. f(x) = u or f(x) = w then

1 L continue; // Rule 2
12 else if u € Vyr and w € V) then

13 Py < P+(x, L y);

14 D« DU{Pi};

15 else if w ¢ Vj(then //Ax e Xpstf(x)=u
16 Py —P+(x,l,w); Py « P+ (x,1,2);

17 D« DU {Py, Py};

18 else /Ay eXpstf(y)=w
19 Py <P+ (u,l,y); P, < P+ (z1y);

20 D «— DU {Py, Pp};

21 n;tur;l D;

5.3 Pattern Pruning Strategies

The search space P of patterns as defined in Section 5.1 and con-
structed using the match-based pattern construction method in
Section 5.2 has an enormous size. To ensure efficiency, the Pattern
Generator (PG) employs two pruning rules to exclude irrelevant
patterns from P and to avoid repeated constructions of patterns
from certain type of parent patterns.

Rule 1 (RelevantOnly). Exclude a pattern if it does not define any
context for the entity of interest vg.

The rational behind Rule 1 is, for discovering exceptional facts
about vy, a pattern is relevant only if it defines a context for vy.
By this rule, the match-based pattern construction method only
expands a match in which vy is an image of a variable in P. It is
guaranteed that the patterns obtained define vy’s contexts.

Rule 2 (VarOnly). Expand a pattern only if the new edge has at
least one variable.

Let P’ be a child pattern of P. The extra edge in P/, i.e., e=Ep/\Ep,
belongs to one of the 7 types in Fig. 6. Rule 2 avoids constructing
P’ from P if e belongs to types 6-7. This rule is based on Theorem 5.
Simply put, enforcing Rule 2 will not miss any contexts of vy.
Theorem 5. Let P’ be achild of P € P,e = Ep/ \ Ep, CZIZO be all the
contexts of vy defined by P: CEO = {Ri, |x" € Xp,vy € Rf;,}, then
cfj; = CP | if e belongs to types 6-7.

vy
5.4 Pattern Selection Heuristics (h)

Even with the rules proposed in Section 5.3, there are still too many
patterns. In this section, we propose two scoring heuristics for
selecting promising patterns to visit, to substantiate the function

2) (x, 1, 2)
(6) (u, I, v)

Figure 6: Consider a pattern P and its child pattern P’. The 7 types
of the extra edge e = Ep/ \ Ep. x, y, z are variables, x, y € Xp, z ¢ Xp.
u, v, w are non-variables, u, v € Vp N 7,and w € Vg \ Vp.

() (x. I, w)
() (u, I, w)

4 (w. L y)

h in Line 5 of Alg. 4. A heuristic gives each pattern a score, based
on which the w patterns with the highest scores form the beam for
the next iteration of beam search.

Heuristic 1 (Optimistic). Given a pattern P, the entity of interest
v, let CZP,; be the set of contexts defined by P, i.e., ij; = {Cg&xlx €
Xp,vg € Rﬁ}, then

hopt(vo, P) = max upper(vo, @,C)
cech

Uy

where upper(vo, @, C) is a upper bound of y with regard to C for
any subspace (see Defintion 9).

hopt simply uses the exceptionality score upper bound of P.
It optimistically assumes the ideal case for each pattern, where
the entity of interest is most exceptional among the entities in
a context defined by the pattern. In Section 4, we discussed the
upper bound functions for various exceptionality functions. Note
that we have py,.o = 1 (Eq. (1)) since v.© = null (Definition 6)
and we consider all null values equal, upper,(vp,2,C) = 1 —
%, upperf(vo, 2,0) = 1- ﬁ and upperi(vg, 2,C) =
1-27ICllog, IC1 / (ICllog, ICI-1C-11-1)log; (IC-1D) (¢f. Appendix A.2).
In sum, all the three upper bounds increase when the context size
increases. In other words, hop; selects the patterns that define large
contexts. However, a large context may contain many entities of
different characteristics, which may make the entity of interest less
exceptional. Note that, since hop; depends on context size |C|, all
the child patterns of P need to be evaluated in order to get |C|. It is
also required for heuristic hcone below for the same reason.
Heuristic 2 (Convergent). Consider a pattern P and the entity of
interest vg. Given P’, a parent of P in the pattern search tree, we
define ry = ICE(;XI / ICZ;’XI . The score of P is

heonw(vo, P) = ,

max [rx X Maxaca,, x(vo, A, cfj[;x)
(P',P)€Ez and P'eB,Ch > eCl!
+ (1 —rx) X upper(vo, @, Cz}j(’)x)]

The h¢ono score of P is a weighted sum of the upper bound of P
(for any subspace) and the best score of the parent pattern P’. Note
that Maverick performs a beam search and the patterns visited form
a pattern search tree. P could be constructed from different parent
patterns in the current beam B. The above equation thus uses the
best score across all such parents. For this reason, the edge adjacent
to P in the pattern search tree comes from the parent P’ that gives
it the best score. If P’ posses some highly-scored context-subspace
pairs, heono gives favorable score to P if P and P’ define similar

contexts; otherwise, h¢ony favors a P that defines smaller contexts.

Compared with hopt, heono is potentially both more efficient and
more effective. It can be more efficient since it may favor child
patterns that define smaller contexts. Such child patterns usually
can be evaluated more efficiently since they have less matches. It
can be more effective since it discards child patterns that define
contexts where the entity of interest may not be exceptional, based
on the highest score of the context-subspace pairs for the parent
pattern. When h¢ono is used for choosing patterns to form the

beams, the sizes of the contexts defined by the patterns in a path of
the tree may gradually become smaller and eventually converge.
We thus call h¢ono Convergent.

6 EXPERIMENTS
6.1 Experiment Setup

The framework and algorithms of Maverick are implemented in
Python. The experiments were conducted on a 16-core, 32GB-
RAM node in Stampede—a cluster of the Extreme Science and
Engineering Discovery Environment (XSEDE: https:// www.xsede.org).

All datasets used in experiments are available in Neo4j format at

https:// doi.org/ 10.5281/ zenodo.1185476.

Datasets The experiments used the following two real-world

graphs:

e WCGoals. It was constructed by crawling data from the FIFA
World Cup website (http://www.fifa.com/worldcup/index.html). It consists
of 49,078 nodes, 158, 114 edges, 13 different edge labels, and 11
entity types: WorLDCUP, ROUNDCATEGORY, ROUND, STaDIUM, TEAM, GAME, GROUP,
PLAYER, BIBNUM, PARTICIPANT, and Goar.

e OscarWinners. This is a subgraph of Freebase. It has 42, 148 nodes,
63, 187 edges, 24 distinct edge labels, and 13 entity types includ-
il’lg PERSON, FILMCREW, AWARDWON, FILMCHARACTER, AWARDCATEGORY, PERFORMANCE,
GENRE, AWARD, FiLm, COUNTRY, FILMCREWROLE, CEREMONY, and SPECIALPERFORMANCE-
Tvee. Each film in the graph has won at least one Academy Award
(Oscar).

The two graphs were stored using Neo4j (https:/neo4j.com) graph
database. The patterns are expressed in Neo4j’s query language
Cypher. The experiment results using the two graphs and different
expectionality scoring functions are similar. Therefore, we only
report our findings on WCGoals and exceptionality function y,,
except that Section A.1 reports the discovered exceptional facts
using both WCGoals and OscarWinners.

Methods Compared The experiments compared the performance

of a breadth-first search method and several beam search methods

(Section 3) coupled with different heuristics (Section 5.4):

e Beam-Rdm: Beam search that randomly selects child patterns.

e Beam-Opt: Beam search using hop; in selecting child patterns.

e Beam-Conv: Beam search using h¢ono in selecting child patterns.

o Breadth-First: The breadth-first search method that enumerates
all possible patterns.

The family of beam search methods and Breadth-First differ in two
ways. Firstly, beam search only visits a fixed number of patterns at
each level of the pattern search tree, whereas Breadth-First visits all.
Secondly, beam search visits the patterns by the decreasing order of
their scores, whereas Breadth-First does not assume any order. The
experiment results establish that, even though Breadth-First may
evaluate more patterns than the beam search methods in a fixed
time frame, it is not as effective as Beam-Conv which discovers
more highly-scored context-subspace pairs using less time.

6.2 Efficiency

We measured how fast Maverick discovers highly-scored context-
subspace pairs and how fast it explores the search space of patterns.
We executed Maverick for multiple 2-minute runs and recorded
a) the scores of discovered context-subspace pairs; b) the time when
each context-subspace pair was discovered; and c) the number of
visited patterns in the outer loop of the framework.

https://www.xsede.org
https://doi.org/10.5281/zenodo.1185476
http://www.fifa.com/worldcup/index.html
https://developers.google.com/freebase/
https://neo4j.com

Beam-Rdm Beam-Opt
1.0 1.0 ==
205 205
- 10°
0.0 y ¥ 0.0 y T
50 100 0 50 100
Timestamp (sec.) Timestamp (sec.)
. 2
Beam-Conv Breadth-First 10
L |
- 10!
]] —
0 50 100 0 50 100

Timestamp (sec.)

Timestamp (sec.)

Figure 7: The heat map of exceptionality scores (y,) and times-
tamps of all the discovered context-subpsace pairs during 2-minute
runs for 10 entities of interest (vy) in WCGoals (k = 10, w = 10).

Fig. 7 shows the heat map of the context-subspace pairs’ excep-
tionality scores by their timestamps. It includes all the discovered
context-subspace pairs during the 2-minute runs for 10 entities of
interest in WCGoals. We run 10 times per entity for all the methods,
since Beam-Rdm selects child patterns randomly. Both the output
size k and the beam width w were set to 10. The 10 entities were ran-
domly chosen from those that have highly-scored context-subspace
pairs. Each bucket in the figure corresponds to a particular range
of scores and a 8-second time frame in the 2-min run. The color
of the bucket reflects how many context-subspace pairs (from all
100 runs for the 10 entities) discovered during the time frame fall
into the corresponding score range. Intuitively, if the upper left
portion of a heat map is more populated, the corresponding method
performs better, since it means the method discovers highly-scored
pairs faster. If the upper portion of a heat map is more populated, it
means the method discovers more highly-scored pairs. The figure
shows that Beam-Conv is both efficient and effective in discover-
ing highly-scored context-subspace pairs. In contrast, Beam-Opt
performed poorly. The results confirm the analysis in Section 5.4:
preferring patterns that produce large contexts (hop;) degrades
not only the efficiency but also the effectiveness of Maverick. It
is because such patterns are usually more expensive to evaluate
and the produced contexts may include more varieties of entities,
which makes the entity of interest less exceptional. With regard to
Breadth-First, since it enumerates candidate patterns exhaustively,
it may discover some highly-scored pairs that reside in the low
levels of the pattern search tree. For example, some highly-scored
pairs for entity Goal(46683) were found using the 2-edge pattern in
Fig. 2a. Given that the number of patterns with no more than 2
edges is small (more details in the discussion of results regarding
pruning strategies), Beam-Rdm is likely to hit such small patterns
that define contexts in which the entity of interest is exceptional.

Fig. 8 shows the impact of output size k and beam width w
on how many patterns Maverick can manage to evaluate, in other
words, how many nodes in P it can manage to visit. The y-axis is the
average number of evaluated patterns across the aforementioned
10 runs. Since we observed similar results on the 10 entities from
WCGoals, the figure only depicts the results on Goal(46683). Fig. 8a
shows that varying k from 1 to 10 (fixing w at 10) barely had any
impact on the number of evaluated patterns. Since k controls the
number of context-subspace pairs that Maverick returns, it mainly
affects EE, which is responsible for finding top-k subspaces with re-
gard to each context. Thus k needs to be very large in order to have

=©— Beam-Rdm =E£] * Beam-Conv =~ Beam-Rdm =E£] * Beam-Conv
- - Beam-Opt —A = Breadth-First

A DAAARAN

S

Faf=3a
@"*_*_*..*-*'*'*

12345678910 345 6 7 8 910
Output size (k) Beam width (w)

#patterns evaluated

a Varying k, fixing w = 10. b Varying w, fixing k = 10.
Figure 8: Effect of k and w on the number of evaluated patterns.
a significant impact on the number of evaluated patterns, since EE
is the least time-consuming component, as explained as follows. Ta-
ble 2 provides the breakdown of execution time of different search
methods into the three components in the workflow—Context Eval-
uator (CE), Exceptionality Evaluator (EE), and Pattern Generator
(PG). The results are the average of the runs which are the same as
in Fig. 7. (The summation in each column is slightly less than 100%,
since we do not include operations such as framework initialization
in the breakdown.) Another observation from Table 2 is that the
execution time of PG dominates more substantially in Beam-Opt
and Beam-Conv than in Beam-Rdm and Breadth-First. The reason
is PG in both Beam-Opt and Beam-Conv needs to compute h for
each child pattern based on the pattern selection heuristics, which
entails evaluating the child patterns to obtain the context sizes. In
fact, on average, PG in Beam-Opt and Beam-Conv spent more than

99% and 96% of its time on applying the heuristics.
Table 2: Breakdown of execution time by components.

Beam-Rdm Beam-Opt Beam-Conv Breadth-First

CE 25.52% 1.56% 1.90% 28.36%
EE 0.41% 0.65% 0.32% 2.79%
PG 61.49% 97.69% 95.92% 53.89%

Fig. 8b depicts the results when w varied from 3 to 10 and k was
fixed at 10. It shows the number of evaluated patterns increased by w
in the three beam search methods. When w increases, the methods
evaluate more patterns from lower levels in the pattern search
tree, which have less edges and can be evaluated more efficiently
than those from higher levels. In a fixed time frame, the methods
can then evaluate more patterns in total, as shown in the figure.
Fig. 10 shows the average time that Context Evaluator (Alg. 2)
spends on pattern evaluation increases when the level of pattern
(i.e., the number of edges) increases. Since Breadth-First does not
need to calculate scores for patterns and does not have a limit on
the number of patterns to visit at each level, it tends to evaluate
more patterns but may only evaluate patterns at low levels. Fig. 9a
compares the numbers of patterns evaluated at different levels by
the four methods, when both k and w stayed at 10. Breadth-First
evaluated patterns up to level 3 and spent most of its time on level
3. On the contrary, the beam search methods evaluated at most 10
patterns at each level and covered more levels.

Fig. 8b also suggests that Beam-Rdm evaluated more patterns
than Beam-Conv and Beam-Opt. It is because Beam-Rdm (like
Breadth-First) does not compute scores for child patterns, which
is expensive. Since Beam-Opt favors patterns that define larger
contexts, it evaluated the fewest patterns since it spent more time
to calculate the sizes of the contexts. On the other hand, Beam-
Conv prefers patterns defining smaller contexts, which allowed it

Beam-Rdm Beam-Rdm

BP0 e N
=, L [o

g Beam-Opt Beam-Opt
1

Beam-Conv Beam-Conv

F#patterns evaluated
S o 5
F#patterns evaluated
(=]

Breadth-First Breadth-First

200

0 -

0 0 5 10 10! 10? 10%
Level (|Ep|) Context size (|C])

a By level. b By context size.

Figure 9: Number of evaluated patterns by level and context size.

10°
15 v° =©- RelevantOnly+VarOnly
~ 10'{ B RelevantOnly
g
w0 A
2 o 210
£ < R
& 6 S 4‘% 10
o n VarOnly
0 on 10 None
5 10
Level (|Ep|) 0 2 1
Level (|Ep|)

Figure 10: Time spent by
Context Evaluator (Alg. 2) on
evaluating patterns at differ-
ent levels.

Figure 11: The pruning
power of different pruning
strategies.

to evaluate more patterns. This is verified in Fig. 9b, which shows
the numbers of evaluated patterns with different context sizes,
when k and w were both 10.
Effect of pruning strategies We examined the effectiveness of
the two pruning rules from Section 5.3 by comparing the follow-
ing pruning strategies. In order to comprehensively compare these
strategies, we used Breath-First as the search method since it ex-
haustively enumerates all possible candidate patterns at all levels.
o None: No child pattern pruning rule is applied;
o RelevantOnly (Rule 1);
e VarOnly (Rule 2);
e RelevantOnly+VarOnly: Apply both RelevantOnly and VarOnly.
Fig. 11 shows the number of patterns visited by Breath-First
on the data graph in Fig. 1. The figure reveals that both rules can
significantly reduce the number of candidate patterns. For instance,
there are 69, 582 candidate patterns at level 5 when no pruning rule
is applied (None). The number is reduced to 12, 740 and 6, 963 by fol-
lowing RelevantOnly and VarOnly, respectively. It is further reduced
to 1,448 with both rules applied (RelevantOnly+VarOnly). The fig-
ure also shows that the number of patterns still grows exponentially
to the level of the pattern search tree even with both pruning rules
applied, which suggests an enormous search space of patterns.
Since VarOnly is stricter than RelevantOnly, as VarOnly only allows
expanding on variable nodes, the growth rate of VarOnly can be
smaller than RelevantOnly. Fig. 11 also confirms that.
Effect of upper bound of exceptionality functions Fig. 12 de-
picts the effect of using upper bound functions in pruning subspaces
(Section 4.3). It shows the time and the number of subspaces visited
for Game(903)—one of the 10 entities used in Fig. 7—with/without
applying upper bound functions under varying k. (Results for the
other 9 entities are similar.) The measures are averages of 10 runs.
The figure verifies that the upper bound functions significantly

S

= 0%
2 z
Z 04 E
g =~ w/o upper bound —©—w/o upper bound [30%
S
037 == w/ upper bound = w/ upper bound
E‘ 20
0 20 40 60 0 20 40 60
Output size k Output size k

Figure 12: Effect of subspace pruning (upper bound functions).

improve the performance of exceptionality score calculations. Un-
der relatively small k (e.g. 10), the execution time was reduced by
more than half when the upper bound was applied. As k increased,
the upper bound function’s pruning power gradually diminished.
Eventually, it was no longer able to prune any subspaces after
k = 60.

6.3 Effectiveness

Section A.1 reports a few examples of discovered exceptional facts
using both WCGoals and OscarWinners. We also conducted experi-
ments to verify if Maverick can effectively discover highly-scored
context-subspace pairs. Fig. 13 shows the score distributions of the
top-10 context-subspace pairs for the same 10 entities in Section 6.2.
There were 10 2-minute runs per entity. Both k and w were set to
10. The results in Fig. 13 are averaged over all entities and all runs.
The last row are the results when Maverick uses patterns mined by
a frequent pattern (FP) mining algorithm [16] as candidate patterns,
instead of the ones discovered in P. We set the minimum support
to be 1, 000, as lower value leads to excessive execution time.’

The results show that the output of Beam-Rdm mainly consists
of pairs scored low. It is expected because the chance of hitting
a promising pattern by a random method is very low due to the
large search space of patterns. It is not surprising either to observe
Beam-Opt performed badly as explained in Section 6.2. In contrast,
Beam-Conv significantly outperformed other beam search methods,
as it found much more highly-scored context-subspace pairs. It also
found substantially more highly-scored pairs than Breadth-First in
score range [0.8—1.0]. This observation confirms that a wide pattern
search tree hinders Breadth-First’s performance. Using FPs was not
effective in discovery of exceptional facts. There are mainly two
reasons. 1) Due to practical considerations such as efficiency and
resources, FP mining techniques usually consider only node types
(e.g., Team) but not node IDs (e.g., BRA). 2) An FP mining algorithm is
not designed for individual entities. This leads to two consequences.
One is that there may be no FP that defines some context for a given
entity. The other is that the exceptionality of the entity may not be
revealed in the contexts defined by the FPs. In fact, the experiments
on WCGoals yielded only 12 FPs and all of them are about only two
node types: Particreant and Goar.

We also use a variation of coverage error [35] to measure the
effectiveness of the four methods. For each method, we evalu-
ated the result of its 2-minute run, using the result of its 10-hour
run as the ground truth. The ground truth is the list of discov-
ered context-subspace pairs during the 10-hour run, ranked by
their exceptionality scores. Given the set of discovered context-
subspace pairs in a 2-minute run, H, the coverage error is the

5The algorithm did not finish after more than 10 hours on graph WCGoals when
the minimum support was set to 500.

'e' BeamfRdm-E- Beam-Conv
== Beam-Opt —A— Breadth-Firs

HI i

60 [I Beam-Rdm

0

50 Beam-Opt

2 [

i EI Beam-Conv I_H
0 -

50 I_I Breadth-First
0

50
o |:| Frequent Patterns ‘
0

H

1<)
=~

H

#context-subspace pairs

0.0 0.5 1.0
Exceptionality x,

Figure 13: Score distributions of
top-10 context-subspace pairs for Figure 14: Average coverage er-
10 entities, 10 2-minute runs per ror on 10 entities. Beam width
entity. 10.

Average coverage error (Cov)

2 4 6 8 10
Output size (k)

average rank position of the pairs in the ground truth, defined by
Cov = ﬁ 2(c,A)en rank(c). Fig. 14 reports the average cover-
age error of each method under varying output size k. Table 3 shows
the average and median coverage errors under varying beam width
w. In Fig. 14, the coverage error of Beam-Conv is less than other
methods by orders of magnitude, which suggests that Beam-Conv
found highly-scored context-subspace pairs. Table 3 shows that
coverage error decreases when beam width increases. The reason is
that a wider beam leads to more patterns visited at every level and
thus a better coverage of patterns. It is especially beneficial when
highly-scored pairs reside in patterns at lower levels.

Table 3: The effect of beam width (w) on the coverage errors of
top-10 context-subspace pairs of 10 entities. In each cell: the average
and the median coverage errors. Both numbers are the smaller the
better.

w Beam-Rdm Beam-Opt Beam-Conv Breadth-First

3 3375.7/2636.9 2151.0/1071.5 49.7/12.5 383.0/390.5
4 3293.2/1607.3 2675.7/1622.1 52.1/12.5 383.0/390.5
5 2743.2/1871.2 2418.3/1550.8 30.2/26.0 383.0/390.5
6 2890.9/1809.2 2288.7/1259.7 20.6/1.0 383.0/390.5
7 2821.4/1398.9 1789.3/1259.7 21.8/1.0 383.0/390.5
8 2646.4/1818.6 1721.5/1168.8 78.3/3.0 383.0/390.5
9 2262.8/1653.4 1365.5/1107.3 36.6/4.2 383.0/390.5
10 2720.8/1619.9 1365.5/1107.3 58.4/22.1 383.0/390.5

7 RELATED WORK

In exceptional fact discovery, the output context-subspace pairs can
be viewed as a way of explaining outliers. Most conventional outlier
detection solutions, including those for graphs, focus on finding
outliers but do not explain why they are outlying. For example,
CODA [17] finds a list of community outliers, and FocusCO [28]
clusters an attributed graph and then discovers outliers in the clus-
ters. Besides the limitation that both approaches are only suitable
for homogeneous graphs, it is up to users to figure out the expla-
nations of the outliers. Although these two systems make such
explanations easier by providing the communities or clusters in
which the outliers reside, it still requires substantial expertise to
summarize the communities/clusters’ characteristics. A few works
improve the interpretation of outliers’ outlyingness [1, 23, 33]. For
instance, systems such as [1] and [23] use visualization to help users
identify outliers and potentially discover their outlying aspects.
Although most existing outlying aspects mining approaches fo-
cus on finding global outlying aspects and do not consider contexts
[15, 36], there are a few attempts to find contextual outlying as-
pects [2, 3, 32, 40]. The general Maverick framework allows users

to adopt any exceptionality measure in the literature such as out-
lierness [3]. Although Maverick focuses on categorical attributes at
this stage, it can be extended for numerical attributes so that mea-
sures such as skyline points [32], promotiveness [40], outlierness
[2], outlyingness rank [15], and z-score [36] can be adopted in the
framework.

Trummer et al. [34] developed the SURVEYOR system to mine
the dominant opinion on the Web regarding whether a subjective
property (e.g., “safe cities”) applies to an entity. This is useful for
populating a knowledge base with ground truth for answering
subjective queries. While they focus on deriving entities’ hidden
properties which may or may not be exceptional, Maverick focuses
on finding exceptional entities using existing data in knowledge
graphs.

8 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of discovering exceptional facts
about entities in knowledge graphs. Each exceptional fact consists
of a pair (context, subspace). To tackle the challenge of exploring the
exponential large search spaces of both contexts and subspaces, we
propose a beam search based framework, Maverick, which applies
a set of heuristics during the discovery. The experiment results
show that our proposed framework is both efficient and effective
for discovering exceptional facts.

Interesting future work can be pursued along several directions
on both efficiency and usability. With regard to efficiency, the cur-
rent system focuses on finding exceptional facts given a specific
entity. What is more appealing is a discovery mode in which the
system automatically finds facts for all entities. Straightforwardly
applying the system on a large knowledge graph will thus lead
to exhaustive and repetitive computations for a huge number of
entities. Devising algorithms for sharing computations across differ-
ent entities can significantly increase the system’s capability over
large knowledge graphs. Furthermore, the system currently consid-
ers a static knowledge graph which in reality constantly evolves
and grows. To produce up-to-date facts, one has to repeatedly ap-
ply the system, which is not practical given the sheer size and
change frequency of real-world knowledge bases. Hence, another
substantial improvement of the system will be adding incremental
exceptional fact discovery algorithms. With regard to usability, how
to present exceptional facts poses intriguing challenges related to
user interface, data visualization, and exceptionality measures. For
instance, it is appealing for the system to produce natural language
descriptions of the facts. While exceptionality measures such as
one-of-the-few may lend itself to simple template-based transla-
tions, it is much more challenging to precisely convey facts ranked
by more complex measures such as outlyingness and isolation score.
Moreover, while our user study helps gain insights into different
exceptionality scoring functions, to thoroughly understand their
strengths and limitations, a more comprehensive and larger scale
user study is worth doing.

ACKNOWLEDGMENTS

The work is partially supported by NSF grants 1IS-1408928 and
1IS-1719054. Any opinions, findings, and conclusions or recommen-
dations expressed in this publication are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES

[1

[15]

[16]

[17]

[18]

[20

[21

[22]

[23

[24]

oo
)

[26]
[27]

[28]

[29

[30]

(31

Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2010. Oddball: Spotting
anomalies in weighted graphs. In PAKDD. 410-421.

Fabrizio Angiulli, Fabio Fassetti, Giuseppe Manco, and Luigi Palopoli. 2016. Out-
lying property detection with numerical attributes. DMKD (2016), 1-30.
Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. 2009. Detecting Outlying
Properties of Exceptional Objects. TODS 34, 1 (April 2009), 7:1-7:62.

Soéren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In ISWC.
Roberto Bisiani. 1992. Beam Search. In Encyclopedia of Artificial Intelligence (2nd
ed.), Stuart C Shapiro (Ed.). Wiley-Interscience, 1467-1468.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In SIGMOD. 1247-1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In NIPS. 2787-2795.

Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas,
Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. 2013.
Building an Efficient RDF Store over a Relational Database. In SIGMOD.

Dan Brickley and RV. Guha. 2014. RDF Schema 1.1. W3C Recommendation (2014).
J. Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences. Lawrence
Erlbaum Associates.

Sarah Cohen, James T. Hamilton, and Fred Turner. 2011. Computational Journal-
ism. Commun. ACM 54, 10 (Oct. 2011), 66-71.

Sarah Cohen, Chengkai Li, Jun Yang, and Cong Yu. 2011. Computational Journal-
ism: A Call to Arms to Database Researchers. In CIDR. 148-151.

Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF 1.1 concepts
and abstract syntax. W3C Recommendation (2014).

Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen, Jim Hendler,
Tan Horrocks, Deborah L McGuinness, Peter F Patel-Schneider, and Lynn Andrea
Stein. 2004. OWL web ontology language reference. W3C Recommendation
(2004).

Lei Duan, Guanting Tang, Jian Pei, James Bailey, Akiko Campbell, and Changjie
Tang. 2015. Mining outlying aspects on numeric data. DMKD 29, 5 (2015),
1116-1151.

Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.
2014. Grami: Frequent subgraph and pattern mining in a single large graph.
Proceedings of the VLDB Endowment 7, 7 (2014), 517-528.

Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. 2010.
On community outliers and their efficient detection in information networks. In
KDD. 813-822.

Ligiang Geng and Howard] Hamilton. 2006. Interestingness measures for data
mining: A survey. ACM Computing Surveys (CSUR) 38, 3 (2006), 9.

Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. W3C
recommendation 15 (2013).

Naeemul Hassan, Bill Adair, James T. Hamilton, Chengkai Li, Mark Tremayne, Jun
Yang, and Cong Yu. 2015. The Quest to Automate Fact-Checking. In Proceedings
of the 2015 Computation+Journalism Symposium.

Naeemul Hassan, Afroza Sultana, You Wu, Gensheng Zhang, Chengkai Li, Jun
Yang, and Cong Yu. 2014. Data In, Fact Out: Automated Monitoring of Facts by
FactWatcher. PVLDB, demonstration description 7, 13 (2014), 1557-1560.

Xiao Jiang, Chengkai Li, Ping Luo, Min Wang, and Yong Yu. 2011. Prominent
streak discovery in sequence data. In KDD. 1280-1288.

U Kang, Jay-Yoon Lee, Danai Koutra, and Christos Faloutsos. 2014. Net-ray:
Visualizing and mining billion-scale graphs. In PAKDD. 348-361.

Hans-Peter Kriegel, Peer Kréger, and Arthur Zimek. 2010. Outlier detection
techniques. In KDD.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion.. In AAAL
2181-2187.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In I[CDM.
IEEE, 413-422.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and com-
plexity of SPARQL. TODS 34, 3 (2009), 16.

Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sanchez, and Emmanuel Miiller.
2014. Focused Clustering and Outlier Detection in Large Attributed Graphs. In
KDD.

Stuart Russell and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach
(3rd Edition). Prentice Hall.

Ron Rymon. 1992. Search through systematic set enumeration. Technical Reports
MS-CIS-92-66, Department of Computer and Information Science, University of
Pennsylvania (1992).

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In WWW. 697-706.

[32

Afroza Sultana, Naeemul Hassan, Chengkai Li, Jun Yang, and Cong Yu. 2014.

Incremental Discovery of Prominent Situational Facts. In ICDE. 112-123.
Hanghang Tong and Ching-Yung Lin. 2012. Non-negative residual matrix factor-

ization: problem definition, fast solutions, and applications. Statistical Analysis

and Data Mining 5, 1 (2012), 3-15.

Immanuel Trummer, Alon Halevy, Hongrae Lee, Sunita Sarawagi, and Rahul

Gupta. 2015. Mining Subjective Properties on the Web. In SIGMOD. 1745-1760.

[35] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. 2009. Mining
multi-label data. In Data mining and knowledge discovery handbook. Springer,
667-685.

[36] Nguyen Xuan Vinh, Jeffrey Chan, Simone Romano, James Bailey, Christopher
Leckie, Kotagiri Ramamohanarao, and Jian Pei. 2016. Discovering outlying aspects
in large datasets. DMKD 30, 6 (2016), 1520-1555.

[37] Denny Vrandeci¢ and Markus Krétzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78-85.

[38] Xiang Wang and Ian Davidson. 2009. Discovering contexts and contextual outliers
using random walks in graphs. In ICDM. 1034-1039.

[39] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes.. In AAAIL 1112-1119.

[40] Tianyi Wu, Dong Xin, Qiaozhu Mei, and Jiawei Han. 2009. Promotion analysis
in multi-dimensional space. PVLDB 2, 1 (2009), 109-120.

[41] You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2012. On “One
of the Few” Objects. In KDD. 1487-1495.

[42] You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2017. Com-
putational Fact Checking through Query Perturbations. TODS 42, 1 (Jan. 2017),
4:1-4:41.

[43] Yuehua Xu and Alan Fern. 2007. On learning linear ranking functions for beam

search. In ICML. 1047-1054.

Gensheng Zhang, Xiao Jiang, Ping Luo, Min Wang, and Chengkai Li. 2014. Dis-

covering General Prominent Streaks in Sequence Data. TKDD 8, 2 (June 2014),

9:1-9:37.

[45] Miao Zhou, Chunhong Zhang, Xiao Han, Yang Ji, Zheng Hu, and Xiaofeng Qiu.
2016. Knowledge Graph Completion for Hyper-relational Data. In International
Conference on Big Data Computing and Communications. 236-246.

'S
&

[34

[44

A APPENDIX
A.1 Case Study

To illustrate the effectiveness of Maverick, we present below some
examples of exceptional facts discovered by Maverick in both graph
WCGoals and graph OscarWinners.

Goal(46683) is the only own goal in Brazil’s World Cup his-
tory.

Exceptionality y, = 0.986
Subspace {(awared-to, =)}
Context Cg;’:]’(46683) where P = {(x, scored-by, xi), (x1,

play-for, BRA)}

Indeed, among all the 221 goals that were scored by Brazil players
in the FIFA World Cup Finals tournaments, Goal(46683), which was
awarded to Croatia, was the only goal not awarded to Brazil. This
exceptional fact has a very high score.

Among all the crew members of Oscar winning films, Paul
J. Franklin (FilmCrew(7674)) is the only crew member with role
Computer Animation.

Exceptionality yp = 0.784

Subspace {(film-crew-role, =)}
Cpo,xo
FilmCrew(7674)

This example demonstrates the utility of Maverick in revealing
data errors, as motivated in Section 1. While investigating why this
entity is exceptional, an analyst will realize the exceptional fact
is due to a data error. An edge mistakenly links from node Paul J.
Franklin to a genre node Computer Animation which is incorrectly used
in this case as a role node. The correct crew role node should have

Context

been Computer Animator.

Goal(23464) is the only goal awarded to Paraguay, among all
the goals scored in matches hosted in Mexico City that had
at least two goals.

Exceptionality — xy = 0.983

Subspace {(awared-to, =)}

CP,x1
Goal(24227)°

x2), (x0, venue, Mexico City)}

Context where P = {(x, goal, x1), (xo, goal,

There are in total 62 goals scored in matches hosted in Mexico City,
among which 58 were scored in 18 multiple-goal matches. These 58
goals were awarded to 12 different teams. Paraguay is the only team
that was awarded only one of the 58 goals.

Game(899) is one of the only two games in which the home
team was Senegal, among all the games where there was a
player wearing the number 21 shirt.
Exceptionality — xy = 0.959

Subspace {(home, =)}

P, . .
Context CGa’;e(ggg), where P = {(x, bibnum, Bibnum(21)),

(x0, participate-in, x;)}
In 761 games some player wore number 21. Game(899) is one of the
only two such games in which the home team was Senegal.

Among the Oscar winning films produced in the United
States, The Lord of the Rings: The Return of the King (Film(31768)) is
one of the only 7 films that were also produced in New
Zealand.

Exceptionality — y, = 0.676

Subspace {(country, —)}
CP,X()
Film(31768)’

There are in total 662 Oscar winning films produced in the United
States, of which 545 were produced solely in the United States. Only 7
of the co-produced films were co-produced in New Zealand. However,
the score of this fact is not as high as that of the last two facts,
because China, Brazil, and a few other countries co-produced even
less films.

Context where P = {(xo, country, UsA)}

A.2 Exceptionality Scoring Function: Isolation
Score y;

Isolation Score y; The isolation score y; is inspired by iForest [26]
and iPath [36]. Both iForest and iPath are applicable on real value
attributes. By randomly choosing a pivot in the range of an attribute,
both methods iteratively split a set of entities into two disjoint
subsets, until the entities in each set have an identical value. The
iForest score and iPath score are defined using the number of splits
applied. iPath only iteratively splits the subsets containing the
entity of interest. The entity’s score is the number of splits until
the entity has the same value as other entities in its subsuming
set. iForest splits all subsets. Essentially, both iForest and iPath
follow the minimum description length principle, and both scores
are functions of the estimated description length of the entity’s
attribute value, which is the number of splits. Inspired by iForest

score, we define isolation score y; as follows:
—loga Py A

$i(0,AC)=1—2 Eses(ps¥leps) ©)

where the numerator in the exponent is the description length of
v’s attribute value, while the denominator is the average descrip-
tion length of attribute values in subspace A. Intuitively, if v.A is
peculiar, then the description length of v.A is longer than average
and y;(v, A, C) is closer to 1.

For example, let the conditions be the same as the ones used in

explaining yo and ys:vp = 61, C = Cg’?g = {c1,62,63}, and A =
{(awarded-to, —)}. According to Table 1, — ZSE{({BRA}),({CROD]([JSX
lOgZPS) = _(% X logzé + % X logz %) = 10g23 — % — 091’

—logy pe1.a = 1.58, then yr(c1, A, C) = 0.7. Similarly, yr(c1,
{(awarded-to, =), (scored-by, —)}, C) = 0.

Theorem 6 (Upper bound of y;). upper;(v,A,C) > yi(v, A’,C),
given the following definition:
B —logy ﬁ
upper;(v,A,C) =1 -2 “dv. ATESeS 4 \(v.A) (PsXlog2 PS))

e g = by XIog, 77+ 4=) Xlolpe 4=)

Proor. Please refer to Appendix A.5 for the proof. []

A.3 Complexity Analysis of the Beam Search
Method

This section presents a brief analysis of the complexity of our beam
search method. Let w be the beam size, if Maverick stops at level [
of the Hasse diagram PP, which is the search sapce of patterns, then
it evaluates exceptionality in at least (I—1)w + 1 contexts (patterns).
For each context, the complexity of computing exceptionality is
0(2M= 1), as we discussed in Section 4. Assume the average degree
of an entity is d, the average number of variables in a pattern
of size k is %, then a pattern of size k has (d + 1)]‘/2 children.
For each child, Maverick needs to compute h scores for selecting
promising candidates (Section 5.4). The main computational cost of
h scores is the calculation of context sizes, which requires pattern
evaluation. Given a pattern of size k, its evaluation can be done in
O(IE(G)|¥), since it may require k self-join operations on Eg. In
sum, the estimated complexity is O((w(I—1)+1) (20! + PENCES
DX IEG)N) = 0@ =] + dIEG) 1.

A.4 User Study for Comparing Exceptionality
Scoring Functions

We conducted a user study to assess the quality of four different
exceptionality scoring functions ys (one-of-the-few, Section 2), yo
(outlyingness, Section 4.2), y; (isolation score, Appendix A.2), and
frequency rank (Eq. (1)). The measure frequency rank is simply
to rank the exceptionality of entities in context C with respect
to subspace A based on their attribute value frequency P, 4, as
defined in Eq. (1). The lower the frequency, the more exceptional it
is. We compared the rankings of exceptional facts based on these
functions as well as actual user preferences.

The user study participants were asked to choose a fact from a
pair of facts that they deemed to be more exceptional. For quality
assurance we manually crafted a set of trivial facts that are clearly
non-exceptional or dull. We then formulated test pairs, of which
each is composed of a regular fact and a trivial fact. The participants
are expected to choose the regular fact as more exceptional. A par-
ticipant’s quality is thus gauged by their accuracy on the test pairs,

which were mixed together with regular pairs without disclosure
to the participants.

We used 10 regular facts and thus 45 pairs of these facts. We
randomly selected 10 entities from graph OscarWinners, and run
Maverick using Beam-Conv to discover exceptional facts of the
entities. The exceptionality scoring function used in the discovery
was outlierness (y,). Among all the facts discovered by Maverick,
10 facts are picked so that the scores of facts are roughly evenly
distributed in [0, 1]. For each selected fact, yr, xi, and frequency
rank are also calculated. We crafted 8 trivial facts and formulated 8
test pairs by pairing up these trivial facts with regular ones. Hence a
participant responded to at most 53 pairs. The facts were presented
to the participants in their natural language descriptions which we
manually generated in the form of one-of-the-few facts. The study
was conducted on line, for which the participants were solicited
from computer science graduate students in the authors’ institution.
4,212 responses from 84 participants were recorded in total.

For each exceptionality scoring function, we constructed a vector
X of 45 values corresponding to the 45 pairs of regular facts. For each
pair, the value in X is the difference between the two facts’ ranks ac-
cording to the scoring function. We also constructed another vector
Y, in which a value is the difference between how many partici-
pants favored one fact versus another in the corresponding pair. The
correlation between the scoring function and the participants is cal-
culated using the Pearson Correlation Coefficient (PCC) which is de-

finedas (E(XY)~E(X)E(Y))/(VE(X?) - (E(X))*VE(Y?) - (E(Y))?).

A PCC value in the ranges of [0.5,1.0], [0.3,0.5) and [0.1,0.3) in-
dicates a strong, medium and small positive correlation, respec-
tively [10].

Table 4: User study results at different participant quality levels.

of pairs # of Xi Xf Xo frequency

correct (>) participants rank
0 84 0.370 0.564 0.295 0.429
1 84 0.370 0.564 0.295 0.429
2 78 0.392 0.585 0.317 0.412
3 74 0.410 0.597 0.335 0.400
4 66 0.449 0.642 0.378 0.338
5 53 0.491 0.649 0.422 0.377
6 43 0.614 0.730 0.558 0.283
7 22 0.738 0.831 0.696 0.061
8 9 0.750 0.864 0.711 —0.007

The results of the user study are presented in Table 4, in which
each row shows the PCC values calculated using participants at a
different quality level (measured by number of test pairs the par-
ticipants got correct, i.e., the first column in the table). We can
make a few observations on the results. 1) As the quality level in-
creases the number of participants that are accounted for at that
level decreases, showing that the test pairs were successful in fil-
tering out low performing participants. 2) For scoring functions
Xi» Xg and Xo, the correlation with participants steadily increases
when the participants’ quality increases. 3) In general, the scoring
function that performed the best was xy, followed by x; and xo.
The results show a strong correlation between these three func-
tions and high-quality human participants, which suggests these

functions are effective in ranking the facts. The observation that
Xy performed the best could be due to a bias: the natural language
descriptions of the facts were in the form of one-of-the-few facts.
(On a side note, this suggests a strength of y related to usability,
as there is no clear way of directly expressing facts in line with y;
and y,.) 4) On the contrary, frequency rank displayed a decrease in
correlation as participant quality increases and its correlation was
never strong. We reason that this could be due to low performing
participants directly using frequency to hastily assess whether a
fact is exceptional or not, without carefully examining the nature
of the fact. The fact that frequency rank attains stronger correlation
with lower-quality participants verifies that it cannot be used as a
robust exceptionality scoring function, as explained in Section 2.

A.5 Proofs of Theorems
Proof of Theorem 2

PROOF. Let {py,_4,Ps,," " »PSy } be the probability distribution
of attribute values in subspace A. According to [3], for any A’ 2 A,
Xo(v, A, C) is maximized when the additional attributes in A’ \ A
preserve the current attribute value distribution, except that the
additional attributes make v different from all other entities, i.e.,
the optimal distribution of attribute values in subspace A’ is {p,,. A’
Po.A~Po. A PS,» - PSy |, Where py, ar= el c - (Note thatpsz Kell
for any S.) In other words, the entities having value v.A on subspace
A are partitioned into v itself (having value v.A” on subspace A’)
and the rest (having identical value on A’). Based on Eq. (3), after

a few polynomial manipulations, which we omit here, we have
A.O)< 2 (2poat)x| C|-2
Xo(0, A", C)<¥5e8, Ps — Jcp u

Proof of Theorem 6
Proor. ByEq. (6), yi(v, A’, C) is maximized when the denomina-

tor in the exponent is minimized and the numerator is maximized.
Let {py.a.Ps,>*+ »Psy) be the probability distribution of attribute
values in subspace A. Similar to the proof of Theorem 2, we prove
that y;(v, A’, C) is maximized when the distribution in subspace A’
is {pu.A'> Pv.A—Dov. A’ PS;» > PSN }» Where pv.A'Iﬁ- Partition
the entities having value S in A into two disjoint subsets that have
values S1 and S2 in A’, respectively, i.e., P = PA + Pg‘,, Without
loss of generality, assume PA < P?,, We have
(1) ~p§) log, pg‘/ psn loga ps” > —p§ log, pf.
(2) —pf log, psf - pg log, psn >

_p‘:}fA/ log, Pv_Ar (PS Py A’) log, (PS Py, A’)
They can be derived by
(1) ~p§, logy gy — pg logy g =~ logy pg — P logy 1,

= ~(p5, +p%,) logy 7, = —p§ logy pg > —p§ logy P,
(2) Letpg‘:npﬁfA, = %,pg‘: =mpftA, = |C|,then1 <m<

n,—pg log, pf — phlogy ph, — (=pih 4 logy pty 4 = (-

Py 41082 (PS =Py) = —m Yy logympl = (npg) 4 =
mpﬁ' &) logz(np;*' s —mpy;) +p) 4 10g P 4+ (npl) 4 -
pv A') logz(npv P A,) pv A,((n 1) log, (n—1)—mlogom—

(n-1)
(n — m)loga(n — m)) = p2',, log, %
(n-pnY

A . (n-1)(n~H
va.A’ logz min(T (=)D (q 1)) (n—(n—1)) " 1)))

0.

—A = Breadth-First
-E1- Beam-Conv

/3); - - Beam-Opt
g —©6- Beam-Rdm
=i =V - A*Opt

. 'Q - A*Conv

0.250.500.751.00 1.25 1.50 1.75 2.00 2;25
V(o) x10°

Figure 15: Execution time of enumerating all candidates up to level
2 by different orders of graphs.

As a result, since —log, py, a» = log, p; for any p; > p, 4, by

dividing p,,. A t0 py.ar and py, A — po.ars xi(v, A, C) is maximized.

In other words, the optimal distribution in subspace A’ is {p,_a’,
Pv.A=Po. A PS> " DS -]

Proof of Theorem 3

Proor. Given a WCC W € W, it has at least one subgraph
of order i, for every i € [1,|Vyy|]. For each subgraph of size i,
there are 2! corresponding patterns that can be constructed by
replacing some nodes with variables. Hence, for each W, there are

at least 1‘:‘{"' 2t = 2lVwi+l _ o patterns. Since every such pattern

is isomorphic to a subgraph of W, it is guaranteed to be valid.

Note that two patterns of the same order constructed from two
subgraphs in two different WCCs can be equivalent if all their nodes
are variables. Therefore, each W € ‘W has at most | Viy | patterns
that are equivalent to others. There are at least maxyy |Vyy| unique
patterns in which all nodes are variables. Thus, after excluding
double-counted patterns,

Vi l+1 _ 9y _
Vel2) (2 2) = Dy IViw| + max Viy|

= D @M = 2) — Vg1 + max Vg . .
Proof of Theorem 4

Proor. Since P’ is a child of P, P’ has one edge more than P.
Suppose (u,l,w) = Ep \ Ep, and f” is the bijection f” : Vpr — Vyp.
We prove the theorem by constructing M. More specifically, let
Ep = Epxe \A(f' (), L f/(w)}, and Vi = Uy, 1,0;)eEp, (Vi 0))-
We can construct a bijection f : Vp — Vs such that f(u) = f'(u)
for any u € Vp. Since [satisfies the edge isomorphism, f also
satisfies it, i.e., Y(v;,I’,vj) € Ep, (f(vi),l”, f(vj)) € Epr, and vice
versa. By Definition 2, M is a match to P.]
Proof of Theorem 5

ProoF. Since both ends of e are entities, we have Xp = Xps. By
Theorem 4, YM’ € Mpr, there exists M € Mp which is a subgraph
of M’. Let ¢’ = Epp \ Epy, then e’ = e by Definition 2. Therefore,
Vx € Xpr, Rﬁ’ C Rﬁ. Similarly, VM € Mp, the graph M + e is a
match to P’. As a result, Yx € Xp, R§ C Rg'. In sum, Vx € Xp,
RY = RV and CF = {(RP, |x" € Xp,vg € R} = (RD |x’ €
Xpvg € REYy = b =

A.6 Scalability

To test the scalability of Maverick, we generated synthetic graphs
using a benchmark data generator BSBM about products, vendors,

consumers, and reviews (http://wifoS—03,informatik.uni-mannheim.de/bizer/
berlinsparqlbenchmark/spec/BenchmarkRules). We varied the number of prod—

ucts from 100 to 2, 000, which resulted in graphs of order |V (G)|
from 14, 195 to 215, 895. Fig. 15 shows how the execution time of all
algorithms increased along with the order of the graphs. Given that
Beam-Conv and Beam-Rdm need less computation in candidate
selection, both scaled much more gracefully than others. The figure
also shows the execution time of two A* algorithms guided by hop;
and h¢ono, respectively. The results confirmed that computing hop
is more expensive than hcono. This is because computing hop re-
quires examining all the variables in a pattern, while computing
hcono only requires that for context-defining variables in the par-
ent. Due to the overhead of computing h scores, the A* algorithms
are shown more expensive than Breadth-First.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Overview of Framework
	3.1 Context Evaluator

	4 Exceptionality Evaluator
	4.1 Finding Top-k Subspaces
	4.2 Exceptionality Scoring Functions
	4.3 Upper Bound Functions

	5 Pattern Generator
	5.1 Search Space of Patterns
	5.2 Match-based Construction of Patterns
	5.3 Pattern Pruning Strategies
	5.4 Pattern Selection Heuristics (h)

	6 Experiments
	6.1 Experiment Setup
	6.2 Efficiency
	6.3 Effectiveness

	7 Related work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Appendix
	A.1 Case Study
	A.2 Exceptionality Scoring Function: Isolation Score i
	A.3 Complexity Analysis of the Beam Search Method
	A.4 User Study for Comparing Exceptionality Scoring Functions
	A.5 Proofs of Theorems
	A.6 Scalability

