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Abstract

We present end-to-end neural models for de-
tecting metaphorical word use in context. We
show that relatively standard BiLSTM mod-
els which operate on complete sentences work
well in this setting, in comparison to previous
work that used more restricted forms of lin-
guistic context. These models establish a new
state-of-the-art on existing verb metaphor de-
tection benchmarks, and show strong perfor-
mance on jointly predicting the metaphoricity
of all words in a running text.

1 Introduction

Metaphors are pervasive in natural language, and
detecting them requires challenging contextual
reasoning about whether specific situations can ac-
tually happen. (Lakoff and Johnson, 1980). For
example, in Table 1, “examining” is metaphorical
because it is impossible to literally use a “micro-
scope” to examine an entire country. In this paper,
we present end-to-end neural models for metaphor
detection, which can learn rich contextual word
representations that are crucial for accurate inter-
pretation of figurative language.

In contrast, most previous approaches focused
on limited forms of linguistic context, for exam-
ple by only providing SVO triples such as (car,
drink, gasoline) to the model (Shutova et al.,
2016; Tsvetkov et al., 2013; Rei et al., 2017; Bulat
et al., 2017). While the verbal arguments provide
strong cues, providing the full sentential context
supports more accurate prediction, as seen in Ta-
ble 1. Even in the few cases when the full sentence
is used (Koper and im Walde, 2017; Turney et al.,
2011; Jang et al., 2016) existing models have used
unigram-based features with limited expressivity.

We investigate two common task formulations:
(1) given a target verb in a sentence, classify-
ing whether it is metaphorical or not, and (2)

The experts started examining the Soviet Union
with a microscope to study perceived changes.

Rockford teachers are honored for saving a
drowning student.

You’re drowning in student loan debt.

Table 1: Metaphorical usages of the target word are
bold faced, and literal usages are italicized. Full sen-
tence context is crucial for metaphor detection.

given a sentence, detecting all of the metaphor-
ical words (independent of their POS tags). We
find that relatively standard architectures based on
bi-directional LSTMs (Hochreiter and Schmidhu-
ber, 1997) augmented with contextualized word
embeddings (Peters et al., 2018) perform sur-
prisingly well on both tasks, even with mod-
est amount of training data. We improve the
previous state-of-the-art by 7.5 F1 on the VU
Amsterdam Metaphor Corpus (VUA) for the se-
quence labeling task (Steen et al., 2010), by
2.5 F1 on the VUA verb classification dataset,
and by 49 F1 on the MOH-X dataset (Mo-
hammad et al., 2016). Our code is publicly
available at https://github.com/gao-g/
metaphor—-in-context.

2 Task

We study two task formulations.

Sequence Labeling: Given a sentence x1,. . . ,Zn,
predict a sequence of binary labels [y, ..., [,
to indicate the metaphoricity of each word.

Classification: Given a sentence x1, ..., 2, and
a target verb index 4, predict a binary label [
to indicate the metaphoricity of the target x;.

While both formulations have been studied in pre-
vious work, it is worth noting that the sequence
labeling task generalizes the classification task in
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Figure 1: A sequence labeling model for metaphor de-
tection. Every word in a sentence is classified.

that the prediction for the target verb can be ex-
tracted from the full sentence predictions. In ad-
dition, as will be shown in Section 5, we find that
given accurate annotations for all words in a sen-
tence, the sequence labeling model outperforms
the classification model even when the evaluation
is set up as a classification task.

3 Model

Our models use a bidirectional LSTM to encode
a sentence, and a feedforward neural network for
classification, optimized for the log-likelihood of
gold labels.

Sentence encoding For both sequence labeling
and classification, we represent each token x; in
the input sentence with a pre-trained word em-
bedding w;. To further encode contextual infor-
mation, we also concatenate ELMo (Embeddings
from Language Models) vectors e; from Peters
et al. (2018). These vectors have been shown to
be useful for word sense disambiguation, a task
closely related to metaphor detection (Birke and
Sarkar, 2006).

3.1 Sequence Labeling Model

Figure 1 shows the model architecture. We input
the word representation [w;; e;] to a bidirectional
LSTM, producing a contextualized representation
h; for each token. Then we use a feedforward neu-
ral network that takes h; to predict a label [; for
each word z;.

When the dataset does not contain annotations

for every word, we make the simplifying assump-
tion that every unannotated word is used literally.

Make the

people’s heart glow

Figure 2: A classification model for metaphor detec-
tion. Only a single word per sentence is labeled as
metaphorical or literal.

3.2 Classification Model

Figure 2 shows the model architecture. We con-
catenate an index embedding n;, which indicates
whether x; is the target verb. We use [w;; e;; 1]
as an input to a bidirectional LSTM, producing a
contextualized representation h;.

We add an attention layer by computing the at-
tention weight a; for token x;, and compute the
representation c as a weighted sum of LSTM out-
put states where W, and b, are learned parameters.

a; = SOftMaXi(Wahi + ba)
Cc = Z aihi
=1

Finally, we feed c to a feedforward network to
compute the label scores for target verb.

4 Dataset

We evaluate performance on a number of bench-
mark datasets, including two for classification
(TroFi and MOH\MOH-X) and one for tagging
(VUA).! Table 2 shows statistics for the verb clas-
sification datasets. Despite being two times larger
than the MOH dataset, the TroFi dataset contains
only 50 unique verbs, and the larger VUA dataset
contains over 2K unique verbs. The MOH dataset
contains shorter and simpler sentences (example
sentences in WordNet), compared to sentences in
other datasets which come from resources such as

"For detailed information about each dataset, please re-
fer to original papers: TroFi (Birke and Sarkar, 2006),
MOH (Mohammad et al., 2016), VUA (Steen et al., 2010).
MOH-X refers to a subset of MOH dataset used in previous

work (Shutova et al., 2016) where verb and its argument are
extracted from each sentence.



# % | # Uniq. Avg #

‘ Expl. ‘ Metaphor ‘ Verb ‘ Sent. Len
MOH-X 647 49% 214 8.0
MOH 1,639 25% 440 7.4
TroFi 3,737 43% 50 28.3
VUA 23,113 28% 2047 24.5

Table 2: Verb classification dataset statistics. %
Metaphor refers to sentence-level percentage.

Train Dev Test
# Unique tokens | 13,843 | 7,458 | 7,200
# Tokens 116,622 | 38,628 | 50,175
# Unique sent. 6,323 | 1,550 | 2,694
% Metaphor 11.2 11.6 124

Table 3: VUA sequence labeling dataset statistics. %
Metaphor refers to token-level percentage.

news articles. The TroFi and MOH-X datasets
are constructed to have higher percentages of
metaphor, compared to the natural likelihood of
metaphor in a running text, as seen in the VUA
dataset.

Classification Experiment Setup We perform
10 fold cross-validation on the MOH-X and TroFi
datasets, following prior work. For the VUA
dataset, we use the original training and test split
(Klebanov et al., 2016), and set aside 10% of the
training set as a development set.

Sequence Labeling Experiment Setup The
VUA dataset contains annotations for all words in
each sentence. We divide the data into training,
development, and test set following the same split
for the VUA verb classification task. While the la-
bel classes are less balanced (only 11% metaphors
at the token level), this dataset is much bigger. Ta-
ble 3 shows the data statistics.

5 Experiments

Evaluation Metric We report precision, recall
and F1 measure for the metaphor class as well as
the overall accuracy. For the VUA dataset, we also
report macro-averaged F1 score across four gen-
res (conversation, academic writing, fiction and
news).

Comparison Systems We propose a simple yet
effective lexical baseline. It assigns the metaphor
label if the word is annotated metaphorically more
frequently than as literally in the training set, and
the literal label otherwise. We also compare our

Model | P| R| Fl| Acc
Lexical Baseline 68.6 | 452 | 545 | 90.6
Wu (2018) ensemble | 60.8 | 70.0 | 65.1 -
Ours (SEQ) 71.6 | 73.6 | 72.6 | 93.1

Table 4: Performance on the VUA sequence labeling
test set for all POS tags.

POS | # | %metaphor | P | R | FL
VERB | 20K 18.1 | 68.1 | 71.9 | 69.9
NOUN | 20K 13.6 | 599 | 60.8 | 60.4
ADP 13K 28.0 | 86.8 | 89.0 | 87.9
ADJ 9K 11.5 | 56.1 | 60.6 | 58.3
PART 3K 10.1 | 57.1 | 59.1 | 58.1

Table 5: The breakdown of performance on the VUA
sequence labeling test set by POS tags. We show data
statistics (count, % metaphor) on the training set. We
only show POS tags whose % metaphor > 10.

models to previously published work, including:
(1) a logistic regression classifier with features
that indicate verb lemmas and the verbs’ seman-
tic class from WordNet (Klebanov et al., 2016),
(2) a neural similarity network with skip-gram
word embeddings (Rei et al., 2017), (3) a bal-
anced logistic regression classifier on target verb
lemma that uses a set of features based on multi-
sense abstractness rating (Koper and im Walde,
2017), and (4) a CNN-LSTM ensemble model
with weighted-softmax classifier which incorpo-
rates pre-trained word2vec, POS tags, and word
cluster features (Wu et al., 2018).2

We experiment with both sequence labeling
model (SEQ) and classification model (CLS) for
the verb classification task, and the sequence la-
beling model (SEQ) for the sequence labeling
task.

Implementation Details We used 300d GloVe
vectors (Pennington et al., 2014) and 1024d ELMo
vectors. We used additional 50d index embedding
for the classification task. The LSTM module has
a 300d hidden state. We applied dropout on the in-
put to LSTM and on the input to the feedforward
layer. We fine-tuned learning rate and dropout rate
for each model on each dataset. We used SGD
to optimize the CLS model and Adam (Kingma
and Ba, 2013) for the SEQ model. We used
spaCy (Honnibal and Montani, 2017) for lemma-
tization, tokenization, and part-of-speech tagging.

’The best performing model on the VUA Metaphor De-
tection Shared Task at the NAACL 2018 workshop on Figu-
rative Language Processing.



Model MOH-X (10 fold) TroFi (10 fold) VUA - Test

P| R| FI| Acc P| R | FI| Acc P| R | FI | Acc. | MaFl
Lexical Baseline | 39.1 | 26.7 | 31.3 | 43.6 | 724 | 557 | 629 | 714 | 67.9 | 40.7 | 509 | 764 | 489
Klebanov (2016) - - - - - - - - - - - - 60.0
Rei (2017) 73.6 | 76.1 | 742 | 74.8 - - - - - - - - -
Koper (2017) - - - - - 75.0 - - -1 62.0 - -
‘Wu (2018) ensemble - - - - - - - - 160.0 | 763 | 67.2 - -
CLS 753 | 843 | 79.1 | 78.5 | 68.7 | 74.6 | 72.0 | 73.7 | 534 | 65.6 | 58.9 | 69.1 53.4
SEQ 79.1 | 735 | 756 | 772 | 70.7 | 71.6 | 71.1 | 74.6 | 68.2 | 71.3 | 69.7 | 81.4 66.4

Table 6: Model performances for the verb classification task. Our models achieve strong performance on all
datasets. The CLS model performs better than the SEQ model when only one word per sentence is annotated
by human (TroFi and MOH-X). When all words in the sentence are accurately annotated (VUA), the SEQ model

outperforms the CLS model.

Model ‘ P ‘ R ‘ F1. ‘ Acc.
SEQ 68.3 | 72.0 | 70.4 | 83.5
-ELMo | 594 | 64.3 | 61.7 | 78.2
CLS 524 |1 63.0| 573 | 743
-ELMo | 52.0 | 48.7 | 50.8 | 74.1

Table 7: Ablation study on VUA development set for
the verb classification task.

Sequence Labeling Results Performance on the
sequence labeling task is reported in Table 4.
While prior work (Klebanov et al., 2014; Ozbal
et al., 2016) reported on the same dataset, the ex-
periment setting is not comparable (they did cross
validation on a smaller training set).> Our lexical
baseline performs strongly in terms of precision,
as some words and POS tags are almost exclu-
sively annotated as literal. Our sequence labeling
model mainly improves recall.

Table 5 reports the breakdown of performance
by POS tags. Not surprisingly, tags with more data
are easier to classify. Adposition is the easiest to
identify as metaphorical and is also the most fre-
quently metaphorical class (28%). On the other
hand, particles are challenging to identify, since
they are often associated with multi-word expres-
sions, such as “put down the disturbances”.

Verb Classification Results Table 6 shows per-
formance on the verb classification task for three
datasets (MOH-X , TroFi and VUA).*

Our models achieve strong performance on all
datasets, outperforming existing models on the
MOH-X and VUA datasets. On the MOH-X
dataset, the CLS model outperforms the SEQ

3As a point of reference, their macro-averaged F1 scores
were 33.25 / 50.6 respectively.

*We did not compare to Shutova et al. (2016) as their ex-
periment setting is not comparable.

model, likely due to the simpler overall sentence
structure and the fact that the target verbs are the
only words annotated for metaphoricity. For the
VUA dataset, where we have annotations for all
words in a sentence, the SEQ model significantly
outperforms the CLS model. This result shows
that predicting metaphor labels of context words
helps to predict the target verb. We hypothesize
that Koper et al. (2017) outperforms our models on
the TroFi dataset for a similar reason: their work
uses concreteness labels, which highly correlate to
metaphor labels of neighboring words in the sen-
tence. Also, their best model uses the verb lemma
as a feature, which itself provides a strong clue in
the dataset of 50 verbs (see lexical baseline).

Table 7 shows an ablation study on input repre-
sentations (with or without ELMo vectors). Con-
textualized word vectors improve the performance
of both models by a large margin.

Error Analysis We sampled 100 errors of our
best model from the VUA verb classification de-
velopment set for analysis. Table 8 shows exam-
ples. Following the original annotation guideline,’
we classify metaphors into five categories: direct
metaphor, indirect metaphor, implicit metaphor,
personification, and borderline case. Indirect
metaphor, the most common type for verbs, means
that the basic meaning of a word is different from
its contextual meaning. Implicit metaphor occurs
due to an underlying link which points to a recov-
erable metaphorical concept.

About half of the errors were false positives, and
the other half were false negatives. Among the
false negatives, 33% are indirect metaphors, 18%
are personifications, and 2% are direct metaphors.
Among 55 false positives, 31% of verbs have im-

Shttp://www.vismet.org/metcor/documentation/home.html



CLS | SEQ | Sentence | Metaphor Type
X | X | Tothrow up an impenetrable Berlin Wall between you and them could be tactless. | -
X ‘ X ‘ In reality you just invent a tale, as if you were sitting round a fire in a cave. ‘ direct metaphor
X \ X \ So they bought immunity. \ indirect metaphor
X X During the early states of the phased evacuation the logistical problem facing the po- | indirect metaphor
lice was the street-by-street warning of the population to make ready for evacuation.
y g pop y
X \ v \ There are few things worse than being bludgeoned into reading a book you hate. \ indirect metaphor
X \ 4 \ He thought of thick, fat, hot motorways carving up that land. \ personification
X 4 One might ask whether motorists are ever justified in knowingly taking risks with other -
people’s lives.
X v The abstract talk of commuting by rail or road being replaced by information technol- -
ogy finds a concrete expression in the idea of telecottages.
X | ¢ | Aflylanded on the empty, staring vizor, and crawled across it. | -

Table 8: Some examples from the VUA verb classification development set. Metaphorical usages of the target
word are bold faced, and literal usages are italicized. Leftmost columns show the correctness of prediction.

plicit arguments that are not explicitly mentioned
in the context, 15% have long range dependencies
(at least five words away) from core arguments,
10% have arguments with rare word senses, and
5% have anthropomorphic arguments. Finally, we
found about half of false negatives and 20% of
false positives to be borderline cases, showing the
subjective nature of the task.

We sampled 257 dev examples that the CLS
model gets wrong but the SEQ model gets cor-
rect. We found that the SEQ model outperforms
the CLS model on detecting personifications, in-
direct metaphors, and direct metaphors involving
uncommon verbs.

6 Related Work

There has been significant work on studying dif-
ferent features for metaphor detection, includ-
ing concretenesss and abstractness (Turney et al.,
2011; Tsvetkov et al., 2014; Koper and im Walde,
2017), imaginability (Broadwell et al., 2013;
Strzalkowski et al., 2013), feature norms (Bulat
et al., 2017), sensory features (Tekiroglu et al.,
2015; Shutova et al., 2016), bag-of-words fea-
tures (Koper and im Walde, 2016), and semantic
class using WordNet (Hovy et al., 2013; Tsvetkov
et al., 2014). More recently, embedding-based ap-
proaches (Koper and im Walde, 2017; Rei et al.,
2017) showed gains on various benchmarks.
Many neural models with various features and
architectures were introduced in the 2018 VUA
Metaphor Detection Shared Task. They include
LSTM-based models and CRFs augmented by lin-
guistic features, such as WordNet, POS tags, con-
creteness score, unigrams, lemmas, verb clusters,

and sentence-length manipulation (Swarnkar and
Singh, 2018; Pramanick et al., 2018; Mosolova
et al., 2018; Bizzoni and Ghanimifard, 2018; Wu
et al., 2018). Researchers also studied different
word embeddings, such as embeddings trained
from corpora representing different levels of lan-
guage mastery (Stemle and Onysko, 2018) and
binarized vectors that reflect the General Inquirer
dictionary category of a word (Mykowiecka et al.,
2018). We show that contextualized word embed-
ding significantly improves metaphor detection.
We also study both sequence labeling and classifi-
cation approaches, suggesting that sequence label-
ing approach enhances performance when used to
jointly predict the metaphoricity of all words in a
sentence.

7 Conclusion

In this paper, we present simple BiLSTM models
augmented with contextualized word representa-
tion for metaphor detection. Our models estab-
lish new state-of-the-arts across multiple existing
benchmarks, and our error analysis shows remain-
ing challenges for metaphor detection.
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