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Abstract—Implementing scalable and effective synaptic 
networks will enable neuromorphic computing to deliver on its 
promise of revolutionizing computing. RRAM represents the most 
promising technology for realizing the fully connected synapse 
network: By using programmable resistive elements as weights, 
RRAM can modulate the strength of synapses in a neural network 
architecture. Oscillatory Neural Networks (ONNs) that are based 
on phase-locked loop (PLL) neurons are compatible with the 
resistive synapses but otherwise rather impractical. In this paper, 
A PLL-free ONN is implemented in 28 nm CMOS and compared 
to its PLL-based counterpart. Our silicon results show that the 
PLL-free architecture is compatible with resistive synapses, 
addresses practical implementation issues for improved 
robustness, and demonstrates favorable energy consumption 
compared to state-of-the-art NNs. 

Keywords—oscillatory neural network, neuromorphic 
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I. INTRODUCTION 
Neural networks (NNs) are systems inspired by the brain. 

The brain is extremely power efficient; it is able to solve 
complex image and audio processing problems while 
consuming less than 20W [1]. In fact, biological systems 
outperform any modern computer by orders of magnitude in 
terms of power efficiency. One of the main reasons for the 
performance gap between the brain and contemporary silicon-
based neural networks is that the silicon systems do not take full 
advantage of the properties of neural networks which can save 
power. This work seeks to take advantage of these properties to 
build efficient neural networks in hardware. 

NNs are intriguing architectures capable of solving many 
interesting big data problems, such as image & video 
classification [2], natural language processing [3], etc. NNs have 
many different classes and types, but are generally built around 
two basic units: Neurons and synapses. Neurons are the effective 
processing element while synapses act as some form of weighted 
connection between neurons. 

As neuromorphic computing advances, the network sizes 
scale in the number of neurons and in the number of synapses. 
However, the number of synapses scales significantly faster – 
even quadratically in the worst case. Therefore, an efficient 
implementation of the synaptic network is imperative to make 

such systems realizable and an effective alternative computing 
paradigm. 

Resistive memory technology, such as RRAM, is a 
promising artificial synapse [4] with its non-volatile storage 
capability and ability to program a continuum of (analog) 
resistance values as weights. Oscillatory Neural Networks 
(ONNs) [5] can, in theory, utilize a resistive synaptic network to 
control time or phase state variables. Therefore, the use of 
RRAM would alleviate the concerning scaling trends of number 
of synapses in neuromorphic circuits. The basic principle behind 
ONNs is that neurons will interact with each other through 
weighted synaptic connections until the entire system achieves 
global consensus. 

To date, however, no functional large-scale ONNs have been 
demonstrated in silicon. The most hindering difficulty comes 
from the impractical requirement of having a phase-locked loop 
(PLL) for emulating each and every artificial neuron. Even 
implementing a simplistic all-digital PLL may require hundreds 
of CMOS gates [6]. Analog PLLs are smaller in size, but related 
practical implementation issues are also of great concern (e.g., 
non-idealities and process variation). In this paper we address 
some of the aforementioned challenges by proposing an ONN 
architecture that is free of PLLs. 

The remainder of this paper is organized as follows: In 
Section II we describe PLL-based ONNs and the difficulties to 
implement these system. In Section III we describe the 
alternative PLL-free architecture and circuit which does not 
suffer from the same difficulties. Our silicon results for an ONN 
with 100 neurons and 10,000 synapses are described in Section 
IV. Finally, we draw conclusions in Section V. 

II. PLL-BASED OSCILATORY NEURAL NETWORKS 
In one of the earliest works to consider PLL-based ONNs 

[5], the authors built a small-sized network using discrete and 
off-the-shelf PLL components. They have shown that the 
network can memorize and reproduce complex oscillatory 
patterns in which all neurons oscillate with the same frequency, 
but present different phase relations. The analysis made by the 
authors of [5] also proved that all PLLs in an ONN will 
synchronize to the same frequency and to a relative phase of 
either 0° or 180° without a global reference signal.  
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However, this theoretical analysis does not consider real-
world non-idealities such as propagation delay of signals in the 
network. In [7] we postulated that hardware implementation of  
ONNs will only synchronize if their input signals are retimed at 
the input of each neuron to ensure each neuron sees the same 
effective delay. The desynchronization of an ONN with random 
delays on the inputs is shown in Fig. 1 – our simulations show 
that frequency synchronization is not achieved other than during 
a very short initial period. After this initial period, the neuron 
phase keeps changing and the system therefore drifts 
continuously, resulting in an ONN operation that fails to reach 
consensus.  

The figure depicts the phase of the neuron outputs as a 
function of time in nanoseconds. The phase of the output of 
neuron #1 is adopted as the reference phase. Before 200 ns, the 
PLL phases are initialized to either 0 or 180 degrees. The red 
lines represent neurons that should settle to 180 degrees while 
the black lines represent neurons that should settle to 0 degrees. 
The lines labeled with the ‘X’ are from two neurons that should 
shift from 180 to 0 degrees when in correct operation. Instead of 
synchronizing in frequency, some of the neurons fail to 
synchronize, accruing negative phase relative to the reference 
neuron. When the system starts the evaluation phase at 
approximately 200ns, synchronization is briefly achieved. 
Unfortunately, the process of frequency desynchronization 
happens on a fairly similar timescale, so the correct solution is 
quickly lost. 

A delay correction mechanism can be sought to correct 
desynchronization issues. We have implemented a PLL-based 
system with delay correction in 28 nm CMOS using a clock-
based delay circuitry to confirm this hypothesis for an analog 
ONN. Our delay correction scheme uses a technique borrowed 
from classic PLL design known as re-timing [8]. Although it 
demonstrated synchronization, the use of PLLs led to other 
issues that ultimately led to a system that was not sufficiently 
robust to noise. 

Re-timing is implemented in hardware with a clocked-
comparator, which must be designed such that it operates at a 
higher frequency than the neurons. However, the clock period 

should be sufficiently long to accommodate any of the 
individual neuron delays (one can think of this constraint as 
being akin to setup and hold requirements in digital circuits). To 
avoid the use of an external clock for the system when it is in 
evaluation mode, the comparators are all directly clocked from 
the voltage controlled oscillator (VCO) output of one of the 
neurons. The VCO output is a signal with a higher frequency 
than the neuron outputs because it is sent through a frequency 
divider. With a re-timing comparator in the neuron, the system 
synchronizes as predicted. 

However, when asked to store and recover trained patterns, 
the system did not display the expected behavior. Although the 
system intent is to recover the closest stored pattern, the system 
instead returned an arbitrary stored pattern. Even worse, the 
pattern it returned is nondeterministic. That is, even with the 
same initial conditions and initial training, the network settles to 
a stored pattern randomly. The fact that the system returns one 
of the stored patterns indicates that some amount of the system 
functionality is preserved. Unfortunately it is not possible to 
measure the system state directly as such degree of observability 
is typically not available in real hardware unless specifically 
built-in for this purpose.  

Since the system did return a stored pattern, we have tried to 
identify the source of the nondeterministic behavior. A 
reasonable hypothesis is that some noise source causes a 
disturbance to the state of the system that causes it to lose its 
initial condition. One potential noise source is the phase noise of 
the PLLs, specifically the phase disturbance caused by noise on 
the power supply. It was observed in our test environment that 
output switching caused an unexpectedly large noise on the 
analog supply, even with the addition of decoupling capacitors 
on the test board. We were able to quantify the noise as being 
capable of producing 35 degrees of phase disturbance, which is 
rather significant when two given neurons are separated by 180 
degrees. 

More details about the implemented circuit can be found in 
[9], as well as an in-depth discussion of its shortcomings. We 
proceed now by presenting the main contribution of this work, 

 
Fig. 1 Phase of the neuron outputs as a function of time. The PLL-
based implementation loses synchronism after a short initial 
period (circled in blue). 

 
Fig. 2 A subset of the full PLL-free ONN consisting of 5 neurons and 
25 synapses. The full network has 100 neurons and 10,000 synapses. 
Some initialization and control signals are removed for clarity.  



i.e., a circuit that does not rely on PLLs and is largely capable of 
tolerating noise. 

III. PLL-FREE OSCILATORY NEURAL NETWORK – CIRCUIT AND 
ARCHITECTURE 

A scalable and PLL-free ONN architecture is depicted in 
Fig. 2. Only five neurons and 25 synapses are shown in the 
image, while the whole network consists of 100 fully-connected 
neurons (i.e., 10,000 synapses). The network is designed to 
operate at a clock frequency of 1 GHz. The PLL-free ONN 
architecture described in this section has a similar synapse as the 
PLL-based ONN previously described (we found that the 
emulated RRAM synapse network worked as expected and 
therefore could be reused). However, this design has an 
improved neuron design that merits a deeper discussion (i.e., we 
have heavily modified our baseline neuron design to achieve 
robustness). 

The neuron in this system was designed to be primarily 
digital. A digital implementation allows the use of synthesis 
tools and ensures scalability to deeper technology nodes. A 
schematic of the neuron is shown in Fig. 3. 

The general operation of the neuron is described as follows: 
The summed signal from the synaptic network enters the neuron 
from the left side. The summation occurs at the input node, with 
no need for additional circuitry. A clocked comparator rectifies 
this signal to full rail and retimes it to eliminate any delay 
difference seen by the neuron signals around the loop. This 
resulting signal is passed to a phase detector that measures the 
arrival time difference between the input signal and the neuron 
state. This value is recorded in number of clock cycles, and the 
information along with a signal indicating the order of arrival is 
output to the next stage. The next stage is a digital low-pass filter 
(DLPF) that holds the state of the neuron and provides the 
desired damped behavior to ensure noise does not adversely 
affect the system, as was the case with the PLL-based ONN. 
This signal is passed to a voltage controlled phase shifter 
(VCPS), which sets the phase of the neuron output signal 
according to the state of the neuron. Finally, the output is 
connected to the synaptic network to close the loop. 

The step by step operation of this mostly-digital system is 
more observable than the previous design (i.e., easier to debug). 
The system state is stored in registers that can be shifted out after 
each clock cycle to inspect the system behavior at any given 
time. The clock signal can be externally driven one time step at 
a time for debugging, or connected to a high speed 1 GHz source 
to test the system at full speed. 

The input comparator is the only analog component in the 
neuron. The waveform at the input of the neuron is typically not 
a full-rail signal, and therefore, it does not interface well with 
digital circuitry. The comparator is used to measure that signal 
relative to the mid-rail voltage, and rectify it to the full-rail 
voltage for the next stage in the network. Since the comparators 
are all clocked, they also eliminate any delay differences caused 
by weight patterns in the synapse network.  

The comparator area is 54.6 µm2; even with calibration to 
ensure a small input offset voltage, the comparator only 
consumes a small portion of the overall neuron area. In Section 
IV we discuss the need for calibration circuitry and detail some 
of the results for the comparator since it is the only fully-custom 
designed block in the system. The neuron comparator circuit 
layout is shown in Fig. 4. All the remaining neuron components 
are built using digital standard cells and for this reason we show 
no layouts – digital circuits built with standard cells can be 
heavily automated by synthesis tools. 

The neuron phase detector uses the global clock and a 
counter to track the arrival order and phase difference of the 
input and feedback signals. The phase detector is implemented 
with a counter with a small state machine to track the order of 
signal arrival. Moreover, the state of the phase detector can be 
read out via scan chain for debugging purposes. 

The phase difference is passed into a low pass filter that 
holds the system state and provides the filtering that ensures 
stability and robustness to impulse noise (DLPF block in Fig. 3). 

 

Fig. 3 The neuron for the PLL-free ONN. It consists of an input comparator, a phase detector, a digital low pass filter, and a voltage 
controlled phase shifter. 

 
Fig. 4 Layout of the strongARM comparator that uses Statistical 
Element Selection [10] for post-manufacturing tuning of offset 
voltage. The configuration bits are stored in DFFs. It was 
determined from testing that the comparator offset had 
negligible impact on the quality of results for this chip. 

 



This filter consists of an adder/subtractor, registers to hold the 
system state, and a bit shifter that provides damping for the 
dynamics of the system. A schematic of the digital low pass filter 
is shown in Fig. 5. The parameters for this design are b = 4 and 
I = 3. 

Regarding Fig. 5, the signals ΔΦ and sgn are supplied by the 
phase detector. The output of the phase detector is added (or 
subtracted, depending on signal arrival order) from the neuron’s 
state. This is divided by a factor of 2I before being passed to the 
next stage, giving the neuron an over-damped characteristic. The 
low pass filter is also used to set the initial condition of the 
network when using the network as an associative memory. The 
state of the system can be set directly using initi to initialize the 
network. 

The final unit in the neuron is the VCPS. This block takes 
the state of the neuron and translates it into an output signal with 
a phase linearly related to the state of the neuron. It is 
implemented with a set of shift registers with the output of the 
last register feeding the input of the first register, shown in Fig. 
6. The output phase is selected by using the neuron state as the 
selection bits of a MUX that selects the signal from one of the 
shift register outputs. 

The width of the shift registers in the VCPS determines the 
resolution of the neurons in the system. In this system, sixteen 
flip-flops are used to generate the waveform, providing 4 bits of 
resolution. The waveform can be arbitrarily set, so higher 
frequency waveforms can be achieved at the expense of 
resolution. 

Now that we have covered all blocks of the neuron, let us 
introduce the circuitry used for the synapses. We remind the 
reader that our system was designed using muxed silicon 
resistors to emulate RRAM synapses and therefore is designed 
to be compatible with emerging resistive memory technologies. 
The synapses in our ONN are implemented with silicon resistors 
combined with an XOR gate on every synapse, as shown in Fig. 
7. 

Each synapse contains 5 bits of memory for storing the 
weights (therefore providing 32 synapse discrete weights) and 
an additional sign bit. The total resistance of the synapse can 
range from about 645Ω to 20 kΩ (i.e., conductances of 50 µS to 
1.55 mS). While larger resistances are possible and would make 
the resistance range wider, the required silicon area for 
emulating these RRAM synapses would be above our budgeted 
area for the chip. We must note that emulating RRAM incurs 
considerable area that otherwise would not be required. 

The digital values of the synapses are stored in a scan chain 
which drives the transmission gates for each synapse (b0, b1, …, 
b4). The synapse weights were designed to be values that can be 
achieved by demonstrated resistive memories. This is a fairly 
high range, however, so secondarily they were selected 
considering a trade-off between power and speed of the network. 
More power is drawn by smaller synapse resistors, since there is 
a constant voltage across them. On the other hand, if the resistors 
are too large then the RC delay created at the input node of the 
neuron will affect the network dynamics. Although some delay 
can be tolerated due to the re-timing technique, if the delay is 
too close to the length of a clock cycle then random variations 
can cause different delays for different neurons. 

IV. ANALYSIS AND SILICON RESULTS 
This section presents the simulation and post-fabrication 

results of the PLL-free ONN. We show that the PLL-free ONN 
is able to complete the associative memory task successfully, 
and does so consuming less power and area than the PLL-based 
ONN while mitigating the issues previously identified in Section 
II. 

To demonstrate the functionality of this system, we 
performed simulations using three distinct patterns that were 
stored in the synapses using Hebbian learning. A behavioral 
model of the synapses and comparators was implemented in 
Verilog to allow for efficient simulation (electrical simulation of 
the entire chip is not feasible). The behavioral model takes the 
output of each neuron, sums them with weighted factors based 
on the synapse network, and then outputs either high or low 
based on whether the overall sum is positive or negative. Our 

 

Fig. 6 The voltage controlled phase shifter. 

 
Fig. 7 Synapses used in the ONN chip to emulate 
programmable RRAM synapses [4]. 

 
Fig. 5 Schematic of the digital low pass filter. 

 



simulations shown that the output of a given neuron starts at an 
incorrect phase, but over the course of a few cycles it is corrected 
by interacting with other the neighboring neurons. 

A system with 100 neurons fully-connected through 10,000 
synapses was implemented in TSMC 28 nm CMOS on a 1.8 mm 
by 1.8 mm die. A microphotograph of the chip is shown in Fig. 
8. The chip contains approximately 6.3 million transistors and 
was designed to operate at 1 GHz. The synapses consume a total 
area of 1.69mm2, while the neurons consume a total area of 
0.0275mm2. Since there are 100 neurons, each neuron has an 
approximate area of 275 µm2.  

As highlighted in Fig. 8, the emulated RRAM synapses take 
the majority of the core area of the chip. The ratio of neuron vs 
synapse area would be considerably different if actual RRAM 
was used, therefore enabling the proposed architecture to scale 
very favorably.  

The fabricated chip was tested as an associative memory to 
confirm its functionality. For example, the system can be used 
to store an “A” pattern and a “B” pattern, whereby each neuron 
represents one pixel. As expected, the chip returns the stored 
pattern that is closest to the distorted input (see Fig. 9). The 
implemented system can serially output the value of each 
neuron, line by line and column by column, as a one-bit digital 
output from which we can reconstruct the image pattern as 
shown in Fig. 9. Other patterns were tested similarly, and the 
behavior matched what was expected from theoretical analyses 
concerning training methods and spurious stored patterns.  

The power and area metrics for this system are given in 
Table I, and shown to compare favorably to our PLL-based 
ONN that would not scale, and to the TrueNorth neural network 
[11].  

Compared to the TrueNorth chip, there are a few interesting 
points to consider. First, as with the PLL-based ONN, the neuron 
power is higher in the PLL-free ONN than in TrueNorth. This is 
balanced by the fact that the system is operating at a much higher 
frequency (250,000 times higher). Therefore, the neuron power 
is normalized by the operating speed to estimate the energy per 
operation, and using this metric the PLL-free ONN is 
significantly better than the TrueNorth results. It makes up for 
higher power by having much higher throughput. 

It is also important to consider the scale of the networks in 
question. The TrueNorth system is significantly larger than the 
PLL-free ONN in terms of number of neurons. The power is 
normalized by this neuron count to get a power per neuron, but 
it is important to note that this does not take into account the 
inevitable overhead of system scaling. The larger the system, the 
more overhead will be needed for long distance communications 
and skew correction. Therefore, although the energy per 
operation numbers are very promising, they should be taken as 
optimistic. Despite this, since the energy per operation is an 
order of magnitude lower in the PLL-free ONN, it is still a 
promising path to consider. 

Finally, the area of the neurons in TrueNorth is less than 
those in the PLL-free ONN, but this is primarily due to the 
silicon resistance synapses that were used to emulate the 
RRAM. With access to scalable RRAM, this area comparison 
would be much more favorable. 

A. Statistical Element Selection 
As we previously mentioned, the comparator is a full custom 

analog block with additional calibration circuitry. The 
calibration technique used in this design is referred to as 
statistical element selection (SES) [10]. 

Each comparator is designed and calibrated to achieve an 
offset voltage with a standard deviation of less than 1 mV. The 
comparator at the input to the neuron was designed based on the 
comparators described in [10]. These comparators use 
differential pairs with inputs IN+ and IN-. To apply SES, many 
copies of the differential pair are made. While all pairs are 
connected to the same input pair, only a subset of these pairs are 
selected such that each other's input offset voltages are cancelled 
out, therefore creating a comparator with low input offset. For 
each comparator, k input pairs are selected of N possible input 
pairs. 

To build a comparator using SES, the number of selected and 
possible input pairs must be selected to meet the specifications. 

 

 

Fig. 8 Chip microphotograph. 

 
Fig. 9 PLL-free ONN acts as an associative memory. The distorted 
inputs are corrected to undistorted outputs. The outputs are stored in a 
scan chain, which is scanned out from the chip after the internal state 
has settled. 
 

 

1 01 0 0 00 0 1 1… …
serialized output (line 2, columns 0-9)

TABLE I 
NEURAL NETWORK PERFORMANCE COMPARISON   

Design This work PLL-based 
ONN 

TrueNorth [11] 

Tech.  28 nm 28 nm 28 nm 
Neurons  100 20 871936 

Area/Neur 275 µm2 1000 µm2 14.3 µm2 
Pow/Neur 303 µW 550 µW 72.3 nW 
Time/Op   4 ns 4 ns 1 ms 

Energy/Op 1.21 pJ 2.20 pJ 72.3 pJ 
 



The first step is to find the standard deviation of the input offset 
voltage of an individual input pair in this technology. For this 
design, 500 Monte Carlo trials were run on the entire 
comparator, and the input offset voltage was found to have a 
normal distribution centered around 0V with a value of 
37.60mV. Next, the same number of trials was run varying only 
the parameters on the input pair, and this yielded an input offset 
voltage of 36.34mV. This result indicates that the majority of 
input offset variation comes from the input pair. 

Once the standard deviation of the input offset voltage is 
found, that information can be used to select the number of input 
pairs to build (N) and the number of those devices to select (k). 
The target for this design was an input o 
set voltage of 1mV with a yield of 70%. This is a smaller yield 
than would be desirable for a production chip, but it was targeted 
since 1mV is a particularly aggressive specification that was 
selected as a reasonable margin of safety. 

The optimal point in this case was N = 15; k = 5. This chosen 
configuration was simulated in SPICE to ensure it would 
function correctly at 1 GHz. Our chip measurements confirmed 
that the SES technique was successful in achieving a small offset 
voltage on all of the comparators. This result is shown in Fig. 
10. The orange bars represent the universe of possible offsets 
that can be measured if comparators are selected at random. 
However, by using SES the input offset can be restricted a 
narrow band of approximately 1mV (purple bars).  

B. Potential Design improvements 
The detailed analysis of the behavior of this chip reveals that 

there is still some room for improvement in neuron design to 
provide a faster system with a less noisy neuron state. There are 
two areas in this design where improvements can be made with 
additional research, the digital low pass filter and the input 
comparator. For the digital low pass filter, the results of 
measuring this system indicate that it may be possible that a 
better filter could be used to more aggressively filter the high 
frequency noise seen in the neuron state. There is also a potential 
to improve the filtering by including more complex logic in the 
phase detector so that it is insensitive to high frequency changes. 
A more complex filter, while requiring more area, may allow the 
network to settle accurately in fewer cycles.  

For the input comparator, the offset voltage value of 1mV 
was selected to be very conservative in case offset voltage was 
the limiting factor in the efficacy of the design. However, with 
many work vectors the swing on the input of a neuron will be 
much larger than 1 mV, as this is a corner case where the 
consensus is very weak among the neighbors. With further 
research, it may be possible to avoid these situations with careful 
weight training, or feedback-based training. This would allow 
for a more relaxed input offset voltage specification for the 
comparator. A simpler comparator design would save neuron 
area, and more importantly significant design and calibration 
time.  

V. CONCLUSIONS 
We have designed and fabricated a PLL-free ONN in 28nm 

CMOS based on the lessons learned from PLL-based ONNs and 
their difficulty to implement. Combining a PLL-free neuron 
design, which is smaller can be optimized using digital synthesis 
tools, with the SES technique, we were able to design a larger 
network containing 100 neurons and 10,000 synapses. The 
neurons in the network are more area and power efficient than 
those in the PLL-based ONN, and more importantly the overall 
system can perform pattern recovery successfully. 

This chip demonstrates that the phase-based paradigm is 
useful for efficient neural networks in hardware that can take 
advantage of resistive memory for synaptic networks. By 
continuing to focus on primarily digital neurons, it is possible to 
take advantage of digital signal processing techniques to even 
further improve the performance of a phase-based ONN. This 
neural paradigm provides a path forward for building neurons 
that can scale along with emerging synapses to build efficient 
ONNs in hardware. 

In conclusion, PLL-free ONNs are a promising architecture 
for large scale implementations that utilizes the benefits of 
scalable non-volatile RRAM technology. Overall, the use of 
emerging memory technology and mixed signal techniques 
provides a promising path forward for deeply scaled, efficient 
neural networks. 
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