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Abstract—Implementing scalable and effective synaptic
networks will enable neuromorphic computing to deliver on its
promise of revolutionizing computing. RRAM represents the most
promising technology for realizing the fully connected synapse
network: By using programmable resistive elements as weights,
RRAM can modulate the strength of synapses in a neural network
architecture. Oscillatory Neural Networks (ONNs) that are based
on phase-locked loop (PLL) neurons are compatible with the
resistive synapses but otherwise rather impractical. In this paper,
A PLL-free ONN is implemented in 28 nm CMOS and compared
to its PLL-based counterpart. Our silicon results show that the
PLL-free architecture is compatible with resistive synapses,
addresses practical implementation issues for improved
robustness, and demonstrates favorable energy consumption
compared to state-of-the-art NNs.
network,
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I. INTRODUCTION

Neural networks (NNs) are systems inspired by the brain.
The brain is extremely power efficient; it is able to solve
complex image and audio processing problems while
consuming less than 20W [1]. In fact, biological systems
outperform any modern computer by orders of magnitude in
terms of power efficiency. One of the main reasons for the
performance gap between the brain and contemporary silicon-
based neural networks is that the silicon systems do not take full
advantage of the properties of neural networks which can save
power. This work seeks to take advantage of these properties to
build efficient neural networks in hardware.

NNs are intriguing architectures capable of solving many
interesting big data problems, such as image & video
classification [2], natural language processing [3], etc. NNs have
many different classes and types, but are generally built around
two basic units: Neurons and synapses. Neurons are the effective
processing element while synapses act as some form of weighted
connection between neurons.

As neuromorphic computing advances, the network sizes
scale in the number of neurons and in the number of synapses.
However, the number of synapses scales significantly faster —
even quadratically in the worst case. Therefore, an efficient
implementation of the synaptic network is imperative to make

Samuel Pagliarini
ECE Department
Carnegie Mellon University
Pittsburgh, USA
pagliarini@cmu.edu

This work was supported in part by the National Science Foundation
under contract CCF-1714334.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Lawrence Pileggi
ECE Department
Carnegie Mellon University
Pittsburgh, USA
pileggi@cmu.edu

such systems realizable and an effective alternative computing
paradigm.

Resistive memory technology, such as RRAM, is a
promising artificial synapse [4] with its non-volatile storage
capability and ability to program a continuum of (analog)
resistance values as weights. Oscillatory Neural Networks
(ONNSs) [5] can, in theory, utilize a resistive synaptic network to
control time or phase state variables. Therefore, the use of
RRAM would alleviate the concerning scaling trends of number
of synapses in neuromorphic circuits. The basic principle behind
ONNSs is that neurons will interact with each other through
weighted synaptic connections until the entire system achieves
global consensus.

To date, however, no functional large-scale ONNs have been
demonstrated in silicon. The most hindering difficulty comes
from the impractical requirement of having a phase-locked loop
(PLL) for emulating each and every artificial neuron. Even
implementing a simplistic all-digital PLL may require hundreds
of CMOS gates [6]. Analog PLLs are smaller in size, but related
practical implementation issues are also of great concern (e.g.,
non-idealities and process variation). In this paper we address
some of the aforementioned challenges by proposing an ONN
architecture that is free of PLLs.

The remainder of this paper is organized as follows: In
Section II we describe PLL-based ONNs and the difficulties to
implement these system. In Section III we describe the
alternative PLL-free architecture and circuit which does not
suffer from the same difficulties. Our silicon results for an ONN
with 100 neurons and 10,000 synapses are described in Section
IV. Finally, we draw conclusions in Section V.

II. PLL-BASED OSCILATORY NEURAL NETWORKS

In one of the earliest works to consider PLL-based ONNs
[5], the authors built a small-sized network using discrete and
off-the-shelf PLL components. They have shown that the
network can memorize and reproduce complex oscillatory
patterns in which all neurons oscillate with the same frequency,
but present different phase relations. The analysis made by the
authors of [5] also proved that all PLLs in an ONN will
synchronize to the same frequency and to a relative phase of
either 0° or 180° without a global reference signal.
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Fig. 1 Phase of the neuron outputs as a function of time. The PLL-
based implementation loses synchronism after a short initial
period (circled in blue).

However, this theoretical analysis does not consider real-
world non-idealities such as propagation delay of signals in the
network. In [7] we postulated that hardware implementation of
ONNSs will only synchronize if their input signals are retimed at
the input of each neuron to ensure each neuron sees the same
effective delay. The desynchronization of an ONN with random
delays on the inputs is shown in Fig. 1 — our simulations show
that frequency synchronization is not achieved other than during
a very short initial period. After this initial period, the neuron
phase keeps changing and the system therefore drifts
continuously, resulting in an ONN operation that fails to reach
consensus.

The figure depicts the phase of the neuron outputs as a
function of time in nanoseconds. The phase of the output of
neuron #1 is adopted as the reference phase. Before 200 ns, the
PLL phases are initialized to either 0 or 180 degrees. The red
lines represent neurons that should settle to 180 degrees while
the black lines represent neurons that should settle to 0 degrees.
The lines labeled with the ‘X’ are from two neurons that should
shift from 180 to 0 degrees when in correct operation. Instead of
synchronizing in frequency, some of the neurons fail to
synchronize, accruing negative phase relative to the reference
neuron. When the system starts the evaluation phase at
approximately 200ns, synchronization is briefly achieved.
Unfortunately, the process of frequency desynchronization
happens on a fairly similar timescale, so the correct solution is
quickly lost.

A delay correction mechanism can be sought to correct
desynchronization issues. We have implemented a PLL-based
system with delay correction in 28 nm CMOS using a clock-
based delay circuitry to confirm this hypothesis for an analog
ONN. Our delay correction scheme uses a technique borrowed
from classic PLL design known as re-timing [8]. Although it
demonstrated synchronization, the use of PLLs led to other
issues that ultimately led to a system that was not sufficiently
robust to noise.

Re-timing is implemented in hardware with a clocked-
comparator, which must be designed such that it operates at a
higher frequency than the neurons. However, the clock period

should be sufficiently long to accommodate any of the
individual neuron delays (one can think of this constraint as
being akin to setup and hold requirements in digital circuits). To
avoid the use of an external clock for the system when it is in
evaluation mode, the comparators are all directly clocked from
the voltage controlled oscillator (VCO) output of one of the
neurons. The VCO output is a signal with a higher frequency
than the neuron outputs because it is sent through a frequency
divider. With a re-timing comparator in the neuron, the system
synchronizes as predicted.

However, when asked to store and recover trained patterns,
the system did not display the expected behavior. Although the
system intent is to recover the closest stored pattern, the system
instead returned an arbitrary stored pattern. Even worse, the
pattern it returned is nondeterministic. That is, even with the
same initial conditions and initial training, the network settles to
a stored pattern randomly. The fact that the system returns one
of the stored patterns indicates that some amount of the system
functionality is preserved. Unfortunately it is not possible to
measure the system state directly as such degree of observability
is typically not available in real hardware unless specifically
built-in for this purpose.

Since the system did return a stored pattern, we have tried to
identify the source of the nondeterministic behavior. A
reasonable hypothesis is that some noise source causes a
disturbance to the state of the system that causes it to lose its
initial condition. One potential noise source is the phase noise of
the PLLs, specifically the phase disturbance caused by noise on
the power supply. It was observed in our test environment that
output switching caused an unexpectedly large noise on the
analog supply, even with the addition of decoupling capacitors
on the test board. We were able to quantify the noise as being
capable of producing 35 degrees of phase disturbance, which is
rather significant when two given neurons are separated by 180
degrees.

More details about the implemented circuit can be found in
[9], as well as an in-depth discussion of its shortcomings. We
proceed now by presenting the main contribution of this work,
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Fig. 2 A subset of the full PLL-free ONN consisting of 5 neurons and
25 synapses. The full network has 100 neurons and 10,000 synapses.
Some initialization and control signals are removed for clarity.
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Fig. 3 The neuron for the PLL-free ONN. It consists of an input comparator, a phase detector, a digital low pass filter, and a voltage

controlled phase shifter.

i.e., a circuit that does not rely on PLLs and is largely capable of

tolerating noise.

III. PLL-FREE OSCILATORY NEURAL NETWORK — CIRCUIT AND
ARCHITECTURE

A scalable and PLL-free ONN architecture is depicted in
Fig. 2. Only five neurons and 25 synapses are shown in the
image, while the whole network consists of 100 fully-connected
neurons (i.e., 10,000 synapses). The network is designed to
operate at a clock frequency of 1 GHz. The PLL-free ONN
architecture described in this section has a similar synapse as the
PLL-based ONN previously described (we found that the
emulated RRAM synapse network worked as expected and
therefore could be reused). However, this design has an
improved neuron design that merits a deeper discussion (i.e., we
have heavily modified our baseline neuron design to achieve
robustness).

The neuron in this system was designed to be primarily
digital. A digital implementation allows the use of synthesis
tools and ensures scalability to deeper technology nodes. A
schematic of the neuron is shown in Fig. 3.

The general operation of the neuron is described as follows:
The summed signal from the synaptic network enters the neuron
from the left side. The summation occurs at the input node, with
no need for additional circuitry. A clocked comparator rectifies
this signal to full rail and retimes it to eliminate any delay
difference seen by the neuron signals around the loop. This
resulting signal is passed to a phase detector that measures the
arrival time difference between the input signal and the neuron
state. This value is recorded in number of clock cycles, and the
information along with a signal indicating the order of arrival is
output to the next stage. The next stage is a digital low-pass filter
(DLPF) that holds the state of the neuron and provides the
desired damped behavior to ensure noise does not adversely
affect the system, as was the case with the PLL-based ONN.
This signal is passed to a voltage controlled phase shifter
(VCPS), which sets the phase of the neuron output signal
according to the state of the neuron. Finally, the output is
connected to the synaptic network to close the loop.

The step by step operation of this mostly-digital system is
more observable than the previous design (i.e., easier to debug).
The system state is stored in registers that can be shifted out after
each clock cycle to inspect the system behavior at any given
time. The clock signal can be externally driven one time step at
a time for debugging, or connected to a high speed 1 GHz source
to test the system at full speed.
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Fig. 4 Layout of the strongARM comparator that uses Statistical
Element Selection [10] for post-manufacturing tuning of offset
voltage. The configuration bits are stored in DFFs. It was
determined from testing that the comparator offset had
negligible impact on the quality of results for this chip.

The input comparator is the only analog component in the
neuron. The waveform at the input of the neuron is typically not
a full-rail signal, and therefore, it does not interface well with
digital circuitry. The comparator is used to measure that signal
relative to the mid-rail voltage, and rectify it to the full-rail
voltage for the next stage in the network. Since the comparators
are all clocked, they also eliminate any delay differences caused
by weight patterns in the synapse network.

The comparator area is 54.6 um?; even with calibration to
ensure a small input offset voltage, the comparator only
consumes a small portion of the overall neuron area. In Section
IV we discuss the need for calibration circuitry and detail some
of the results for the comparator since it is the only fully-custom
designed block in the system. The neuron comparator circuit
layout is shown in Fig. 4. All the remaining neuron components
are built using digital standard cells and for this reason we show
no layouts — digital circuits built with standard cells can be
heavily automated by synthesis tools.

The neuron phase detector uses the global clock and a
counter to track the arrival order and phase difference of the
input and feedback signals. The phase detector is implemented
with a counter with a small state machine to track the order of
signal arrival. Moreover, the state of the phase detector can be
read out via scan chain for debugging purposes.

The phase difference is passed into a low pass filter that
holds the system state and provides the filtering that ensures
stability and robustness to impulse noise (DLPF block in Fig. 3).
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Fig. 5 Schematic of the digital low pass filter.

This filter consists of an adder/subtractor, registers to hold the
system state, and a bit shifter that provides damping for the
dynamics of the system. A schematic of the digital low pass filter
is shown in Fig. 5. The parameters for this design are b =4 and
I=3.

Regarding Fig. 5, the signals 4® and sgn are supplied by the
phase detector. The output of the phase detector is added (or
subtracted, depending on signal arrival order) from the neuron’s
state. This is divided by a factor of 2! before being passed to the
next stage, giving the neuron an over-damped characteristic. The
low pass filter is also used to set the initial condition of the
network when using the network as an associative memory. The
state of the system can be set directly using init; to initialize the
network.

The final unit in the neuron is the VCPS. This block takes
the state of the neuron and translates it into an output signal with
a phase linearly related to the state of the neuron. It is
implemented with a set of shift registers with the output of the
last register feeding the input of the first register, shown in Fig.
6. The output phase is selected by using the neuron state as the
selection bits of a MUX that selects the signal from one of the
shift register outputs.

The width of the shift registers in the VCPS determines the
resolution of the neurons in the system. In this system, sixteen
flip-flops are used to generate the waveform, providing 4 bits of
resolution. The waveform can be arbitrarily set, so higher
frequency waveforms can be achieved at the expense of
resolution.

Now that we have covered all blocks of the neuron, let us
introduce the circuitry used for the synapses. We remind the
reader that our system was designed using muxed silicon
resistors to emulate RRAM synapses and therefore is designed
to be compatible with emerging resistive memory technologies.
The synapses in our ONN are implemented with silicon resistors
combined with an XOR gate on every synapse, as shown in Fig.
7.

Each synapse contains 5 bits of memory for storing the
weights (therefore providing 32 synapse discrete weights) and
an additional sign bit. The total resistance of the synapse can
range from about 645Q to 20 kQ (i.e., conductances of 50 uS to
1.55 mS). While larger resistances are possible and would make
the resistance range wider, the required silicon area for
emulating these RRAM synapses would be above our budgeted
area for the chip. We must note that emulating RRAM incurs
considerable area that otherwise would not be required.
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Fig. 6 The voltage controlled phase shifter.
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Fig. 7 Synapses used in the ONN chip to emulate
programmable RRAM synapses [4].

The digital values of the synapses are stored in a scan chain
which drives the transmission gates for each synapse (bo, by, ...,
bs). The synapse weights were designed to be values that can be
achieved by demonstrated resistive memories. This is a fairly
high range, however, so secondarily they were selected
considering a trade-off between power and speed of the network.
More power is drawn by smaller synapse resistors, since there is
a constant voltage across them. On the other hand, if the resistors
are too large then the RC delay created at the input node of the
neuron will affect the network dynamics. Although some delay
can be tolerated due to the re-timing technique, if the delay is
too close to the length of a clock cycle then random variations
can cause different delays for different neurons.

IV. ANALYSIS AND SILICON RESULTS

This section presents the simulation and post-fabrication
results of the PLL-free ONN. We show that the PLL-free ONN
is able to complete the associative memory task successfully,
and does so consuming less power and area than the PLL-based
ONN while mitigating the issues previously identified in Section
I1.

To demonstrate the functionality of this system, we
performed simulations using three distinct patterns that were
stored in the synapses using Hebbian learning. A behavioral
model of the synapses and comparators was implemented in
Verilog to allow for efficient simulation (electrical simulation of
the entire chip is not feasible). The behavioral model takes the
output of each neuron, sums them with weighted factors based
on the synapse network, and then outputs either high or low
based on whether the overall sum is positive or negative. Our



TABLE I
NEURAL NETWORK PERFORMANCE COMPARISON

Design  This work PLL-based TrueNorth [11]
ONN
Tech. 28 nm 28 nm 28 nm
Neurons 100 20 871936
Area/Neur 275 um? 1000 pm? 14.3 um?
Pow/Neur 303 uW 550 uW 72.3 nW
Time/Op 4 ns 4 ns 1 ms
Energy/Op 1.21 pJ 2.20 pJ 72.3 pJ

Synapses

1.8mm

1. mm

Fig. 8 Chip microphotograph.

simulations shown that the output of a given neuron starts at an
incorrect phase, but over the course of a few cycles it is corrected
by interacting with other the neighboring neurons.

A system with 100 neurons fully-connected through 10,000
synapses was implemented in TSMC 28 nm CMOS on a 1.8 mm
by 1.8 mm die. A microphotograph of the chip is shown in Fig.
8. The chip contains approximately 6.3 million transistors and
was designed to operate at 1 GHz. The synapses consume a total
area of 1.69mm?, while the neurons consume a total area of
0.0275mm?. Since there are 100 neurons, each neuron has an

approximate area of 275 um?>.

As highlighted in Fig. 8, the emulated RRAM synapses take
the majority of the core area of the chip. The ratio of neuron vs
synapse area would be considerably different if actual RRAM
was used, therefore enabling the proposed architecture to scale
very favorably.

The fabricated chip was tested as an associative memory to
confirm its functionality. For example, the system can be used
to store an “A” pattern and a “B” pattern, whereby each neuron
represents one pixel. As expected, the chip returns the stored
pattern that is closest to the distorted input (see Fig. 9). The
implemented system can serially output the value of each
neuron, line by line and column by column, as a one-bit digital
output from which we can reconstruct the image pattern as
shown in Fig. 9. Other patterns were tested similarly, and the
behavior matched what was expected from theoretical analyses
concerning training methods and spurious stored patterns.

The power and area metrics for this system are given in
Table I, and shown to compare favorably to our PLL-based
ONN that would not scale, and to the TrueNorth neural network

[11].
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Fig. 9 PLL-free ONN acts as an associative memory. The distorted
inputs are corrected to undistorted outputs. The outputs are stored in a
scan chain, which is scanned out from the chip after the internal state
has settled.

Compared to the TrueNorth chip, there are a few interesting
points to consider. First, as with the PLL-based ONN, the neuron
power is higher in the PLL-free ONN than in TrueNorth. This is
balanced by the fact that the system is operating at a much higher
frequency (250,000 times higher). Therefore, the neuron power
is normalized by the operating speed to estimate the energy per
operation, and using this metric the PLL-free ONN is
significantly better than the TrueNorth results. It makes up for
higher power by having much higher throughput.

It is also important to consider the scale of the networks in
question. The TrueNorth system is significantly larger than the
PLL-free ONN in terms of number of neurons. The power is
normalized by this neuron count to get a power per neuron, but
it is important to note that this does not take into account the
inevitable overhead of system scaling. The larger the system, the
more overhead will be needed for long distance communications
and skew correction. Therefore, although the energy per
operation numbers are very promising, they should be taken as
optimistic. Despite this, since the energy per operation is an
order of magnitude lower in the PLL-free ONN, it is still a
promising path to consider.

Finally, the area of the neurons in TrueNorth is less than
those in the PLL-free ONN, but this is primarily due to the
silicon resistance synapses that were used to emulate the
RRAM. With access to scalable RRAM, this area comparison
would be much more favorable.

A. Statistical Element Selection

As we previously mentioned, the comparator is a full custom
analog block with additional calibration circuitry. The
calibration technique used in this design is referred to as
statistical element selection (SES) [10].

Each comparator is designed and calibrated to achieve an
offset voltage with a standard deviation of less than 1 mV. The
comparator at the input to the neuron was designed based on the
comparators described in [10]. These comparators use
differential pairs with inputs IN+ and IN-. To apply SES, many
copies of the differential pair are made. While all pairs are
connected to the same input pair, only a subset of these pairs are
selected such that each other's input offset voltages are cancelled
out, therefore creating a comparator with low input offset. For
each comparator, & input pairs are selected of N possible input
pairs.

To build a comparator using SES, the number of selected and
possible input pairs must be selected to meet the specifications.
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Fig. 10 Comparison of the SES-picked comparators versus typical
conguration.

The first step is to find the standard deviation of the input offset
voltage of an individual input pair in this technology. For this
design, 500 Monte Carlo trials were run on the entire
comparator, and the input offset voltage was found to have a
normal distribution centered around OV with a value of
37.60mV. Next, the same number of trials was run varying only
the parameters on the input pair, and this yielded an input offset
voltage of 36.34mV. This result indicates that the majority of
input offset variation comes from the input pair.

Once the standard deviation of the input offset voltage is
found, that information can be used to select the number of input
pairs to build (N) and the number of those devices to select (k).
The target for this design was an input o
set voltage of ImV with a yield of 70%. This is a smaller yield
than would be desirable for a production chip, but it was targeted
since 1mV is a particularly aggressive specification that was
selected as a reasonable margin of safety.

The optimal point in this case was N = 15; k=5. This chosen
configuration was simulated in SPICE to ensure it would
function correctly at 1 GHz. Our chip measurements confirmed
that the SES technique was successful in achieving a small offset
voltage on all of the comparators. This result is shown in Fig.
10. The orange bars represent the universe of possible offsets
that can be measured if comparators are selected at random.
However, by using SES the input offset can be restricted a
narrow band of approximately 1mV (purple bars).

B. Potential Design improvements

The detailed analysis of the behavior of this chip reveals that
there is still some room for improvement in neuron design to
provide a faster system with a less noisy neuron state. There are
two areas in this design where improvements can be made with
additional research, the digital low pass filter and the input
comparator. For the digital low pass filter, the results of
measuring this system indicate that it may be possible that a
better filter could be used to more aggressively filter the high
frequency noise seen in the neuron state. There is also a potential
to improve the filtering by including more complex logic in the
phase detector so that it is insensitive to high frequency changes.
A more complex filter, while requiring more area, may allow the
network to settle accurately in fewer cycles.

For the input comparator, the offset voltage value of ImV
was selected to be very conservative in case offset voltage was
the limiting factor in the efficacy of the design. However, with
many work vectors the swing on the input of a neuron will be
much larger than 1 mV, as this is a corner case where the
consensus is very weak among the neighbors. With further
research, it may be possible to avoid these situations with careful
weight training, or feedback-based training. This would allow
for a more relaxed input offset voltage specification for the
comparator. A simpler comparator design would save neuron
area, and more importantly significant design and calibration
time.

V. CONCLUSIONS

We have designed and fabricated a PLL-free ONN in 28nm
CMOS based on the lessons learned from PLL-based ONNs and
their difficulty to implement. Combining a PLL-free neuron
design, which is smaller can be optimized using digital synthesis
tools, with the SES technique, we were able to design a larger
network containing 100 neurons and 10,000 synapses. The
neurons in the network are more area and power efficient than
those in the PLL-based ONN, and more importantly the overall
system can perform pattern recovery successfully.

This chip demonstrates that the phase-based paradigm is
useful for efficient neural networks in hardware that can take
advantage of resistive memory for synaptic networks. By
continuing to focus on primarily digital neurons, it is possible to
take advantage of digital signal processing techniques to even
further improve the performance of a phase-based ONN. This
neural paradigm provides a path forward for building neurons
that can scale along with emerging synapses to build efficient
ONN:s in hardware.

In conclusion, PLL-free ONNSs are a promising architecture
for large scale implementations that utilizes the benefits of
scalable non-volatile RRAM technology. Overall, the use of
emerging memory technology and mixed signal techniques
provides a promising path forward for deeply scaled, efficient
neural networks.
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