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a b s t r a c t 

Mechanical properties and failure mechanisms of sandwich panels with “corrugated-pyramidal” hierarchi- 
cal lattice cores were investigated through analytical modeling and detailed numerical simulations. This 
included studying the behavior of hierarchical lattice core material under compression and shearing, as 
well as investigating the mechanical performance of sandwich panels subjected to in-plane compression 
and three-point bending. Failure maps were constructed for the hierarchical lattice cores, as well as sand- 
wich panels with hierarchical lattice cores by deriving analytical closed-form expressions for strength for 
all possible failure modes under each loading. 3D printed samples were manufactured and tested un- 
der out-of-plane compression in order to provide limited experimental validation of the study. Our study 
provides insights into the role of structural hierarchy in tuning the mechanical behavior of sandwich 
structures, and new opportunities for designing ultra-lightweight lattice cores with optimal performance. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Unique mechanical properties, as well as multifunctional ad- 
vantages offered by lattice materials with open-cell configurations 
make them an attractive choice for designing and constructing 
lightweight multifunctional structures ( Roper, 2011; Barnett et al., 
20 01; Evans, 20 01; Ashby, 20 01; Wei et al., 2016; Zok et al., 2016 ). 
In this context, numerical simulations and theoretical studies have 
been previously employed to investigate the effects of geometry, 
mass density, and structural defects on mechanical properties 
( Ajdari et al., 2008 ) and deformation ( Liao et al., 2014; Wang et al., 
2013 ) of two-dimensional periodic lattice materials. The effects of 
temperature on the mechanical properties of composite sandwich 
structures also have been studied through experiments ( Liu et al., 
2014, 2015 ). Currently, various types of three-dimensional periodic 
truss sandwich structures with high specific strength and high 
specific stiffness have emerged and their superior mechanical 
properties have been broadly recognized ( Vaziri and Xue, 2007; 
Ajdari et al., 2011; Lim and Kang, 2006; Liu et al., 2007; Dong 
et al., 2015; Schaedler et al., 2011 ). Introducing hierarchy in 
the structural organization of lattice materials can potentially 
improve their mechanical and multifunctional properties ( Han 
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et al., 2015; Xiong et al., 2015; Mousanezhad et al., 2015, 2016 ). 
Lakes (1993) is amongst the pioneers in investigating the role of 
structural hierarchy in the mechanical properties of natural and 
man-made materials. Taking wood ( Deshpande et al., 2006 ) and 
bone ( Weaver et al., 2007 ) as examples of biological materials with 
hierarchical architecture, their internal microstructure is composed 
of tiny truss-like elements contributing to their enhanced energy 
absorption and anti-vibration characteristics. Even at nanoscales, 
it has been shown that carbon nanotube ropes with hierarchical 
helical structures exhibit superior properties such as larger failure 
strain, easily tunable elastic properties, and higher energy storage 
ability compared to bundles of straight nanotubes ( Zhao et al., 
2014 ). Therefore, integrating the concept of structural hierarchy 
with man-made lattice structures has a potential of improve their 
mechanical performance. 

In this context, structural hierarchy has been recently inte- 
grated into honeycomb structures to broaden the achievable range 
of elastic and plastic responses ( Ajdari et al., 2012; Mousanezhad 
et al., 2016; Haghpanah et al., 2013, 2014; Oftadeh et al., 2014a,b ). 
The results show that honeycombs with 1 st and 2 nd orders of hier- 
archy are capable of attaining specific Young’s modulus as much as 
2 and 3.5 times that of a regular honeycomb with the same mass 
( Ajdari et al., 2012 ), and can further be increased at higher levels 
of hierarchy ( Oftadeh et al., 2014a,b ). Recently, structural hierarchy 
has been shown to induce the unusual “auxetic” property (i.e., 
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negative Poisson’s ratio) in honeycombs ( Mousanezhad et al., 
2015 ), and enhance the phononic properties of these materials 
( Mousanezhad et al., 2016 ). 

In another set of studies, analytical, numerical, and experi- 
mental investigations are carried out to study the mechanical 
performance of hierarchical corrugated composite sandwich cores 
under out-of-plane compressive and in-plane shearing loads 
( Kazemahvazi et al., 2009; Kazemahvazi and Dan, 2009 ). Again, 
structural hierarchy has been shown to increase the effective 
compressive strength up to seven times greater than those of 
non-hierarchical structures with the same mass at small relative 
densities. Although introducing hierarchy increases manufacturing 
complexity (compared with 1 st order lattice structures), it is also 
shown to have significant potential in improving the structural 
performance of cellular materials ( Ajdari et al., 2012; Kazemahvazi 
et al., 2009; Oftadeh et al., 2014a,b ). 

Under dynamic loading, hierarchical periodic truss sandwich 
structures exhibit enhanced anti-crushing behavior and higher 
specific energy absorption ( Zhang et al., 2013; Fan et al., 2014; 
Qiao and Chen, 2016; Sun et al., 2016a , b ). Yang et al. (2016) intro- 
duce a novel hybrid foam-core/solid-shell structure that inherits 
the advantages of their constituent components (i.e., conventional 
foam and solid-shell structure), in both strength and deforma- 
tion, and can obtain high energy absorption capability. Inspired 
by a luffa sponge hierarchical bio-cellular topology, An and 
Fan (2016) propose a hierarchical aluminum foam cylinder, rein- 
forced by stiff thin-walled carbon fiber reinforced plastic (CFRP) 
tubes, and show that the interaction between the CFRP tubes 
and aluminum foam results in an increase in the specific energy 
absorption of the hierarchical cylinder. 

According to the literature (summarized above), studies on 
the mechanical properties of hierarchical lattice core construc- 
tions have been limited to out-of-plane compression and shear 
loading, and analytical modeling of these structures under lateral 
compressive and three-point bending loads has not yet been 
explored. Here, we investigate the mechanical performance of the 
“corrugated-pyramidal” lattice truss structures under out-of-plane 
and transverse compression, shear, and three-point bending. To 
this end, we first introduce the geometry of these hierarchical 
structures which are based on pyramidal lattice structures intro- 
duced earlier by Wu et al. (2016) . Based on the recently established 
terminology and taxonomy for periodic truss structures ( Zok et al., 
2016 ), our geometry is classified as “compound cubic truss”. Next, 
we derive closed-form expressions for the structural strength 
associated with different possible failure modes, and construct 
failure maps for sandwich panels with hierarchical lattice core 
construction. The effects of structural hierarchy are highlighted by 
comparing the results with those of non-hierarchical counterparts 
(of same mass). 

2. Geometry of hierarchical lattice core 

The original non-hierarchical structure is composed of the 1 st 

order “corrugated-pyramidal” truss core sandwiched between the 
1 st order face sheets, while the 2 nd order structure is achieved 
by replacing each 1 st order truss element with the 2 nd order face 
sheets and a 2 nd order corrugated pyramidal truss core, Fig. 1 . 
Here, for the sake of brevity, the 1 st and 2 nd order lattice cores are 
referred to as core I and II, respectively. Fig. 1 shows a schematic 
diagram of geometrical characteristics of the unit cells of the 
original and 2 nd order structures, where b and b f are the width of 
the 1 st and 2 nd order face sheets, and t f and t c are face sheet and 
strut thickness of the 2 nd order structure in core II, respectively. 
In addition, l and l c are the strut length of core I and core II, re- 
spectively, and ω and ω c are the angles which core I and II struts 
make with their corresponding face sheets, respectively. Finally, α, 

and β are the angles which core I makes with axis 1 and axis 2. 
The relative density, ρ , defined as the ratio of the density of the 
“corrugated-pyramidal” core ρc to that of the parent carbon fiber 
composite, ρcf , is calculated by 

ρ̄ = 
2 A a 

(
2 t f cos ω + t c 

)

l 2 l c cos 3 ω sin 2 ω 
, (1) 

where A a = b f ( l c sin ω c + t f ) denotes the cross-sectional area of the 
1 st order lattice core. 

3. Out-of-plane compression of lattice core 

3.1. Stiffness 

With reference to the method presented by Chen et al. (2012) , 
the equivalent out-of-plane compressive stiffness of the 
“corrugated-pyramidal” 2 nd order lattice truss, normalized by 
the Young’s modulus of the parent material, is (see Appendix for 
details) 

Ē 
E 

= 
2 ξω A I sin 

2 ω 

l 2 cos 2 ω 
, (2) 

where ξω is a non-dimensional parameter, and its corresponding 
expression is 

ξω = sin ω + 
12 ( EI ) I cos 

2 ω 

( EA ) I l 
2 sin ω 

. (3) 

In Eq. (3) , ( EA ) I and ( EI ) I are equivalent compressive stiffness 
and flexural rigidity of core I, respectively, which can be obtained 
using the following equations. 

( EA ) I = 2 E b f t f + E b f 
t 3 c 
l 2 c 
sin 2 ω c cos ω c + E b f t c cos 

3 ω c , (4) 

( EI ) I = 
1 
6 
E b f t 

3 
f + 

1 
2 

(
l c sin ω c + t f 

)2 
E b f t f 

+ 
1 
4 
sin 2 ω c cos 3 ω c l 2 c E b f t c + 

1 
12 

f ( ω c ) E b f t 
3 
c , (5) 

where f( ω c ) = cos ω c + 3sin 2 ω c cos ω c −3sin 2 ω c cos 3 ω c . 
To validate these analytical expressions, finite element (FE) 

based numerical simulations were conducted using commercial 
software ABAQUS 6.13-2 (SIMULIA, Providence, RI). Six different 
types of structures with various relative densities and geometrical 
characteristics were considered for numerical simulations, Table 1 . 
The parent material was assumed to be a carbon fiber-reinforced 
composite with effective compressive stiffness and strength of 
100 GPa and 850 MPa, and Poisson’s ratio of 0.3. 

We performed FE analysis for the lattice core unit cell, shown in 
Fig. 1 . In the simulations, rigid face sheets were tied to the lattice 
core structure at the interface nodes. While the bottom face sheet 
was fixed, a compressive displacement was then applied to the top 
face sheet to simulate core crushing. The models were meshed us- 
ing three-dimensional 8-node linear brick elements with reduced 
integration (i.e., C3D8R element in ABAQUS), and a mesh sensi- 
tivity analysis was performed to guarantee that the results were 
not mesh-dependent. Static-general solver of ABAQUS was used to 
simulate the response of structures under compressive loads. 

Fig. 2 plots the normalized equivalent out-of-plane compressive 
stiffness of the 1 st and 2 nd order lattice trusses as a function of 
the relative density. The dashed and solid lines show the analytical 
expression presented by Eq. (2) , respectively, while the markers 
denote the FE results for the 1 st and 2 nd order structures. An 
excellent agreement is observed between the analytical and FE 
results. The results presented in Fig. 2 shows that the equivalent 
out-of-plane compressive stiffness of the “corrugated-pyramidal”
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Fig. 1. Unit cell of the 1 st order pyramidal (a) and “corrugated-pyramidal” 2 nd order lattice truss (b) with corresponding geometric parameters. 

Table 1 
Dimensions of the six typical specimens for compressive stiffness simulations. 

Structural topologies Relative density (%) ( ρ) Truss-I (mm) ( l ×b f × t f ) Truss-II (mm) ( l c ×b f × t c ) 

1 st order 0.21 41.48 ×1.07 ×0.67 / 
2 nd order 41.48 ×1.07 ×0.33 1.33 ×1.07 ×0.067 
1 st order 0.37 270.54 ×13.04 ×4.53 / 
2 nd order 270.54 ×13.04 ×2.17 8.7 ×13.04 ×0.43 
1 st order 0.67 177.78 ×8.57 ×2.98 / 
2 nd order 177.78 ×8.57 ×2.86 5.71 ×8.57 ×0.28 
1 st order 1.04 75 ×6.02 ×2.37 / 
2 nd order 75 ×6.02 ×1.2 2.41 ×6.02 ×0.12 
1 st order 1.2 622.25 ×60 ×19.73 / 
2 nd order 622.5 ×60 ×10 20 ×60 ×1 
1 st order 1.55 480.83 ×48 ×19.76 / 
2 nd order 480.83 ×48 ×10 15 ×48 ×1 

Fig. 2. Comparisons of compressive stiffness between the 2 nd order lattice truss 
and the 1 st order pyramidal truss with different relative densities. 

2 nd order lattice truss is slightly lower compared to its 1 st order 
counterpart. In contrast to the 1 st order pyramidal truss in which 
the deformation is uniformly distributed between all truss mem- 
bers, for the “corrugated-pyramidal” 2 nd order lattice truss, the 
majority of the load is carried by the 2 nd order face sheets, and 
the 2 nd order truss members make relatively small contribution to 
the overall stiffness of the structure. 

3.2. Strength 

Five competing failure modes for the “corrugated-pyramidal”

2 nd order lattice truss structures subjected to compression were 
considered, as shown in Fig. 3 . Appendix A provides further details 
with regards to these failure modes. Note that we assume that the 
2 nd order face sheets are made of a material that exhibits plastic 
yielding after the initial elastic regime. 

3.2.1. Face sheet wrinkling (FW) of the 2 nd order lattice truss 
This failure mode, shown in Fig. 3 (b), is characterized by local- 

ized short wavelength elastic buckling (or wrinkling) of the face 
sheets of the 2 nd order lattice truss between adjacent nodes. Thus, 
the critical load of buckling of the face sheet, F f , is (see Appendix 
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Fig. 3. Failure modes of the “corrugated-pyramidal” 2 nd order lattice truss: (a) 
“Corrugated-pyramidal” structural hierarchy; (b) Face sheet wrinkling (FW) of the 
2 nd order lattice truss; (c) Face sheet crushing (FC) of the 2 nd order lattice truss; (d) 
Core member buckling (CE) of the 2 nd order lattice truss; (e) Core member crushing 
(CC) of the 2 nd order lattice truss; (f) Macro Euler buckling of the 1 st order pyrami- 
dal truss. 

for details) 

F f = 
π2 ( EI ) f I 

2 µ2 l c 
2 
cos 2 ω c 

, (6) 

where parameter, µ, depends on the conditions of end constraints 
of the buckled struts. For instance, µ=0.5 describes a condition at 
which one end is clamped (i.e., fixed) and the other end is pinned 
(see Appendix Fig. A-1 for details). Moreover, (EI) f 

I denotes the 

flexural rigidity of the 2 nd order face sheets, (E I) f 
I = E b f t f 

3 / 12 . 
The relation between the critical load of buckling of the 2 nd order 
face sheet, F f , and the axial load along core I, F A , is 

F A = (1 + ζc ) F f , (7) 

where 

ζc = 
(EA ) II cos 

3 ω c 

2(EA ) f 
I 

+ 
6 (EI) II cos ω c sin 

2 ω c 

(EA ) f 
I l c 

2 . (8) 

The compressive stiffness of the 2 nd order face sheets, and 
compressive stiffness and flexural rigidity of core II are 

(E A ) f 
I = E b f t f , (9) 

(EA ) II = E b f t c , (10) 

(EI) II = 
E b f t c 

3 

12 
. (11) 

Now, using Eqs. (9) –( 11 ), Eq. (8) reduces to 

ζc = 
t 3 c sin 

2 ω c cos ω c + t c l 2 c cos 
3 ω c 

2 t f l 2 c 
. (12) 

Also, substituting Eq. (6) into Eq. (7) gives the axial load along 
core I as 

F A = 
( 1 + ζc ) π2 E b f t f 

3 

6 l c 
2 
cos 2 ω c 

, (13) 

by using which the equivalent out-of-plane compressive strength 
of the unit cell is calculated by 

σ = 
ξω (1 + ζc ) π2 E b f t f 

3 

3 l 2 l c 
2 
cos 2 ω cos 2 ω c 

. (14) 

3.2.2. Face sheet crushing (FC) of the 2 nd order lattice truss 
This failure mode is achieved by face sheet crushing of the 2 nd 

order lattice truss (rather than elastic buckling), Fig. 3 c. We define 
the collapse strength of the parent material as, σ f , thus the critical 
load associated with face sheet crushing, F f , is 

F f = 2 b f t f σ f . (15) 

Now, by substituting Eq. (15) into Eq. (7) , the axial load, F A , is 

F A = 2 ( 1 + ζc ) b f t f σ f , (16) 

which can further be used to obtain the equivalent out-of-plane 
compressive strength of the unit cell with the following expres- 
sion: 

σ = 
4 ξω (1 + ζc ) b f t f σ f 

l 2 cos 2 ω 
. (17) 

3.2.3. Core member buckling (CE) of the 2 nd order lattice truss 
Under out-of-plane compressive loads, the 2 nd order lattice 

truss can undergo Euler buckling ( Hearn, 1997 ) as shown schemat- 
ically in Fig. 3 (d). The critical load of buckling is then calculated 
by (see Appendix for details) 

F c = 
π2 ( EI ) II 
µ2 l c 

2 , (18) 

where again the parameter µ is assumed to be equal to 0.5 
considering one end of the strut to be clamped and the other end 
as a pin support. Then, the relationship between the axial load, F c , 
along core II and in-plane compressive force, F A , is 

F A = λc F c , (19) 

where 

λc = cos ω c + 
2(EA ) f 

I 
(EA ) II cos 2 ω c 

+ 
12 (EI) II sin 

2 ω c 

(EA ) II l c 
2 
cos ω c 

. (20) 

Now, substituting Eqs. (9) –( 11 ) into Eq. (20) gives 

λc = cos ω c + 
t 2 c sin 

2 ω c 
l 2 c cos ω c 

+ 
2 t f 

t c cos 2 ω c 
. (21) 

Then, according to the relation between the axial force of the 
corrugated core and the out-of-plane compressive load, which are 
shown in Eqs. (A-31) and ( A-34 ) in the Appendix, closed-form 
expression of equivalent out-of-plane compressive strength of the 
unit cell can be obtained as 

σ = 
2 ξω λc π2 E b f t c 

3 

3 l 2 l c 
2 
cos 2 ω 

. (22) 

3.2.4. Core member crushing (CC) of the 2 nd order lattice truss 
This failure mode is characterized by crushing of the 2 nd order 

truss members, Fig. 3 e, where the critical load of failure is 

F c = b f t c σ f . (23) 

Then, similar to the previous calculations, F A = λc F c , and 
equivalent out-of-plane compressive strength of the unit cell is 

σ = 
2 ξω λc b f t c σ f 

l 2 cos 2 ω 
. (24) 
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Fig. 4. “Corrugated-pyramidal” 2 nd order lattice truss structure without the face sheets (a) and with the face sheets (b), fabricated using 3D printing. 

3.2.5. Euler buckling of the 1 st order pyramidal truss 
Fig. 3 (f) shows a schematic diagram of Euler buckling 

( Hearn, 1997 ) of the 1 st order pyramidal truss members, where 
the critical load, F cr , is 

F cr = 
π2 ( EI ) I 
µ2 l 2 

, (25) 

with µ= 0.5. Then, the equivalent out-of-plane compressive 
strength of the unit cell is calculated by 

σ = 8 ξω 
π2 (EI) I 
l 4 cos 2 ω 

. (26) 

3.3. Experiments 

To validate the results presented in the previous sections, we 
performed a limited number of compression tests on 3D printed 
samples of the “corrugated-pyramidal” 2 nd order lattice truss 
structures – Fig. 4 . We performed separate tests on dog-bone sam- 
ples of the parent material to characterize the material properties. 
The stiffness and strength of the parent material were obtained as 
2.56 GPa and 26.62 MPa, respectively. 

During the experiments, the applied compressive load was 
measured by an INSTRON 5569 machine, while a laser exten- 
someter (Epsilon) was used to measure the nominal compressive 
displacement. The compression tests were carried out in the quasi- 
static regime with a nominal displacement rate of 0.5 mm/min at 
room temperature. A minimum of three tests were conducted to 
ensure the repeatability of the results. The geometrical parameters 
of these samples as well as the corresponding failure modes are 
given in Table 3 . The experimental results clearly demonstrate the 
failure modes presented above. 

4. Out-of-plane shearing of 2 nd order lattice truss structure 

4.1. Stiffness 

The equivalent shear stiffness of the “corrugated-pyramidal”

2 nd order lattice truss structure can be estimated from ( Chen et al., 
2012 ) (see Appendix for details) 

G 
E 

= 2 ξαA I 
cos α sin ω 

l 2 cos 2 ω 
, (27) 

where ξα is a dimensionless parameter defined as 

ξα = cos α + 
12 ( EI ) I sin 

2 α

( EA ) I l 
2 cos α

. (28) 

Next, numerical simulations were performed to estimate the 
shear stiffness of the structures subjected to shearing loads. Each 
computational model consisted of three lattice unit cells in the 
longitudinal direction and seven lattice unit cells in the transverse 

directions, and were meshed using 20-node hexahedral elements. 
Table 1 shows the geometrical parameters of the lattices that were 
modeled. At least two elements were used along the thickness 
and width of the secondary corrugated core struts. All degrees 
of freedom of the bottom face sheet were set to zero while a 
longitudinal displacement was applied to the top face sheet to 
simulate the shearing load. 

4.2. Strength 

Following the analysis presented in Section 3.2 , five competing 
failure modes were investigated for the “corrugated-pyramidal”

2 nd order lattice truss structures under shear (see Appendix for 
details). 

4.2.1. Face sheet wrinkling (FW) of the 2 nd order lattice truss 
As mentioned earlier, this failure mode is mainly caused by 

localized bulking of face sheets of the 1 st order pyramidal truss 
between adjacent nodes. The critical load of buckling, F f , is (see 
Appendix for details) 

F f = 
π2 ( EI ) f I 

2 µ2 l c 
2 
cos 2 ω c 

, (29) 

where µ= 0.5, and the bending rigidity of the 1 st order face 
sheets, (EI) f 

I , is 

(E I) f 
I = 

E b f t f 
3 

12 
. (30) 

Furthermore, the relationship between the critical load of 
buckling, F f , and the axial load along core I, F A , is 

F A = (1 + ζc ) F f , (31) 

where 

ζc = 
t 3 c sin 

2 ω c cos ω c + t c l 2 c cos 
3 ω c 

2 t f l 2 c 
. (32) 

Now, substituting Eq. (29) into Eq. (31) gives the axial load 
along core I as 

F A = 
( 1 + ζc ) π2 E b f t f 

3 

6 l c 
2 
cos 2 ω c 

, (33) 

which can be used, along with the relationship between the axial 
load of core I and shearing load, to find the equivalent shear 
strength of the unit cell as (see Appendix for details) 

τ̄ = 
ξα( 1 + ζc ) π2 E b f t f 

3 

3 l 2 l c 
2 
( sin ϕ + cos ϕ ) co s 2 ω c cos 2 ω 

. (34) 
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4.2.2. Face sheet crushing (FC) of the 2 nd order lattice truss 
The failure load of the 1 st order face sheets, F f , is (see Appendix 

for details) 

F f = 2 b f t f σ f . (35) 

Now, by substituting Eq. (35) into Eq. (31) , the axial load along 
core I is 

F A = 2 ( 1 + ζc ) b f t f σ f , (36) 

which can further be used to obtain the equivalent shear strength 
of the unit cell with the following expression: 

τ̄ = 
4 ( 1 + ζc ) ξαb f t f σ f 

l 2 ( sin ϕ + cos ϕ ) cos 2 ω 
. (37) 

4.2.3. Core member buckling (CE) of the 2 nd order lattice truss 
Similar to the analysis presented in Section 3 , the critical axial 

load of buckling can be calculated by 

F c = 
π2 ( EI ) II 
µ2 l c 

2 , (38) 

where µ= 0.5. Then, the relationship between the axial load along 
core II, F c , and in-plane compressive load, F s , is 

F s = λc F c , (39) 

where 

λc = cos ω c + 
t 2 c sin 

2 ω c 
l 2 c cos ω c 

+ 
2 t f 

t c cos 2 ω c 
. (40) 

Then, closed-form expression of equivalent shear strength of 
the unit cell is 

τ̄ = 
2 λc ξαπ2 E b f t c 

3 

3 l c 
2 
l 2 ( sin ϕ + cos ϕ ) cos 2 ω 

. (41) 

4.2.4. Core member crushing (CC) of the 2 nd order lattice truss 
The failure load of failure is 

F c = b f t c σ f . (42) 

Similar to previous calculations, F A = λc F c , thus, the equivalent 
shear strength of the unit cell is 

τ̄ = 
2 λc ξαb f t c σ f 

l 2 ( sin ϕ + cos ϕ ) cos 2 ω 
. (43) 

4.2.5. Macro Euler buckling of the 1 st order pyramidal truss 
The critical load of failure, F cr , is 

F cr = 
π2 ( EI ) I 
µ2 l 2 

, (44) 

where µ= 0.5. Then, the equivalent shear strength of the unit cell 
is 

τ̄ = 
8 ξαπ2 ( EI ) I 

l 4 ( sin ϕ + cos ϕ ) cos 2 ω 
. (45) 

5. In-plane compression of sandwich columns 

Fig. 5 shows the possible modes of failure for the 2 nd order lat- 
tice truss structures subjected to in-plane compression. Analytical 
expressions of failure force associated with each of these modes 
are discussed below. 

5.1. Macro Euler buckling of the 1 st order pyramidal truss 

The critical load, F , associated with the macro Euler buckling of 
the 1 st order pyramidal struts (shown in Fig. 5 (a)) is (see Appendix 
for details) 

F = 
π2 ( EI ) eq 

2 n 2 µ2 l 2 cos 2 ω 
, (46) 

where µ=0.5, n is the number of the “corrugated-pyramidal’ 
cells, and ( EI ) eq is the equivalent flexural rigidity of the 2 nd order 
corrugated cell. 

5.2. Face sheet wrinkling (FW) of the 1 st order pyramidal truss 

For this mode of failure, shown schematically in Fig. 5 (b), the 
critical load is (see Appendix for details) 

F f = 
π2 ( EI ) f 

µ2 l 2 cos 2 ω 
, (47) 

where µ= 0.5, and (EI) f = 
√ 
2 El cos ω t 3 is the flexural rigidity of 

the 1 st order face sheets. We should note that part of the compres- 
sive load on the structure is carried by the “corrugated-pyramidal”

lattice core due to its deformation under in-plane compressive 
loads. Thus, we can obtain the total in-plane compressive load as 
follow (see Appendix for details): 

F = 

√ 
2 ( 1 + ζp ) π2 E t 3 

3 l cos ω 
, (48) 

where 

ζp = 
( EA ) I cos 

3 β
2 ( EA ) f 

+ 
12 ( EI ) I sin 

2 β cos β

( EA ) f l 
2 , (49) 

where the compressive stiffness of the 1 st order face sheets is 
(EA ) f = 

√ 
2 Elt cos ω. 

5.3. Face sheet crushing (FC) of the 1 st order pyramidal truss 

The failure load associated with face sheet crushing of the 1 st 

order pyramidal truss ( Fig. 5 (c)) is 

F f = 2 
√ 
2 σ f lt cos ω, (50) 

where σ f is the average collapse strength of the 1 
st order face 

sheets, which can be directly measured from compression tests. 
Then the in-plane compressive load can be estimated from 

F = 2 
√ 
2 ( 1 + ζp ) σ f lt cos ω. (51) 

5.4. Face sheet wrinkling (FW) of the 2 nd order lattice truss 

This mode of failure is characterized by localized buckling of 
the 2 nd order face sheets between adjacent nodes, Fig. 5 (d), where 
the critical in-plane compressive load is 

F f = 
π2 ( EI ) f I 

2 µ2 l c 
2 
cos 2 ω 

. (52) 

Note that the relationship between the critical in-plane load 
and axial load along core II is specified as 

F A = (1 + ζc ) F f . (53) 

Thus, the critical in-plane compressive load is 

F = 
λp ( 1 + ζc ) π2 E b f t 

3 
f 

6 l c 
2 
cos 2 ω 

, (54) 

where 

λp = 2 cos β + 
( EA ) f 

( EA ) I cos 
2 β

+ 
12 ( EI ) I sin 

2 β

( EA ) I l 
2 cos β

. (55) 
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Fig. 5. Failure modes in the “corrugated-pyramidal” columns subjected to in-plane compression. (a) Macro Euler buckling of the 1 st order pyramidal truss; (b) Face sheet 
wrinkling (FW) of the 1 st order pyramidal truss; (c) Face sheet crushing (FC) of the 1 st order pyramidal truss; (d) Face sheet wrinkling (FW) of the 2 nd order lattice truss; 
(e) Face sheet crushing (FC) of the 2 nd order lattice truss. 

5.5. Face sheet crushing (FC) of the 2 nd order lattice truss 

The critical load associated with the 2 nd order face sheet 
crushing ( Fig. 5 (e)) is 

F f = 2 b f t f σ f . (56) 

With reference to the method presented in Section 3.2 , it can 
be used to obtain the following closed-form expression for critical 
in-plane compressive load associated with this mode of failure as 

F = 2 λp ( 1 + ζc ) b f t f σ f . (57) 

6. Three-point bending of sandwich beams 

Here, we assume that the lattice core carries the internal 
shearing load, while the face sheets carry the internal bending 
moment during three-point bending. Fig. 6 shows four possible 
failure modes of sandwich panels including 1 st order face sheet 
wrinkling, 1 st order face sheet crushing, the Euler buckling of the 
2 nd order corrugated struts, and the macro Euler buckling of the 
1 st order pyramidal struts. 

6.1. Face sheet wrinkling (FW) of the 1 st order pyramidal truss 

Due to geometrical characteristics of the structures, imposed 
constraints, and external loads with axially symmetric distribu- 
tions, the modes of failure can be analyzed by considering half of 
the structure. Then, the bending moment at the middle section of 
the structure is (see Appendix for details) 

M = 

√ 
2 
4 

nF l cos ω, (58) 

where n denotes the number of the 1 st order unit cells, and F is the 
applied external load on the middle section. We should note that 
there is no “corrugated-pyramidal” lattice core at the midsection 
where the load is applied. Therefore, the face sheet carries most of 
the applied load. The in-plane load of the 1 st order face sheets is 

F f = 

√ 
2 cos ω 
4 sin ω 

nF . (59) 

The critical load associated with the face sheet wrinkling 
between two adjacent nodes can be estimated as 

F f = 
π2 ( EI ) f 

2 µ2 l 2 cos 2 ω 
, (60) 

where µ=0.5. Thus, the external load is 

F = 
4 
√ 
2 π2 (EI) f sin ω 

n l 2 cos 3 ω 
. (61) 

6.2. Face sheet crushing (FC) of the 1 st order pyramidal truss 

The critical load of crushing is 

F f = 
√ 
2 σ f lt cos ω, (62) 

where σ f denotes the average strength of the parent material. 
Then, based on the relation between the critical load of collapse 
of the face sheets, F f , and the applied load, F , in Eq. (59) , we can 
obtain F with the following expression: 

F = 
4 
n 
sin ω σ f lt. (63) 
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Fig. 6. The schematic diagram of failure modes under three-point bending: (a) Face sheet wrinkling (FW) of the 1 st order pyramidal truss; (b) Face sheet crushing (FC) of 
the 1 st order pyramidal truss; (c) Face sheet wrinkling (FW) of the 2 nd order lattice truss; (d) Face sheet crushing (FC) of the 2 nd order lattice truss. 

6.3. Face sheet wrinkling (FW) of the 2 nd order lattice truss 

The critical load associated with this failure mode is 

F = 
2 ξω ( 1 + ζc ) π2 E b f t f 

3 

3 l c 
2 
cos 2 ω c 

. (64) 

6.4. Face sheet crushing (FC) of the 2 nd order lattice truss 

The critical load associated with this failure mode is 

F = 8 ξω ( 1 + ζc ) b f t f σ f . (65) 

7. Results and discussion 

7.1. Out-of-plane compression 

Fig. 7 shows the failure map for sandwich panels with lattice 
cores subjected to out-of-plane compressive loads. In constructing 
this map that the angle between the core and face sheets for both 
the 1 st and 2 nd order lattice truss structures is assumed to be 
45 ° (i.e., ω = ω c = 45 °). The results are presented in terms of non- 
dimensional parameters, t f / l c and t c / l c , for different values of the 
number of the 2 nd order corrugated cells, n 1 . Fig. 7 (a) shows that 
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Fig. 7. Failure mechanism maps of the 2 nd order lattice truss under out-of-plane 
compression with (a) the number of 2 nd order corrugated cell, n 1 < 18 and (b) 
with the number of 2 nd order corrugated cell, n 1 = 20, n 1 = 25 and n 1 = 30 for three 
possible scenarios: FW = face sheet wrinkling; FC = face sheet crushing; CE = core 
member buckling. 

the results are independent of the parameter, n 1 , when it is smaller 
than 18. In this case, the dominant failure modes are: face sheet 
wrinkling (FW) and face sheet crushing (FC) of the 2 nd order lattice 
truss, and Euler buckling of the 2 nd order corrugated struts. Clearly, 
these three failure modes are independent of the length of the 1 st 

order pyramidal core. The macro Euler buckling (CE) occurs when 
the parameter, n 1 , is greater than 18 as shown in Fig. 7 (b). This is 
mainly because the length of pyramidal struts becomes longer as 
the number of the 2 nd order corrugated cells increases, resulting in 
a reduced buckling strength of 2 nd order lattice truss. Furthermore, 
it can be seen that the macro Euler buckling of the 1 st order pyra- 
midal struts is more prone to occur at higher values of n 1 . This 
observation is due to the fact that the structure becomes more 
prone to instability as the length of the pyramidal core increases. 

A limited set of computational studies were performed to 
validate the results from our analytical investigations (see 
Section 3.1 for details). Table 2 lists the geometrical charac- 
teristics of six different samples we constructed in ABAQUS for 
compressive strength calculations. Note that material properties 
of the parent material are consistent with those in Table 1 . 
Fig. 8 compares analytical and numerical results for compressive 

Fig. 8. Comparisons of compressive strength between the 2 nd order lattice truss 
and the 1 st order pyramidal truss with different relative densities. 

strength of 1 st and 2 nd order lattice trusses with different relative 
densities. Results show that the 2 nd order lattice truss structure 
is much stronger compared to its 1 st order counterpart with the 
same relative density due to its greater capacity in resisting buck- 
ling. The main reasons for discrepancies between theoretical and 
simulation results are, (1) the 2 nd order lattice core is modeled 
as thin-walled cantilever structures with uniform cross sections 
in the analytical study. In addition, the cross-sectional moment of 
inertia is estimated by considering only the face sheets. Finally, the 
influence of discrete distribution of the 2 nd order lattice core is 
neglected. (2) The influence of shear deformation is not taken into 
account for beam elements (i.e., Euler Bernoulli beam assumption). 
As the matter of fact, the thickness of the 2 nd order corrugated 
struts are greater than the core rods in the 1 st order pyramidal 
truss, thus, the shear deformation obviously affects the accuracy 
of the analytical expressions. At small relative core densities, the 
compressive strength of the 2 nd order structures is almost four 
times greater than its 1 st order counterpart with equal mass f. 
This is consistent with previous studies ( Kooistra et al., 2007; Zhao 
et al., 2012; Zheng et al., 2016 ) with different types of hierarchical 
constructions. 

Fig. 9 shows the failure mechanism map for out-of-plane com- 
pression constructed based on the analytical expressions presented 
in Section 3 . The dots in this figure show the results from the 
experiments. Fig. 10 (a) and (b) show images of specimens with 
two apparent failure modes: face sheet wrinkling of the 2 nd order 
lattice truss and the mixed failure mode, in which the dominant 
failure mode is the core member buckling of the 2 nd order lattice 
truss (note that the samples were painted by black color in these 
images to improve image quality). The mixed failure mode is 
observed because, (1) for the selected geometrical parameters, 
point I (on Fig. 9 ) is very close to the intersection of two failure 
modes; and (2) the material defects imposed in the fabrication 
process. Although the failure mechanism maps are dependent on 
the properties of the parent material, the analytical closed-form 
expressions presented for elastic modulus and strength of the hier- 
archical lattice structures are independent on the parent material 
as long as the parent material is linear elastic and reaches plastic- 
ity at some point. The compressive stress-strain responses of these 
specimens are given in Fig. 10 (c), which start with a linear elastic 
regime until a peak value, followed by a nonlinear regime due to 
the progressive failure of the truss members. The analytical results 
associated with the failure of two specimens can be calculated by 
Eqs. (14) and (22) as 0.039 MPa and 0.084 MPa. Compared with the 
experimental results of 0.032 Ma and 0.069 MPa, respectively, the 
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Table 2 
Dimensions of the six different specimens for compressive strength simulations. 

Structural topologies Relative density (%) ( ρ) Truss-I (mm) ( l ×b f × t f ) Truss-II (mm) ( l c × t c ) 

1 st order 0.59 111.12 ×5.71 ×2.85 / 
2 nd order 111.12 ×5.71 ×1.43 2.86 ×0.14 
1 st order 0.86 77.78 ×5 ×2.45 / 
2 nd order 77.78 ×5 ×1.25 2.5 ×0.13 
1 st order 1.04 75 ×6.02 ×2.37 / 
2 nd order 75 ×6.02 ×1.2 2.41 ×0.12 
1 st order 1.2 622.25 ×60 ×19.73 / 
2 nd order 622.5 ×60 ×10 20 ×1 
1 st order 1.49 51.85 ×6.67 ×1.65 / 
2 nd order 51.85 ×6.67 ×0.83 1.67 ×0.083 
1 st order 1.62 207.42 ×30 ×6.61 / 
2 nd order 207.42 ×30 ×3.33 6.67 ×0.33 

Table 3 
Dimensions of the three different hierarchical specimens under out-of-plane compression. 

Failure modes Truss-I (mm) ( l ×b f × t f ) Truss-II (mm) ( l c × t c ) 

Face sheet wrinkling of the 2 nd order lattice truss 83.14 ×10 ×0.8 11.48 ×1.5 
Mixed failure modes 83.14 ×10 ×1.5 13.38 ×0.8 

The mixed failure modes include core member buckling of 2 nd order lattice truss and face sheet wrinkling 
of 2 nd order lattice truss. 

Fig. 9. Failure mechanism maps of the 2 nd order lattice truss made with 3D print- 
ing material under out-of-plane compression: FW = face sheet wrinkling; CE = core 
member buckling and the experimental points I and II locate in two different failure 
modes, respectively. 

theoretical compressive strength of the hierarchical structures is 
approximately 20.2% and 23.5% higher. This is associated with fab- 
rication defects that can be introduced during the manufacturing 
process. The failure modes observed in experiments are consistent 
with the dominant failure mode as predicted by the theory. 

Moreover, previous studies ( Kenny, 1996; Deshpande and Fleck, 
20 0 0 ) show that the strain rate (in the range of 10 -3 –10 3 s -1 ) has 
little effect on energy absorption and overall dynamic behavior of 
foams and cellular materials. We can show that our static analysis 
can be easily extended to dynamic regimes to estimate the energy 
absorption properties of hierarchical lattice structures. 

7.2. Shear 

Fig. 11 plots the equivalent shear stiffness of the 1 st and 2 nd 

order lattice truss structures versus relative density, where the 
dashed and solid lines show the analytical results and the markers 
show the simulation results. The equivalent shear stiffness is 

normalized by the Young’s modulus of the parent material. Results 
reveal that the equivalent shear stiffness of the “corrugated- 
pyramidal” 2 nd order lattice truss structures is slightly lower than 
its 1 st order counterpart. Similar to the compressive stiffness 
(shown in Fig. 2 ), this is mainly due to the fact that in con- 
trast to the 1 st order pyramidal truss structures at which all the 
members contribute almost equally to the overall shear stiffness 
of the structures, for the 2 nd order lattice truss structures with 
the “corrugated-pyramidal” lattice cores, greater part of the load 
is carried by the 2 nd order face sheets and the contribution of 
corrugated struts is negligible. Thus, the equivalent shear stiffness 
of the 2 nd order lattice truss structures is slightly lower than its 
1 st order counterpart of equal mass. 

Fig. 12 presents the equivalent shear strength normalized by 
the strength of the parent material versus relative density for both 
1 st and 2 nd order lattice truss structures. The results show that 
the 2 nd structures are much stronger compared to the 1 st order 
pyramidal truss structures in terms of its shear strength. This 
is mainly due to a higher “anti-buckling” capacity (i.e., superior 
ability to resist buckling) of the 2 nd order structures, where their 
bending stiffness is significantly greater than the 1 st order pyrami- 
dal core of equal mass. This suggests that the 2 nd order corrugated 
core can fully exploit the load-bearing capacity of the material 
compared to its 1 st order counterpart. 

7.3. In-plane compression 

The analytical expressions derived in Section 5 are employed 
to construct two-dimensional collapse mechanism maps under in- 
plane compression, Fig. 13 . The results are plotted as functions of 
non-dimensional parameters, t / l and t f / l c , for both the 1 

st and 2 nd 

order lattice truss structures with ω = ω 1 = 45 ◦. Moreover, parame- 
ters n and n 1 are defined as the number of the 1 st order pyramidal 
unit cells and the number of the 2 nd order corrugated unit cells, 
respectively. We should note that due to the geometry of these 
structures and nature of the applied load, most of the in-plane 
compressive load is carried by the 1 st order face sheets. In other 
words, the 2 nd order corrugated core does not make a considerable 
contribution to the load-bearing capacity of the structure under 
in-plane compression, thus the failure modes associated with 2 nd 

order structure are not likely to occur within the structures. Fur- 
thermore, a localized collapse of corrugated struts has negligible 
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Fig. 10. (a) The mixed failure modes including core member buckling (CE) of the 2 nd order lattice truss and face sheet wrinkling (FW) of the 2 nd order lattice truss; (b) Face 
sheet wrinkling (FW) of the 2 nd order lattice truss; (c) Compression stress-strain curves for two different failure modes: (I) the mixed failure modes including core member 
buckling (CE) of the 2 nd order lattice truss and face sheet wrinkling (FW) of the 2 nd order lattice truss; (II) face sheet wrinkling (FW) of the 2 nd order lattice truss. 

Fig. 11. Comparisons of shear stiffness between the 2 nd order lattice truss and the 
1 st order pyramidal truss with different relative densities. . 

effect on the load-bearing capacity of the structure, and is ignored 
in this study. To understand the effect of the 2 nd order corrugated 
struts on the overall flexural rigidity of these structures, we define 
a new parameter representing a non-identical thickness between 
the 2 nd order face sheets and corrugated struts: t f = mt c . The 
results for n = 8, n 1 = 4, and m = 2 are shown in Fig. 13 (a). 

Our calculations show that the parameters, n 1 and m , have 
almost no effect on the failure modes shown in Fig. 13 (a), when 
n is smaller than 20. This is because the length of 2 nd order 
corrugated core struts has no effect on the structural failure 
modes. Thus, in this case the failure of corrugated cores can be 
neglected. Results show that the face sheet wrinkling (FW) of 
the 2 nd order lattice truss is the most dominant failure mode at 
small core relative densities due to the lower thickness of the face 
sheets (i.e., lower critical load of buckling). In contrast, face sheet 
crushing (FC) of the 2 nd order lattice truss becomes the most 
dominant mode of failure at higher relative densities. Moreover, 
the macro Euler buckling of the 1 st order pyramidal struts occurs 
when n becomes greater than 20. Fig. 13 (b) presents a collapse 
mechanism map for structures with n = 30, and m = 2, where the 
value of n 1 is set to n 1 = 2, and n 1 = 4. The results confirm that the 
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Fig. 12. Comparisons of the shear strength between the 2 nd order lattice truss and 
the 1 st order pyramidal truss with different relative densities. 

Fig. 13. Failure mechanism maps of the 2 nd order lattice truss under in-plane com- 
pression with (a) the number of the 1 st order pyramidal cell, n < 20, and (b) with 
the number of the 2 nd order corrugated cell, n = 30, n 1 = 2, m = 2 and n = 30, n 1 = 4, 
m = 2 for two possible scenarios: FW = face sheet wrinkling; FC = face sheet crush- 
ing; CE = core member buckling. 

Fig. 14. Failure mechanism maps of the 2 nd order lattice truss with invariable 
length of sandwich strut under three-point bending: FW = face sheet wrinkling; 
FC = face sheet crushing and (a) n = 9, n 1 = 4; (b) n = 19, n 1 = 4. 

macro Euler buckling is less likely to happen as the number of 2 nd 

order corrugated unit cells increases (i.e., greater n 1 ). We should 
note that the length of the 2 nd order corrugated cores directly 
affect the distance between the 2 nd order face sheets, which 
further affects the buckling resistance of the structure (i.e., higher 
buckling resistance with longer distance between the two face 
sheets). The hierarchy suppresses the macro Euler buckling failure 
mode in this structure even in structures with n 1 = 2. Therefore, 
increasing the length of the 2 nd order corrugated truss member 
has no obvious effect on the ability of the structure to resist 
buckling. Besides, the 2 nd order corrugated struts make minimal 
contribution to the flexural rigidity of the 2 nd order truss core, 
and thus the parameter m has little influence on the transitions 
between different failure modes as shown in Fig. 13 (b). 

7.4. Three-point bending 

The analytical relations presented in Section 6 are used to 
construct two-dimensional collapse mechanism maps for the 
structures under three-point bending loads. The results are plotted 
as functions of the normalized parameters, t / l and t f / l c , with 
ω = ω 1 = 45 ◦, Fig. 14 . Two sets of geometrical configurations were 
considered with n = 9 and n 1 = 4, and, n = 19 and n 1 = 4, Fig. 14 (a) 
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Fig. 15. Failure mechanism maps of the 2nd order lattice truss with invariable span 
under three-point bending: FW = face sheet wrinkling; FC = face sheet crushing and 
(a) n = 9, n 1 = 4; (b) n = 19, n 1 = 4. 

and (b). Similar to the case of in-plane compressive loading, the 
localized buckling of corrugated struts has almost no effect on 
the load-bearing capacity of the structures, and therefore, can be 
ignored from our analysis. Furthermore, as mentioned earlier, the 
macro Euler buckling of the 1 st order pyramidal struts will occur 
when n is greater than 20, thus, can be ignored as well. 

Fig. 14 shows that by increasing parameter n , the area asso- 
ciated with the wrinkling of the 2 nd order face sheets gradually 
decreases, while the area associated with the 2 nd order face sheet 
crushing decreases rapidly. Face sheet crushing will not appear for 
structures with n > 20, which implies that this failure mode is not 
likely to occur in panels with low density core constructions. How- 
ever, face sheet wrinkling and face sheet crushing of the 1 st order 
pyramidal truss are more likely to occur. This is mainly because 
the span of the entire structure becomes larger with an increase 
in n , and thus, the midsection of the structure will carry a greater 
bending moment. Therefore, the face sheets will carry a greater 
in-plane load and the risk of face failure will increase drastically. 
Now we plot the failure mechanism maps for two cases with 
n = 9 and n 1 = 2, n = 9 and n 1 = 8, Fig. 15 . The results show that 
the parameter n 1 has a major role in the transition of different 
failure modes. In the case of a constant bending moment, when 
n 1 is small, the in-plane load of face sheet increases, resulting in 

the face sheet becoming prone to damage and failure. However, 
the distance between top and bottom face sheets becomes greater 
with an increase in the parameter, n 1 , which leads to a decrease 
in the in-plane load of face sheets. Thus, the corresponding failure 
modes are less likely to occur. 

8. Conclusions 

In the present paper, we investigated the mechanical response 
and failure of the “corrugated-pyramidal” 2 nd order lattice truss 
structures under different quasi-static loading conditions. Analyti- 
cal expressions of different failure modes have been derived under 
four types of static loadings: out-of-plane compression, shear, 
in-plane compression, and three-point bending. The relevant FE 
simulations were conducted to verify the validity of these analyti- 
cal solutions, and good correlations between analytical predictions 
and FE simulations were achieved. In addition, a limited number 
of experiments were performed in order to further validate the 
analytical expressions related to each failure mode. The failure 
mechanism maps were constructed based on the analytical expres- 
sions for out-of-plane compressive, shear, in-plane compressive, 
and three-point bending strengths in each of these modes in order 
to investigate the influence of geometrical characteristics of on 
the mechanical response and failure of 2 nd order lattice truss 
structures and sandwich panels. 
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Appendix 

1. Equivalent out-of-plane compressive stiffness 

Because the rods of the 1 st order pyramidal lattice core have 
an axially symmetric distribution, the relevant effective stiffness 
of the lattice core can be derived by analyzing the deformation 
of a single strut. According to the geometric relationship between 
the vertical displacement and the axial, tangential displacement 
components of the rod, the corresponding expressions are 

δA = δ cos α, (A-1) 

δS = δ sin α. (A-2) 

The axial displacement component δA is generated by the axial 
force F A , from the basic mechanics of materials formulas and 
Eq. (A-1) , the axial force is 

F A = 
( EA ) I 

l 
δ cos α. (A-3) 

The tangential displacement component δS is generated by 
shear force F s and bending moment M , the tangential displace- 
ment also has following expression: 

δS = 
F S l 3 

3 ( EI ) I 
− M l 2 

2 ( EI ) I 
. (A-4) 
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We assume clamped boundary conditions at the tips of core 
rods. The sum of rotation angles, which are produced by shear 
force F s and bending moment M , at each end of the rod equal to 
zero. By equilibrium equations, the equation is 

F S l 2 

2 ( EI ) I 
− Ml 

( EI ) I 
= 0 . (A-5) 

Substituting Eqs. (A-2) and (A-4) into Eq. (A-5) , the shear force 
F s and bending moment M can be further simplified as 

F S = 
12 ( EI ) I 

l 3 
δ sin α, (A-6) 

M = 
6 ( EI ) I 
l 2 

δ sin α. (A-7) 

The resultant force F along the vertical direction is 

F = F A sin ω + F S cos ω. (A-8) 

Substituting Eqs. (A-3) and (A-6) into Eq. (A-8) , the resultant 
force F can be further simplified as 

F = 
( EA ) I l 

2 sin 2 ω + 12 ( EI ) I cos 
2 ω 

l 3 
δ. (A-9) 

The equivalent stress, σ , of cellular sandwich structure is 

σ̄ = 
2 ξω ( EA ) I sin ω 

l 3 cos 2 ω 
δ. (A-10) 

The dimensionless parameter, ξω , in Eq. (A-10) is 

ξω = 
( EA ) I l 

2 sin 2 ω + 12 ( EI ) I cos 
2 ω 

( EA ) I l 
2 sin ω 

. (A-11) 

The equivalent strain, ε , along the vertical direction (z-axis) of 
the unit cell is 

ε̄ = 
δ

l sin ω 
. (A-12) 

Thus, the equivalent out-of-plane compressive stiffness, E , 
along the z-axis of the unit cell is 

Ē = 
2 ξω ( EA ) I sin 

2 ω 

l 2 cos 2 ω 
. (A-13) 

We take a corrugated unit cell as the object of free-body- 
diagram as shown in Fig. A-1 . The external force, F , is applied 
along the x-axis, then a half of a corrugated unit cell is taken 
as the object of free-body-diagram due to the symmetry of the 
structure. In addition, the displacement, δ, is generated along 
the direction of this external force. Under the premise of small 
deformations, the contribution of the axial deformation, which is 
generated by the surface force in the corrugated core, and the 
shear deformation, which is caused by the shear force and bending 
moment, to the displacement, δ, is considered. The response of the 
structure is investigated based on continuous displacements and 
equilibrium formulation. According to the geometric relationship 
of the displacement, the axial and shear displacement components, 
δA , and, δS , are 

δA = δ cos ω, (A-14) 

δS = δ sin ω. (A-15) 

The axial displacement component, δA , is generated by the sur- 
face internal force, F A , in the corrugated core. From basic mechan- 
ics of materials formulas and Eq. (A-14) , the axial force, F A , is 

F A = 
( EA ) II 

l 
δ cos ω, (A-16) 

where the parameter ( EA ) II denotes the equivalent compressive 
stiffness of the corrugated core. 

Fig. A-1. The free-body-diagram of a unit cell of 2 nd order lattice truss and the 
corresponding schematic diagram of a quarter of a unit cell subjected to (a) com- 
pressive loading , and (b) shear loading. 

Similarly, the shear deformation, δS , is caused by the shear 
force, F S , and the bending moment, M , and the corresponding 
expression is 

δS = 
F S l 3 

3 ( EI ) II 
− M l 2 

2 ( EI ) II 
, (A-17) 

where the parameter ( EI ) II denotes the equivalent flexural rigidity 
of the corrugated core. 

We assume clamped boundary conditions at the tips of corru- 
gated core. Likewise, the sum of the rotation angle equals to zero. 
By equilibrium equations, the equation is 

F S l 2 

2 ( EI ) II 
− Ml 

( EI ) II 
= 0 . (A-18) 

Substituting Eqs. (A-15) and (A-17) into Eq. (A-18) , the shear 
force, F s , and the bending moment, M , of the corrugated core can 
be further simplified as 

F S = 
12 ( EI ) II 

l 3 
δ sin ω, (A-19) 

M = 
6 ( EI ) II 

l 2 
δ sin ω. (A-20) 

The infinitesimal displacement, δ, of the face sheet is generated 
by the component force, F f , from basic mechanics of materials 
formulas, the component force along the face sheet is 

F f = 
( EA ) f 
l cos ω 

δ, (A-21) 

where the parameter ( EA ) f denotes the equivalent compressive 
stiffness of the face sheet. 

The end force, F r , of the right face sheet can be obtained based 
on the force equilibrium equations, and it is 

F r = F A cos ω + F S sin ω + F f . (A-22) 

Substituting Eqs. (A-16) and (A-19) into Eq. (A-22) , the end 
force of the right face sheet can be further simplified as 

F r = 

(
( EA ) II l 

2 cos 2 ω + 12 ( EI ) II sin 
2 ω 

l 3 
+ 

( EA ) f 
l cos ω 

)
δ. (A-23) 



Q. Wu et al. / International Journal of Solids and Structures 132–133 (2018) 171–187 185 

The end force, F l , of the left face sheet equals to that of the 
right face sheet, and the external, F , is the sum of the two end 
forces, that is 

F = F l + F r . (A-24) 

Substituting Eqs. (A-21) and (A-23) into Eq. (A-24) , the external 
force is 

F = 
2 ( EA ) f 
l cos ω 

δ + 
( EA ) p l 

2 cos 2 ω + 12 ( EI ) p sin 
2 ω 

l 3 
δ. (A-25) 

In Eq. (A-25) , the first item denotes the load, F f , which the top 
and bottom face sheets carry and the second item is the load, F c , 
which the corrugated-pyramidal core carries. The ratio of F f and 
F c can be represented by a dimensionless parameter, ξ c , and this 
parameter is defined as 

ζc = 
t 3 c sin 

2 ω cos ω + t c l 2 c cos 
3 ω 

2 t f l 2 c 
. (A-26) 

The equivalent strain, ε , of the corrugated unit cell along the 
loading direction is 

ε̄ = 
δ

2 l c cos ω 
. (A-27) 

Thus the equivalent compressive stiffness of the corrugated 
unit cell along the loading direction is 

( EA ) I = 
F 
ε̄ 

. (A-28) 

Substituting Eqs. (A-25) and (A-27) into Eq. (A-28) , the equiv- 
alent compressive stiffness can be further simplified as 

( EA ) I = 2 E b t f + 
E bt 3 c sin 

2 ω cos ω 

l 2 c 
+ E b t c cos 3 ω. (A-29) 

Similarly, the equivalent flexural rigidity of the corrugated unit 
cell is 

( EI ) I = 
1 
6 
E bt 3 f + 

1 
2 

(
l c sin ω + t f 

)2 
E b t f 

+ 
1 
4 
sin 2 ω cos 3 ω l 2 c Eb t c + 

1 
12 

f ( ω ) Ebt 3 c , (A-30) 

where the parameter f ( ω) is f ( ω) = cos ω + 3sin 2 ωcos ω −
3sin 2 ωcos 3 ω. 

2. Equivalent out-of-plane compressive strength 

The compressive load, F , is applied along the z-axis and the re- 
lation between the axial force, F A , and the compressive load, F , is 

F = 4 ξw F A . (A-31) 

Then, the relations between the shear force, F S , (the bending 
moment, M ) and the axial force, F A are 

F S = 
12 ( EI ) I cos ω 

( EA ) I l 
2 sin ω 

F A , (A-32) 

M = 
6 ( EI ) I cos ω 

( EA ) I l sin ω 
F A . (A-33) 

From Eqs. (A-32) and (A-33) , it can be seen that the shear force 
and bending moment are far less than the axial force in the case 
of the truss member with larger aspect ratio. Thus, we can assume 
that the axial force is the dominant failure force of truss members 
under compressive load. The equivalent out-of-plane compressive 
strength, σ of a unit cell under the compressive load, F , is 

σ̄ = 
F 

2 l 2 cos 2 ω 
. (A-34) 

2.1. Face sheet wrinkling (FW) of the 2 nd order lattice truss 

From the Section 3.2 , the axial force along the 1 st order 
pyramidal truss is 

F A = 
( 1 + ζc ) π2 E b f t f 

3 

6 l c 
2 
cos 2 ω c 

. (A-35) 

Substituting Eqs. (A-31) and (A-35) into Eq. (A-34) , the equiva- 
lent out-of-plane compressive strength, σ , of a unit cell is 

σ̄ = 
ξω ( 1 + ζc ) π2 Eb t f 

3 

3 l 2 l c 
2 
cos 4 ω 

. (A-36) 

2.2. Core member buckling (CE) of the 2 nd order lattice truss 

It can be assumed that the external load is slightly larger than 
the critical force of the strut, and the compressive strut is in the 
micro bending state. The actual stress state was estimated using 
the moment-equilibrium equations, and the relevant expression is 

M (x) = F c w (x ) , (A-37) 

where M ( x ) is the bending moment in the strut, and F c denotes 
the external load along the attachment direction of the strut 
ends, and w ( x ) is the deflection caused by external loads. In 
addition, according to the moment-equilibrium equations from 
basic mechanics of materials, the bending moment is 

M(x ) = −(EI) II 
d 2 w 

d x 2 
. (A-38) 

Substituting Eq. (A-38) into Eq. (A-37) , the expression can be 
further simplified as 

d 2 w 

d x 2 
+ k 2 w = 0 , (A-39) 

k 2 = 
F c 

(EI) II 
. (A-40) 

According to the boundary conditions of compression strut, the 
minimum critical load of the stability problems of columns is 

F c = 
π2 ( EI ) II 
µ2 l c 

2 . (A-41) 

3. Equivalent shear stiffness 

The relation between the axial force, F A , and the vertical 
displacement, δ, is 

F A = 
( EA ) I 

l 
δ cos α. (A-42) 

In Eq. (A-9) , ( EA ) I and ( EI ) I are the equivalent compressive 
stiffness and flexural rigidity of the 1 st order core member re- 
spectively. According to the relation between the resultant force 
in Eq. (A-9) and the axial force in Eq. (A-42) , the non-dimensional 
parameter, ξα , is defined as 

ξα = 
( EA ) I l 

2 cos 2 α + 12 ( EI ) I sin 
2 α

( EA ) I l 
2 cos α

. (A-43) 

The relation between the resultant force and the axial force 
can be further simplified as 

F = 4 ξαF A . (A-44) 

The equivalent shear stress, τ̄ , and equivalent shear strain, γ̄ , 
of a unit cell are 

τ̄ = 
2 ξα( EA ) I cos α

l 3 cos 2 ω 
δ, (A-45) 
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γ̄ = 
δ

l sin ω 
. (A-46) 

Thus, the equivalent shear stiffness, G , of the unit cell is 

G = 
2 ξα( EA ) I cos α sin ω 

l 2 cos 2 ω 
. (A-47) 

4. Equivalent shear strength 

The relations between the shear force, F S , (the bending mo- 
ment, M ) and the axial force, F A , through the free-body-diagram, 
the expression is 

F S 
F A 

= 
12 ( EI ) I sin α

l 2 ( EA ) I cos α
, (A-48) 

M 
F A 

= 
6 ( EI ) I sin α
l ( EA ) I cos α

. (A-49) 

It is seen from the Eqs. (A-48) and (A-49) that, the ratios of 
the shear force and the bending moment to the axial force can 
be sufficiently small provided that the 1 st order pyramidal truss 
members are long enough. Thus, we can assume that the axial 
force is the dominant force to cause truss members damage under 
shear load. The shear load, F , can be along the random direction, 
therefore, the equivalent shear stiffness changes periodically with 
the angle. Since the truss members of the 1 st order pyramidal unit 
cell are symmetrically positioned with respect to the central axis, 
one truss member rotates the angle, π /2, along this axis and this 
truss member will overlap the adjacent truss member. The angle 
of rotation is called the rotation angle. Here, the angle of rotation 
is π /2. The included angle, φ, between direction of shear load and 
x-axis is defined to 0 ≤ φ < π /2. The truss member named OC 
rod subjects to the maximum magnitude of compressive load and 
the other truss member named OA rod subjects to the maximum 
magnitude of tensile load as shown in Fig. A-1 . The 2 nd order lat- 
tice truss which is investigated is made of carbon fiber reinforced 
composite material and the compressive strength of the parent 
material is less than the tensile strength. Therefore, the truss mem- 
ber with the largest compressive load appears to damage primarily. 
Through the free-body-diagram, the relation between the axial 
force, F oc 

A , along the OC rod and shear force, F , is calculated by 

F oc A = 
F 

4 ξα
( sin ϕ + cos ϕ ) . (A-50) 

Moreover, we also note that the analytical derivations of elastic 
modulus for the presented loading scenarios are not affected by 
the strength of the parent material, however, the theoretical calcu- 
lations of failure strength will change if the compressive strength 
of the parent material is not less than the tensile strength. For 
this case, the tensile strength of the parent material can be sub- 
stituted for the compressive strength in the analytical expressions. 
No matter what kind of loading is applied to the structure, the 
stretch-dominated truss members in “corrugated-pyramidal” hi- 
erarchical lattice cores will be subject to the tensile/compressive 
loads. Therefore, the tensile fracture of the hierarchical truss mem- 
bers is considered as the dominant failure mode on this occasion. 

The OD rod begins to damage in the case of π /2 ≤ φ < π
and the OA rod begins to damage in the case of π ≤ φ < 3 π /2, 
similarly, the OB rod begins to damage in the case of 3 π /2 ≤ φ < 
2 π due to the periodicity of the pyramidal sandwich structure. 

The equivalent shear strength, τ , is 

τ̄ = 
2 F A ξα

l 2 ( sin ϕ + cos ϕ ) cos 2 ω 
. (A-51) 

4.1. Face sheet wrinkling (FW) of the 2 nd order lattice truss 
Substituting Eqs. (31) and (32) into Eq. (A-51) , the equivalent 

shear strength of a unit cell is 

τ̄ = 
ξα( 1 + ζc ) π2 E b f t f 

3 

3 l 2 l c 
2 
( sin ϕ + cos ϕ ) co s 2 ω c cos 2 ω 

. (A-52) 

4.2. Face sheet crushing (FC) of the 2 nd order lattice truss 
Substituting the expression of the axial load along the core I 

( Eq. (36) ) into Eq. (A-51) , the equivalent shear strength of a unit 
cell is 

τ̄ = 
4 ( 1 + ζc ) ξαb f t f σ f 

l 2 ( sin ϕ + cos ϕ ) cos 2 ω 
. (A-53) 

5. Equivalent in-plane compressive strength 

5.1. Macro Euler buckling of the 1 st order pyramidal truss 
In Eq. (46) , the expression of the equivalent flexural rigidity of 

the 2 nd order corrugated cell is 

( EI ) eq = 2 ( EI ) m + f 1 ( β, θ ) ( EI ) I + f 2 ( β, θ ) l 2 ( EA ) I , (A-54) 

where θ denotes the included angle between core I and axis 3. 
The non-dimensional parameters f 1 ( β , θ ) and f 2 ( β , θ ) are 

f 1 ( β, θ ) = 4 cos β − 6 cos 2 β sin θ + 3 cos 3 βsin 2 θ, (A-55) 

f 2 ( β, θ ) = 
1 
4 
cos 3 βcos 2 θ . (A-56) 

The expressions of the equivalent compressive stiffness and 
the equivalent flexural rigidity have been given in Eqs. (A-29) and 
(A-30) . The equivalent flexural rigidity of the structural face sheets, 
the corresponding expression is 

( EI ) m = 
√ 
2 El t 3 cos ω/ 12 + bt ( l sin ω + t ) 

2 
/ 4 . (A-57) 

5.2. Face sheet wrinkling (FW) of the 2 nd order lattice truss 
The distance between two adjacent nodes of the two face 

sheets is the same. Thus, the critical loads of the two face sheets 
under the buckling instability have the identical value. The total 
load which the two face sheets carry are the twice of that which a 
single face sheet carries. According to basic mechanics of materials 
formulas, the critical load is 

F f = 
π2 ( EI ) f m 
µ2 l 2 cos 2 ω 

. (A-58) 

During the in-plane compression, the corrugated-pyramidal 
core may deform as the external load increases. Therefore, the cel- 
lular core will carry a partial load. The in-plane compressive load 
in this failure mode, through the free-body-diagram, is derived as 

F = 

√ 
2 (1 + ζp ) π2 E t 3 

12 µ2 l cos ω 
. (A-59) 

In Eq. (A-59) , the non-dimensional parameter, ζ p , is 

ζp = 
( EA ) I cos 

3 β

( EA ) f 
+ 

12 ( EI ) I sin 
2 β cos β

( EA ) f l 
2 , (A-60) 

where the expressions of equivalent compressive stiffness and 
equivalent flexural rigidity of the 2 nd order corrugated core have 
been given in Eqs. (A-29) and (A-30) . The parameter, ( EA ) f , indi- 
cates the equivalent compressive stiffness of the structural face 
sheets and (EA ) f = 

√ 
2 Elt cos ω. 
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6. Equivalent three-point bending strength 

6.1. Face sheet wrinkling (FW) of the 1 st order pyramidal truss 
In Section 6 , the external load of this failure mode has been ob- 

tained in Eq. (63) , and the parameter ( EI ) f denotes the equivalent 
flexural rigidity of structural face sheet. It is 

( EI ) f = 

√ 
2 l t 3 cos ω 

12 
. (A-61) 

Substituting Eqs. (A-61) and (60) into Eq. (59) , the external 
load can be further calculated by 

F = 
4 π2 t 3 E sin ω 

3 nl cos 2 ω 
. (A-62) 

6.2. Face sheet wrinkling (FW) of the 2 nd order lattice truss 
The critical load associated with this failure mode is equal to 

the out-of-plane compressive strength of the 1 st order FW (in 
Eq. (14) ) multiply by the area of the 1 st order unit cell. And the 
area of the 1 st order unit cell is 

A = 2 l 2 cos 2 ω. (A-63) 

Therefore, the critical load is 

F = 
2 ξω ( 1 + ζc ) π2 E b f t f 

3 

3 l c 
2 
cos 2 ω c 

. (A-64) 

6.3. Face sheet crushing (FC) of the 2 nd order lattice truss 
Similarly, the critical load under this failure mode is equivalent 

with the result which the out-of-plane compressive strength of 
the 1 st order FC (in Eq. (17) ) multiply by the area of the 1 st order 
unit cell (in Eq. (A-63) ). The corresponding expression is 

F = 8 ξω ( 1 + ζc ) b f t f σ f . (A-65) 
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