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Mechanical properties and failure mechanisms of sandwich panels with “corrugated-pyramidal” hierarchi-
cal lattice cores were investigated through analytical modeling and detailed numerical simulations. This
included studying the behavior of hierarchical lattice core material under compression and shearing, as
well as investigating the mechanical performance of sandwich panels subjected to in-plane compression
and three-point bending. Failure maps were constructed for the hierarchical lattice cores, as well as sand-
wich panels with hierarchical lattice cores by deriving analytical closed-form expressions for strength for
all possible failure modes under each loading. 3D printed samples were manufactured and tested un-
der out-of-plane compression in order to provide limited experimental validation of the study. Our study
provides insights into the role of structural hierarchy in tuning the mechanical behavior of sandwich
structures, and new opportunities for designing ultra-lightweight lattice cores with optimal performance.
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1. Introduction

Unique mechanical properties, as well as multifunctional ad-
vantages offered by lattice materials with open-cell configurations
make them an attractive choice for designing and constructing
lightweight multifunctional structures (Roper, 2011; Barnett et al.,
2001; Evans, 2001; Ashby, 2001; Wei et al., 2016; Zok et al., 2016).
In this context, numerical simulations and theoretical studies have
been previously employed to investigate the effects of geometry,
mass density, and structural defects on mechanical properties
(Ajdari et al., 2008) and deformation (Liao et al., 2014; Wang et al.,
2013) of two-dimensional periodic lattice materials. The effects of
temperature on the mechanical properties of composite sandwich
structures also have been studied through experiments (Liu et al.,
2014, 2015). Currently, various types of three-dimensional periodic
truss sandwich structures with high specific strength and high
specific stiffness have emerged and their superior mechanical
properties have been broadly recognized (Vaziri and Xue, 2007;
Ajdari et al., 2011; Lim and Kang, 2006; Liu et al.,, 2007; Dong
et al, 2015; Schaedler et al, 2011). Introducing hierarchy in
the structural organization of lattice materials can potentially
improve their mechanical and multifunctional properties (Han
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et al,, 2015; Xiong et al., 2015; Mousanezhad et al., 2015, 2016).
Lakes (1993) is amongst the pioneers in investigating the role of
structural hierarchy in the mechanical properties of natural and
man-made materials. Taking wood (Deshpande et al., 2006) and
bone (Weaver et al., 2007) as examples of biological materials with
hierarchical architecture, their internal microstructure is composed
of tiny truss-like elements contributing to their enhanced energy
absorption and anti-vibration characteristics. Even at nanoscales,
it has been shown that carbon nanotube ropes with hierarchical
helical structures exhibit superior properties such as larger failure
strain, easily tunable elastic properties, and higher energy storage
ability compared to bundles of straight nanotubes (Zhao et al.,
2014). Therefore, integrating the concept of structural hierarchy
with man-made lattice structures has a potential of improve their
mechanical performance.

In this context, structural hierarchy has been recently inte-
grated into honeycomb structures to broaden the achievable range
of elastic and plastic responses (Ajdari et al., 2012; Mousanezhad
et al,, 2016; Haghpanah et al., 2013, 2014; Oftadeh et al., 2014a,b).
The results show that honeycombs with 15t and 2" orders of hier-
archy are capable of attaining specific Young's modulus as much as
2 and 3.5 times that of a regular honeycomb with the same mass
(Ajdari et al., 2012), and can further be increased at higher levels
of hierarchy (Oftadeh et al., 2014a,b). Recently, structural hierarchy
has been shown to induce the unusual “auxetic” property (i.e.,
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negative Poisson’s ratio) in honeycombs (Mousanezhad et al.,
2015), and enhance the phononic properties of these materials
(Mousanezhad et al., 2016).

In another set of studies, analytical, numerical, and experi-
mental investigations are carried out to study the mechanical
performance of hierarchical corrugated composite sandwich cores
under out-of-plane compressive and in-plane shearing loads
(Kazemahvazi et al., 2009; Kazemahvazi and Dan, 2009). Again,
structural hierarchy has been shown to increase the effective
compressive strength up to seven times greater than those of
non-hierarchical structures with the same mass at small relative
densities. Although introducing hierarchy increases manufacturing
complexity (compared with 15t order lattice structures), it is also
shown to have significant potential in improving the structural
performance of cellular materials (Ajdari et al., 2012; Kazemahvazi
et al.,, 2009; Oftadeh et al.,, 2014a,b).

Under dynamic loading, hierarchical periodic truss sandwich
structures exhibit enhanced anti-crushing behavior and higher
specific energy absorption (Zhang et al., 2013; Fan et al.,, 2014;
Qiao and Chen, 2016; Sun et al., 2016a,b). Yang et al. (2016) intro-
duce a novel hybrid foam-core/solid-shell structure that inherits
the advantages of their constituent components (i.e., conventional
foam and solid-shell structure), in both strength and deforma-
tion, and can obtain high energy absorption capability. Inspired
by a luffa sponge hierarchical bio-cellular topology, An and
Fan (2016) propose a hierarchical aluminum foam cylinder, rein-
forced by stiff thin-walled carbon fiber reinforced plastic (CFRP)
tubes, and show that the interaction between the CFRP tubes
and aluminum foam results in an increase in the specific energy
absorption of the hierarchical cylinder.

According to the literature (summarized above), studies on
the mechanical properties of hierarchical lattice core construc-
tions have been limited to out-of-plane compression and shear
loading, and analytical modeling of these structures under lateral
compressive and three-point bending loads has not yet been
explored. Here, we investigate the mechanical performance of the
“corrugated-pyramidal” lattice truss structures under out-of-plane
and transverse compression, shear, and three-point bending. To
this end, we first introduce the geometry of these hierarchical
structures which are based on pyramidal lattice structures intro-
duced earlier by Wu et al. (2016). Based on the recently established
terminology and taxonomy for periodic truss structures (Zok et al.,
2016), our geometry is classified as “compound cubic truss”. Next,
we derive closed-form expressions for the structural strength
associated with different possible failure modes, and construct
failure maps for sandwich panels with hierarchical lattice core
construction. The effects of structural hierarchy are highlighted by
comparing the results with those of non-hierarchical counterparts
(of same mass).

2. Geometry of hierarchical lattice core

The original non-hierarchical structure is composed of the 1%t
order “corrugated-pyramidal” truss core sandwiched between the
15t order face sheets, while the 2™ order structure is achieved
by replacing each 15t order truss element with the 2™ order face
sheets and a 2" order corrugated pyramidal truss core, Fig. 1.
Here, for the sake of brevity, the 15t and 2"¢ order lattice cores are
referred to as core I and II, respectively. Fig. 1 shows a schematic
diagram of geometrical characteristics of the unit cells of the
original and 2™ order structures, where b and by are the width of
the 15t and 274 order face sheets, and tr and tc are face sheet and
strut thickness of the 2" order structure in core II, respectively.
In addition, I and I. are the strut length of core I and core II, re-
spectively, and w and w. are the angles which core I and II struts
make with their corresponding face sheets, respectively. Finally, «,

and B are the angles which core I makes with axis 1 and axis 2.
The relative density, p, defined as the ratio of the density of the
“corrugated-pyramidal” core p. to that of the parent carbon fiber
composite, o, is calculated by

2Aa(2tf cosa)+tc) )

p= :
12].cos3wsin’w
where Aq :bf(lcsin we + tf) denotes the cross-sectional area of the
1t order lattice core.

3. Out-of-plane compression of lattice core
3.1. Stiffness

With reference to the method presented by Chen et al. (2012),
the equivalent out-of-plane compressive stiffness of the
“corrugated-pyramidal” 2" order lattice truss, normalized by
the Young’s modulus of the parent material, is (see Appendix for
details)

ZSwAlsinza)
[2cos2w ° (2)

where &, is a non-dimensional parameter, and its corresponding
expression is

E_
: -

12(El),cos?w
(EA)2sinw
In Eq. (3), (EA) and (EI); are equivalent compressive stiffness

and flexural rigidity of core I, respectively, which can be obtained
using the following equations.

3)

&, =sinw+

3
(EA), = 2Ebjt; + Ebf%sinza)C cos o + Ebstccos’w, (4)
C

1 1 .
(EI)I = éEbft; —+ E(lc Sin w¢ + tf)zEbftf

+%sin2a)5cos3wclebftc + %f(a)c)Ebftf, (5)
where f(wc) = cos w¢ + 3sin 2wcos wc — 3sin 2wccos 3we.

To validate these analytical expressions, finite element (FE)
based numerical simulations were conducted using commercial
software ABAQUS 6.13-2 (SIMULIA, Providence, RI). Six different
types of structures with various relative densities and geometrical
characteristics were considered for numerical simulations, Table 1.
The parent material was assumed to be a carbon fiber-reinforced
composite with effective compressive stiffness and strength of
100 GPa and 850 MPa, and Poisson’s ratio of 0.3.

We performed FE analysis for the lattice core unit cell, shown in
Fig. 1. In the simulations, rigid face sheets were tied to the lattice
core structure at the interface nodes. While the bottom face sheet
was fixed, a compressive displacement was then applied to the top
face sheet to simulate core crushing. The models were meshed us-
ing three-dimensional 8-node linear brick elements with reduced
integration (i.e.,, C3D8R element in ABAQUS), and a mesh sensi-
tivity analysis was performed to guarantee that the results were
not mesh-dependent. Static-general solver of ABAQUS was used to
simulate the response of structures under compressive loads.

Fig. 2 plots the normalized equivalent out-of-plane compressive
stiffness of the 15t and 2" order lattice trusses as a function of
the relative density. The dashed and solid lines show the analytical
expression presented by Eq. (2), respectively, while the markers
denote the FE results for the 15t and 2™ order structures. An
excellent agreement is observed between the analytical and FE
results. The results presented in Fig. 2 shows that the equivalent
out-of-plane compressive stiffness of the “corrugated-pyramidal”

3
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Fig. 1. Unit cell of the 1% order pyramidal (a) and “corrugated-pyramidal” 2" order lattice truss (b) with corresponding geometric parameters.

Table 1

Dimensions of the six typical specimens for compressive stiffness simulations.

Structural topologies  Relative density (%) (0)

Truss-1 (mm) (I x by x t¢)

Truss-II (mm) (I x bg x t¢)

1t order 0.21
2" order

15t order 0.37
21 order

15t order 0.67
2" order

15t order 1.04
2" order

15t order 1.2
2nd order

1t order 1.55
2nd order

41.48 x 1.07 x 0.67
41.48 x 1.07 x 0.33
270.54 x 13.04 x 4.53
270.54 x 13.04 x 2.17
177.78 x 8.57 x 2.98
177.78 x 8.57 x 2.86
75 x6.02 x 2.37
75x6.02 x 1.2
622.25 x 60 x 19.73
622.5 x 60 x 10
480.83 x 48 x 19.76
480.83 x 48 x 10

/
1.33 x 1.07 x 0.067

/
8.7 x 13.04 x 0.43

/

5.71 x 8.57 x 0.28
/

2.41 x 6.02 x 0.12
/

20x60x 1

/
15x48x1

) an order-analytical results

m 2" order-numerical results
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Fig. 2. Comparisons of compressive stiffness between the 2" order lattice truss
and the 1%t order pyramidal truss with different relative densities.

2nd order lattice truss is slightly lower compared to its 15t order
counterpart. In contrast to the 1% order pyramidal truss in which
the deformation is uniformly distributed between all truss mem-
bers, for the “corrugated-pyramidal” 2" order lattice truss, the
majority of the load is carried by the 2" order face sheets, and
the 24 order truss members make relatively small contribution to
the overall stiffness of the structure.

3.2. Strength

Five competing failure modes for the “corrugated-pyramidal”
2nd order lattice truss structures subjected to compression were
considered, as shown in Fig. 3. Appendix A provides further details
with regards to these failure modes. Note that we assume that the
2nd order face sheets are made of a material that exhibits plastic
yielding after the initial elastic regime.

3.2.1. Face sheet wrinkling (FW) of the 2" order lattice truss

This failure mode, shown in Fig. 3(b), is characterized by local-
ized short wavelength elastic buckling (or wrinkling) of the face
sheets of the 24 order lattice truss between adjacent nodes. Thus,
the critical load of buckling of the face sheet, F, is (see Appendix
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Fig. 3. Failure modes of the “corrugated-pyramidal” 2" order lattice truss: (a)
“Corrugated-pyramidal” structural hierarchy; (b) Face sheet wrinkling (FW) of the
2n order lattice truss; (c) Face sheet crushing (FC) of the 2" order lattice truss; (d)
Core member buckling (CE) of the 2™ order lattice truss; (e) Core member crushing
(CC) of the 2" order lattice truss; (f) Macro Euler buckling of the 1%t order pyrami-
dal truss.

for details)
m2(ED/
S 2 202,
221" coswe

(6)

where parameter, u, depends on the conditions of end constraints
of the buckled struts. For instance, ; =0.5 describes a condition at
which one end is clamped (i.e., fixed) and the other end is pinned
(see Appendix Fig. A-1 for details). Moreover, (EI)lf denotes the

flexural rigidity of the 2" order face sheets, (EI)If =Ebftf3/12.

The relation between the critical load of buckling of the 2" order
face sheet, F, and the axial load along core I, Fy, is

Ey = (14 {o)F, (7)
where
EA),cos3we  6(ED), cos wesin’w
;C — ( )ll ; c + ( )ll 7 Cz C. (8)
2(EA)/ (EA) I,

The compressive stiffness of the 2" order face sheets, and
compressive stiffness and flexural rigidity of core II are

(EA)] = Ebyt;, 9)

(EA)y = Ebyt,, (10)
Ebgt?

(EDn = —5—. (1)

Now, using Egs. (9)-(11), Eq. (8) reduces to
B t3sinw. cos w + tl2cos3w,

B 2t12 '

Also, substituting Eq. (6) into Eq. (7) gives the axial load along
core I as

(1 +&)m2Ebyt?
B 61.2cos2w, '

S (12)

E, (13)

by using which the equivalent out-of-plane compressive strength
of the unit cell is calculated by

_ E,(1+ )M 2Ebyts? (14)
312152cos2wc052wc '

qQl

3.2.2. Face sheet crushing (FC) of the 2" order lattice truss

This failure mode is achieved by face sheet crushing of the 2nd
order lattice truss (rather than elastic buckling), Fig. 3c. We define
the collapse strength of the parent material as, o, thus the critical
load associated with face sheet crushing, Fy, is

Now, by substituting Eq. (15) into Eq. (7), the axial load, Fy, is
Ey =2(1 + &c)bytfoy. (16)

which can further be used to obtain the equivalent out-of-plane
compressive strength of the unit cell with the following expres-
sion:

45,1+ é‘c)bftfof.

T =
12cos?2w

(17)

3.2.3. Core member buckling (CE) of the 2" order lattice truss

Under out-of-plane compressive loads, the 2" order lattice
truss can undergo Euler buckling (Hearn, 1997) as shown schemat-
ically in Fig. 3(d). The critical load of buckling is then calculated
by (see Appendix for details)

2
F— T (EIZ)ll
Wl
where again the parameter p is assumed to be equal to 0.5
considering one end of the strut to be clamped and the other end

as a pin support. Then, the relationship between the axial load, F,
along core II and in-plane compressive force, Fy, is

. (18)

EA = )thc, (19)
where
2(EA), 12(EI)y;sin?
A = COS We + ( )'2 ( )l;sm @e . (20)
(EA)ycos’we — (EA),l:* cos w,
Now, substituting Eqs. (9)-(11) into Eq. (20) gives
2¢in2 2
Ac = COS W + fesin we fr (21)

2coswe  t.coslwc’

Then, according to the relation between the axial force of the
corrugated core and the out-of-plane compressive load, which are
shown in Egs. (A-31) and (A-34) in the Appendix, closed-form
expression of equivalent out-of-plane compressive strength of the
unit cell can be obtained as

Zgw)\.canbftCB

o = 5
3121.“cos?w

(22)

3.2.4. Core member crushing (CC) of the 2" order lattice truss
This failure mode is characterized by crushing of the 2™ order
truss members, Fig. 3e, where the critical load of failure is

Then, similar to the previous -calculations, Fj=AcF,, and
equivalent out-of-plane compressive strength of the unit cell is

ZEwkcbftcaf

E =
[2cos?w

(24)
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Fig. 4. “Corrugated-pyramidal” 2" order lattice truss structure without the face sheets (a) and with the face sheets (b), fabricated using 3D printing.

3.2.5. Euler buckling of the 1°¢ order pyramidal truss
Fig. 3(f) shows a schematic diagram of Euler buckling
(Hearn, 1997) of the 1%t order pyramidal truss members, where
the critical load, F, is
72 (El),
o = W,
with @ =0.5. Then, the equivalent out-of-plane compressive
strength of the unit cell is calculated by
2 (EI)
“lAcos?w’

(25)

o =8¢ (26)

3.3. Experiments

To validate the results presented in the previous sections, we
performed a limited number of compression tests on 3D printed
samples of the “corrugated-pyramidal” 2" order lattice truss
structures - Fig. 4. We performed separate tests on dog-bone sam-
ples of the parent material to characterize the material properties.
The stiffness and strength of the parent material were obtained as
2.56 GPa and 26.62 MPa, respectively.

During the experiments, the applied compressive load was
measured by an INSTRON 5569 machine, while a laser exten-
someter (Epsilon) was used to measure the nominal compressive
displacement. The compression tests were carried out in the quasi-
static regime with a nominal displacement rate of 0.5 mm/min at
room temperature. A minimum of three tests were conducted to
ensure the repeatability of the results. The geometrical parameters
of these samples as well as the corresponding failure modes are
given in Table 3. The experimental results clearly demonstrate the
failure modes presented above.

4. Out-of-plane shearing of 2" order lattice truss structure
4.1. Stiffness
The equivalent shear stiffness of the “corrugated-pyramidal”

2nd order lattice truss structure can be estimated from (Chen et al.,
2012) (see Appendix for details)

G cosa sinw

— =2&,A 27
E Sall 2cos?w 27
where £, is a dimensionless parameter defined as

12(El),sin?
£y = cosa + (E);sin"oc (28)

(EA) 2 cosa”

Next, numerical simulations were performed to estimate the
shear stiffness of the structures subjected to shearing loads. Each
computational model consisted of three lattice unit cells in the
longitudinal direction and seven lattice unit cells in the transverse

directions, and were meshed using 20-node hexahedral elements.
Table 1 shows the geometrical parameters of the lattices that were
modeled. At least two elements were used along the thickness
and width of the secondary corrugated core struts. All degrees
of freedom of the bottom face sheet were set to zero while a
longitudinal displacement was applied to the top face sheet to
simulate the shearing load.

4.2. Strength

Following the analysis presented in Section 3.2, five competing
failure modes were investigated for the “corrugated-pyramidal”
2nd order lattice truss structures under shear (see Appendix for
details).

4.2.1. Face sheet wrinkling (FW) of the 2"d order lattice truss

As mentioned earlier, this failure mode is mainly caused by
localized bulking of face sheets of the 15' order pyramidal truss
between adjacent nodes. The critical load of buckling, F, is (see
Appendix for details)

m2(ED/

=—, (29)
2u21c2c052wc

f

where w=0.5, and the bending rigidity of the 1%t order face
sheets, (EI)f, is
Ebst?

12

Furthermore, the relationship between the critical load of
buckling, Fy, and the axial load along core I, Fy, is

Fy = (1 +8o)F. (31)

where

(ED! = (30)

. 2
_ t2sin"wc cos wc + tlZcos o,

g
¢ 2t 12

(32)

Now, substituting Eq. (29) into Eq. (31) gives the axial load
along core I as

_ (1 + é'c)Tl'zEbftf3

Ey
61.2cos2w,

(33)
which can be used, along with the relationship between the axial
load of core I and shearing load, to find the equivalent shear
strength of the unit cell as (see Appendix for details)

& (14 &) 2Ebyt

7= )
31212 (sin ¢ + €0S ) C0s2w:COS2 W

(34)
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4.2.2. Face sheet crushing (FC) of the 2" order lattice truss
The failure load of the 1% order face sheets, Fy, is (see Appendix
for details)

Now, by substituting Eq. (35) into Eq. (31), the axial load along
core | is

=21+ gc)bfth'f, (36)

which can further be used to obtain the equivalent shear strength
of the unit cell with the following expression:

4(1 4 &o)éubytroy

t= [2(sing + cos p)cos?w’

(37)

4.2.3. Core member buckling (CE) of the 2" order lattice truss
Similar to the analysis presented in Section 3, the critical axial
load of buckling can be calculated by

F= w2 (EDy
lecz

where 1 =0.5. Then, the relationship between the axial load along
core II, F¢, and in-plane compressive load, Fs, is

F =AkE, (39)

(38)

where

t2sin® o, 2t;
2cosw. = t.cosiwc’

Ac = COSw¢ + (40)

Then, closed-form expression of equivalent shear strength of
the unit cell is

2)\6&1 JTZEbftC3

T=—5— . (41)
31°12(sin @ + cos ¢)cos?w
4.2.4. Core member crushing (CC) of the 2@ order lattice truss
The failure load of failure is

Similar to previous calculations, F4 = A¢Fc, thus, the equivalent
shear strength of the unit cell is

2)‘-C$a bftcaf

T = - . 43
t [2(sin @ + cos ¢)cos2w (43)
4.2.5. Macro Euler buckling of the 15 order pyramidal truss
The critical load of failure, F, is
72 (El),
= TEIEEN (44)

where i =0.5. Then, the equivalent shear strength of the unit cell
is

8&, 12 (EI),

t= [4(sing + cos g)cos2w’

(45)

5. In-plane compression of sandwich columns

Fig. 5 shows the possible modes of failure for the 2" order lat-
tice truss structures subjected to in-plane compression. Analytical
expressions of failure force associated with each of these modes
are discussed below.

5.1. Macro Euler buckling of the 15t order pyramidal truss

The critical load, F, associated with the macro Euler buckling of
the 15 order pyramidal struts (shown in Fig. 5(a)) is (see Appendix
for details)

w2 (El
_ ( )eq ) (46)
2n2u2l2cos2w
where ©=0.5, n is the number of the “corrugated-pyramidal’
cells, and (El)eq is the equivalent flexural rigidity of the 2nd order
corrugated cell.

5.2. Face sheet wrinkling (FW) of the 15t order pyramidal truss

For this mode of failure, shown schematically in Fig. 5(b), the
critical load is (see Appendix for details)

w2 (El);

- n2l2cos?w’ (47

f
where ©=0.5, and (El); = V2Elcoswt3 is the flexural rigidity of
the 1%t order face sheets. We should note that part of the compres-
sive load on the structure is carried by the “corrugated-pyramidal”
lattice core due to its deformation under in-plane compressive
loads. Thus, we can obtain the total in-plane compressive load as
follow (see Appendix for details):

_ V20 +gp)m?Ee

F 3lcosw ’ (48)
where

_ (EA)cos*B | 12(El)sin®B cos B
&= 2(EA); (EA) 12 ' (49)

where the compressive stiffness of the 15t order face sheets is
(EA) s = V2EIt cos w.

5.3. Face sheet crushing (FC) of the 1°t order pyramidal truss

The failure load associated with face sheet crushing of the 15t
order pyramidal truss (Fig. 5(c)) is

Fy = 2¥/204lt cos o, (50)

where oy is the average collapse strength of the 15t order face
sheets, which can be directly measured from compression tests.
Then the in-plane compressive load can be estimated from

F = 2v2(1 + ¢p)oylt cos w. (51)
54. Face sheet wrinkling (FW) of the 2" order lattice truss

This mode of failure is characterized by localized buckling of
the 274 order face sheets between adjacent nodes, Fig. 5(d), where
the critical in-plane compressive load is

2 (En!
po el 52
212l “cos2w
Note that the relationship between the critical in-plane load
and axial load along core II is specified as

Fy= (1 + &)F;. (53)
Thus, the critical in-plane compressive load is
Ap(1+ {c)anbftJ%

- ’ 54
61’ cos?w (54)
where
EA .2
Ap=2cosf + (EA) 12(EI);sin” B 55)

(EA)cos2f = (EA)l2cos B’
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Fig. 5. Failure modes in the “corrugated-pyramidal” columns subjected to in-plane compression. (a) Macro Euler buckling of the 1t order pyramidal truss; (b) Face sheet
wrinkling (FW) of the 1%t order pyramidal truss; (c) Face sheet crushing (FC) of the 1% order pyramidal truss; (d) Face sheet wrinkling (FW) of the 2" order lattice truss;

(e) Face sheet crushing (FC) of the 2" order lattice truss.

5.5. Face sheet crushing (FC) of the 2" order lattice truss

The critical load associated with the 2" order face sheet
crushing (Fig. 5(e)) is

With reference to the method presented in Section 3.2, it can
be used to obtain the following closed-form expression for critical
in-plane compressive load associated with this mode of failure as

6. Three-point bending of sandwich beams

Here, we assume that the lattice core carries the internal
shearing load, while the face sheets carry the internal bending
moment during three-point bending. Fig. 6 shows four possible
failure modes of sandwich panels including 1%t order face sheet
wrinkling, 1%t order face sheet crushing, the Euler buckling of the
2nd order corrugated struts, and the macro Euler buckling of the
15t order pyramidal struts.

6.1. Face sheet wrinkling (FW) of the 1° order pyramidal truss

Due to geometrical characteristics of the structures, imposed
constraints, and external loads with axially symmetric distribu-
tions, the modes of failure can be analyzed by considering half of
the structure. Then, the bending moment at the middle section of
the structure is (see Appendix for details)

M= ?nﬂ cosw, (58)

where n denotes the number of the 15 order unit cells, and F is the
applied external load on the middle section. We should note that
there is no “corrugated-pyramidal” lattice core at the midsection
where the load is applied. Therefore, the face sheet carries most of
the applied load. The in-plane load of the 15t order face sheets is

V2cosw
1= Zsinw 9

The critical load associated with the face sheet wrinkling
between two adjacent nodes can be estimated as

72 (EI) f

_ 60
I~ 2p2l2cos?w’ (60)
where u =0.5. Thus, the external load is

4272 (El) s sinw
F— M (61)
nl2cos*w

6.2. Face sheet crushing (FC) of the 1% order pyramidal truss

The critical load of crushing is
F; = V20ylt cos w, (62)

where o denotes the average strength of the parent material.
Then, based on the relation between the critical load of collapse
of the face sheets, F, and the applied load, F, in Eq. (59), we can
obtain F with the following expression:

4 .
F = - sin woylt. (63)
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Fig. 6. The schematic diagram of failure modes under three-point bending: (a) Face sheet wrinkling (FW) of the 1t order pyramidal truss; (b) Face sheet crushing (FC) of
the 1 order pyramidal truss; (c) Face sheet wrinkling (FW) of the 2" order lattice truss; (d) Face sheet crushing (FC) of the 2" order lattice truss.

6.3. Face sheet wrinkling (FW) of the 2" order lattice truss

The critical load associated with this failure mode is
Fo 2&0(1 + ;c)JTZEbftf3

312 cos2w.

(64)

6.4. Face sheet crushing (FC) of the 2"d order lattice truss

The critical load associated with this failure mode is
F= st(l + ;c)bfth'f. (65)

7. Results and discussion
7.1. Out-of-plane compression

Fig. 7 shows the failure map for sandwich panels with lattice
cores subjected to out-of-plane compressive loads. In constructing
this map that the angle between the core and face sheets for both
the 15t and 2" order lattice truss structures is assumed to be
45° (i.e., w = wc=45°). The results are presented in terms of non-
dimensional parameters, t/lc and t/l, for different values of the
number of the 2" order corrugated cells, n;. Fig. 7(a) shows that
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Fig. 7. Failure mechanism maps of the 2" order lattice truss under out-of-plane
compression with (a) the number of 2" order corrugated cell, n; < 18 and (b)
with the number of 2™ order corrugated cell, n;=20, n;=25 and n;= 30 for three
possible scenarios: FW =face sheet wrinkling; FC=face sheet crushing; CE=core
member buckling.

the results are independent of the parameter, n;, when it is smaller
than 18. In this case, the dominant failure modes are: face sheet
wrinkling (FW) and face sheet crushing (FC) of the 2" order lattice
truss, and Euler buckling of the 2" order corrugated struts. Clearly,
these three failure modes are independent of the length of the 15t
order pyramidal core. The macro Euler buckling (CE) occurs when
the parameter, nq, is greater than 18 as shown in Fig. 7(b). This is
mainly because the length of pyramidal struts becomes longer as
the number of the 2™ order corrugated cells increases, resulting in
a reduced buckling strength of 27 order lattice truss. Furthermore,
it can be seen that the macro Euler buckling of the 15t order pyra-
midal struts is more prone to occur at higher values of n;. This
observation is due to the fact that the structure becomes more
prone to instability as the length of the pyramidal core increases.
A limited set of computational studies were performed to
validate the results from our analytical investigations (see
Section 3.1 for details). Table 2 lists the geometrical charac-
teristics of six different samples we constructed in ABAQUS for
compressive strength calculations. Note that material properties
of the parent material are consistent with those in Table 1.
Fig. 8 compares analytical and numerical results for compressive

14 3

—_0 order-analytical results

12k = 2"% order-numerical results
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s .
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Fig. 8. Comparisons of compressive strength between the 2" order lattice truss
and the 1% order pyramidal truss with different relative densities.

strength of 15t and 2™ order lattice trusses with different relative
densities. Results show that the 2" order lattice truss structure
is much stronger compared to its 15' order counterpart with the
same relative density due to its greater capacity in resisting buck-
ling. The main reasons for discrepancies between theoretical and
simulation results are, (1) the 2" order lattice core is modeled
as thin-walled cantilever structures with uniform cross sections
in the analytical study. In addition, the cross-sectional moment of
inertia is estimated by considering only the face sheets. Finally, the
influence of discrete distribution of the 2"d order lattice core is
neglected. (2) The influence of shear deformation is not taken into
account for beam elements (i.e., Euler Bernoulli beam assumption).
As the matter of fact, the thickness of the 2" order corrugated
struts are greater than the core rods in the 1%t order pyramidal
truss, thus, the shear deformation obviously affects the accuracy
of the analytical expressions. At small relative core densities, the
compressive strength of the 2" order structures is almost four
times greater than its 1%t order counterpart with equal mass f.
This is consistent with previous studies (Kooistra et al., 2007; Zhao
et al., 2012; Zheng et al., 2016) with different types of hierarchical
constructions.

Fig. 9 shows the failure mechanism map for out-of-plane com-
pression constructed based on the analytical expressions presented
in Section 3. The dots in this figure show the results from the
experiments. Fig. 10(a) and (b) show images of specimens with
two apparent failure modes: face sheet wrinkling of the 2" order
lattice truss and the mixed failure mode, in which the dominant
failure mode is the core member buckling of the 2" order lattice
truss (note that the samples were painted by black color in these
images to improve image quality). The mixed failure mode is
observed because, (1) for the selected geometrical parameters,
point I (on Fig. 9) is very close to the intersection of two failure
modes; and (2) the material defects imposed in the fabrication
process. Although the failure mechanism maps are dependent on
the properties of the parent material, the analytical closed-form
expressions presented for elastic modulus and strength of the hier-
archical lattice structures are independent on the parent material
as long as the parent material is linear elastic and reaches plastic-
ity at some point. The compressive stress-strain responses of these
specimens are given in Fig. 10(c), which start with a linear elastic
regime until a peak value, followed by a nonlinear regime due to
the progressive failure of the truss members. The analytical results
associated with the failure of two specimens can be calculated by
Eqgs. (14) and (22) as 0.039 MPa and 0.084 MPa. Compared with the
experimental results of 0.032 Ma and 0.069 MPa, respectively, the
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Table 2
Dimensions of the six different specimens for compressive strength simulations.
Structural topologies  Relative density (%) (0)  Truss-I (mm) (I x bg x tg)  Truss-II (mm) (lc x tc)
15t order 0.59 11112 x 5.71 x 2.85 /
2nd order 11112 x 5.71 x 1.43 2.86 x 0.14
15t order 0.86 7778 x 5 x 2.45 /
20d order 77.78 x5 x 125 2.5x0.13
15t order 1.04 75 % 6.02 x 2.37 /
27 order 75 x 6.02 x 1.2 241 x0.12
15t order 12 622.25 x 60 x 19.73 /
20d order 622.5 x 60 x 10 20x1
1%t order 149 51.85 x 6.67 x 1.65 /
20d order 51.85 x 6.67 x 0.83 1.67 x 0.083
15t order 1.62 207.42 x 30 x 6.61 /
2nd order 207.42 x 30 x 3.33 6.67 x 0.33
Table 3
Dimensions of the three different hierarchical specimens under out-of-plane compression.
Failure modes Truss-I (mm) (I x by x tg)  Truss-Il (mm) (lc x tc)
Face sheet wrinkling of the 2" order lattice truss  83.14 x 10 x 0.8 1148 x 1.5
Mixed failure modes 83.14x10x 1.5 13.38 x 0.8
The mixed failure modes include core member buckling of 2" order lattice truss and face sheet wrinkling
of 2" order lattice truss.

0.20 normalized by the Young’s modulus of the parent material. Results
reveal that the equivalent shear stiffness of the “corrugated-
pyramidal” 2" order lattice truss structures is slightly lower than

0.16 its 15t order counterpart. Similar to the compressive stiffness
(shown in Fig. 2), this is mainly due to the fact that in con-
trast to the 1t order pyramidal truss structures at which all the

0.12 members contribute almost equally to the overall shear stiffness

o of the structures, for the 2" order lattice truss structures with
';H the “corrugated-pyramidal” lattice cores, greater part of the load
- is carried by the 2" order face sheets and the contribution of

0.08 corrugated struts is negligible. Thus, the equivalent shear stiffness
of the 2" order lattice truss structures is slightly lower than its
15t order counterpart of equal mass.

0.04 Fig. 12 presents the equivalent shear strength normalized by
the strength of the parent material versus relative density for both
15t and 2" order lattice truss structures. The results show that

0.00 the 2" structures are much stronger compared to the 15t order

0.04

0.08 0.12

telle

Fig. 9. Failure mechanism maps of the 2" order lattice truss made with 3D print-
ing material under out-of-plane compression: FW =face sheet wrinkling; CE=core
member buckling and the experimental points I and II locate in two different failure
modes, respectively.

0.16 0.20

theoretical compressive strength of the hierarchical structures is
approximately 20.2% and 23.5% higher. This is associated with fab-
rication defects that can be introduced during the manufacturing
process. The failure modes observed in experiments are consistent
with the dominant failure mode as predicted by the theory.

Moreover, previous studies (Kenny, 1996; Deshpande and Fleck,
2000) show that the strain rate (in the range of 103-103s!) has
little effect on energy absorption and overall dynamic behavior of
foams and cellular materials. We can show that our static analysis
can be easily extended to dynamic regimes to estimate the energy
absorption properties of hierarchical lattice structures.

7.2. Shear

Fig. 11 plots the equivalent shear stiffness of the 15t and 2nd
order lattice truss structures versus relative density, where the
dashed and solid lines show the analytical results and the markers
show the simulation results. The equivalent shear stiffness is

pyramidal truss structures in terms of its shear strength. This
is mainly due to a higher “anti-buckling” capacity (i.e., superior
ability to resist buckling) of the 2™ order structures, where their
bending stiffness is significantly greater than the 1% order pyrami-
dal core of equal mass. This suggests that the 2™ order corrugated
core can fully exploit the load-bearing capacity of the material
compared to its 15 order counterpart.

7.3. In-plane compression

The analytical expressions derived in Section 5 are employed
to construct two-dimensional collapse mechanism maps under in-
plane compression, Fig. 13. The results are plotted as functions of
non-dimensional parameters, t/l and ¢/, for both the 15t and 2nd
order lattice truss structures with w = =45°. Moreover, parame-
ters n and n; are defined as the number of the 15t order pyramidal
unit cells and the number of the 2" order corrugated unit cells,
respectively. We should note that due to the geometry of these
structures and nature of the applied load, most of the in-plane
compressive load is carried by the 15t order face sheets. In other
words, the 214 order corrugated core does not make a considerable
contribution to the load-bearing capacity of the structure under
in-plane compression, thus the failure modes associated with 274
order structure are not likely to occur within the structures. Fur-
thermore, a localized collapse of corrugated struts has negligible
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Fig. 10. (a) The mixed failure modes including core member buckling (CE) of the 2" order lattice truss and face sheet wrinkling (FW) of the 2" order lattice truss; (b) Face
sheet wrinkling (FW) of the 2™ order lattice truss; (c) Compression stress-strain curves for two different failure modes: (I) the mixed failure modes including core member
buckling (CE) of the 2" order lattice truss and face sheet wrinkling (FW) of the 2" order lattice truss; (II) face sheet wrinkling (FW) of the 2" order lattice truss.
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Fig. 11. Comparisons of shear stiffness between the 2™ order lattice truss and the
1%t order pyramidal truss with different relative densities. .

effect on the load-bearing capacity of the structure, and is ignored
in this study. To understand the effect of the 2 order corrugated
struts on the overall flexural rigidity of these structures, we define
a new parameter representing a non-identical thickness between
the 274 order face sheets and corrugated struts: tp=mtc. The
results for n=8, ny =4, and m=2 are shown in Fig. 13(a).

Our calculations show that the parameters, n; and m, have
almost no effect on the failure modes shown in Fig. 13(a), when
n is smaller than 20. This is because the length of 2" order
corrugated core struts has no effect on the structural failure
modes. Thus, in this case the failure of corrugated cores can be
neglected. Results show that the face sheet wrinkling (FW) of
the 2™ order lattice truss is the most dominant failure mode at
small core relative densities due to the lower thickness of the face
sheets (i.e., lower critical load of buckling). In contrast, face sheet
crushing (FC) of the 2" order lattice truss becomes the most
dominant mode of failure at higher relative densities. Moreover,
the macro Euler buckling of the 1%t order pyramidal struts occurs
when n becomes greater than 20. Fig. 13(b) presents a collapse
mechanism map for structures with n=30, and m =2, where the
value of n; is set to n; =2, and n; =4. The results confirm that the
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Fig. 12. Comparisons of the shear strength between the 2" order lattice truss and
the 1%t order pyramidal truss with different relative densities.
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Fig. 13. Failure mechanism maps of the 2" order lattice truss under in-plane com-
pression with (a) the number of the 15t order pyramidal cell, n < 20, and (b) with
the number of the 2" order corrugated cell, n = 30, nj=2, m=2 and n =30, n;=4,
m =2 for two possible scenarios: FW =face sheet wrinkling; FC=face sheet crush-
ing; CE =core member buckling.
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Fig. 14. Failure mechanism maps of the 2" order lattice truss with invariable
length of sandwich strut under three-point bending: FW =face sheet wrinkling;
FC =face sheet crushing and (a) n=9, n; =4; (b) n=19, n; =4.

macro Euler buckling is less likely to happen as the number of 2nd
order corrugated unit cells increases (i.e., greater n{). We should
note that the length of the 2" order corrugated cores directly
affect the distance between the 2™ order face sheets, which
further affects the buckling resistance of the structure (i.e., higher
buckling resistance with longer distance between the two face
sheets). The hierarchy suppresses the macro Euler buckling failure
mode in this structure even in structures with n; =2. Therefore,
increasing the length of the 2" order corrugated truss member
has no obvious effect on the ability of the structure to resist
buckling. Besides, the 2" order corrugated struts make minimal
contribution to the flexural rigidity of the 2" order truss core,
and thus the parameter m has little influence on the transitions
between different failure modes as shown in Fig. 13(b).

7.4. Three-point bending

The analytical relations presented in Section 6 are used to
construct two-dimensional collapse mechanism maps for the
structures under three-point bending loads. The results are plotted
as functions of the normalized parameters, t/l and tlc, with
w=wi=45° Fig. 14. Two sets of geometrical configurations were
considered with n=9 and n; =4, and, n=19 and ny =4, Fig. 14(a)
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Fig. 15. Failure mechanism maps of the 2nd order lattice truss with invariable span
under three-point bending: FW = face sheet wrinkling; FC = face sheet crushing and
(@) n=9, ny=4; (b) n=19, n; =4.

and (b). Similar to the case of in-plane compressive loading, the
localized buckling of corrugated struts has almost no effect on
the load-bearing capacity of the structures, and therefore, can be
ignored from our analysis. Furthermore, as mentioned earlier, the
macro Euler buckling of the 15 order pyramidal struts will occur
when n is greater than 20, thus, can be ignored as well.

Fig. 14 shows that by increasing parameter n, the area asso-
ciated with the wrinkling of the 2" order face sheets gradually
decreases, while the area associated with the 2" order face sheet
crushing decreases rapidly. Face sheet crushing will not appear for
structures with n> 20, which implies that this failure mode is not
likely to occur in panels with low density core constructions. How-
ever, face sheet wrinkling and face sheet crushing of the 1%t order
pyramidal truss are more likely to occur. This is mainly because
the span of the entire structure becomes larger with an increase
in n, and thus, the midsection of the structure will carry a greater
bending moment. Therefore, the face sheets will carry a greater
in-plane load and the risk of face failure will increase drastically.
Now we plot the failure mechanism maps for two cases with
n=9 and ny=2, n=9 and n; =8, Fig. 15. The results show that
the parameter n; has a major role in the transition of different
failure modes. In the case of a constant bending moment, when
ny is small, the in-plane load of face sheet increases, resulting in

the face sheet becoming prone to damage and failure. However,
the distance between top and bottom face sheets becomes greater
with an increase in the parameter, ny, which leads to a decrease
in the in-plane load of face sheets. Thus, the corresponding failure
modes are less likely to occur.

8. Conclusions

In the present paper, we investigated the mechanical response
and failure of the “corrugated-pyramidal” 2" order lattice truss
structures under different quasi-static loading conditions. Analyti-
cal expressions of different failure modes have been derived under
four types of static loadings: out-of-plane compression, shear,
in-plane compression, and three-point bending. The relevant FE
simulations were conducted to verify the validity of these analyti-
cal solutions, and good correlations between analytical predictions
and FE simulations were achieved. In addition, a limited number
of experiments were performed in order to further validate the
analytical expressions related to each failure mode. The failure
mechanism maps were constructed based on the analytical expres-
sions for out-of-plane compressive, shear, in-plane compressive,
and three-point bending strengths in each of these modes in order
to investigate the influence of geometrical characteristics of on
the mechanical response and failure of 2" order lattice truss
structures and sandwich panels.
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Appendix
1. Equivalent out-of-plane compressive stiffness

Because the rods of the 15t order pyramidal lattice core have
an axially symmetric distribution, the relevant effective stiffness
of the lattice core can be derived by analyzing the deformation
of a single strut. According to the geometric relationship between
the vertical displacement and the axial, tangential displacement
components of the rod, the corresponding expressions are

84 =8 cosa, (A-1)

s =dsina. (A-2)

The axial displacement component §4 is generated by the axial
force F4, from the basic mechanics of materials formulas and
Eq. (A-1), the axial force is
(EA),

I

The tangential displacement component §s is generated by
shear force Fs and bending moment M, the tangential displace-
ment also has following expression:

_ KB MP
ST3(ED,  2(ED),

dcosa.

Ey = (A-3)

(A-4)
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We assume clamped boundary conditions at the tips of core
rods. The sum of rotation angles, which are produced by shear
force F; and bending moment M, at each end of the rod equal to
zero. By equilibrium equations, the equation is

Fslz Ml
_ -0. A-5
2(ED; ~ (ED), (A-5)

Substituting Eqs. (A-2) and (A-4) into Eq. (A-5), the shear force
Fs and bending moment M can be further simplified as

R — 1253“)'3 sina, (A-6)

M= 6(;:;1)'85ina, (A-7)
The resultant force F along the vertical direction is

F = Fysinw+Fs cos w. (A-8)

Substituting Eqs. (A-3) and (A-6) into Eq. (A-8), the resultant
force F can be further simplified as
_ (EA)Psin’w + 12(El) cos?w
= E
The equivalent stress, &, of cellular sandwich structure is
2§, (EA), sina)(S

F 8. (A-9)

5 — A-1
7 Bcos?w (A-10)
The dimensionless parameter, &, in Eq. (A-10) is
2¢in2 2
£, = (EA),I*sin“w + 12(EI),cos w (A-11)

(EA)?sinw

The equivalent strain, €, along the vertical direction (z-axis) of
the unit cell is

)

E=—r. A-12
Isinw ( )
Thus, the equivalent out-of-plane compressive stiffness, E,

along the z-axis of the unit cell is

2&, (EA)sin’w
[2cos?w
We take a corrugated unit cell as the object of free-body-

diagram as shown in Fig. A-1. The external force, F, is applied

along the x-axis, then a half of a corrugated unit cell is taken
as the object of free-body-diagram due to the symmetry of the
structure. In addition, the displacement, §, is generated along
the direction of this external force. Under the premise of small
deformations, the contribution of the axial deformation, which is
generated by the surface force in the corrugated core, and the
shear deformation, which is caused by the shear force and bending
moment, to the displacement, §, is considered. The response of the
structure is investigated based on continuous displacements and
equilibrium formulation. According to the geometric relationship
of the displacement, the axial and shear displacement components,
84, and, s, are

E= (A-13)

84=6 cos w, (A-14)

Ss=4 sinw. (A-15)

The axial displacement component, §,4, is generated by the sur-
face internal force, F4, in the corrugated core. From basic mechan-
ics of materials formulas and Eq. (A-14), the axial force, Fy, is

Fy = %8 cos w,

where the parameter (EA); denotes the equivalent compressive
stiffness of the corrugated core.

(A-16)

(2)

The free-body-diagram

for shear

Fig. A-1. The free-body-diagram of a unit cell of 2" order lattice truss and the
corresponding schematic diagram of a quarter of a unit cell subjected to (a) com-
pressive loading , and (b) shear loading.

Similarly, the shear deformation, Js, is caused by the shear
force, Fs, and the bending moment, M, and the corresponding
expression is

EB MI?

3(EDy  2(EDy’
where the parameter (EI); denotes the equivalent flexural rigidity
of the corrugated core.

We assume clamped boundary conditions at the tips of corru-
gated core. Likewise, the sum of the rotation angle equals to zero.
By equilibrium equations, the equation is

El? Ml
2Dy (EDy (A-18)

Substituting Eqs. (A-15) and (A-17) into Eq. (A-18), the shear
force, F;, and the bending moment, M, of the corrugated core can
be further simplified as

12(

s (A-17)

K= II;:I)” Ssinw, (A-19)
M= 6(;52')" Ssinw. (A-20)

The infinitesimal displacement, &, of the face sheet is generated
by the component force, Fy, from basic mechanics of materials
formulas, the component force along the face sheet is

B (EA)f
I~ Teosw
where the parameter (EA); denotes the equivalent compressive
stiffness of the face sheet.

The end force, F;, of the right face sheet can be obtained based
on the force equilibrium equations, and it is

8, (A-21)

F = Fycosw+Fssinw + Fy. (A-22)
Substituting Eqs. (A-16) and (A-19) into Eq. (A-22), the end
force of the right face sheet can be further simplified as

E ((EA)lecoszaH—12(EI)”sir12a) (EA)f>8
r: .

B lcosw (A-23)
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The end force, F;, of the left face sheet equals to that of the
right face sheet, and the external, F, is the sum of the two end
forces, that is

F=F+F. (A-24)

Substituting Eqs. (A-21) and (A-23) into Eq. (A-24), the external
force is

2(EA); . (EA),I>cos?w + 12(El) sinw
= S+ 8.
lcosw B

In Eq. (A-25), the first item denotes the load, F;, which the top
and bottom face sheets carry and the second item is the load, F,
which the corrugated-pyramidal core carries. The ratio of F; and
F. can be represented by a dimensionless parameter, £., and this
parameter is defined as

F (A-25)

- t3sin’w cos w + t[2cos3w
¢ 2t;12

(A-26)

The equivalent strain, €, of the corrugated unit cell along the
loading direction is
_ 1)
E=——. A-27
2l.cosw ( )
Thus the equivalent compressive stiffness of the corrugated
unit cell along the loading direction is

F

(EA), = 5 (A-28)

Substituting Eqs. (A-25) and (A-27) into Eq. (A-28), the equiv-
alent compressive stiffness can be further simplified as

Ebt3sin®w cos @

12

(EA), = 2Ebt; + + Ebtccos’w. (A-29)

Similarly, the equivalent flexural rigidity of the corrugated unit
cell is

1 1 . 2
(ED), = éEbt; + j(lc sinw + ty) Ebty

+lsin2a)cos3a)l§Eth + ;—Zf(w)Ebtf, (A-30)

4

where the parameter flw) is flw) = cosw + 3sin2wcosw —
3sin 2wcos 3w.

2. Equivalent out-of-plane compressive strength

The compressive load, F, is applied along the z-axis and the re-
lation between the axial force, F4, and the compressive load, F, is

F = 4&,F,. (A-31)

Then, the relations between the shear force, Fs, (the bending
moment, M) and the axial force, F4 are

_ 12(El) cosw

k5= (EA),Zsinw ™ (A-32)
_ 6(ED),cosw )
- (EA)llsina)FA' (A-33)

From Eqs. (A-32) and (A-33), it can be seen that the shear force
and bending moment are far less than the axial force in the case
of the truss member with larger aspect ratio. Thus, we can assume
that the axial force is the dominant failure force of truss members
under compressive load. The equivalent out-of-plane compressive
strength, o of a unit cell under the compressive load, F, is

F

g = 212cos2w’ (A-34)

2.1. Face sheet wrinkling (FW) of the 2"d order lattice truss

From the Section 3.2, the axial force along the 1t order
pyramidal truss is

(1 +&)m?Ebsty?
B 6152c052a)c '
Substituting Eqs. (A-31) and (A-35) into Eq. (A-34), the equiva-
lent out-of-plane compressive strength, o, of a unit cell is
& (1 + Lo)m2Ebt;?

312162cos4w '

E, (A-35)

5= (A-36)

2.2. Core member buckling (CE) of the 2" order lattice truss

It can be assumed that the external load is slightly larger than
the critical force of the strut, and the compressive strut is in the
micro bending state. The actual stress state was estimated using
the moment-equilibrium equations, and the relevant expression is

M(x) = Fw(x), (A-37)

where M(x) is the bending moment in the strut, and F. denotes
the external load along the attachment direction of the strut
ends, and w(x) is the deflection caused by external loads. In
addition, according to the moment-equilibrium equations from
basic mechanics of materials, the bending moment is
d’w
M) = —(EDy=—-. A-38
*) = —(EDn—-5 (A-38)
Substituting Eq. (A-38) into Eq. (A-37), the expression can be
further simplified as

2
C;TVZV + k2w =0, (A-39)
F
2 c _
- & (A-40)

According to the boundary conditions of compression strut, the
minimum critical load of the stability problems of columns is

g T(EDy

= (A-41)

3. Equivalent shear stiffness

The relation between the axial force, F4, and the vertical
displacement, §, is

Ey = (E?)‘ §cosa.

In Eq. (A-9), (EA), and (EI); are the equivalent compressive
stiffness and flexural rigidity of the 15t order core member re-
spectively. According to the relation between the resultant force
in Eq. (A-9) and the axial force in Eq. (A-42), the non-dimensional
parameter, &, is defined as

£, = (EA),[2cos?a + 12(EI)sin’a
*- (EA), 2 cos :

The relation between the resultant force and the axial force
can be further simplified as

F = 4&,F,. (A-44)
The equivalent shear stress, 7, and equivalent shear strain, y,
of a unit cell are

2&4 (EA)  cosa
BBcos?w

(A-42)

(A-43)

= (A-45)
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y = ——. A-46
V= Isinw ( )
Thus, the equivalent shear stiffness, G, of the unit cell is
o 2&, (EA), cosa sinw (A-47)
[2cos?w

4. Equivalent shear strength

The relations between the shear force, Fs, (the bending mo-
ment, M) and the axial force, F4, through the free-body-diagram,
the expression is

E _ 12(El)sina )
Fy  I2(EA),cosa’ (A-48)

M _ 6(EI)Isina. (A-49)
Ey  I(EA),cosu

It is seen from the Eqgs. (A-48) and (A-49) that, the ratios of
the shear force and the bending moment to the axial force can
be sufficiently small provided that the 15 order pyramidal truss
members are long enough. Thus, we can assume that the axial
force is the dominant force to cause truss members damage under
shear load. The shear load, F, can be along the random direction,
therefore, the equivalent shear stiffness changes periodically with
the angle. Since the truss members of the 15¢ order pyramidal unit
cell are symmetrically positioned with respect to the central axis,
one truss member rotates the angle, 7 /2, along this axis and this
truss member will overlap the adjacent truss member. The angle
of rotation is called the rotation angle. Here, the angle of rotation
is 7 /2. The included angle, ¢, between direction of shear load and
x-axis is defined to 0 < ¢ < /2. The truss member named OC
rod subjects to the maximum magnitude of compressive load and
the other truss member named OA rod subjects to the maximum
magnitude of tensile load as shown in Fig. A-1. The 2" order lat-
tice truss which is investigated is made of carbon fiber reinforced
composite material and the compressive strength of the parent
material is less than the tensile strength. Therefore, the truss mem-
ber with the largest compressive load appears to damage primarily.
Through the free-body-diagram, the relation between the axial
force, F¢, along the OC rod and shear force, F, is calculated by

E* = L(sin(p + cos ). (A-50)

48y
Moreover, we also note that the analytical derivations of elastic
modulus for the presented loading scenarios are not affected by
the strength of the parent material, however, the theoretical calcu-
lations of failure strength will change if the compressive strength
of the parent material is not less than the tensile strength. For
this case, the tensile strength of the parent material can be sub-
stituted for the compressive strength in the analytical expressions.
No matter what kind of loading is applied to the structure, the
stretch-dominated truss members in “corrugated-pyramidal” hi-
erarchical lattice cores will be subject to the tensile/compressive
loads. Therefore, the tensile fracture of the hierarchical truss mem-
bers is considered as the dominant failure mode on this occasion.
The OD rod begins to damage in the case of 72 < ¢ < 7
and the OA rod begins to damage in the case of 7 < ¢ < 37/2,
similarly, the OB rod begins to damage in the case of 37/2 < ¢ <
21 due to the periodicity of the pyramidal sandwich structure.
The equivalent shear strength, 7, is

2F&,

t= [2(sin@ + cos@)cos2w’

(A-51)

4.1. Face sheet wrinkling (FW) of the 2"d order lattice truss
Substituting Eqgs. (31) and (32) into Eq. (A-51), the equivalent
shear strength of a unit cell is
ga (1 + §C>7T2Ebftf3
31212 (sin @ + €S ¢)C0s2w OS2

T= (A-52)

4.2. Face sheet crushing (FC) of the 2" order lattice truss

Substituting the expression of the axial load along the core I
(Eqg. (36)) into Eq. (A-51), the equivalent shear strength of a unit
cell is

4(1 + &o)éubytioy

=R (sing + cos p)cos?w’

(A-53)

5. Equivalent in-plane compressive strength

5.1. Macro Euler buckling of the 1° order pyramidal truss
In Eq. (46), the expression of the equivalent flexural rigidity of
the 2™ order corrugated cell is

(EDeq = 2(EDy + F1(B. 0) (ED) + f2(B. ) (EA),,

where 6 denotes the included angle between core I and axis 3.
The non-dimensional parameters f;(8,0) and f,(8,0) are

fi1(B.0) = 4cos B — 6cos? B sin @ + 3cos® BsinH,

(A-54)

(A-55)

1
f(B.0) = Zcos3,8c05294 (A-56)
The expressions of the equivalent compressive stiffness and
the equivalent flexural rigidity have been given in Egs. (A-29) and
(A-30). The equivalent flexural rigidity of the structural face sheets,
the corresponding expression is

(EI),, = v2EIt? cosw/12 + bt (I sinw + t)? /4. (A-57)

5.2. Face sheet wrinkling (FW) of the 2"¢ order lattice truss

The distance between two adjacent nodes of the two face
sheets is the same. Thus, the critical loads of the two face sheets
under the buckling instability have the identical value. The total
load which the two face sheets carry are the twice of that which a
single face sheet carries. According to basic mechanics of materials
formulas, the critical load is

7% (ED)gy,

Fr = 2Ecoste’ (A-58)

During the in-plane compression, the corrugated-pyramidal
core may deform as the external load increases. Therefore, the cel-
lular core will carry a partial load. The in-plane compressive load
in this failure mode, through the free-body-diagram, is derived as

 V2(1 4 ¢p)m2ES

F= 122l cos @ (A-59)
In Eq. (A-59), the non-dimensional parameter, ¢, is
(EA),cos3B  12(EI),sin®B cos B
= , (A-60)
& (EA); (EA);I2

where the expressions of equivalent compressive stiffness and
equivalent flexural rigidity of the 2" order corrugated core have
been given in Eqgs. (A-29) and (A-30). The parameter, (EA);, indi-
cates the equivalent compressive stiffness of the structural face
sheets and (EA); = v/2EIt cos w.
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6. Equivalent three-point bending strength

6.1. Face sheet wrinkling (FW) of the 1°t order pyramidal truss

In Section 6, the external load of this failure mode has been ob-
tained in Eq. (63), and the parameter (EI); denotes the equivalent
flexural rigidity of structural face sheet. It is

V2It3 cosw

Substituting Eqs. (A-61) and (60) into Eq. (59), the external
load can be further calculated by

(A-61)

4723 Esinw
~ 3nlcos?w (A-62)
6.2. Face sheet wrinkling (FW) of the 2" order lattice truss

The critical load associated with this failure mode is equal to
the out-of-plane compressive strength of the 15t order FW (in
Eq. (14)) multiply by the area of the 1% order unit cell. And the
area of the 15t order unit cell is

A = 2%cos’w. (A-63)
Therefore, the critical load is
28,(1 2Eb 3
Fe §w(1+ ) *Ebyty . (A-64)

3152cos2a)c

6.3. Face sheet crushing (FC) of the 2" order lattice truss

Similarly, the critical load under this failure mode is equivalent
with the result which the out-of-plane compressive strength of
the 15 order FC (in Eq. (17)) multiply by the area of the 15t order
unit cell (in Eq. (A-63)). The corresponding expression is

F=8&,(1+ ;c)bfth'f. (A-65)
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