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Abstract
Urban functions refer to the purposes of land use in
cities where each zone plays a distinct role and co-
operates with each other to serve people’s various
life needs. Understanding zone functions helps to
solve a variety of urban related problems, such as
increasing traffic capacity and enhancing location-
based service. Therefore, it is beneficial to investi-
gate how to learn the representations of city zones
in terms of urban functions, for better supporting
urban analytic applications. To this end, in this pa-
per, we propose a framework to learn the vector
representation (embedding) of city zones by ex-
ploiting large-scale taxi trajectories. Specifically,
we extract human mobility patterns from taxi tra-
jectories, and use the “co-occurrence” of origin-
destination zones to learn zone embeddings. To uti-
lize the spatio-temporal characteristics of human
mobility patterns, we incorporate mobility direc-
tion, departure/arrival time, destination attraction,
and travel distance into the modeling of zone em-
beddings. We conduct extensive experiments with
real-world urban datasets of New York City. Ex-
perimental results demonstrate the effectiveness of
the proposed embedding model to represent urban
functions of zones with human mobility data.

1 Introduction
A city consists of a variety of zones providing different func-
tions to support diverse demands of urban residents, such as
working, recreation, and residence. Studying the urban func-
tions of city zones provides indispensable information which
is useful in solving many urban challenges, therefore plays
a critical role in urban analytics. Recent years, the advent of
sensing technologies and mobile computing has accumulated
a variety of data related to human mobility in urban areas. As
a result, data-driven approaches have been increasingly ap-
plied to explore urban functions of cities.

While the literature has shown promising effectiveness
of analyzing massive positioning data for urban exploration
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[Cranshaw et al., 2012; Yuan et al., 2012; 2015; Cheng et
al., 2011], there are limited studies aiming to provide an inte-
grated and principled approach to the representation learning
of city zones in terms of urban functions. In this paper, we
aim to propose an effective solution to learn the distributed
and low-dimensional embeddings of city zones. Zones with
similar urban functions are geometrically closer in the em-
bedding space. Using zone embeddings, we are able to iden-
tify functional regions of cities which consist of several zones
with similar functions. Furthermore, many analytic models
can use these extracted representations as enhanced inputs.

Generally, there are two critical challenges toward learn-
ing effective zone representations of urban functions: (i) how
to infer urban functions: through intra-zone human activity
or inter-zone human mobility; (ii) how to effectively exploit
human mobility patterns containing spatio-temporal charac-
teristics for learning zone embeddings.

First, by providing intelligence to profile human activity
categories (e.g., shopping) within city zones, check-in data
in location-based social networks (LBSNs) have been widely
used for urban analytics. However, LBSNs have reliability is-
sues due to (i) biased check-ins in entertaining related point-
of-interest (POI) categories; (ii) sparse check-ins outside hot
areas or time periods; and (iii) significant discrepancies be-
tween user check-in and actual mobility [Wang et al., 2016].
More importantly, by analyzing intra-zone human activities,
it is difficult to obtain association information between any
two zones, which is essential in zone embedding learning
for capturing “contexts”. On the contrary, human mobility
data (e.g., taxi trajectories) reveal an important association
between two zones through the dynamic origin-destination
mobility flow mostly related to function dependencies (e.g.,
commuters usually travel to an office zone around 9 a.m. from
residential or transportation zones). In addition, human mo-
bility data generally have a better coverage of unpopular areas
and time periods. Therefore, analyzing human mobility has a
potential to learn urban functions through zone embedding.

Second, an effective framework is highly needed to learn
zone embeddings with human mobility patterns across city
zones. For this purpose, we bring in the idea of word2vec
[Mikolov et al., 2013a; 2013b], which is originally a natural
language processing (NLP) model for word semantic learn-
ing. In word2vec, the embedding of a word is learned from
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its co-occur words which appear nearby in sentences. There-
fore, two semantically similar words are likely to share sim-
ilar vector representations. For example, “queen” and “king”
would be close in the embedding space because both co-occur
with the same nearby word “kingdom” frequently. Similarly,
by analyzing a zone based on its “co-occur” zones between
which human mobility patterns exist (e.g., a residential zone
and an office zone “co-occur” when people travel from one
to another), we can learn zone embeddings by analyzing as-
sociation strength of every zone pair. With zone embeddings,
zones with similar urban functions are geometrically close,
whereas zones with different functions are distant.

Based on the above idea, a potential solution is to treat the
origin-destination pair of zones in a human mobility pattern
as a co-occurrence of two zones for zone embedding. How-
ever, urban functions are also jointly reflected by mobility di-
rection and departure/arrival time. In other words, the embed-
ding method should be able to take into account “leaving for”
and “arriving from” at “different time” for modeling a zone
co-occurrence. To that end, we define a set of human mobility
events which contain zone, time, and status of mobility pat-
terns, to serve as embedding “contexts” of target zones, for
building directed and time-aware zone co-occurrences to in-
clude spatio-temporal characteristics. In addition, during the
learning of zone embeddings, we give different importance to
different co-occurrences by calculating the travel demands of
origin-destination zone pairs based on destination attraction
(e.g., total mobility pattern arrivals) and travel distance (e.g.,
average mobility pattern length) information.

Along these lines, in this paper, we present a novel human
mobility based zone embedding framework to represent ur-
ban functions with distributed and low-dimensional vectors.
Specifically, we develop a zone embedding model to exploit
origin-destination information from massive human mobility
patterns. We take into account mobility direction and depar-
ture/arrival time to model spatio-temporal co-occurrence of
zones, and jointly incorporate destination attraction and travel
distance to give different co-occurrences different importance
in the embedding learning. Finally, we conduct extensive ex-
periments with real-world urban datasets of New York City
to show the effectiveness of the proposed method.

2 Problem Statement
We first provide some preliminary concepts in our work, then
we proceed to the problem statement of zone embedding
learning.
Definition 1 (Human mobility pattern) Given a taxi trip, we
extract the human mobility pattern with the following infor-
mation: (i) origin-destination (O-D) pair of zones; (ii) time of
departure (e.g., taxi passenger pick-up) and arrival (e.g., taxi
passenger drop-off); and (iii) travel distance.
Definition 2 (Human mobility event) Given a human mobil-
ity pattern, we extract two human mobility events: one for the
departure and one for the arrival with the following informa-
tion: (i) event occurrence zone; (ii) event occurrence time;
and (iii) event status: a departure or an arrival.

Given a set of city zones Z = {z1, z2, ..., zN} and a set of
taxi trips. Each trip contains the passenger travel with the in-

(a) (b)

Figure 1: (a) Locations of taxi pick-up in New York City (NYC). (b)
City zones of NYC.

formation of locations and timestamps for the departure and
the arrival. From taxi trips, we extract a set of zone level hu-
man mobility patterns P = {p1, p2, ..., pm}, where each mo-
bility pattern p = (p.zO, p.zD, p.tO, p.tD) includes the zone
of origin p.zO and destination p.zD, as well as the time of
departure p.tO and arrival p.tD. Each time is converted from
a timestamp to a 〈timeslot, daytype〉 combination. We de-
fine {ts1, ts2, ..., tsJ} to be a set of time slots of a day (e.g.,
24 hours), and {wd,we} to be a set of day types: weekday
and weekend. Figure 1 illustrates the pick-up locations of taxi
trips, and the city zones in urban areas.

The objective is to learn the distributed and low-
dimensional embeddings of city zones based on the spatio-
temporal human mobility patterns for representing their ur-
ban functions in a city.

3 Methodology
In this section, we first review the word2vec model originated
from semantic analysis. Then we show how to learn zone em-
beddings by incorporating spatio-temporal human mobility
patterns. Last, we present the model specification.

3.1 Word Embedding
A fundamental observation in word embedding literature is
that semantically similar words often have similar “contexts”
(i.e., the words appear around them) in sentences [Levy and
Goldberg, 2014; Mikolov et al., 2013b]. By modeling the as-
sociation strength of each word pair based on the frequencies
they co-occur within a small context window (e.g., a window
size of 5 means 5 words ahead of and 5 words behind the tar-
get word are considered as contexts), the embedding vw of
word w can be learned by

vw
ᵀv′c ≈ PMI(D)w,c, (1)

where v′c is the embedding of context word c.
PMI(D) is a |W | × |W | pointwise mutual information

(PMI) matrix calculated by word co-occurrence frequencies
in corpus D with vocabulary size |W |. The PMI value in the
〈w, c〉 entry is computed as

PMI(D)w,c = log

(
#(w, c) · |D|
#(w) ·#(c)

)
, (2)

where #(w, c) counts the frequency that words w and c co-
occur, and #(w), #(c) count the frequencies that words w
and c occur independently. |D| is the total number of word-
context pairs in the corpus.
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Figure 2: An example of top human mobility flows of a transporta-
tion zone (red): (a) people move out to office zones (green) in 8-9
a.m., and (b) move back (yellow) in 5-6 p.m..

3.2 Spatio-Temporal Zone Embedding

We propose to learn the embedding of zones from its asso-
ciated zones based on human mobility. People leave zones
and arrive at zones at different time for different trip pur-
poses, which reveals a function dependent association be-
tween zones. As shown in Figure 2, a transportation zone of
Pennsylvania train station in NYC usually shows heavy mo-
bility flows heading to office zones in the midtown in week-
day mornings (8-9 a.m.), and shows huge mobility flows re-
turning from office zones after work (5-6 p.m.). Therefore, we
could define that when two zones form a origin-destination
pair, a zone co-occurrence happens. By counting the num-
ber of origin-destination patterns, the frequency of zone co-
occurrence can be obtained. Then zone embeddings can be
learned by factorizing PMIs of zone pairs.

However, a problem of using the above simple zone co-
occurrence is that the critical spatio-temporal characteristics
of human mobility patterns (e.g., mobility direction and de-
parture/arrival time) are not incorporated into the embedding
framework. For example, given a mobility pattern which de-
parts from zone A and arrives at zone B, to study the zone
functions, the embedding framework needs to consider not
only the co-occurrence of A and B, but also the correspond-
ing mobility direction (e.g., A→ B) and the departure/arrival
time (e.g., at night).

To address this problem, we define a set of human mobil-
ity events E instead of zones to serve as embedding con-
texts (i.e., mobility events co-occur with zones in mobility
patterns) so that the model includes zone co-occurrence, mo-
bility direction, and departure/arrival time in the embedding
learning. Specifically, a mobility event e is defined as follows:

e = (e.z, e.t, e.sta), (3)
where e.z is the zone, e.t is the time by time slot and
day type, and e.sta ∈ {arrive, leave} is the mobility sta-
tus which shows the direction of the human mobility pat-
tern. For example, a human mobility event can be defined as
〈zi, 12p.m.-weekday, arrive〉 which means a human mobil-
ity pattern arrive at zone zi during the time slot of 12 p.m.-1
p.m. on weekday.

From each mobility pattern p = (p.zO, p.zD, p.tO, p.tD),
we obtain two co-occurrences consisting of a zone as embed-
ding target and a mobility event as embedding context:

zone mobility event
p.zO (p.zD, p.tD, arrive)
p.zD (p.zO, p.tO, leave)

Using these directed and time-aware co-occurrences, we
incorporate mobility direction and departure/arrival time of
human mobility patterns to enable zone embedding.

Table 1 shows an analog between word embedding and
zone embedding. In word embedding, every word serves as
a target word and a context word. The association between
a target word and a context word is learned from the fre-
quency of word co-occurrences in sentences. Unlike tradi-
tional word embedding framework, city zones only serve
as target “words” and mobility events only serve as context
“words” in zone embedding. Accordingly, we use the co-
occurrences of a zone and a mobility event in human mobility
patterns to learn the pairwise zone associations.

word embedding zone embedding
target word zone

context word mobility event
co-occur in sentence mobility pattern

Table 1: Analog between word embedding and zone embedding.

3.3 Modeling Importance of Co-Occurrence
A unique characteristic of zone embedding is that different
zones in contexts have different impacts based on how attrac-
tive the destination is and how far the mobility travels. Based
on that, we propose to give different co-occurrences different
importance for better optimizing zone embeddings.

For each origin-destination (O-D) pair of zones, we calcu-
late the travel demand between them based on two factors: (i)
destination attraction (e.g., total mobility patterns arrival at
destination zones) and (ii) travel distance (e.g., average mo-
bility pattern travel distance) with the gravity model of trans-
portation analysis [Cascetta et al., 2007]. Then we use the
travel demand of the O-D zone pair to guide its importance of
co-occurrence in the embedding learning with a 0-1 weight.

Specifically, we define G as a |Z|× |Z| gravity matrix (|Z|
is the total zone number) where row dimension means each
zone as an origin, column dimension means each zones as
a destination. Each row of G is a distribution of 0-1 proba-
bilities that every destination zone zD can attract a mobility
pattern from a particular origin zone zO, with sum of 1.

In detail, a 〈zO, zD〉 entry of G is calculated as

G(zO, zD) =
AzDFzO,zD∑
z∈Z AzFzO,z

, (4)

whereAz denotes the total number of mobility patterns arrive
at zone z . FzO,zD is the friction factor to serve as a cost for
traveling between two zones, which is calculated based on the
travel distance with a negative exponential function:

FzO,zD = e−βdzO,zD , (5)
where dzO,zD is the travel distance between zone zO and zD
calculated by averaging the travel distances of mobility pat-
terns. β is the parameter which is obtained by minimizing∑

zO∈Z

∑
zD∈Z

(TzO,zD − T̂zO,zD )
2

(6)
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with a genetic algorithm [Deb et al., 2002], where TzO,zD is
the observed mobility pattern number from zO to zD. T̂zO,zD
denotes the estimated mobility pattern number calculated by
T̂zO,zD = PzO · G(zO, zD) , where PzO is the total number
of mobility patterns leave zO. Also, since the mobility dis-
tributions are usually different on weekday and weekend, we
calculate the gravity matricesGwd andGwe by two day types.

3.4 Model Specification
To learn the zone embeddings proposed in our framework,
we minimize the following objective function over all co-
occurrences of zones and mobility events:

min
V,V ′

1

2

∑
z∈Z

∑
e∈E

(
M(z, e)− vzᵀv′e

)2
·G∗(zO, zD), (7)

where M denoted the |Z| × |E| matrix of positive point-
wise mutual information (PPMI) which measures every
co-occurrence of zones and mobility events, and G∗ ∈
{Gwd, Gwe} denotes the gravity matrix for all origin-
destination zone pairs of a particular day type.

In the first part, each value ofM is computed asM(z, e) =

max
(
0, log(#(z,e)·|T |

#(z)·#(e) )
)
, where #(z, e) counts the num-

ber of times that zone z and mobility event e co-occur,
#(z),#(e) count the numbers of single occurrence of z and
e, and |T | is the observed number of co-occurrence from all
mobility patterns.1 vz is the D-dimensional embedding of
zone z, and v′e is the D-dimensional embedding of mobil-
ity event e. We factorize PPMI matrix M into vz and v′e by
minimize the square error for all co-occurrences.

In the second part, G∗(zO, zD) denotes the gravity cor-
responding to the current co-occurrence which is retrieved
by the origin-destination zones zO, zD and the day type
∗ ∈ {wd,we} interpreted from the current target zone and
context mobility event. We use it to apply different impor-
tance on co-occurrences to enhance the embedding learning.
Parameter Estimation: Given the objective function in
Equation (7), we take derivatives with respect to vz and v′e,
and adopt gradient descent method to optimize embeddings.
For experimental setup, we empirically set embedding dimen-
sion D = 50. Gravity matrices Gwd and Gwe are calculated
with βwd = 0.4674 and βwe = 0.3881.

4 Evaluation
In this section, we empirically evaluate the performance of
our proposed method. We perform all the experiments on
real-world datasets of New York City (NYC). We choose
NYC because of following reasons: (1) NYC contains mas-
sive population, diverse urban functions, and highly active
economics. (2) Our experimental data has a sufficient cover-
age of NYC, therefore we are able to have convincing results.

4.1 Data Description
The first dataset is the human mobility data. We use the trip
records of yellow taxi from NYC taxi & limousine commis-

1We use PPMI to obtain a stable value because PMI can result in
large negative values caused by log operation.

(a) Land use map (b) Land use types

Figure 3: Land use of NYC for validation.

sion2 to obtain citywide human mobility patterns. Since peo-
ple in NYC seldom own cars, taxi is one of the most frequent
and representative ground transportation choice. We use com-
plete trip records of three months (June to August) in 2013.
Finally we obtain 33,842,934 trips as our training data. Each
taxi trip contains the locations and timestamps of a pick-up
and a drop-off as well as the trip distance.

The second dataset is the zone data. We use the city zones
designed by US Census Bureau3 for zone embedding learn-
ing. Using these zones has three benefits: (i) they are pro-
fessionally designed to contain homogeneous population and
environment; (ii) they are separated by major road network
and therefore make interpretable study results; (iii) they have
relatively small areas and therefore provide relatively fine-
grained analytic insights. At last we obtain 193 city zones for
urban function study.

The last dataset is the Foursquare check-in data formulated
by the work in [Yang et al., 2015], since we compare the
proposed model against the state-of-the-art baseline meth-
ods which analyze check-ins and point-of-interests (POIs)
in location-base social networks (LBSNs). The dataset in-
cludes the check-in data in NYC for 10 months during 2012
to 2013. Each check-in contains the information of user ID,
POI ID, location, timestamp and POI category. Finally, we
have 17,009 POIs across 139 fine-grained categories, 1,046
LBSN users, and 109,073 check-ins.

4.2 Evaluation Metrics
For evaluation, we conduct k-means clustering on zone em-
beddings to partition the zone set into K urban function clus-
ters. Zones with similar functions should be assigned to the
same cluster. To validate clustering performance, we utilize
the official land use dataset4 of NYC as the ground-truth of
zone functions. This dataset describes the land use designa-
tion of every lot (e.g., land of a building) by 11 land use types
as shown in Figure 3. By aggregating all the lots at the zone
level, for each zone, we obtain a vector consisting of the per-
centages of area for 11 different land use types. We then apply
k-means clustering on land use vectors with different clus-
ter number K for obtaining the ground-truth labels for city
zones, We use the following metrics to evaluate zone cluster-
ing results of the proposed embedding method and baselines:

2http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
3https://catalog.data.gov/dataset
4https://zola.planning.nyc.gov
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• Normalized Mutual Information (NMI), defined as

NMI =
I(L;C)

[H(L) +H(C)]/2
, (8)

where L is the set of true labels and C is the set of clusters.
I(L;C) denotes the sum of mutual information between any
cluster ci and any label lj . H(L) and H(C) denote the en-
tropy for labels and clusters, respectively. This metric eval-
uates the purity of clustering results from an information-
theoretic perspective.
• Adjusted Rand Index (ARI), defined as

ARI =
RI − Expected RI

Max RI − Expected RI
, (9)

which is the corrected-for-chance version of the Rand in-
dex (RI). By viewing the cluster assignments of all pair of
zones as a series of decisions, we calculate the correctness by
RI = TP+TN

TP+FP+TN+FN , where TP/FP denotes true/false
positive and TN/FN denotes true/false negative. ARI has a
score between -1.0 and 1.0 that random labeling has an ARI
close to 0, and 1 stands for perfect match.
• F-measure, defined as

Fβ =
(β2 + 1) · Precision ·Recall
β2 · Precision+Recall

, (10)

where Precision = TP
TP+FP and Recall = TP

TP+FN . Sim-
ilarly to ARI, we view the clustering result of each pair of
zones as a decision, then we can have precision and recall.
F-measure is the harmonic mean of precision and recall. We
put more emphasis on precision than recall by β = 0.5.
• Cluster Internal Difference (CID), defined as

CID =
1

N

N∑
i=1

d(zi, czi), (11)

whereN is the total number of zones. zi is the land use vector
of zone i. czi is the average land use vector of i’s assigned
cluster. d(x, y) calculates the Euclidean distance between the
two vectors. Finally, we obtain the average distance from each
zone’s land use to its cluster’s average land use. A smaller
value means the zones assigned to the same cluster are more
similar in terms of urban functions.

4.3 Baseline Approaches
The experimental study compares our proposed Mobility-
based Zone Embedding (ZE-Mob) with the following ap-
proaches of zone representation for urban exploration.
• TF-IDF (POI): An intuitive approach is to represent
zone functions using intra-zone human activity types from
LBSN data (e.g., POI category). We use Term Frequency-
Inverse Document Frequency (TF-IDF) to measure the im-
portance of different POI categories (“term”) to a zone (“doc-
ument”). Specifically, each zone can be represented by a |C|-
dimensional vector where |C| is the total number of unique
POI categories. Each value is the TF-IDF of a category which
is calculated based on the number of corresponding POIs. We
apply k-means on TF-IDF vectors for zone clustering.
• TF-IDF (Check-in): This baseline adopts the same TF-IDF
method. The difference is that we use check-in frequency in-
stead of POI number to count category frequencies.
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Figure 4: Performance comparisons on different cluster number K.

• Livehoods: The work in [Cranshaw et al., 2012] proposes a
clustering method to POIs by utilizing social similarity (e.g.,
check-in by the same user) and geographical proximity (e.g.,
distance between two POIs) in LSBN data. We aggregate
POIs at the zone level and set locations of zones by zone cen-
ters to implement this baseline.
• LDA Mobility: The work in [Yuan et al., 2012] proposes to
mine human mobility data to learn urban functions of zones
using latent Dirichlet allocation (LDA) model. The idea is to
view zones as “document” and mobility events as “word”. By
having each zone as a “bag of mobility events” with observed
frequencies, we learn the vectors of latent function topics.
Then we apply k-means on topic vectors for zone clustering.
• ZE-Mob (No Gravity): This baseline is the same with the
propose method, except that we remove the gravity matri-
ces G∗. Therefore, we do not model the importance of co-
occurrence in zone embedding learning using destination at-
traction and travel distance of human mobility patterns.

4.4 Performance Comparisons
Figure 4 shows the Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI), F-measure, and Cluster Internal
Difference (CID) of zone clustering results on all approaches
with 4 different cluster number K: 5, 10, 15, and 20. Overall,
we can see that our proposed approach ZE-Mob outperforms
baseline methods on all metrics and all cluster number K.

Specifically, TF-IDF (POI) does not perform well. An im-
portant reason is that POIs in unpopular places such as resi-
dential areas are sparse. Meanwhile, since most of POIs con-
centrate in several categories (e.g., dinning), even the zones
with sufficient POIs can not be differentiated by TF-IDF
vector effectively. TF-IDF (check-in) performs the worst be-
cause check-in records are quite uneven on different POIs,
which makes popular zones and unpopular zones more in-
distinguishable. Livehoods gives similar or better result than
TF-IDF (POI) method by modeling zone affinities based on
shared users and geographical distances. LDA Mobility gives
better performance by learning latent urban function topics.
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(a) TF-IDF (POI) (b) TF-IDF (Chk-in) (c) Livehoods (d) LDA Mobility (e) ZE-Mob (No G.) (f) ZE-Mob

Figure 5: City zone clustering (K = 10) for functional region identification. Each cluster is denoted by a unique color.

Last, ZE-Mob and ZE-Mob (No Gravity) achieve the best per-
formances. Based on the better performance of ZE-Mob with
gravity, we validate that the incorporation of co-occurrence
importance effectively improves zone embedding.

4.5 Identifying Functional Regions
We perform k-means clustering (K=10) on zone embeddings
to identify functional regions of NYC, such as residential re-
gions, entertaining regions, and so on. As shown in Figure 5,
each cluster is denoted by a color and used to identify a func-
tional region. For TD-IDF (POI and check-in), the functional
regions are weakly identified since the city is mainly parti-
tioned into the zone clusters with sufficient POIs and the zone
clusters with sparse POIs. For livehoods, the clustering does
better job than TF-IDF using the same LBSN data, because
it considers geographic proximity in the clustering analysis.
However, its algorithm prevents POIs with far distances to be
in the same cluster, as a result, the shape of clusters can not be
extended which does not fit the real situation of NYC. LDA
Mobility gives better performance than all LBSN based meth-
ods by utilizing mobility data with topic modeling. We can
see that it makes more reasonable identification than Live-
hood. However, some clusters are still mixed with each other,
which make functional regions not clear enough. ZE-Mob
and ZE-Mob (No Gravity) give the most satisfied functional
region identification. For both approaches, we can see that
upper town, middle town, lower town are clearly identified,
and the lower town is correctly separated into the Financial
District and the East/West Village (two famous entertaining
regions). Compared with ZE-Mob, ZE-Mob (No Gravity) as-
signs all mid-town zones into a single cluster, but different
functions exist on the east side (manufacturing region) and the
west side (commercial region) referring to the land use map
in Figure 3a. Also, ZE-Mob (No Gravity) incorrectly merges
the 5th Avenue shopping region into the Upper East region
which mainly provides a residential function.

5 Related Work
In this section, we introduce the related work from three re-
search perspectives: urban function learning, human mobility
analysis, and word embedding learning.

Urban function study is an important research topic for
city planners and urban designers in a long time for sup-
porting decision making of city development. Early stud-
ies mainly rely on classic theory, long-term observation, and
case-by-case survey for investigation. The work in [Goddard,
1970] surveys the taxi flow to analyze complex linkage sys-

tem exists in center of London to study the location of ac-
tivities. The work in [Putnam, 2001] discusses the change
of community in a perspective of people’s social interac-
tions. More recently, a series of work [Cranshaw et al., 2012;
Yuan et al., 2012; 2015; Kling and Pozdnoukhov, 2012;
Liu et al., 2017] use large-scale positioning data to perform
data-driven urban function analysis.

Human mobility study has attracted many attentions in ur-
ban data analytics. Early work in [McFadden, 1974] devel-
ops a multiple dimensions to analyze people’s travel demands
from their traveling behavior. More recently, the availabil-
ity of vehicle GPS traces has empowered many urban intel-
ligence applications. The work in [Zheng et al., 2011] uses
trajectories of taxicabs to detect flawed urban planning areas,
such as O-D region pairs with traffic issues. The work in [Ge
et al., 2010; Yuan et al., 2011] analyzes spatio-temporal pat-
terns of city taxi’s pick-up and drop-off behavior and driving
route to find the optimal strategy for helping taxi driver in-
crease their cars’ occupancy rate. The work in [Wang et al.,
2015] uses taxi, bus, and subway data to measure spatial con-
nectivity among areas for boosting the performance of user
location prediction. The work in [Yao et al., 2016] utilizes
taxi drop-offs to profile temporal popularity patterns of POIs
for improving the performance of POI recommendation.

Word embedding learning has been studied in recent years
through deep neural networks [Bengio et al., 2003; Collobert
and Weston, 2008]. Later, the work in GloVE [Pennington
et al., 2014] and word2vec [Mikolov et al., 2013b; 2013a]
which utilizes word dependency for semantic analysis, has
shown significant improvement on major NLP tasks, such as
document clustering [Kusner et al., 2015] and word similarity
[Levy et al., 2015]. More recenltly, the work in [Levy and
Goldberg, 2014] shows an equivalence of matrix factorization
of a shifted PMI matrix to word2vec skip-gram.

6 Conclusion
In this paper, we presented a city zone embedding framework
using human mobility patterns to represent urban functions
as distributed and low-dimensional vectors. For this purpose,
we exploited the human mobility patterns from massive taxi
trajectories to model the embeddings with zone associations.
Specifically, we developed a spatio-temporal zone embed-
ding model by incorporating mobility direction and depar-
ture/arrival time for building directed and time-aware zone
co-occurrence, and utilizing destination attraction and travel
distance for calculating travel demand of origin-destination
pair of zones as co-occurrence importance. Extensive exper-
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iments on real-world datasets demonstrated the effectiveness
of the proposed method with a consistent performance im-
provement over all baselines.
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