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Paradoxical Correlation Pattern Mining

, Member, IEEE, Hui Xiong, Senior Member, IEEE, Lian Duan*,
Keli Xiao", and Robert Mee

Wenjun Zhou

Abstract—Given a large transactional database, correlation computing/association analysis aims at efficiently finding strongly
correlated items. For traditional association analysis, relationships among variables are usually measured at a global level. In this
study, we investigate confounding factors that can help to capture abnormal correlation behaviors at a local level. Indeed, many
real-world phenomena are localized to specific markets or subpopulations. Such local relationships may not be visible or may be
miscalculated when collectively analyzing the entire data. In particular, confounding effects that change the direction of correlation are
a most severe problem because the global correlations alone leads to errant conclusions. To this end, we propose CONFOUND, an
efficient algorithm to identify paradoxical correlation patterns (i.e., where controlling for a third item changes the direction of association
for strongly correlated pairs) using effective pruning strategies. Moreover, we also provide an enhanced version of this algorithm, called
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CONFOUND+, which substantially speeds up the confounder search step. Finally, experimental results showed that our proposed
CONFOUND and CONFOUND+ algorithms can effectively identify confounders and the computational performance is orders of

magnitude faster than benchmark methods.

Index Terms—Correlation coefficient, correlation computing, partial correlation, local patterns, confounder

1 INTRODUCTION

GIVEN a large transactional database, correlation com-
puting is concerned with efficient identification of
strongly correlated items. As a special case of association
analysis, correlation computing has been a core problem in
data mining and statistical modeling, and has been success-
fully applied to various application domains, including
market-basket analysis [1], climate studies [2], public
health [3], [4], and bioinformatics [5].

Previous work in association mining mainly focused on
identifying association patterns in the entire dataset at a
global level [6], [7], and little attention has been paid to find-
ing associations being confounded by other items. Ignoring
this problem can easily lead to the identification of false neg-
atives and false positives. False negatives are patterns that are
insignificant globally, but significant locally. For example,
one drug might have a significant adverse drug reaction
only in a certain subpopulation, but not be significant in the
entire population. Ignoring such patterns, we may miss
potential new discovery opportunities [8], [9]. False positives
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are patterns that are significant globally, but insignificant
locally. Making decisions based on false positive global pat-
terns will lead to ineffective, sometimes harmful, real-world
decisions. One example of false positives is known as the
confounding effect, where the observed pattern is spurious
and attributable to their correlation to some other factors.
This problem has been found in many applications, includ-
ing biomedical and social network analysis [10], [11]. Of par-
ticular potential harm are confounders that reverse the
correlation’s direction. For example, when assessed globally,
two items are positively correlated; but when controlling for
a third item, the two items are in fact negatively correlated.
(A more detailed example will be discussed in Section 2.1.)
In this case, failing to find this control item leads to misun-
derstanding the true association between item pairs.

To this end, we study the problem of identifying paradox-
ical correlation patterns, which are defined as reversing con-
founders that change the sign of the correlation between a
pair of other items. Having these patterns identified effi-
ciently and making them available would be useful in a
number of applications that involve large-scale data. A
good example may be described in the context of recom-
mender systems: when a customer is buying an MP3 player,
the same MP3 player in a different color may be recom-
mended because, in the past, many people bought them
together as presents for their multiple children. However, if
the customer also showed interest in a matching memory
card, there is high chance that the MP3 is for personal use.
In this case, instead of recommending the same MP3 player
with a different color, we may have a better chance recom-
mending a protector or ear phone. Having paradoxical cor-
relation patterns found may help us make more relevant,
context-aware recommendations. Our goal is to provide a
computational method to efficiently discover a substantially
reduced number of probable confounders, which may be
further investigated or exploited by domain experts.

1041-4347 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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In this study, we use the ¢ correlation coefficient [12] as
the measure of association. Traditional correlation comput-
ing techniques aimed at finding all pairs of items that are
considered positively correlated when their ¢ correlation is
above a user-specified threshold 6 [13]. We tend to leverage
this high correlation for recommendation since co-purchase
is promising. However, that global correlation may be mis-
leading because a pair { A, B} may be negatively correlated
when controlling for a third item C. In this case, the partial
correlation of {A, B} controlled for C' may be below —6.
Practically, this means that for those who bought C, they
were unlikely to buy both A and B; and for those who did
not buy C, they were unlikely to buy both A and B simulta-
neously, either. This is known as the Simpson’s Paradox.
Since C has changed the direction of the correlation between
A and B, it is called a reversing confounder of item pair
{A, B}. Our paradoxical correlation pattern mining problem
is then executed as finding triplets of { A, B|C'}, where C'is a
reversing confounder of strong pair {4, B}.

It is challenging to effectively and efficiently identify
reversing confounders in large-scale datasets. Considering
the correlation between any two items, controlled for a third
item, we may need to check all possible three-item tuples,
making the problem complexity as O(n?), and so a brute-force
approach will not be scalable when the number of items n is
very large. Since identifying pair co-occurrence is relatively
more expensive, and the correlation coefficient of a pair may
be required multiple times during the process of computing
partial correlation, we may save pair-wise correlation values
as intermediate results for future look-up. This can save sub-
stantial computation time at the cost of O(n?) memory space.
However, for a data set with a large number of items, it may
not be practical to meet such a huge memory need.

To discover potential confounders in a more effective and
efficient manner (in terms of both time and space), in this
paper, we studied properties of the partial correlation coeffi-
cient, and used these properties to evaluate the effect of
potential confounders. We first described three necessary con-
ditions for identifying confounders: the “more-extreme” con-
dition, the “all-strong” condition, and the “compatible-sign”
condition. These conditions enabled powerful pruning to
reduce the number of triplets to check. Based on these condi-
tions, a confounder search algorithm, called CONFOUND,
was developed and published in a preliminary version of this
paper [14]. The CONFOUND algorithm had two basic steps:
strong pairs search and confounder search. With improve-
ments in each step, this paper provided further enhancements
to CONFOUND, as described in the CONFOUND+ algo-
rithm. First, as the “all-strong” condition leads to the need of
efficiently finding both positive and negative strong pairs,
we provide an analysis of the search space for bidirectional
all-strong pairs, which reduces the number of bounds to com-
pute. Second, we derive a tight bound for reversing confound-
ers, which helps improve the confounder search efficiency.
Finally, we also store the positive and negative strong pairs
separately, which fully leverages the power of compatible-
sign condition in the confounder search step without repeated
checking. Using a number of benchmark datasets, we show
that both CONFOUND and CONFOUND+ can effectively
and efficiently identify confounders while striking a balance
between the use of time and memory space.
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TABLE 1
Medical Example of Simpson’s Paradox
Trmt A(T'=1) Trmt B (T = 0) Corr.
Treated Recovered Treated Recovered
More Sick 80 38% 200 50% -0.11
Less Sick 200 85% 80 94% -0.12
Any 280 71% 280 63% 0.09

The rest of this paper is organized as follows. In Section 2,
we provide preliminaries, such as concepts, examples, nota-
tions, and computation formula, based on which we formu-
late the paradoxical correlation pattern mining problem.
Section 3 focuses on the detection of confounders by study-
ing the properties of the correlation and partial correlation
coefficients. Based on such properties, our newly developed
algorithms along with the baseline methods are described
in Section 4. Section 5 summarizes experimental results
with a focus on scalability. In Section 6, we discuss related
work briefly. Finally, we draw conclusions and suggest
future work in Section 7.

2 PARADOXICAL CORRELATION PATTERNS

This section will introduce the preliminaries, including con-
cepts and notations, computational formula, and examples.

2.1 Simpson’s Paradox

Simpson’s paradox refers to the phenomenon where the
overall association pattern is different from its counterpart
in each local segment [15], [16]. Assuming that A, B, C are
three different events (a bar on top meaning its comple-
ment), P(-) represents a probability, and P(-|-) represents a
conditional probability, the mathematical definition for
Simpson’s paradox may be written as follows.

Definition 1 (Simpson’s Paradox). It is possible to have
P(A|B) < P(A|B), and at the same time both P(A|BC) > P
(A|BC) and P(A|BC) > P(A|BC).

Example 1 (Treatment Selection). Suppose that for a
medical condition, there are two possible treatments A
and B. We are primarily interested in their success rates
as basis for deciding which treatment to give to a new
patient. More specifically, we are looking at the correla-
tion between two binary variables: treatment 7" (1, if using
Treatment A; and 0 if using Treatment B) and outcome O
(1, if recovered; and 0 otherwise). As illustrated in Table 1,
considering all patients” data (see the last row), the recov-
ery rate of Treatment A is 71 percent, and of Treatment B
is 63 percent. Therefore, one may conclude that Treatment
A is better than Treatment B.

However, if we divide the data by the severity status of
the patient S (1, if more sick; and 0 if less sick), for either
group we would find that Treatment B is in fact better
than Treatment A (50 versus 38 percent for more sick
patients and 94 versus 85 percent for less sick patients).

This example shows that it is possible that correlation
have different directions on the aggregated data from local
segments. In practice, it is essential that we identify such
patterns and avoid making wrong choices.
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TABLE 2
The Two-Way Contingency Table
B=1 B=0 Total
A=1 Nap Nyp Na
A=0 Nip Nip Ni
Total Np Nj N

2.2 Correlation and Partial Correlation

Suppose we have a large, binary market-basket database
D={N,T,..., Ty}, where T} is a transaction (k=1,2,...,
N). Each transaction includes a set of items from the item
Space 1= {11712,. .. ,IM}. We have Tk C 1 (k’ = 1,2, ey N),
and I = | QL]T;‘.,. So in D, there are N transactions involv-
ing M items.

Then, for any two items A and B, we can produce a two-
way contingency table, as shown in Table 2. We can see that
among the N transactions in D, there are N,p containing
both items A and B, N,z containing item A but not item B,
so on and so forth. With such notations, the ¢ correlation
coefficient between items A and B can be computed as

B NN4p — NyNp
VNAN = N4)Np(N — Ng)

1)

dap

Note that ¢, is not defined if N4 € {0, N} or N € {0, N}.
This ¢ coefficient ranges between -1 and 1. Its sign indicates
the direction of association, whether it is positive or negative.
A higher absolute value indicates a stronger correlation,
whereas a lower absolute value indicates a weaker correla-
tion. Given a user-specified minimum correlation threshold
0,0 € (0,1), we say items A and B are (strongly) correlated if
¢ap >0 or ¢, 5 < —0. Translated into correlation terms, the
Simpson’s paradox may be expressed as follows.

Definition 2 (Simpson’s Paradox in Correlation). For any
three binary variables A, B, and C, it is possible to have
$ap > 0, and at the same time both ¢,pc—g < 0 and

$apc-1 < 0.

In Table 1, there were three binary attributes to be con-
sidered: treatment (7"), outcome (O) and sickness status (.5).
As shown in the last row of the table, considering all
patients, the correlation between treatment (whether receiv-
ing Treatment A) and outcome (whether recovered) is
¢10 = 0.09. This indicates that the choice of Treatment A is
positively correlated to recovery. When looking at the data
by patient status, the correlation between treatment and
outcome for more sick patients and less sick patients
became ¢ypjg—1 = —0.11 and ¢ps—¢g = —0.12, respectively.
This indicates that the choice of Treatment A is negatively
correlated to recovery for either group.

An effective measure for discovering patterns showing
Simpson’s paradox is the partial correlation [17]. Take the
three-item scenario as an example: controlling for an item
C, the partial correlation between items A and B can be
computed as

ane = bap ; ¢’Ac¢302 . @)
V= 620) (1 - 3c)

Note that ¢ 4 /¢ is not defined if ¢ .o = £1 or ¢ppc = £1.
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In fact, the correlation between the treatment and sick-
ness status in Table 1 is ¢ = —0.43, and. the correlation
between the outcome and sickness status is ¢pg = —0.44. If
we calculate the partial correlation between treatment and
outcome, controlled for patient status, we would get
#10/s = —0.11, which is negative. That means the sickness
status serves as a confounding factor that would reverse the
correlation between treatment and outcome.

2.3 Problem Formulation and Scope

In this paper, we formulate the problem of paradoxical cor-
relation pattern mining as follows. Given the data described
in Section 2.2, our goal was to find all patterns in the form
of {A, B|C}, such that A, B,C € I, and item C'is a reversing
confounder of item pair {A, B}. Formally, we have the fol-
lowing definition.

Definition 3 (Reversing Confounder). Given the threshold
0,0 € (0,1), item C is called a reversing confounder of { A, B},
ifpap > 0and ¢ pc < —0.

Even though the above definition may be easily extended
to the opposite direction (i.e., ¢45 < 0 and ¢ 50 > —0), we
focus on reversing confounders for positively correlated
pairs only for practical importance and for brevity. The
extension to consider reversing confounders for negatively
correlated pairs is relatively straightforward given symme-
try of the problem.

Similar to traditional correlation computing and pattern
mining settings, we assume that all items are coded as
binary. We also assume that the ¢ correlation is used for
measuring item correlation. Computational methods devel-
oped in this paper are based on specific properties of this
measure, which may be a limitation. Extension to other
association measures will be interesting for future work.

Moreover, we limit our scope to confounders identified
by first order constraints on a binary database. In other
words, the confounder of an item pair {A, B} is identified
by a single item C instead of a group of items. Higher order
constraints may be developed by using AND and OR con-
junctions when needed, however, speeding up that process
is beyond the scope of this study. Association among multi-
ple items (i.e., beyond item pairs) is not well-defined for the
correlation measure, making the extension to multi-item
correlation and its confounding non-trivial, and therefore, is
also beyond the scope of this study.

3 DETECTION OF CONFOUNDERS

In this section, we develop useful results that will help us
speed up the search of paradoxical correlation patterns.

3.1 Necessary Conditions of Reversing
Confounders

In this section, we study the properties of reversing con-
founders. Specially, for an item pair { 4, B}, we identify nec-

essary conditions for any item C' to be its confounder.

Lemma 1 (The “More-Extreme” Condition). Suppose that
an item pair {A, B} is positively correlated (i.e., ¢ 5 >0,
0 <0 < 1). An item C may be a reversing confounder of
{A, B} only if either
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{¢Ac > dan or { dac < —Pan 3)

$pc = Pap ¢pc < —Pap-

Proof. For a positively correlated item pair { A, B}, we have
¢ap > 0.1f C'is a reversing confounder of { A, B}, we have

b — PacPnc

P T ) (1 i)

from which we have

< -0, 4)

PacPpc — Pan

V(1= #0) (- 63)

> 0.

Therefore

acPpc — Pap = 9\/(1 —¢hc) (L= @) > 0. ()
Since ¢ 1oppc € (—1,1)and p45 > 6 > 0, from (5) we have

0 < ¢up < PacPpe < 1.
Therefore, a necessary condition for (4) would be (3). O

Lemma 2 (The “All-Strong” Condition). Item C may be a
reversing confounder of {A, B} only if A, B, and C' are pair-
wise correlated (either positively or negatively).

Proof. If C'is a reversing confounder of { A, B}, then by defi-
nition we have ¢,5 > 6. In addition, from the necessary
condition derived in Lemma 1, we have either

{d’AC > ¢ap >0 or {¢Ac < —pap<—0
Opc = Pap >0 dpc < —Pap < —0

So pairs {A, C'} and {B, C'} are also correlated. O

Lemma 3 (The “Compatible-Sign” Condition). For any
three items A, B, and C that are pairwise correlated (either pos-
itively or negatively), none of them will be a reversing con-

founder if ¢ spbacppc < 0.

Proof. If C'is a reversing confounder of { A, B}, then by defi-
nition we have ¢,z > 6 > 0. In addition, from the neces-
sary condition derived in Lemma 2, we have either

{¢A02¢AB >0 Or{¢Ac§—¢AB <0
dpc > bap > 0 dpe < —bap <0

In either case, we have ¢ 3¢ 1cdpc > 0. O

These conditions will be useful for effective pruning
when designing efficient algorithms.

3.2 Bidirectional All-Strong-Pairs (BASP) Search
The “All-Strong” condition would require the availability of
all strong pairs, including positive and negative pairs. We
call the problem of finding both positive and negative
strong pairs as a bidirectional all-strong-pairs search. For-
mally, we have the following definition.

Definition 4 (BASP Search). Given 0, find all pairs that either
¢ >0or¢p < —0.

In [13], the all-strong-pairs (ASP) query problem was for-
mulated as finding all positive strong pairs only. An
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Fig. 1. Search space for all strong pairs.

extension is needed when we need to include strong nega-
tive pairs. To achieve this goal, a few results regarding cor-
relation range query may be useful. These results are
summarized in Lemma 4, and the proof and other details
may be found in [18].

Lemma 4 (Correlation Range Query). Given a user-specified
minimum correlation threshold 6 (0 < 6 < 1), for any two
items A and B, whose support values are o 4 and o g, respectively,
item B may be positively strongly correlated with A only if

filoa) <op < fo(oa), (6)
where
_ 620 4
filoa) = m, ()
— GA .
fQ(GA) 7O'A+92(1_02)7 (®)
and negatively strongly correlated with A only if
f3(0a) <op < fi(oa), (9)
where
_ P(1—o04)
fS(UA)*m, (10)
1 —_
filoa) = 2 (11)

_(170',4)4»920,4'

Using o4 as the z-axis and op as the y-axis, we may visu-
alize item pairs in a [0, 1] x [0, 1] region. Specifically, the
ranges mentioned in Lemma 4 may be visualized as the
solid lines in Fig. 1. The region between the solid lines
would be the search space for strong pairs. The extent of
bending (and thus the size of the search space) is deter-
mined by the parameter 6. In Fig. 1a, any item pair that lies
between the fi(z) and f»(x) curves is a candidate positive
strong pair. The dashed line represents the case when
04 = op, about which the search space is symmetric. In
Fig. 1b, any item pair that lies between the f3(x) and fi(x)
curves is a candidate negative strong pair. The dashed line
represents the case when o4 +op =1, about which the
search space is symmetric.

When searching for BASPs, we overlay the positive
bounds and negative bounds and illustrated the overall
search space (shaded) in Fig. 2. Note that we only shaded
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Fig. 2. Search space for all strong pairs.

regions in the lower right half of the square, because this is
sufficient for enumerating all candidate pairs due to sym-
metry (i.e., ¢ 15 = ¢dp,). It is then easy to see Theorem 1.

Theorem 1 (Search Regions for BASP). For any given item
A, whose support value is o 4, the search space for item B is all
those such that

[fi(oa),04] if o4 <0.5;
sp € [f3(04),04] if 0.5 < o4 < ﬁ; 12)
[f3(04), f1(04)]
U[fi(oa),04] otherwise.

Proof. The proof is omitted since the search space is easy to
tell from Fig. 2, and the cutoff values may be easily solved
from the equations of bounds in Lemma 4. ]

3.3 Tight Bound for Reversing Confounders

The “More-Extreme” condition may be considered as a
loose bound for pruning. In this section, we will identify a
tight bound and derive a few more pruning rules.

Lemma 5 (First Lower Bound of Partial Correlation). A
lower bound for ¢ 4 ¢ is

lower(¢apc) = %

Proof. Since (¢AC - ¢BC)2 = ¢,24C + ¢%§C - 2¢Ac¢BC >0, we
can see that ¢% - + ¢%- > 2¢ 40¢ 0. We have

(13)

" __ 9ap— PacPse
AB|C (o

V= 80) (163

_ P — PacPpe
V1= (Bhc + Bhc) + Ficdho

. $ap — PacPpc
\/ 1= 2¢achpe + Pacbie

_ PaB — Pachse

1—actpe
the right hand side of which is a lower bound for ¢ 4.0
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Lemma 6 (Second Lower Bound of Partial Correlation).
Assume that |¢ 4c| < |@pc| without loss of generality, a lower
bound for ¢ 4 ¢ is

b8 — Pic

1— ¢

Proof. Since |¢ | < |ppcl, it is easy to see that ¢% < ¢%.

Moreover, since (¢c — ¢pc)’ = e + $he — 20acdse = 0,
we can see that ¢ ;00 < 5 (¢ + ¢%) < d%. We have

lower(¢pc) = (14)

$ap — PacPpc

¢ > by Lemma 5
ey :
_q_ L1—dup
1 —¢achpe
. 1_1—¢§B:¢AB—Z>QB07
L—¢pc 1= dpc

the right hand side of which is a lower bound for ¢ 43¢ O

Theorem 2 (Tight Bounds for Reversing Confounder of
Positive Pairs). Suppose that an item pair {A, B} is posi-
tively correlated (i.e., ¢, >6) (0 < 60 < 1). Assuming that
|®ac| < |@pc| without loss of generality, an item C may be a
reversing confounder of { A, B} only if either

bac > 84p or bac < —84p
bpc > S4B ¢pc < —daB

0
where S5 = ./‘bﬁg s

Proof. By definition, in order for C' to be a confounder of
{A, B}, we require ¢,pc < —0. As a result, the lower
bound of ¢ ,p¢ (e.g., as derived in Lemmas 5 or 6) has to
be less than —6.

First, using the bound derived in Lemma 6, we have

(15)

bap — P
lower(¢pc) = —L—2C < -0,
1— 5
from which we have
2 dap+0
. 1
P > g (16)

Furthermore, using the bound derived in Lemma 5,
we have

fower(g5c) = L2000 < g,

from which we have

¢ap+0
1+6 °

bacbpe >
If o > 0, then

Gap+0
1+6)ppc —

Gap+0.

14+6 " (17

¢Ac>(

If ppc < 0O, then

$ap+0
(1+0)ppc —

_Gapt0

T 18)

dac <

Combining (16), (17), and (18), we can come to (15). O
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Based on the tight bound derived above, we prove the
following corollaries, which will be used for speeding up
our algorithm.

Corollary 1 (Reversible). If C is a reversing confounder of
{A, B}, then among the pairwise correlations ¢,p, ¢, and
Opc, P ap has the smallest absolute value.

Proof. This corollary follows directly from the necessary
condition derived in Lemma 1. O

Corollary 1 indicates that for any triplets, only the pair
with the least absolute of correlation may be reversed by the
third item. Therefore, whenever we know that three items
are pairwise strongly correlated, we only need to check
whether the weakest pair is reversed by the third item. We
do not need to check the other two possibilities.

Corollary 2 (Irreversible Triplet). Suppose that A, B, and C
are pairwise positively correlated, and that ¢ , g is not the small-
est among the pairwise correlations. If ¢pp < {22, then no
reversing confounders will be found among A, B, and C.

Proof. From Corollary 1 we know that ¢,5 will not be
reversed since it does not have the smallest absolute
value. If ¢, < ¢pc, we shall only have to check if ¢ . is
reversed by item B; otherwise we shall only have to check
if ¢ ¢ is reversed by item A.

From Theorem 2, we know that item B may be a
reversing confounder of { A, C'} only if either

> 82 >4
bap = 8ic or {¢AB ;10’ (19)
dpc > Sac $pc = Sa0
where
bac +0 \/ 20
Sar = > . 20
AC 1+6 = Vi+oe 20)

From Egs. (19) and (20), we find the following necessary
condition:

26
bap > 840 >

Symmetrically, we can find that a necessary condition
for item A to be a reversing confounder of {B, C'} will be

20
> 85 > ——. 22
Pap 2 850 2 75 (22)
The proof detail is omitted due to similarity. ]

Corollary 3 (Irreversible Pair). Suppose that { B, C'} is a pos-
itive strong pair, and ¢,z < ¢4 < —0. Then the pair {B,C'}

; /26 20
cannot be reversed if gy > —\ /7550 bac > — 11

Proof. From Theorem 2, we know that item A may be a
reversing confounder of { B, C'} only if

{¢AC < —52307
¢ap < —0BC

where épc = 1/‘1’?1;9 >

conditions are that

(23)

26
i Therefore, the necessary
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20
< 6o < —/—— 24
$ap < —0pc < \/1+9, (24)
and that
20
<8< - 25
$ac < —8pc < 110 (25)
Note that both conditions have to be met. O

4 ALGORITHM DESCRIPTIONS

In this section, we will describe algorithms for identifying
confounders from a transactional database. We will first
describe two straightforward solutions as the baseline, then
the CONFOUND algorithm we have designed based on the
initial set of necessary conditions. Finally, we will describe
CONFOUND+, an enhanced version of CONFOUND with
further pruning due to the newly found tight bound.

For each algorithm described in this section, we assume
that the input variables are I, the reverse indexed transac-
tional database (i.e., a list of item IDs followed by all trans-
action IDs in which the item was included); and 6, the
minimum correlation threshold. The output are patterns in
the format {A, B|C}, where item C is a reversing con-
founder for positively correlated item pair {A, B}. For brev-
ity, by default A, B, C represent items, and «a, b, and ¢
represent their respective indices in 1.

4.1 Baseline Algorithms
In this section, we describe two straightforward solutions as
the baseline.

First, a “brute-force” approach is described in Algorithm 1.
The loops starting in Lines 2 and 3 ensure that we iterates on
each possible item pair { 4, B}. The fact that items were sorted
by decreasing support (Line 1) ensures that o4 > o . Despite
the name “brute-force”, we performed basic pruning in
Line 4, which is based on a computation-friendly upper
bound of ¢ [19]. If the upper bound is above the threshold 6,
we compute the exact correlation ¢,p (Line 5); otherwise,
there is no need to compute the exact correlation. In fact, if the
upper bound of ¢ 45 is below the threshold 6, no strong pair
will be found between A and B/, VB’ s.t. o < o [13]. This is
why we may break from the inner loop in Line 4. When A and
B are not positively correlated, there is no need to search for
their confounders (Line 6). Otherwise, a third loop starting
from Line 7 iterates on each remaining item C, compute its
correlations to items A and B, respectively (Lines 9-10), and
then check the partial correlations to see if the pair {A, B} is
reversed (Lines 11-12).

Note that the computation of pairwise correlation in
Algorithm 1 has lots of overlap. For instance, the correlation
of ¢ 4¢ in Line 9 may have to be computed again in Line 5 in
a later iteration. The computation of the exact value of ¢ cor-
relation proves to be expensive [19]. Thus, it is desirable to
store pairwise correlation for repeated use, which motivates
us to design a save-and-lookup approach, as described in
Algorithm 2.

Algorithm 2 has two phases. In the initialization phase
(Phase I, Lines 1-4), the correlation of each possible item pair is
computed and saved for later use. Then, in the confounder
search phase (Phase II, Lines 5 through 14), we iterate over
each possible item pair {A4,B} and check against each
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remaining item C, to see if C is a confounder of {A, B}. The
difference of this process from Algorithm 1 is that, instead of
re-computing the ¢ correlations, we simply look them up from
the pre-computed results. This is an approach to alleviate the
computation cost by making use of more memory space.

Algorithm 1. The Brute-Force Approach

Input: I: an item list representing a reverse indexed
transactional database; 6: a user-specified
minimum correlation threshold.

Output: all reversing confounder patterns.

1 sort I by non-increasing item support;
2 fora — 1to (M —1)do
3 forb — (a+ 1) to M do
4 if upper(¢,5) < 6 then break;
5 find N4p and calculate ¢4 5;
6 if p,5 < O then continue;
// Find all reversers of strong pair {4, B}

7 forc < 1to M do
8 if C = A or C = B then continue;
9 find N4¢ and calculate ¢ 4¢;
10 find Npc and calculate ¢p¢;
11 calculate ¢ 5 pic;
12 if ¢4 < —06 then output {A, B|C};
13 end
14 end
15 end

Algorithm 2. The Save-and-Lookup Approach

Input:  I: an item list representing a reverse indexed trans-
actional database; 6: a user-specified minimum
correlation threshold.

Output :all reversing confounder patterns.

// Phase I: Compute and save pair-wise correlations
1 pre-allocate fixed storage space for all pairs;
2 foreach item pair {A, B} do
3 find N4p, compute ¢4, and save it;
4 end

// Phase II: Search for reversing confounder patterns
5 foreach item pair {4, B} do
6 look up ¢ 5;
7 if p,5 < Othen continue;

// Find all reversers of strong pair {4, B}

8 forc — 1to M do

9 if ¢ = a or ¢ = b then continue;
10 look up ¢4 and ¢ by index;
11 calculate ¢ 4p/¢;
12 if ¢ 4pc < —6 then output { A, B|C};
13 end
14 end

4.2 The CONFOUND Algorithm
The above two baseline methods present the two extremes in
time and space usage for discovering confounders. With the
simple necessary conditions developed in Section 3.1, we
were able to design a new algorithm, called CONFOUND,
which provides a balance between computation time and
memory space.

The CONFOUND algorithm is described in Algorithm 3.
Similar to Algorithm 2, CONFOUND has two phases:
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correlation computing (Lines 1 through 10) and confounder
searching (Lines 11 through 36). In the correlation computing
phase, our goal was to find and save all (i.e., positively or nega-
tively) correlated pairs. Here we make use of both the upper
and lower bounds of ¢ [13] for speeding up the computing
(Line 3), as we need to find not only positive but also negative
pairs. Specifically, if a pair’s upper and lower bounds are not
large enough (by absolute value), there is no chance for its
actual correlation value to be strong. In this case, we can safely
skip the computation of the exact correlation value for the pair.

Algorithm 3. CONFOUND

Input: I: an item list representing a reverse indexed
transactional database; 6: a user-specified mini-
mum correlation threshold.

Output: all reversing confounder patterns.

// Phase I: Identify all strong pairs
1 initialize L as an empty linked list;
2 foreach item pair {4, B} do
3 if upper(¢ 4p5) > 6 or lower(¢,5) < —0 then
4 find N4p and compute ¢ ,3;
5 if ¢ 45 = £1 then continue;
6 ifp p >0o0rp,p < —06then
7 save pair {4, B} to L;
8 end

9 end
10 end

// Phase II: Identify reversing confounders

11 foreach a € L.keys() do
12 I — Lla].length();
13 if [ < 2 then continue;
14 fori — 1to(l—1)do

15 (b, ap) — Llal[i];

16 if b ¢ L.keys() then continue;

17 forj«— (i+1)toldo

18 (¢, ac) — Llal[j;

19 look up ¢ from L;

20 if ¢ ¢ is not found then continue;
21 if pupPpcdac < 0 then continue;
22 calculate ¢ 505

23 if g4 > 0and ¢, pc < —0 then
24 output {A, B|C}

25 end

26 calculate ¢ 405

27 if 40 > 0and ¢ 05 < —6 then
28 output {4, C|B}

29 end

30 calculate ey 4;

31 if ppc > 0 and ¢poy < —0 then
32 output {B, C|A}

33 end

34 end

35 end

36 end

In addition, we save pairwise correlations in a linked list
structure, L (Line 7). For an item pair {A, B}, where A =
I[a] and B = I[b], we save ¢, in L[b], if b > a." In practice,
strongly correlated pairs tend to be a small fraction of all
possible pairs. Therefore, the compactness of a linked list

1. Here we are using lexical order. Using other ordering is also pos-
sible as long as being consistent.
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will save space when only strong pairs need to be saved.
This compactness can save us time both in pairwise correla-
tion computing and confounder searching.

In the confounder search phase, we iterate on the pair-
wise correlated triplets only, based on the necessary condi-
tions stated in Lemmas 2 and 3. First, we iterate on the keys
of L (Line 11). For key q, the iteration is skipped unless there
are at least two elements in L[a] (Line 13). The reason is that
if items A = I[a], B = I[b] and C = I[c| are pairwise corre-
lated, assuming a > b > ¢ without loss of generality, we
should have (b, ¢,5) and (¢, ¢ 4¢) in La] and (¢, ¢pc) in L[b].
If b is not strongly correlated with anyone, break from all
pairs that may involve B (Line 16). Then, in Line 19 we skip
the iteration if ¢ is not found in L[b], which means that A
and B are not strongly correlated. Finally, additional prun-
ing can be done in Line 21, which is based on Lemma 3.

4.3 The CONFOUND+ Algorithm

In this section, we describe an enhanced version of the

CONFOUND algorithm, named CONFOUND+, which is

based on additional screening rules derived in this paper.
As described in Algorithm 4, the CONFOUND+

algorithm also has two phases: identifying all strong pairs

(Line 2), and searching for reversing confounders (Lines 3-4).

Algorithm 4. CONFOUND+

Input: I: an item list representing a reverse indexed
transactional database; 6: a user-specified mini-
mum correlation threshold.

Output: all reversing confounder patterns.

// Phase I: Identify all strong pairs, saved by direction
1 initialize L™ and L~ as two empty linked lists;
2 (L*, L™) « TraverseSearchRegion([);
// Phase II: Identify reversing confounders
3 CheckTripletsPos(L™); // positive pairs only
4 CheckTripletsNeg(L~, L"); // negative pairs

When identifying the strong pairs, different from the basic
CONFOUND algorithm, we save the positively strong pairs
and negatively strong pairs separately. Moreover, we devel-
oped a sequential traversal procedure to maximally reduce
unnecessary computing. The pseudocode is detailed in
Appendix A. The strength of this sequential search procedure,
as compared to the direct search procedure in Algorithm 2, is
that we can avoid computing too many bounds. The search
procedure in Algorithm 3 needs to compute both the upper
and the lower bounds for each pair of items, whereas in Algo-
rithm 4, the search range for item B is computed only once for
each given item A, and then we can deterministically iterate
item B within the specified range sequentially.

We were able to search among positive pairs and nega-
tive pairs separately because of Lemma 3. There are two
situations when a reversing confounder could be found.
First, when all three items are positively correlated pair-
wise. We only need to search in L*, the linked list of posi-
tive pairs (see Procedure CheckTripletsPos). Second, one
pair is positive and the other two pairs were negatively
strong. We will iterate over each two strong negative
pairs, and then check if the third pair can be found in L*
(i.e., is positively strong) and reversed (see Procedure
CheckTripletsNeg).
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Procedure. CheckTripletsPos(L™)

1 foreach a € LT .keys() do
I — L*[a).length();

3 if | < 2 then continue;

4 sort L*[a] by decreasing ¢;
5 fori— 1to(l—1)do
6
7
8

N

(b,¢ap) — L*[a][i];
if p,5 < 22 then break;

10
forj— (i+1)toldo
9 (¢, pac) — L*[a][4];

10 look up ¢ from L;
11 if ¢5c is not found then continue;
12 if ¢BC < ¢AC then

// Check if { B, C'} is reversed by A
13 calculate ¢pcy4;
14 if ¢pcja < —0 thenoutput { B, C|A};
15 else

// Check if {A, C} is reversed by B
16 calculate ¢ 405
17 if ¢ 4015 < —06 then output {A, C|B};
18 end
19 end
20 end
21 end

In Procedure CheckTripletsPos, for each backbone item
A, we require at least two correlated items (Line 3). This is
because if A is only correlated with one item, the All-Strong
condition cannot be met. Then we iterate over each pair of
items (B and C) that are correlated to A (see the two levels
of loops starting in Lines 5 and 8, respectively). Since the
correlated items are sorted by decreasing correlation (Line
4), we know ¢ 5 > ¢4, and therefore, ¢, is not reversible
(Corollary 1). If ¢, is less than ¢ 5 < f—fe, then the search
related to item A ends (Line 7). This is made possible by
Corollary 2. The pruning on Line 11 is guaranteed by the
all-strong condition. Since only the smallest correlation may
be reversed (see Corollary 1), Lines 12 and 15 checks if the
smaller of ¢~ and ¢, was reversed. There is no need to
check ¢, because it is irreversible (see Corollary 2).

The second case of a reversing confounder is that one
pair is positive and the other two pairs were negatively
strong. The search procedure, outlined in Procedure
CheckTripletsNeg, is similar to Procedure CheckTriplet-
sPos, but there are a few differences. First, the pruning
happens at two places (Lines 7 and 10). These conditions
were proved in Corollary 3. Second, the negative pairs
were saved with some redundancy for easy enumeration
of candidates. More specifically, a strong pair {4, B} is
saved both as (a,¢ ) in L~[b] and (b, ¢ ,4) in L~ [a]. Finally,
we only need to check whether the positive pair {B,C}
was reversed by A.

5 EXPERIMENTAL RESULTS

In this section, we first briefly summarize the experimental
setup and then show the experimental results.

Datasets. The Frequent Itemset Mining Implementations
(FIMI) repository (http://fimi.cs.helsinki.fi/data/) pro-
vides a collection of datasets that are often used as bench-
marks for evaluating frequent pattern mining algorithms.
Table 3 lists the names and sizes of these datasets.
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TABLE 3
Experimental Datasets

Dataset # Items # Pairs # Transactions
accidents 468 109,278 340,183
BMS-POS 1,657 1,371,996 3,367,020
BMS-WebView-1 497 123,256 149,639
BMS-WebView-2 3,340 5,576,130 358,278
pumsb 2,113 2,231,328 49,046
pumsb_star 2,088 2,178,828 49,046
T1014D100K 870 378,015 100,000
T40I10D100K 942 443211 100,000

Procedure. CheckTripletsNeg(L~, L")

1 foreach a € L™ .keys() do
2 l — L~ [a].length();

3 if [ < 2 then continue;

4 sort L~ [a] by increasing ¢;
5 fori — 1to(l—1)do

6 (b, ¢a5) — L [alli];
7

8

9

ifpup > —/7% then break;
forj— (i+1)toldo
(¢, pac) < L~ [a][j];

10 if p4c > — £ then break;

11 look up ¢ from LT [b];

12 if ¢pc is not found then continue;
// Check if { B, C} is reversed by A

13 calculate ¢pcya;

14 if ¢pcia < —6 then output { B, C|A};

15 end

16 end

17 end

Platform. All the experiments were performed on a Dell
Optiplex 980 desktop PC, with 3.47 GHz Intel Core i5 CPU
and 8 GB of RAM. The operating system is Microsoft Win-
dows 10 Pro. All programs were implemented in C++, and
were compiled and run in Cygwin.

Regarding the evaluation of effectiveness, we compared
the output from each algorithm to ensure that the patterns
found were correct and complete. Since all algorithms
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described in this paper gave us the same output (given data-
set and parameter), the remaining evaluations will focus on
scalability, including both computation and memory effi-
ciency. To control measurement errors of running time, for
each experiment setting (i.e., dataset, parameter, algorithm),
we ran five runs and took the median.

5.1 Computation Efficiency of CONFOUND

In this section, we focus on a comparison of the computation
efficiency. Fig. 3 shows a comparison of the total running time
(seconds, in logarithm) of CONFOUND and the two baseline
methods for each dataset under various threshold values. We
showed a range of lower 6’s, from 0.00 to 0.30, because for
higher thresholds, the running time of CONFOUND and
CONFOUND-+ gets close to zero, making it hard to measure
reliably and show on logarithm. We can see that for any given
0, the save-and-lookup approach (SL) and the CONFOUND
algorithm (CF) are both significantly faster than the brute-
force approach (BF). Moreover, the CONFOUND algorithm is
consistently faster than the save-and-lookup approach. The
clear separation between their curves on the log scale indi-
cates that the performance gap is high.

The performance gap between CONFOUND and the
brute-force algorithm varied by threshold. The smaller 6,
the more computational savings, as the number of strong
pairs grows quickly with lower 6. The running time of the
save-and-lookup algorithm is expected to be relatively sta-
ble across different parameters. For some datasets, it run-
ning time elevated for lower thresholds for the need of
checking confounders for more strong pairs. It is surprising
that the save-and-lookup algorithm is slower than CON-
FOUND even though we expected it to be memory inten-
sive but computing efficient. The fact that CONFOUND has
outperformed a memory intensive approach shows that our
proposed method is highly scalable.

5.2 Number of Pairs to Compute and Save

After seeing that the brute-force method was unscalable (in
spite of being frugal in memory use), Fig. 4 shows a compari-
son of space usage among the two-phase methods (i.e., save-
and-lookup, CONFOUND, and CONFOUND+), which all
required saving pairs in the memory. The number of all pairs
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Fig. 5. Comparisons of BASP search time: z-axis: 6; y-axis: Time in seconds, shown in logarithm.

(see lines in black) is the number of pairs the save-and-lookup
algorithm needed to save. It is determined as M (M —1)/2,
where M is the number of unique items. Therefore, it does not
depend on threshold. The number of strong pairs (see lines in
green) is the number of pairs the CONFOUND and CON-
FOUND-+ algorithms needed to save. Note that the y-axis rep-
resenting the number of pairs is shown in logarithm. It is clear
that there is a substantial gap between the black and green
lines. When 6 increases, the number of strong pairs decreases
quickly. We can conclude that the CONFOUND and CON-
FOUND-+ algorithms are memory efficient.

Also shown in Fig. 4 are the number of bounds computed
by CONFOUND (red lines) and CONFOUND+ (blue lines),
respectively, during the strong pairs search stage. We can
see that they are almost constant across thresholds. The
number of bounds by CONFOUND is even more than the
total number of pairs (black line), because for each pair of
items, we had to compute both the upper and the lower
bounds of the correlation, making the number of bounds
twice as many. In contrast, the number of bounds computed
by CONFOUND+, thanks to our sequential traversal proce-
dure, reduced this number to a small fraction.

5.3 A Comparison of the Two-Phase Methods
As mentioned earlier, the save-and-lookup, CONFOUND,
CONFOUND-+ algorithms all have a two-phase structure:
strong pair search and reversing confounder search. In this
section, we will compare the running time by phase.

Fig. 5 shows a comparison of the running time (seconds,
in logarithm) of Phase I (i.e., BASP search). We can see that
the save-and-lookup algorithm is the slowest and is almost
constant across all thresholds. CONFOUND and CON-
FOUND-+ are more efficient, and the running time decreases
sharply as the threshold increases.

From Fig. 5 we can see that the BASP search time of
CONFOUND-+ is only slightly shorter than CONFOUND.
For some datasets, their curves almost overlap. Since CON-
FOUND+ used sequential search and CONFOUND com-
putes two bounds for all pairs, when the two lines overlap,
it means the savings from avoiding computing bounds did
not matter, as the computation of pair correlations took
much longer. Indeed, as mentioned earlier, the computation
of the exact correlation is time consuming, whereas comput-
ing a bound is relatively effortless. The size of the perfor-
mance gap depends on the relative cost of computing the
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Fig. 6. Comparisons of confounder search time: z-axis: 6; y-axis: Time in seconds, shown in logarithm.

correlation versus computing the bounds. In Fig. 5, the save-
and-lookup method may take longer than others when the
number of pairs saved is so large that looking them up takes
longer than computing them. This typically happens with
dense data at lower threshold.

Fig. 6 shows a comparison of the running time (seconds,
in logarithm) of Phase II (i.e., confounder searching). We
can see that the searching time by CONFOUND (green
lines) is much shorter than the save-and-lookup (red lines)
algorithm for most datasets and parameters, and the perfor-
mance gap increases as the threshold 6 increases. This is sig-
nificant because the save-and-lookup algorithm uses a pre-
allocated (fixed) memory space, which is efficient for
lookup; whereas CONFOUND, which uses a linked list
(variable structure), was expected to be more complex for
lookup. This shows that selectively saving just the strong
pairs rather than all pairs paid off not only for space effi-
ciency but also computation efficiency. Note that we are
showing a range of even lower #’s because for higher thresh-
olds, the confounder search time gets close to zero (for lack
of strong pairs), making it hard to show on logarithm. In
Fig. 6, the confounder search time of CONFOUND may be
longer than the save-and-lookup method for certain data-
sets, especially for lower threshold values. The reason is
that the CONFOUND algorithm involves computing over-
head such as bound calculation and linked list maintenance.

Fig. 6 also shows that CONFOUND+ (blue lines) is much
faster than CONFOUND in the confounder search phase,
thanks to the separate search procedure among positive
pairs and among negative pairs, and the more powerful
pruning. Even though the confounder search time is rela-
tively short compared to the strong pairs computing time,
the saving in Phase II would be very helpful in situations
where the strong pairs were incrementally maintained [20]
and the confounder search is frequent.

6 RELATED WORK

Correlation computing has been an active research topic in the
past few decades. Using the Pearson’s ¢ coefficient, a compu-
tation friendly upper bound was discovered and first utilized
in [13], [19] for identifying all strong pairs. Leveraging this

bound, efficient correlation range queries were studied in
[18], [21] Extension to dynamic data environment was studied
leveraging projected bounds of ¢ anticipating a buffer of
future transactions. This has resulted in efficient volatile cor-
relation computing [20], [22]. Other association measures
have been studied in the data mining literature as well, such
as confidence [7], lift [6], and the cosine measure [23].

The Simpson’s paradox generally applies to most associ-
ation measures, including those mentioned above. There-
fore, it is important to identify the discrepancy between
local and global patterns. Along this line, we found the fol-
lowing interesting studies with related concepts.

Contrast sets [24] are subgroups of the market-basket
data, such that the same pattern behaves differently in dif-
ferent subgroups. The problem of finding group differences
has been studied intensively in [25], [26], and [27] has
applied the contrast set mining method to analyzing brain
Ischaemina data. A study discovered that contrast-set min-
ing is a special case of the rule-discovery framework [28].
However, contrast sets emphasize between-group differen-
ces, but not necessarily local versus global differences. Spe-
cially, contrast sets cannot discover local patterns showing
Simpson’s paradox [29]. In other words, some patterns
behave differently in each local segment from the global
level but appear similar among the local segments.

Niches [30] are defined as surprising association rules
that contradict set routines, which consist of a number of
dominant trends. Both the dominant trends and the niches
can be captured by emerging patterns [31], which present
significant differences between different classes. Although
the concept of emerging patterns is closely related to con-
trast sets, the niche mining problem tries to discover a small
number of exceptions (niches) that contradict the majority
(set routines), which reflect the idea of discovering signifi-
cant local patterns that are different from global ones. How-
ever, the problem setting is different from ours, since it
focuses on one attribute as the class label (e.g., risky custom-
ers versus non-risky customers).

7 CONCLUSIONS

In this paper, we investigated how to efficiently discover
paradoxical correlation patterns. We first identified three
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necessary conditions of reversing confounders, which helped
us prune the search space and develop an algorithm called
CONFOUND. CONFOUND proves to be efficient in both
memory space and computing when compared to two base-
line methods. Moreover, we added further enhancements to
CONFOUND and put forward a CONFOUND+ algorithm,
which substantially improves the confounder search effi-
ciency. The experimental results on benchmark datasets
showed that the proposed CONFOUND and CONFOUND
+ algorithms can effectively identify confounders, and the
computational performance can be orders of magnitude
faster than the baseline methods.

Many extensions are possible for future work. First, it
will be interesting to extend the discovery of reversing con-
founders to other types of confounders, including false posi-
tives (i.e., correlated globally but not correlated when
controlled by this confounding variable) and false negatives
(i.e., uncorrelated globally but correlated locally). Second,
as a common challenge for all work in association pattern
mining, it will be interesting to investigate how to integrate
the discovered patterns into an overall predictive or deci-
sion optimization model. For example, the paradoxical cor-
relation patterns may be used to adjust algorithms in the
recommender systems. Finally, as the ¢ correlation coeffi-
cient only measures strength of correlation between binary
variables, it would be useful to extend our framework into
other association measures, including those for other vari-
able types, and to consider statistical significance of the cor-
relation patterns.

APPENDIX A
TRAVERSING THE SEARCH REGIONS

Even though the search region may be expressed with three
ranges as shown in Eq. (12), the actual computation of posi-
tive or negative strong pairs will be further sliced into five
ranges of 04, or ten ranges of (o4, 03) combination, as anno-
tated in Fig. 7.

Procedure. TraverseSearchRegion(/)

1 Sort I by non-decreasing item support;

2 a « 2 // Initialize the index of item A

3 RegionOne // a increases until o4 > 1%9
4 RegionTwo // a increases until o4 > 0.5
5 RegionThree // a increases until o4 > ﬁ
6 RegionFour // a increases until 04 >

1
1462
7 RegionFive // all others

The overall process of traversing the search region is
outlined in Procedure TraverseSearchRegion. Since we
only need to search for the region where o4 > op, in
Line 2 we initialize the index of item A as the second least
frequent item. Note that unlike Algorithm 1 that sorts
by non-increasing order of item support, here we choose
to start from the least frequent, as most real-world data
are highly skewed to the right. In other words, there is a
large number of infrequent items, whereas the number of
high-support items tends to be very small or none. There-
fore, if we traverse from the least frequent items, it is
likely to get the majority of the work done early on, and
the search can stop early if there is no high-support item.
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Fig. 7. Search space for all strong pairs.

In Lines 3 through 7, we traverse the five regions by o4
sequentially. The detailed traversing pseudocode within
each region is provided from Procedure RegionOne
through Procedure RegionFive.

Procedure. RegionOne

1 whilea < M and o4 < 1%; do
2 b—a—-1;
while op > fi(04) do
find N4p and compute ¢ 4 5;
if ¢, > 0 then save pair {4, B} to L™;
b—0b-—1;
end
a<+—a+1;
end

O 0 N O U1 = W

Line 1 in Procedure RegionOne specifies the range of o4
that defines Region 1 in Fig. 7. M is the total number of
unique items, and the upper bound of Region 1, 1%, is the
value of o4 such that f3(04) = 04. In this region, all item
pairs are candidates for positive strong pairs but not nega-
tive strong pairs. Therefore, we only need to check whether
the correlation of each pair is above 6 and insert the pair
into L™ if true (Line 5).

As the index of item A (i.e., a) continues to increment, the
search continues into Region 2 (see Procedure RegionTwo).
The upper bound for Region 2, 0.5, is the value of o4 such
that fi(o4) = f3(04), and is easy to tell in Fig. 7 by symme-
try. Region 2 is further divided into two subregions, 2a and
2b, based on candidacy status. In Region 2a, all item pairs
are candidates for both positive strong pairs and negative
strong pairs. Therefore, we need to check whether the pair’s
correlation is above 6 and insert it into L* if true (Line 5);
and below —6 and insert it into L~ if true (Line 6). In Region
2b, all item pairs are candidates for positive strong pairs but
not negative strong pairs. Therefore, we only need to check
whether the correlation is above 6 and insert the pair into
L™ if true (Line 11).
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Procedure RegionThree Procedure RegionFour Procedure RegionFive
1whilea§MundaA§ﬁdo 1whilea§MﬂnduA§#do 1 while a < M do
2 bi—a—1; 2 b+a—1; 2 ba—1;
// Region 3a // Region 4a // Region 5a
3 while o > fi(c.4) do 3 while o > fa(ca) do 3 | whileog > fi(ca) do
4 find Nap and compute ¢ 4p; 1 find N4p and compute ¢4p; 4 find Nag and compute ¢4p;
5 if op > 0 then save pair {4, B} to LT ; 5 if pap > 0 then save pair {4, B} to LT ; 5 if $4p > 0 then save pair {A, B} to L™ ;
6 if pap < —0 then save pair {A, B} to L~ ; 6 beb-1; 6 beb-1;
7 beb-—1; 7 end 7 end
8 end // Region 4b // Skipping the irrelevant space in between
// Region 3b s | whileop > fi(o4) do s | whileop > fy(oa) do
o | whileop > f3(ca)do 9 find N 4p and compute ¢4p; ° | beb-1;
10 find Nsp and compute ¢ 4p; 10 if ¢ap > 0 then save pair {4, B} to L™ ; 10 | end
1 if ¢ap < —0 then save pair {A,B} to L™ ; 1 if pap < —0 then save pair {4, B} to L~ ; // Region 5b
12 beb—1; 12 beb-1; 1n | whileop > f3(c4) do
13 end 13 end 12 find N 4p and compute ¢4p;
14 a+a+1; // Region 4¢c 13 if p4p < —0 then save pair {A, B} to L~ ;
15 end 14 while o > f3(ca) do 14 b+ b-1;
15 find N4g and compute ¢4p; 15 | end
16 if ap < —0 then save pair {A, B} to ™ ; 16 a+a+1;
17 beb-1; 17 end
18 end
19 a+a+1;
20 end

Fig. 8. Pseudocode for regions 3, 4, and 5.

Procedure. RegionTwo

1 whilea < M and o4 < 0.5 do

2 b—a—1;

// Region 2a in Fig. 7

while op > f3(04) do
find N4p and compute ¢ ,;
if ¢, > 6 then save pair {4, B} to L™;
if ¢ ;5 < —6 then save pair {4, B} to L~;
b—0b-—1;

end

// Region 2b in Fig. 7

9 while op > fl(O'A) do

N3O Ul W

10 find Nyp and compute ¢, ;

11 if ¢, > 0 then save pair {4, B} to L™;
12 b—b—1;

13 end

14 a—a-+1;

15 end

Similarly, the search continues into Regions 3, 4, and 5
(see Fig. 8). Each of these regions was further divided into
subregions based on candidacy status. In particular, the
boundary point between Regions 3 and 4 is the value of o4
such that f>(04) = 04; and the boundary point between
Regions 4 and 5 is the value of 04 such that fo(04) = f3(04).
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